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ABSTRACT. 

We consider a waVf> equation on a compact Riemannian manifold in the Hamil­
tonian form. The measure obtained as the product of WIener measure on path space 
and the one of the (flat) white noise is infinitesimally invariant under the action of 
the corresponding flow. 

O.Introduction. 
Wave equations on manifolds appear In Einstein gravity theories, where they 

describe scalar field self-interactions. There are also cosmological models (Dicke 
model) where such scalar fields in gravitational (curved) background apear. Invari­
ant measures are then relevant to describe the corresponding: statistical mechanics. 
The measure can be important to construrt the natural Hilbert space of functionals 
on fields in quantum theory of gravity. 

Recent-ely the non linear wave equation in a flat space and with a cubical potential 
has been studied UF] and [McK-V]). The equation being taken in the Hamiltonian 
form, a measure on the phase space was constructed and shown to be invariant 
under the action of the flow. This measure is essentially given by the product of 
the white noise measure and the law of Brownian motion, together with a density 
(a Feynman-Kac) term which accounts for the potential. 

We propose here a sim~lal construction for the wave equation on a compact Rie­
mannian manifold, without potential. More precisely, we propose a wave equation 
which is infinitesimally invariant with respect to a similar product measure in the 
curved setting. The actual existence of the corresponding flow is not treated here. 
For the construction we shall use the Wiener measure on the path space associated 
to the Laplace-Beltrami operator. and a basic resuit, the Bismut integration by 
parts formula [B]. We shall follow closely results as well as notations of [F-M] (d. 
also the first paragraphs of [C-MD. 

We refer to [D-S] for some results on invariant measures for wave type equations 
although their approach differs from ours in the sense that they do not take into 
account the momenta as '/ariables the invariant measure depends upon. 

1.The differential structure on the path space. 
We shall denote by M a d-dime:l.sional compact Riemmanian manifold. On 

M we consider the Levi-Civita connection and r~,l will denote the corresponding 
Christofell symbols. In the local chart the Laplace -Beltrami operator has the 
following expression: 

Typeset by A.NfS-1EX 



2 A.B.CRUZEIRO* AND Z.HABA** 
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The Brownian motion <p((J), (J E [0, 1], associated to this Laplacian satisfies the 
following Ito stochastic differential equation (d. for example [1-W]): 

da<pi = ai,k(<p).dxk - ci(<p)d(J 

where x is a ]Rd-valued Brownian motion, a the square root of the metric 9 and 
ci =.1 '\". aj,koai 

• 
k 

2 LJ),k ornJ . 
We shall follow the frame bundle point of view for the theory of Riemannian 

Brownian motion ([M], exposed in [I-W]). 

T
A frame above mo is an Euclidean isometry iO of ]Rd onto the tangent space 

fTLO (M). O(M) will denote the collection of all frames of M and 11" the projection 
of O(M) into M. 1I"(iO) = mo. Let (0. w) be the canonical differential forms realizing 
for every i E O(M) an isomorphism between Tr(O(M)) and ]Rd x so(d). 

Then the horizontal Laplacian on O(M), satisfying the relation 

is equal to l:~= 1 L~k' where Ak denote the horizontal vector fields, defined by 

< O,Ak >= ek 

< w,Ak >= 0 

(ek the canonic basis of ]Rd). The following Stratonovich stochastic differential 
equation 

d 

dix = L Ak(ix)odxk 

(1.1 ) 
k=l 

ix(O) = iO 

defines a flow of diffeomorphisms on O(M), the lifting to O(M) of the Ito parallel 
transport along Brownian motion. In local coordinates, we have 

d(i X ){ ((J) = -r~)d<pkk)](ix)[((J) 
(1.2) 

ix(O) = iO 

We shall write 
t~_oiO = ix((J) 

Let us denote by X the Wiener space of the Brownian motion on ]Rd and by 
Prno (M) the space of continuous paths on M starting at mo at time zero. 

The Ito map ([MJ) I : X -'; Prno (M) is defined by 
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and the Wiener measure J-l on the path space Pmo (M), namely the law of the 
Brownian motion on M coincides with the measure induced by this map,i.e., it is 
equal to the pullback through I of the Wiener measure Jio on X. 

We consider a differentiable structure on the probability space. Following [F-M), 
let Z be an adapted vector field along the Brownian pa.th,i.~.. an adapted map 
(j E [0.1] ~ Z(7 E T"'((7)(M) The stochastic Ito integral of Z is defined by 

io
t Z.dcp = j 1 :/- .dXk 

0 

where x = I-1(rp) and z",(O") = t~.-oZ",(O"). 

We have (c.f.[F-M] ) 

(1.3) 

Finally let us recall the definition of derivative of a functional defined on the 
path space. When f is a cylindrical functionaL namely 

for some m and some smooth F. the partial functional derivatives are defined by 

for T E [0.1] and k = l. .... d. "\Vith respect to the norms IID.f!llq = E/-L(IIDfll q ). 

where 

2 

IIDfll(cp) = [L r 1 

[DT,leff dT1
1 

Ie Jio 

the operator D is closable in Lq. Its domain is the Sobolev space Di(P )' For a mo 
vector field Z such that its parallel transported to the origin along the Brownian 
curve, z. has a square integrable (in [0,1]) time derivative (z belonging to the 
Cameron-Martin space). one defines 

Notice that this operation can be also be written as J: I:k V'" Z(T)DT.kf dT. where 
V"'Z(T) = lim~-to~[t~'-T+~Z",(T + f:) - Z<p(T)]. 
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The two following theorems will be used in our construction: 

Theorem 1.1 ([e-MD. A functional f defined on the path space P=o(M) is dif­
ferentiable along the vector field Z E Di (P=0) if and only if j = JoT is a Wiener 
funcional differentiable along the process z* 

where n denotes the curvature tensor in !v! and 0 Stratonovich integration. More­
over we have 

[DzI]oT = D z * (JoT) 

Derivation with respect to vector fields on the path. space correspond to deriva­
tion on the path space taken along directions which do not belong to ~he Cameron­
Martin space. Nevertheless these directions have an antisymmetric diffusion co­
efficient and correspond therefore to Wiener measure preserving transformations. 
Transfering the differentiable structure of the path space to the flat case leads to 
an extended differential calculus on the Wiener space (the differential calculus with 
respect to "tangent processes", d. [C-M]). 

Theorem 1.2 (Integration by parts formula [B] and [DJ). Iff is a functional 
in the path space such that f E L~ and Z an adapted vector field in Di (P=0)' we 
have 

where 
R M - t'P R" t'Pr - 0<-0 0 ~cc~'P(a)o 0<-0 

and Ricci denotes the Ricci tensor on M, 

The proof of this theorem can be found in [F-M]. 

2.The invariant measure. 
Let us denote by 10 the measure on the space of distributions Sf ([0, 1]) starting 

at time zero at a fixed point Vo defined by 

for every square integrable function in the interval [O,lJ. 
A vector field on this space will be the data of a pair Z = (Zl, Z2), where Zl 

is a vector field along the Brownian path, Z; E T'P(a)(M) and Z; E L 2 [0, 1]. For a 
functional defined on P=o(M) x Sf(lR) we define Dzf = (Dz1f, DZ2f) with 

the limit being taken 10 a.e. in 1r. 

As a consequence of theorem 1.2, the following integration by parts formula with 
respect to the product measure J.L x "Yo holds: 
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Theorem 2.1. If f is a functional defined on Pmo(M) x 5'([0,1]) such that f E 

L~x"lo and Z = (Z1, Z2) an adapted vector field such that Z1 E Di(Pmo ), Z2 E 

Lq (,0), we have 

11� i1�.1 1 M 1� ~ 
E;;-o x 'Yo U ( [z + - R z] dx +. 1r Z da» 

o 2 . 0 

3.The wave equation. Let us denote t~ = t~.-o and consider the following wave 
equation on the Riemannian manifold 11,1 

subject� to the initial conditiolls CPt(O) = rno and 8tcpt(0) = vo· Here (r(8a'P»j 
rk,j[8a 'f

k 
]. 

This equation can be written iE Hamiltonian form: 

8tcpt(a)� = t~1rt(a) 

(3.2)� 1
8t1rt(a) = 8a((t~)-18a<Pt(a» + 2(tt)-1Hicci<p(8acpt(a» 

Then the measure J..l x 10 is infinitesimally invariant for the wave equation (3.2). 
This means that, if Z denotes the vector field corresponding to equation (3.2), we 
have: 

E;;- x 'Yo ( D z f) = 0 

for sufficientely regular (cylindrical) functionals f. 
The rigorous proof of this result is based on its transfer to the \iViener space via 

the Ito map together with a finite dimensional approximation of the corresponding 
vector field on the \iViener space. It is a consequence of theorem 2.1. Formulae 
(1. 2) and (1. 3) are used in the proof. 
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