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Abstract 

We consider the consequences for oscillating scalar cold dark matter models of 

a scalar field 4J which is oscillating in a potential which deviates slightly from a 4J2 

potential. We consider a correction to the 4J2 potential of the form K4J21n 4J2 + ).,4>4J4 • 

Upper bounds on IKI and \).,qil are obtained as a function of the 4J mass by requiring 

that the effects of the pressure introduced by the correction to the potential do not 

disrupt the conventional cold dark matter scenario for structure formation. The 

results are applied to some cosillological models of recent interest. In particular, 

it is shown that a scalar identified with the pseudo-Goldstone boson of a U(l) 

symmetry explicitly broken by neutrino masses (suggested in connection with late

time phase transitions) is inconsistent with the MSW solution to the solar neutrino 

problem if it is to account for dark matter. In addition it is shown that the 

possibility that the Compton wavelength of a very light scalar particle can account 

for the large-scale structure of the Universe in a cold dark matter model is also 

ruled out by the effects of pressure on structure formation. 



1.Introduction 

In this paper we consider how the cold dark matter (CDM) model based on 

a coherently oscillating scalar field is modified by oscillations which take place 

in a potential which deviates slightly from a cP2 potential. It is well-known that 

a coherently oscillating scalar field, corresponding to a Bose condensate of zero 

momentum scalars in the particle interpretation of the wave function, can account 

for dark matter in the Universe, with the most famous example being the cold 

dark matter model based on axions[l]. A coherently oscillating scalar field will 

behave froln the point of view of structure formation as a pressureless density of 

non-relativistic matter provided that the scalar field cP is oscillating in a potential 

that is precisely cP 2 • As shown in ref.2, an oscillating scalar field which oscillates 

around c/J = 0 with a frequency large cOlnpared with the expansion rate of the 

universe will have an energy density and pressure which depends on the exponent 

of the scalar potential. For exaluple, a field oscillating in a cP 4 potential behaves 

like relativistic matter with p = 3p, where p is the pressure. Thus if the potential is 

different from cP 2 then the oscillating scalar field can behave quite differently from 

conventional CDM. In this paper we consider a correction to the cP 2 potential of the 

form K<;621 ncP2 + A¢tP4
• This represents the most probable form for the corrections to 

the ¢2 potential which can give rise to a pressure for the dark nlatter (corr~ctions 

odd in 9 such a~ cP 3 corrections do not contribute to a pressure). The log term can 

arise in radiative corrections, and luore generally represents the simplest correction 

to the ¢2 potential which cannot be approximated by a polynolnial correction, 

while t.he tP 4 term will be the leading correction in the expansion of a potential 

around tP = O. In the following we consider how the evolution of structure in the 

resulting dark lnatter lnodel is affected by the pressure from these corrections to 

the tP 2 potential and derive lilni ts on K and AQ [raIn the requirement that struct ure 

fonnation in the resulting colel clark lllatter lnodel is not unacceptably disrupted by 

the effects of pressure. vVe also consider the consequences of these results for SaIne 

models of physical interest, usually corresponding to dark nlatter lnodels based 

on very light ( ~ leV) scalar particles. VVe use units with n = c = kB = I 
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2. Evolution of energy density perturbations in dark Blatter with a 

pressure. 

We first give the equations for the evolution of perturbations in the presence 

of pressure. We will consider matter with energy density p and pressure p, where 

o 
p =-p (2.1a)

4 

-3(1+~)P = a po (2.1b)4 

where a is the scale factor (equal to 1 at present), Po is the present value of the 

energy density and IO[ is a constant slnall compared to 1. To discuss the evolution 

of energy density perturbations we consider the equations for perturbations of the 

Friedmann-Robertson-\\Talker (FR\iV) 11letric and the energy-lnoluentum tensor as 

given in ref.3, 
.. a· 
h+2-h=-81rG(8p+38p) . h=hJ.L (2.2)a 'J.L 

op+ 3~ (0 p + op) = - (p + p) (~ + v,,, ) (2.3) 

1 d [ 5 . ]a 3 dt a VI (p + p) = -8P,i (2.4) 

Here the unperturbed ll1etric g~~J and the energy lllOluentum tensor T(o)l/ are given 

by (i=1,2,3; f-L = 0,1,2,3) 

(2.5 ) 

(2.6 ) 

and the perturbations in the synchronous gauge (goA 0) are given by hJ.LV and 

8T~ where 

(2.7) 

DT~ = -8p ; 5TJ = 5pgj (2.8 ) 

(1",0 i + ) 2 . _ (
U i = ~ P P a Vi , Vi - u Ui (2.9 ) 

Since (2.2) to (2.4) are linear in the sluall perturbations, we can in general consider 

a perturbation 5pa., 5pa.,'" of a single eOlllponent Pa. of the total energy density. 
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The total perturbation will then be a SUlll over such contributions obtained by 

solving (2.2) to (2.4) for each seperate cOInponent. In the following we will consider 

perturbations of the dominant cold dark matter component of p and drop the 

subscript a. From (2.2) to (2.4) we can obtain an equation for the evolution of 

the energy density perturbations bp in the limit where lei is small compared to 1. 

We define bPk. and hk. by 

(2.10) 

Here X is the comoving cooordinate. Defining bk. (t) = bP~(t), equations (2.2) to 

(2.4) give 

2 .. ( 3e) . 8 (3H . k )bk + 2 -- - Hbk = 41rGp(1 + 8) 15k + - -hk - =--bk (2.11)- 4 - - 4 2 - a 2 

In obtaining this we have used bp = ~bp. Since 181 « 1, we can use the 8 = 0 result 

hk. = - 2bk in (2.11) to obtain the final fornl for the equation for the evolution of 

energy density perturbations to lowest order in 8, 

(2.12) 

Since lei is small cOInpared with 1, we can use the 8 = 0 result for H and the time

dependence of the scale-factor. (In general, a <X tHI-f) and H = ~ (1 - ~) t- I for 

18\ « 1). 

The effect of the pressure when () i- 0 is to introduce a Jeans length AJ' 

corresponding to the value of Ikl at which the second term on the right of (2.12) 

becoInes dOIninant[4,5] 

14~pl~ (2.13)AJ = 

(The physical wavelength of a perturbation bk at a given value of a is A = ~ki)' 

If () > 0, corresponding to a posi ti ve pressure, then the effect of the Jeans terrn 

in (2.12) will be to stop the growth of perturbations when they have wavelength 

(or scale) A < AJ. If e < 0 (corresponding to a negative pressure), then the Jeans 

term will cause a.n exponential growth of perturba.tions which satisfy A < Aj. 
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3. Cold Dark l\1atter \vith a pressure: Sll1all corrections to 1>2 po

tentials. 

It has been shown that in general the energy density and pressure of a scalar 

field oscillating coherently in a potential V(¢) with a frequency large compared to 

H are given by[2] 

p=Cr-1)p (3.1a) 

(3.1b) 

where p and p are the energy density and pressure averaged over one oscillation 

cycle. I is given by 

j2(1-¥)dt 
(3.2)1= jdt 

where the integral is over one oscillation cycle[2]. Note that a contribution to V( 1» 

which is odd in 1> will give zero when integrated over an oscillation cycle. For the 

case of an exactly 1>2 potential, we find I = 1 and so the matter described by (3.1) 

behaves exactly like non-relativistic pressureless matter. This is the usual case 

(eg. the axion model). If however we consider a potential which deviates slightly 

froln a 1>2 potential, for exaInple 

(3.3) 

where the second and third tenns are slnall corrections to the first term and K� 

and I-L are constants, then as we will show in the following the CDlVI model[4,6] can� 

be significantly llloclified.� 

(i). Logaritlullic correction.� 

vVe first consider the case of a log correction corresponding to (3.3) with Act> ~ O.� 

In this case (3.3) can be written as� 

(3.4) 

where B = 4I~ « 1. Froln (3.2) we find that I = (1 + B/4) and so p = ~p [2]. We 
m4, 

can then consider the consequences for structure fonnation of the pressure arising 

when B i=- O. 
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a) B > 0 For the case 8 > 0, as long as a perturbation has scale A > AJ it 

will grow as in a conventional CDM model, with fJ <X a for a matter dominated 

Universe. (In the following we drop the subscript k on fJk , and fJ will be assumed 

to correspond to a particular scale A. We may take fJ to be the value of fJpj p 

averaged over a region of length scale A, since (;-) >. is proportional to fJk [4]). 

Once,\ < AJ, the solution of (2.12) will be an oscillating fJ and so no growth of the 

perturbation will occur. Let T] be the telnperature at which a perturbation of size 

'\p at present becomes smaller than ,\J. For T less than T eq (where T eq = 5.5h2eV 

is the matter-radiation equality telnperature when n = 1), AJ can be written as, 

_ ( JrB )1/2 (TI')3/2 _ (TI')3/2
,\J - -- - = AJp - (3.5)

4Gpo T T 

where Po is the present energy density of the Universe, and AJp is the present 

value of the Jeans length. (vVith n = 1 we have po = 7.5x10- 47h 2 GeV4 where 

0.4 ::: h ::: 1.0 parameterizes the uncertainty in the present value of the Hubble 

constant. In this case cold dark lnatter accounts for at least 90 per cent of the 

matter in the Universe[4,6]). The value of AJp is then, 

(3.6) 

Thus requiring that the Jeans length of the dark lnatter at present be less than 

about 0.1 Mpcin order that galactic halos can form without any suppression of 

the growth of density perturbations (allowing the lnodel to preserve the successful 

predictions of the conventional CD fvI l1lodel for halo formation[6]) gives an upper 

bound on 8, B ::: 3x10- 10h 2 
. In this case the model will behave exactly lik~ a 

conventional CDM model on scales greater than O.lMpc. This then gives a bound 

on K as a function of In<;6, K < 8xlO- llh2m~. 

If B ::: 3x10- 1oh 2 then the growth of perturbations on galactic scales will be 

suppressed relative to the conventional CDM model. The length of a scale at 

temperature T which has a size \) at present is 

~\(T) = (~~) Ap (3.7) 
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so the temperature below which A is smaller than AJ is 

(3.8) 

T J will be smaller than the temperature TH(Ap ) at which the scale A enters thep 

horizon if TH(Ap) > TJ(Ap), where 

T (A ) _ ( 3 ) T..,. (3.9)
H p - 81rGpo A~ 

T J < T H is true if e < 3/27T 2 
, which will be satisfied for the cases of interest to us 

here. The total growth of a perturbation up to the present is determined by T J. 

Scales with Ap > AJp experience full growth as in the conventional CDM model. For 

scales at present Ap < AJp, a suppression of their growth by a factor ¥ == (?-) 2 
J Jp 

compared with the conventional CDM Inodel will occur. In light of recent bounds 

on the Inagnitude of perturbations of the cosmic Inicrowave background radiation 

(CMBR) temperature froln COBE[i], which are only marginally consistent with the 

growth of the primordial energy density perturbations which account for galaxy 

and structure forrnation, we expect that any suppression of the growth of the 

energy density perturbations will require larger initial density perturbations at 

matter-radiation equality, resulting in unacceptably large perturbations of the 

C11BR temperature. \Ve therefore conclude that we Inust have e :: 3xl-O- 1oh2 

when e > o. 
b) e < 0 In this case there will be a negative pressure for the dark matter. 

As discussed in the appendix, the effect of the negative pressure is to cause an 

exponential growth of t he perturbations 

_ (Teq ) (3 [(T*)1/2 ]) (3.10)b = beq T. exp 2 T - 1 

where beq is the size of the perturbation at Inatter-radiation equality, T * = ~TJ 

and it is assulned that the perturbation enters the horizon at T > T eq , as is 

the case for scales less than 1I\1 pc. Since T * is proportional to A;2, we see that 

the exponential growth of the perturbations will result in slnall scales going non

linear at an early stage in the evolution of structure. \Ve can obtain bounds on 
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181 by requiring that the exponential growth of the perturbations does not lead 

to cosmologically unacceptable consequences. If we require that AJp is less than 

about O.lMpc, in order that the exponential growth of the perturbations does 

not affect the growth of galaxy sized perturbations and the predictions of the 

conventional CDM model, then we obtain the same bound as in the 8 > 0 case, 

181 :s 3x10-1oh2 
• A stronger bound on 181 may be obtained by requiring that the 

largest mass scale going non-linear due to exponential growth of the perturbations 

is small enough in order not to cause the early formation of stars or black holes 

and so produce significant explosions during the evolution of structure (explosive 

structure formation being disfavoured by COBE data on the blackbody spectrum 

of the microwave background radiation[7,8J). We define a scale A to correspondex 

to the largest scale at present for which significant exponential growth occurs. We 

take this to correspond to a value of T. which satisfies 

(3.11) 

This is satisfied by T * /Tr ::::: 4.8. This value of T. corresponds to a scale at present 

(3.12) 

Thus scales at present greater than about ~AJp will have experienced little expo

nential growth. If we require that the mass scale corresponding to Aex is less than 

about 102 M 0 in order to avoid explosions (where the Inass corresponding to a 

perturbation Ap is 1.2x1012h 2 (l~~I~J 3 M 0 ), then we obtain the bound on 8 

(3:13 ) 

This then gives a bound on K as a function of m<t>, IKI < 8x10-15h2/3m~. Thus for 

181 ;:: 10-10 there will be unacceptable cosmological consequences of the negative 

pressure occuring when e < 0, \V hile if 181 ::: 10-1\ the effect of the negative 

pressure will be cosmologically negligible. 

These bounds on 8 when (J is a constant also provide a siluple test to see 

whether a general correction to the rjJ2 potential can significantly affect structure 

8� 



formation as a result of the pressure introduced. \Ve simply define an effective 8 

by 8eff = ~ ~~ - 2. Define 8max to be the value of 8eff with the largest Inagnitude 

between T eq and T-y. If 18max l is less than the upper bounds given for the case of 

constant 181 then we can be sure that there will be no coslll0logically significant 

effects due to the pressure introduced by the correction. 

(ii). eb 4 correction. 

We next consider the case of a 4J4 correction, corresponding to (3.3) with K=O. 

a)}.cP > 0 In this case the pressure is given by (3.1 a) with [2] 

(3.14) 

where the energy density is p = ~ln~ 4J~ax and 4Jmax is the maximum amplitude 

during the oscillations at a particular time. We can then define an effective 8, 

8etf = 4(1 - 1), which gives 

(3.15) 

For n = 1 dark lnatter p is given by 

(3.16) 

and so 

(3.17) 

In this case 8 is a function of t, with ~ ~ H. Although (2.12) was derived assuming 

that 8 is a constant, we expect it to also hold for a tilne-dependent 8. This is 
J 

because physically the Jeans length at a given tilne (which is given by the right 

hand side of (2.12)) is detennined purely by the pressure and density of the the 

Universe at this tilne. The effect of the tinle dependence of 8 and so of the pressure 

will then be given by replacing e by B(t) in (2.12). The Jeans length is then given 

by 

(3.18) 
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So in this case the Jeans length is a constant with respect to temperature, and at 

present AJp == AJ is given by 

(3.19) 

In the case of the log correction the ratio of the size of a scale as a function of 

T to the Jeans length increases with temperature A(T)/ AJ ex: T 1 / 2 • Therefore if 

a scale is larger than the Jeans length at present it will be larger at all previous 

times. In the case of the ¢4 correction we find A(T)/ AJ ex: T-1. In this case the 

temperature T J at which A(T) = AJ 

(:;) Try (3.20) 

corresponds to the temperature above which a perturbation is smaller than the 

Jeans length, unlike the case of the log correction where it corresponded to the 

temperature below which the perturbation is smaller than the Jeans length. There

fore even if a length scale at present is larger than the Jeans length, at an earlier 

time it may have been smaller than the Jeans length. Thus in order to ensure 

that there is no suppression of the growth of perturbations on the scale of galactic 

halos 0.1 Mpc, we require that the corresponding length scale is larger than the 

Jeans length at the time of illatter-radiation equality T eq , when the energy density 

perturbations begin to grow. This requires that 

Teq
O.l:Lvlpc > - AJp (3.21 ) 

T, 

\Vith T eq = .5.5h2eV, we find that this gives an upper bound on the coupling Ad> 

as a function of 111d> 

(3.22) 

b) Ad> < 0 In this case there ,,,ill be a negative pressure for the dark matter. 

As discussed in the appendix, the effect of the negative pressure is to cause an 

exponential growth of the perturbations 

(3.23) 
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where it is assumed that the perturbation is slnaller than the Jeans length at 

T eq. Therefore if we demand that a perturbation doesn't grow by more than a 

factor 10 before becoming smaller than the Jeans length at T J then we require 

that Teq/TJ :::; 2.7, which gives a lower bound on the value of ).p which scales at 

present must exceed in order to avoid large exponential growth 

(3.24) 

From this we obtain an upper bound on )'Jp by requiring that (3.24) is satisfied 

for ).p corresponding to mass scales :::; 102 Mev 

A 4.6xl0-8 M (3.25)Jp:S h8 / 3 pc 

Thus since the Jeans length when AdJ is negative given by (3.18) with)'¢ replaced 

by IA¢I, we obtain from (3.25) an upper bound on 1\t>1 as a function of m4>, 

13
A I 1.2xl0- ( m4> )4 

I (3.26)
dJ < h16/3 leV 

which is tighter than the bound cOll1ing frOll1. simply requiring that the evolution 

of perturbations on scales greater than 0.11.1pc is unaffected by the exponential 

growth of perturbations, which gives the upper bound (3.22) but with ).4> replaced 
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4. Applications 

In this section we consider some implications of these results for models of 

interest to cosinology, which usually means models which have extremely light 

scalar bosons of mass:: IeV as dark matter candidates. For the case of the ¢J4 

potential results, which will be of lllOSt interest in realistic Inodels, we see that if 

in general we wish an oscillating scalar to account for dark matter without having 

to tune A</> to be small (for exaillple if we take A</> to be of order 0.1) then from 

(3.22) we obtain a lower bound on Illd> 

(4.1 ) 

3(For negative A</> we obtain from (3.26) Ill</> ?: 9.6x102h 4 / eV). Smaller m</> will 

require fine-tuning of ,\p in order that the resulting CDM Inodel is not disrupted 

by the effects of pressure. 

There has recently been SOl1le discussion of the possibility that neutrino masses 

are associated with the explicit breaking of a spontaneously broken global U(l) 

sylnmetry, enabling a late-tinle phase transition[9] to occur. In this case ¢J may be 

identified with the resulting pseudo-Goldstone boson. The potential for ¢J around 

a localillinimum will have a ~nass Ill6 = ~2 and A</> = 1~;4' where the U(l) breaking 

scale f is typically associated with a large symmetry breaking scale (for example 

the grand unifie'ation scale) and III is approximately equal to the neutrino mass 

scale, where all neutrinos have approxilllately the same masses[9]. (More precisely, 

r1l ~ (inE )1/2, where III is a U(1) sYlllllletric contribution to the neutrino Inass and 

E is a contribution vvhich explicitly breaks the U(l) sYlnmetry. Then the larger of 

III and t will set the scale of t.he neut.rino masses, and 4mt sets the scale of the 

lllass squared splitting of the neutrino Inasses (see eqs. (5.1)-(5.5) of ref.9). The ¢ 

potential is then V(¢) = 1114COS(¢jf)). FraIn (3.22) we then obtain a lower bound 

on In 

III ~ 95h eV (4.2) 

Thus we see that the possibility that 111 is associated with neutrino Inasses or 

mass squared splittings in the range suggested by the MSW solution to the solar 
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neutrino probleln, ill ~ 10-2eV [10], is inconsistent with the possibility that the 

associated pseudo-Goldstone boson could account for cold dark matter, since the 

effects of pressure will prevent the growth of perturbations. In addition, since ill is 

less than or about equal to the neutrino masses, we see that the neutrino masses 

when (4.2) is satisfied may violate the cosmological bound on stable neutrino 

masses m v :: 100h2 eV. We also note that in the case of the axion model , in which 

ill ~ AQCD , the bound (4.2) is easily satisfied. Therefore there are no significant 

pressure effects in the axion cold dark matter nl0del. 

Finally we comluent on the possibility suggested in reL11 that the Compton 

wavelength m;l of extremely light scalar boson dark n1atter particles could be 

large enough to affect structure formation on scales of tens of Megaparsecs. For 

a Compton wavelength of greater than 30 kpc we require m4> < 2x10- 28eV. (The 

scale 30 kpc is the scale at the tilne of matter dOlnination which corresponds to 

a scale in the present Universe 30 Ivlpc, which is the present scale of large scale 

structure. This will smooth out the initial perturbations on scales corresponding to 

scales smaller than 30 IvIpc today). If the effects of pressure are to be negligible in 

this case (so allowing the scalars to behave as cold dark matter particles on scales 

larger than 30 kpc at present) \ve ll1USt require from (3.22) that )..4> < 10-119 . The 

forrn of potential considered in reLII corresponds to m~ = 8V0/ 1>~ and )..4> =V0/ 1>~, 

with Vo ~ 10-4 eV 4 (in order that the energy density at present accounts for dark 

matter) and 1>0 ~ 10l7GeV~ a value typical of grand unification and which also 

gives a 1> lnass 3x10- 28 eV ~ which is of the correct lnagnitude for the Compton 

wavelength to be significant for large-scale structure. This then gives )..4> ~ 10-108 . 

J 

Thus \ve see that with couplings which give a Compton wavelength significant for 

coslnology, the effects of the pressure due to the 1>4 tern1 will prevent the growth 

of structure, so ruling out this particular explaination of large scale structure in a 

cold dark nlatter lnodel. 
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5.Conclusions 

We have considered the effect on oscillating scalar cold dark matter of a po

tential which deviates slightly froIn a ¢J2 potential. Bounds on the coefficients of 

a ¢J2In¢J2 correction and a ¢J4 correction as a function of the ¢J mass were obtained 

by requiring that the effect of the pressure introduced by the correction to the 

¢J2 potential does not affect the conventional CDM scenario for galaxy formation, 

and, for the case where a negative pressure is introduced, by requiring that the 

exponential growth of perturbations does not lead to explosions. For the case of a 

logarithlnic correction the potential can be written as ¢J2+6 with 8 constant. It was 

shown that in order not to disrupt the conventional cold dark Inatter model the 

value of 8 must satisfy 8 < 3x10- 1oh2 (8 > 0) and IBI < 3xlO-14 h 2/ 3 (B < 0). These 

bounds on 8 also allow one to easily check whether a given general correction to a 

¢J2 potential can result in a significant deviation froin the conventional cold dark 

matter model due to pressure. For the case of a )..1>¢J4 correction we obtained upper 

bounds on 1)..1>1 as a function of r110 • In addition we showed that the requirement 

that the pressure introduced by the correction does not prevent the formation of 

structure can rule out as cold dark Inatter candidates pseudo-Goldstone bosons 

where the scale of explicit U(l) syl1llnetry breaking is set by neutrino masses or 

mass splittings of order O.OleV (consistent with the MS"\V solution to the solar 

neutrino problenl), and can rule out also the possibility that the Compton wave

length of an extremely light scalar particle can account for the large scale structure 

of the Uni verse. 

This research was supported by GTAE. 
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Appendix. Growth of perturbations In the presence of a negative 

pressure. 

(i) Logaritlllllic correction 

In this case we can consider the potential in the form (3.3) with B = 4I~. The 
ffi<t> 

equation for the growth of perturbations when B < 0 is 

(A.1 ) 

where a=l at present. For A < AJ, with AJ given by (2.13), (A.I) becomes 

.. . A 
8 + 2H8 = -8� (A.2) 

a 2 

where we have dropped the subscript on <5k and where A 18~k~. To solve this 

approximately we substitute <5 = e7 into (A.2) which gives 

.. 4. .? A 
17 + -17 + 1( = --/-� (A.3)

3t 0:2t 4 3 

3where we have used H = ft and� a at 2
/ for a matter dominated Universe 

(0: = (67rGpo)1/3). Suppose initially 7] + ttr, ~ r,2. Then the solution of (A.3) with 

i]2� = 0 on the left hand side is 

'1 = 3A t 2/ 3 (A.4)
20: 2 

For ij + "3t1j « 1]2 the solution of (A.3) is 

3A1/2 
77 = __ t 1/ 3� (A.5) 

0: 

The condition for the solution (AA) to hold is 

(A.6)t < t. =(:t' 
Thus solution (A.4) will hold at early tilnes. Let the temperature at which t = t. 

occurs be T •. Then frorn (A.6) T. is given by 

T._.~_e_=~TJ (A.7)
T_. GGpoA~ 3 T-y 

Thus we find that shortly after a perturbation enters the Jeans length and so 

begins to grow exponentially clue to the negative pressure, T < T. will occur 
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and so most of the growth will be described by the solution (A.5). In terms of the 

temperature we can write (A.4) and (A.5) as 

3 T. ( )
7]=-- TJ>T>T.� (A.8)

8T 

and 

(T. > T) (A.9) 

From (A.8) the total growth of the perturbation between T J and T. is 

exp( ~ - ~i;) ~ 1.1. Thus in the following we will ignore the exponential growth 

between T J and T•. For the cases of interest to us (scales at present smaller than 

IMpc) the perturbation will enter the horizon during radiation domination. In 

this case the growth of the perturbation is given by 

8 = 8,q (~,.q) exp G[(~(2 -1]) ;T,q > T. > T (A.I0) 

8 = 8,qexp G[(T;q) 1/2 -1]) ; T. > T,q > T (A.II ) 

where Eeq is the value of the perturbation at T eq • 

(ii)� A4><p4 correction 

In this case a negative pressure will arise when A<I> < o. The equation for the 

growth of perturbations is then 

.. . A 
5 + 2HE = -E� (A.12)

as 

where A = kd~2. As before \ve substitute E = eTJ into (A.12) which gives
4 

(A)3) 

vVe follow the sarne steps as before. If 'r, + "1ti] < i]2, then the solution is 

== -3A
1

/ 

2 

(~) (A.14)
2a3 / 2 T "f 

If ij + -iti] > iJ2, then the solution is 

(A.I5 )77 = 4L~~~4/3 == ::3 (;~) 2 
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(A.I5) is valid for t > t. == (~ )3/4. The corresponding temperature is T. = jfTJ . 

In this case T J is the temperature below which the perturbation becomes larger 

than the Jeans length. Thus (A.14) is valid essentially during the whole time 

that the perturbation is smaller than the Jeans length. For the perturbations of 

interest (smaller than IMpc at present) the perturbations enter the horizon during 

radiation domination and begin growing at T eq • The growth of a perturbation for 

T J < T eq is then given by 

(A.16) 
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