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ABSTRACT.

We consider a wave equation on a compact Riemannian manifold in the Hamil-
tonian form. The measure obtained as the product of Wiener measure on path space
and the one of the (flat) white noise is infinitesimally invariant under the action nf
the corresponding flow.

0.Introduction.

Wave equations on manifolds appear in Einstein gravity theories, where they
describe scalar field self-interactions. There are also cosmological models (Dicke
model) where such scalar fields in gravitational (curved) background apear. Invari-
ant measures are then relevant to describe the corresponding statistical mechanics.
The measure can be important to construct the natural Hilbert space of functionals
on fields in quantum theory of gravity.

Recentely the non linear wave equation in a flat space and with a cubical potential
has been studied ([F] and [McK-V]). The equation being taken in the Hamiltonian
form, a measure on the phase space was constructed and shown to be invariant
under the action of the flow. This measure is essentially given by the product of
the white noise measure and the law of Brownian motion, together with a density
(a Feynman-Kac) term which accounts for the potential.

We propose here a sirnilar construction for the wave equation on a compact Rie-
mannian manifold, without potential. More precisely, we propose a wave equation
which is infinitesimally invariant with respect to a similar product measure in the
curved setting. The actual existence of the corresponding flow is not treated here.
For the construction we shall use the Wiener measure on the path space associated
to the Laplace-Beltrami operator. and a basic resuit, the Bismut integration by
parts formula [B]. We shall follow closely results as well as notations of [F-M] (cf.
also the first paragraphs of [C-M]).

We refer to [D-S] for some results on invariant measures for wave type equations
although their approach differs from ours in the sense that they do not take into
account the momenta as variables the invariant measure depends upon.

1.The differential structure on the path space.

We shall denote by M a d-dimensional compact Riemmanian manifold. On
M we consider the Levi-Civita connection and I‘i)l will denote the corresponding
Christofell symbols. In the local chart the Laplace -Beltrami operator has the
following expression:
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The Brownian motion ¢(o), o € [0, 1], associated to this Laplacian satisfies the
following Ito stochastic differential equation (cf. for example [I-W]):

Ay f =g*

do¢* = a**(p).dzy, - ¢ (p)do

where z is a R%valued Brownian motion, a the square root of the metric g and
¢i= 15 gikoal
2 7.k omJ

We shall follow the frame bundle point of view for the theory of Riemannian
Brownian motion ([M], exposed in [I-W]).

A frame above mg is an Euclidean isometry ro of R onto the tangent space
Trmo (M). O(M) will denote the collection of all frames of M and 7 the projection
of O(M) into M, 7(ro) = mg. Let (6, w) be the canonical differential forms realizing
for every r € O(M) an isomorphism between T.(O(M)) and R? x so(d).

Then the horizontal Laplacian on O(M), satisfying the relation

Aoy (for) = (Apm form
is equal to Zﬁ___l L?qk; where Ay denote the horizontal vector fields, defined by

<0, A >=¢;
< WA=

(ex the canonmic basis of R?). The following Stratonovich stochastic differential
equation

p
drgre Ak(rI)od:ck
(1.1) :L;‘:

r(0)c2=mg

defines a flow of diffeomorphisms on O(M), the lifting to O(M) of the It parallel
transport along Brownian motion. In local coordinates, we have

d(r2)] (0) = =T}, [d¢" (9))(r2)i (0)

(1.2) r (0) = 1o

We shall write
tEiagrol siratel)

Let us denote by X the Wiener space of the Brownian motion on R? and by
P, (M) the space of continuous paths on M starting at mg at time zero.
The Ité6 map ([M]) Z: X — P,,,(M) is defined by

I(z) (o) = 1(rs(0))
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and the Wiener measure p on the path space P, (M), namely the law of the
Brownian motion on M coincides with the measure induced by this map,i.e., it is
equal to the pullback through 7 of the Wiener measure yo on X.

We consider a differentiable structure on the probability space. Following [F-M],
let Z be an adapted vector field along the Brownian path.i.e., an adapted map
ge[0.1] = Z, € T,;(M). The stochastic It6 integral of Z is defined by

1 1
/ Zdyp = / ZF dxy
0 0

where z = Z71(¢) and z,(0) = t%_qZ,(0).
We have (c.f.[F-M] )
(1.3) (o) = /0 rz(6).dp(€)

Finally let us recall the definition of derivative of a functional defined on the
path space. When f is a cylindrical functional, namely

f(QD) — F(W(UI) @(Unz))

for some m and some smooth F. the partial functional derivatives are defined by
Dok fl) =D Ur < 03)(t§ 0, (00, F) | €x)

for 7 € [0.1] and k = 1.....d. With respect to the norms ||[Df!|%, = E,(||Dfl|9).
where

-

IDfll(¢) = l s kf1F dr
IDfI(e) {Z,;/O[D o] d}

the operator D is closable in L9. Its domain is the Sobolev space DY(P,,,). For a
vector field Z such that its parallel transported to the origin along the Brownian
curve, z, has a square integrable (in [0,1]) time derivative (z belonging to the
Cameron-Martin space), one defines

l .
Dﬁ:‘%/o (7)) Dy i f dr .

Notice that this operation can be also be written as fOl S, V?Z(7)D, 1 f dr. where
VeZ(r) = lim(,—»o%[ﬁ Zy(T+€) = Z,(1)].

T—T+e“p
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The two following theorems will be used in our construction:

Theorem 1.1 ([C-M]). A functional f defined on the path space P, (M) is dif-

ferentiable along the vector field Z € D¥(P,,,) if and only if f = foT is a Wiener
funcional differentiable along the process z*

gz o) = (/00 Qodz, z))odz (o) + 2do

where ) denotes the curvature tensor in M and o Stratonovich integration. More-
over we have

[D: floZ = D+ (foI)

Derivation with respect to vector fields on the path space correspond to deriva-
tion on the path space taken along directions which do not belong to the Cameron-
Martin space. Nevertheless these directions have an antisymmetric diffusion co-
efficient and correspond therefore to Wiener measure preserving transformations.
Transfering the differentiable structure of the path space to the flat case leads to
an extended differential calculus on the Wiener space (the differential calculus with
respect to ”tangent processes”, cf. [C-M]).

Theorem 1.2 (Integration by parts formula [B] and [D]). If fis a functional
in the path space such that f € LF, and Z an adapted vector field in Di(Pp,), we
have

L 1 o
Buo(D:f) = Bulf [ 12 + 5RM4] da)

where
RM = 8.\ oRicciy 108 o

and Ricci denotes the Ricci tensor on M.
The proof of this theorem can be found in [F-M].

2.The invariant measure.
Let us denote by 7o the measure on the space of distributions S’([0, 1]) starting
at time zero at a fixed point vg defined by

1 [t
Eexpi < hm>= e:rp(—E/ h*(o)do)
0
for every square integrable function in the interval [0, 1].
A vector field on this space will be the data of a pair Z = (Z*, Z?), where Z!
is a vector field along the Brownian path, Z} € T,(»)(M) and Z2 € L?[0,1]. For a
functional defined on Py, (M) x S’'(R) we define Dz f = (Dz1 f, D22 f) with

Dy f(r) = lime_,oé[ fr+e22) = ()]

the limit being taken vy a.e. in .
As a consequence of theorem 1.2, the following integration by parts formula with

respect to the product measure u x o holds:
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Theorem 2.1. If f is a functional defined on P, (M) x S'([0,1]) such that f €
L? and Z = (Z*.Z%) an adapted vector field such that Z' € DI(Pp,), Z* €

‘X0

Li(~vg), we have
' 1 oM Yo
EHOX‘/0<DZf) = E#o><’70<f</0 {21 + 'éR zl] dz + /O TZ dd))

3.The wave equation. Let us denote t? = t?_, and consider the following wave
equation on the Riemannian manifold M

(3.1) (1) " Oupe(0)) = 8o ((82) ™ Dotpe(0)) + %(tﬁ)—lRiCCﬂoOaas&t(U)

subject to the initial conditious w¢(0) = mo and 8,:(0) = vo. Here (T'(9,9))% =

1 a9 .k
k,j [00¢7].
This equation can be written in Hamiltonian form:

Oppe(o) = tim (o)

3.2
B o) = 0,0 epu(0)) + 2 40) ™ Riceia(0i1(o)

Then the measure p X vo 1s infinitesimally invariant for the wave equation (3.2).
This means that, if Z denotes the vector field corresponding to equation (3.2), we
have: '

E#X'YO(DZf) = 0

for sufficientely regular (cylindrical) functionals f.

The rigorous proof of this result is based on its transfer to the Wiener space via
the It6 map together with a finite dimensional approximation of the corresponding
.vector field on the Wiener space. It is a consequence of theorem 2.1. Formulae
(1.2) and (1.3) are used in the proof.
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