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Abstract

We consider the consequences for oscillating scalar cold dark matter models of
a scalar field ¢ which is oscillating in a potential which deviates slightly from a ¢
potential. We consider a correction to the ¢? potential of the form K¢2lng? + A4
Upper bounds on [K| and |\4| are obtained as a function of the ¢ mass by requiring
that the effects of the pressure introduced by the correction to the potential do not
disrupt the conventional cold dark matter scenario for structure formation. The
results are applied to some cosmological models of recent interest. In particular,
it is shown that a scalar identified with the pseudo-Goldstone boson of a U(1)
symmetry explicitly broken by neutrino masses (suggested in connection with late-
time phase transitions) is incounsistent with the MSW solution to the solar neutrino
problem if it is to account for dark matter. In addition it is shown that the
possibility that the Compton wavelength of a very light scalar particle can account
for the large-scale structure of the Universe in a cold dark matter model is also

ruled out by the effects of pressure on structure formation.



1l.Introduction

In this paper we consider how the cold dark matter (CDM) model based on
a coherently oscillating scalar field is modified by oscillations which take place
in a potential which deviates slightly from a ¢? potential. It is well-known that
a coherently oscillating scalar field, corresponding to a Bose condensate of zero
momentum scalars in the particle interpretation of the wave function, can account
for dark matter in the Universe, with the most famous example being the cold
dark matter model based on axionsl!l. A coherently oscillating scalar field will
behave from the point of view of structure formation as a pressureless density of
non-relativistic matter provided that the scalar field ¢ is oscillating in a potential
that is precisely ¢?. As shown in ref.2, an oscillating scalar field which oscillates
around ¢ = 0 with a frequency large compared with the expansion rate of the
universe will have an energy density and pressure which depends on the exponent
of the scalar potential. For example, a field oscillating in a ¢* potential behaves
like relativistic matter with p = 3p, where p is the pressure. Thusif the potential is
different from ¢? then the oscillating scalar field can behave quite differently from
conventional CDM. In this paper we consider a correction to the ¢? potential of the
form K¢*lng?+A43¢*. This represents the most probable form for the corrections to
the ¢? potential which can give rise to a pressure for the dark matter (corrections
odd in ¢ such as ¢* corrections do not contribute to a pressure). The log term can
arise in radiative corrections, and more generally represents the simplest correction
to the ¢* potential which cannot be approximated by a polynomial correction,
while the ¢* term will be the leading correction in the expansion of a potential
around ¢ = 0. In the following we consider how the evolution of structure in the
resulting dark matter model is affected by the pressure from these corrections to
the ¢? potential and derive limits on K and Ay from the requirement that structure
formation in the resulting cold dark matter mmodel is not unacceptably disrupted by
the effects of pressure. We also consider the consequences of these results for some
models of physical interest, usually corresponding to dark matter models based

on very light ( < 1eV) scalar particles. We use units with h = ¢ = kg = 1



throughout



2. Evolution of energy density perturbations in dark matter with a
pressure.
We first give the equations for the evolution of perturbations in the presence

of pressure. We will consider matter with energy density p and pressure p, where

0
p =P (2.1a)
p=a-2(1+%)p, (2.1b)

where a is the scale factor (equal to 1 at present), p, is the present value of the
energy density and |6| is a constant small compared to 1. To discuss the evolution
of energy density perturbations we consider the equations for perturbations of the
Friedmann-Robertson-Walker (FRW) metric and the energy-momentum tensor as

given in ref.3,

h+2%h = —8rG (6p+36p) ; h=h4 (2.2)
a
. (b
6p+3-(6p+6p)=—(p+p) (§+Vn) (2.3)
1d ~
adq 2% (p + p)| = —6p. (2.4)

Here the unperturbed metric gLOV) and the energy momentum tensor TE‘O)U are given

by (i=1,2,3; & = 0,1,2,3)

ds? = —dt? + a(t)? §;dx'dx = gl¢)dx~dx” (2.5)
Tf;)u = (p—+p) uf‘o)u(o)u + pgh (2.6)

and the perturbations in the synchronous gauge (go» = 0) are given by h,, and

6T where

8o = 8% +hu ; hoy =0 (2.7)
8T = —8p ;5 8T} = bpg; (2.8)
8Ty = (p+p)atvi 5 vi = du (2.9)

Since (2.2) to (2.4) are linear in the small perturbations, we can in general consider

a perturbation §p,, 0Pay... of a single component p, of the total energy density.



The total perturbation will then be a sum over such contributions obtained by
solving (2.2) to (2.4) for each seperate component. In the following we will consider
perturbations of the dominant cold dark matter component of p and drop the
subscript a. From (2.2) to (2.4) we can obtain an equation for the evolution of

the energy density perturbations ép in the limit where (6| is small compared to 1.

We define §py and hy by

op / A3k Spi (t) o d3k ~
— = ——e®* ; h =/—‘ hy (t) e'ex 2.10
,0 (271_)3 p (277)3 115( )e ( )
Here x is the comoving cooordinate. Defining & (t) = 69";“), equations (2.2) to
(2.4) give
. 36\ ... g (3H. K
5}£+ (2 - I) H(S]i:47er(1+0) (5&%—1 (7111_(_— ;5&) (211)

In obtaining this we have used ép = gép. Since |§] < 1, we can use the 8 = 0 result
hy = —26; in (2.11) to obtain the final form for the equation for the evolution of

energy density perturbations to lowest order in 6,
. . 6 k?
k k k a2k
Since || is small compared with 1, we can use the § = 0 result for H and the time-
dependence of tAhe scale-factor. (In general, a « £30-%) and H = % (1 — %) t=! for
6] < 1).
The effect of the pressure when 6 # 0 is to introduce a Jeans length Aj,

corresponding to the value of |k| at which the second term on the right of (2.12)

becomes dominant**) x
7w |?
Y =196, (2.13)
(The physical wavelength of a perturbation é at a given value of ais A = QI%T)

If 8 > 0, corresponding to a positive pressure, then the effect of the Jeans term
in (2.12) will be to stop the growth of perturbations when they have wavelength
(or scale) A < Aj. If § < 0 (corresponding to a negative pressure), then the Jeans

term will cause an exponential growth of perturbations which satisfy A < Aj.



3. Cold Dark Matter with a pressure: Small corrections to ¢? po-
tentials.

It has been shown that in general the energy density and pressure of a scalar
field oscillating coherently in a potential V(¢) with a frequency large compared to
H are given byl

p=(y—1)p (3.1a)

p o a3 (3.1d)

where p and p are the energy density and pressure averaged over one oscillation

cycle. v is given by
J2 (1= ¥ dy

)

7= 7dt

where the integral is over one oscillation cyclel?). Note that a contribution to V(¢)

(3.2)

which is odd in ¢ will give zero when integrated over an oscillation cycle. For the
case of an exactly ¢? potential, we find v = 1 and so the matter described by (3.1)
behaves exactly like non-relativistic pressureless matter. This is the usual case
(eg. the axion model). If however we consider a potential which deviates slightly

from a ¢? potential, for example
p p

2

Lown
V(¢) = Smee” ~ K¢*In (;%) + Ag? (3.3)

where the second and third terms are small corrections to the first term and K

4.6]

and p are constants, then as we will show in the following the CDM model!*® can

be significantly modified.
(1). Logarithmic correction.
We first consider the case of a log correction corresponding to (3.3) with Ay = 0.

In this case (3.3) can be written as
1 8/2
V(¢) = smié’ (—2> (3.4)

K« 1. From (3.2) we find that v = (1 + §/4) and so p = gp (21, We

mg

can then consider the consequences for structure formation of the pressure arising

where 8 =

when 6 # 0.



a) # > 0 For the case § > 0, as long as a perturbation has scale A\ > Ay it
will grow as in a conventional CDM model, with § « a for a matter dominated
Universe. (In the following we drop the subscript k on 0k, and & will be assumed
to correspond to a particular scale . We may take § to be the value of §p/p
averaged over a region of length scale )\, since (%}E)/\ is proportional to & [).
Once A < )j, the solution of (2.12) will be an oscillating § and so no growth of the
perturbation will occur. Let T; be the temperature at which a perturbation of size
Ap at present becomes smaller than \j. For T less than Teq (where T.q = 5.5h%2eV

is the matter-radiation equality temperature when £ = 1), A; can be written as,

0 1/2 T 3/2 T 3/2
e () () e (2 -
J (4Gpo) T Alp T (3.5)

where p, is the present energy density of the Universe, and Aj, is the present

value of the Jeans length. (With Q = 1 we have p, = 7.5x1074"h?GeV* where
0.4 £ h £ 1.0 parameterizes the uncertainty in the present value of the Hubble
constant. In this case cold dark matter accounts for at least 90 per cent of the

matter in the Universel*¢). The value of \j, is then,

61.
\yp = 6.4x1031—12Mpc (3.6)

Thus requiring that the Jeans length of the dark matter at present be less than
about 0.1 Mpc in order that galactic halos can form without any suppression of
the growth of density perturbations (allowing the model to preserve the successful
predictions of the conventional CDM model for halo formation!®) gives an upper
bound on 6, 6 < 3x107'°h* In this case the model will behave exactly like a
conventional CDM model on scales greater than 0.1Mpc. This then gives a bound

on K as a function of my, K < 8x107'*h’m}.

If 8 2 3x1071%h? then the growth of perturbations on galactic scales will be
suppressed relative to the conventional CDM model. The length of a scale at

temperature T which has a size A, at present is

MT) = (—”) A (3.7)



so the temperature below which ) is smaller than )y is

AJp

Ts(Ap) = (—/\—) T, (3.8)

T; will be smaller than the temperature Tu(Ap) at which the scale Ap enters the

horizon if Ty(Ap) > T(A,), where

Tu(Ap) = (87rép ) % (3.9)

T; < Ty is true if § < 3/27%, which will be satisfied for the cases of interest to us

here. The total growth of a perturbation up to the present is determined by Tj.
Scales with A, > Aj, experience full growth asin the conventional CDM model. For
scales at present A\, < Aj,, a suppression of their growth by a factor % = (%f;)z
compared with the conventional CDM model will occur. In light of recent bounds
on the magnitude of perturbations of the cosmic microwave background radiation
(CMBR) temperature from COBE("), which are only marginally consistent with the
growth of the primordial energy density perturbations which account for galaxy
and structure formation, we expect that any suppression of the growth of the
energy density perturbations will require larger initial density perturbations at
matter-radiation equality, resulting in unacceptably large perturbations of the
CMBR temperature. We therefore conclude that we must have § < 3x107%h?
when 6 > 0.

b) # < 0 In this case there will be a negative pressure for the dark matter.

As discussed in the appendix, the effect of the negative pressure is to cause an

exponential growth of the perturbations

§ = beq <TT—6:1> exp (% {(2:)1/2 — 1]) (3.10)

where 6.q is the size of the perturbation at matter-radiation equality, T, = %TJ

and it is assumed that the perturbation enters the horizon at T > T.q, as is
the case for scales less than 1Mpc. Since T, is proportional to )\;2, we see that
the exponential growth of the perturbations will result in small scales going non-

linear at an early stage in the evolution of structure. We can obtain bounds on



|6] by requiring that the exponential growth of the perturbations does not lead
to cosmologically unacceptable consequences. If we require that Ajp is less than
about 0.1Mpc, in order that the exponential growth of the perturbations does
not affect the growth of galaxy sized perturbations and the predictions of the
conventional CDM model, then we obtain the same bound as in the § > 0 case,
0] < 3x107'°h%. A stronger bound on |f] may be obtained by requiring that the
largest mass scale going non-linear due to exponential growth of the perturbations
is small enough in order not to cause the early formation of stars or black holes
and so produce significant explosions during the evolution of structure (explosive
structure formation being disfavoured by COBE data on the blackbody spectrum
of the microwave background radiation(”®). We define a scale Aoy to correspond
to the largest scale at present for which significant exponential growth occurs. We

take this to correspond to a value of T, which satisfies

3 T, 1/2
exp | 5 T -1
~ o

This is satisfied by T, /T, >~ 4.8. This value of T, corresponds to a scale at present

) ~ 10 (3.11)

Aex = 0.37Asp (3.12)

Thus scales at present greater than about %/\Jp will have experienced little expo-
nential growth. If we require that the mass scale corresponding to A, is less than
about 102 Mg in order to avoid explosions (where the mass corresponding to a

3
perturbation A, is 1.2x10*%h? (1—31;) Mg), then we obtain the bound on 4

6] < 3x10714n%/® (3113)

This then gives a bound on K as a function of mg, |K| < 8x107°h?/*m3. Thus for
|61 2 1071° there will be unacceptable cosmological consequences of the negative
pressure occuring when 6 < 0, while if || £ 107!%, the effect of the negative
pressure will be cosmologically negligible.

These bounds on 6 when 6 is a constant also provide a simple test to see

whether a general correction to the ¢? potential can significantly affect structure



formation as a result of the pressure introduced. We simply define an effective 6
by f.g = %% — 2. Define 6. to be the value of 6.4 with the largest magnitude
between Teq and T,. If |fax is less than the upper bounds given for the case of
constant |f| then we can be sure that there will be no cosmologically significant

effects due to the pressure introduced by the correction.

(ii). ¢* correction.
We next consider the case of a ¢* correction, corresponding to (3.3) with K=0.

a) Ay > 0 In this case the pressure is given by (3.1a) with [

3 Asp
=142 .
Y + 5 mj; (3.14)

where the energy density is p = jmj ¢2_, and ¢max is the maximum amplitude

during the oscillations at a particular time. We can then define an effective 4,

B = 4(v — 1), which gives
_ Bhep

Oetr : (3.15)
For 2 = 1 dark matter p is given by
T3
= | = o 3.16
p <T7) p (3.16)
and so .
T 6)\¢p0
Oer = ke (f) ; ki = m“o (3-17)

In this case 6 is a function of t, with g ~ H. Although (2.12) was derived assuming
that # is a constant, we expect it to also hold for a time-dependent 6. Thi§ is
because physically the Jeans length at a given time (which is given by the right
hand side of (2.12)) is determined purely by the pressure and density of the the
Universe at this time. The effect of the time dependence of 8 and so of the pressure

will then be given by replacing 6 by 6(t) in (2.12). The Jeans length is then given

by

1/2
AJ_k}“( i ) (3.18)



So in this case the Jeans length is a constant with respect to temperature, and at

present Ay, = Aj is given by

1172

Asp = 6.4x1031TMpc (3.19)

In the case of the log correction the ratio of the size of a scale as a function of
T to the Jeans length increases with temperature A(T)/A; o« T'/2. Therefore if
a scale is larger than the Jeans length at present it will be larger at all previous
times. In the case of the ¢* correction we find A(T)/A; o« T~1. In this case the

temperature Ty at which A\(T) = A;

Ti(Xp) = (;—J‘;) T, (3.20)
corresponds to the temperature above which a perturbation is smaller than the
Jeans length, unlike the case of the log correction where it corresponded to the
temperature below which the perturbation is smaller than the Jeans length. There-
fore even if a length scale at present is larger than the Jeans length, at an earlier
time it may have been smaller than the Jeans length. Thus in order to ensure
that there is no suppression of the growth of perturbations on the scale of galactic
halos 0.1 Mpc, we require that the corresponding length scale is larger than the
Jeans length at the time of matter-radiation equality Teq, when the energy density

perturbations begin to grow. This requires that

0.1Mpc > % AJp (3.21)

vy

With T., = 5.5h%V, we find that this gives an upper bound on the coupling A4

as a function of m,
4
; _ _ m¢ ra
Ao < 1x107° h™* (—) 3.22
- leV ( )
b) Ay < 0 In this case there will be a negative pressure for the dark matter.
As discussed in the appendix, the effect of the negative pressure is to cause an

exponential growth of the perturbations

§ = eqexp ( 3 {Teq - -rl;}) (3.23)
\ 2

10



where it is assumed that the perturbation is smaller than the Jeans length at
Teq. Therefore if we demand that a perturbation doesn’t grow by more than a
factor 10 before becoming smaller than the Jeans length at T; then we require
that Teq/Ty < 2.7, which gives a lower bound on the value of A, which scales at

present must exceed in order to avoid large exponential growth

T.
Ap > 1

A 24
P~ orT, P (3.24)

From this we obtain an upper bound on Aj, by requiring that (3.24) is satisfied

for )\, corresponding to mass scales < 10°Mg
< ———Mpc (3.25)

Thus since the Jeans length when A4 is negative given by (3.18) with A, replaced

by [Xs|, we obtain from (3.25) an upper bound on [Ay4| as a function of my,

1.2x10"13 / my \*
Dl < =25 (1CV) (3.26)

which is tighter than the bound coming from simply requiring that the evolution
of perturbations on scales greater than 0.1Mpc is unaffected by the exponential

growth of perturbations, which gives the upper bound (3.22) but with A4 replaced

by [Agl.

11



4. Applications

In this section we consider some implications of these results for models of
interest to cosmology, which usually means models which have extremely light
scalar bosons of mass < 1eV as dark matter candidates. For the case of the o
potential results, which will be of most interest in realistic models, we see that if
in general we wish an oscillating scalar to account for dark matter without having

to tune A4 to be small (for example if we take A, to be of order 0.1) then from

(3.22) we obtain a lower bound on my
my 2 1.0x10%h eV (4.1)

(For negative Ay we obtain from (3.26) my 2 9.6x102h*/® eV). Smaller m, will
require fine-tuning of A4 in order that the resulting CDM model is not disrupted
by the effects of pressure.

There has recently been some discussion of the possibility that neutrino masses
are associated with the explicit breaking of a spontaneously broken global U(1)
symmetry, enabling a late-time phase transition® to occur. In this case ¢ may be
identified with the resulting pseudo-Goldstone boson. The potential for ¢ around
a local minimum will have a :nass mgy = H‘fi and Ay = %, where the U(1) breaking
scale f is typically associated with a large symmetry breaking scale (for example
the grand unification scale) and m 1s approximately equal to the neutrino mass
scale, where all neutrinos have approximately the same masses(®. (More precisely,
m = (me)'/?, where m is a U(1) symmetric contribution to the neutrino mass and
€ is a contribution which explicitly breaks the U(1) symmetry. Then the larger of
m and e will set the scale of the neutrino masses, and 4me sets the scale of the
mass squared splitting of the neutrino masses (see egs. (5.1)-(5.5) of ref.9). The ¢
potential is then V(¢) = m'cos(¢/f)). From (3.22) we then obtain a lower bound
on m

1 2 95h eV (4.2)
Thus we see that the possibility that m is associated with neutrino masses or

mass squared splittings in the range suggested by the MSW solution to the solar

12



neutrino problem, m &~ 10-2eV (19 is inconsistent with the possibility that the
associated pseudo-Goldstone boson could account for cold dark matter, since the
effects of pressure will prevent the growth of perturbations. In addition, since m is
less than or about equal to the neutrino masses, we see that the neutrino masses
when (4.2) is satisfied may violate the cosmological bound on stable neutrino
masses m, < 100h? eV. We also note that in the case of the axion model, in which
m =~ Aqcp, the bound (4.2) is easily satisfied. Therefore there are no significant
pressure effects in the axion cold dark matter model.

Finally we comment on the possibility suggested in ref.11 that the Compton
wavelength m;l of extremely light scalar boson dark matter particles could be
large enough to affect structure formation on scales of tens of Megaparsecs. For
a Compton wavelength of greater than 30 kpc we require m,; < 2x10728eV. (The
scale 30 kpc is the scale at the time of matter domination which corresponds to
a scale in the present Universe 30 Mpc, which is the present scale of large scale
structure. This will smooth out the initial perturbations on scales corresponding to
scales smaller than 30 Mpc today). If the effects of pressure are to be negligible in
this case (so allowing the scalars to behave as cold dark matter particles on scales
larger than 30 kpc at present) we must require from (3.22) that A, < 107'°. The
form of potential considered in ref.11 corresponds to m} = 8V, /¢2 and Ay = V,/¢2,
with V, &~ 107%eV* (in order that the energy density at present accounts for dark
matter) and ¢, ~ 10'"GeV, a value typical of grand unification and which also
gives a ¢ mass 3x107%%eV, which is of the correct magnitude for the Compton
wavelength to be significant for large-scale structure. This then gives Ay &~ 10718,
Thus we see that with couplings which give a Compton wavelength significant Jfor
cosmology, the effects of the pressure due to the ¢* term will prevent the growth

of structure, so ruling out this particular explaination of large scale structure in a

cold dark matter model.
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5.Conclusions

We have considered the effect on oscillating scalar cold dark matter of a po-
tential which deviates slightly from a ¢? potential. Bounds on the coefficients of
a ¢’Ing? correction and a ¢* correction as a function of the ¢ mass were obtained
by requiring that the effect of the pressure introduced by the correction to the
¢? potential does not affect the conventional CDM scenario for galaxy formation,
and, for the case where a negative pressure is introduced, by requiring that the
exponential growth of perturbations does not lead to explosions. For the case of a
logarithmic correction the potential can be written as ¢t with 8 constant. It was
shown that in order not to disrupt the conventional cold dark matter model the
value of § must satisfy § < 3x107'°h? (6 > 0) and |4] < 3x107'*h?/® (§ < 0). These
bounds on # also allow one to easily check whether a given general correction to a
@* potential can result in a significant deviation from the conventional cold dark
matter model due to pressure. For the case of a Ay¢* correction we obtained upper
bounds on |A\4| as a function of m,. In addition we showed that the requirement
that the pressure introduced by the correction does not prevent the formation of
structure can rule out as cold dark matter candidates pseudo-Goldstone bosons
where the scale of explicit U(1) symmetry breaking is set by neutrino masses or
mass splittings of order 0.01eV (consistent with the MSW solution to the solar
neutrino problem), and can rule out also the possibility that the Compton wave-
length of an extremely light scalar particle can account for the large scale structure
of the Universe.

This research was supported by GTAE.
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Appendix. Growth of perturbations in the presence of a negative
pressure.

(i) Logarithmic correction

In this case we can consider the potential in the form (3.3) with § = %. The

equation for the growth of perturbations when 6 < 0 is

6] k*

b + 2Hé, = 4nGp (1 + ) & + 7 b (A.1)

where a=1 at present. For A < Aj, with A; given by (2.13), (A.1) becomes

. . A
§+2HE = =6 (A.2)

a2
where we have dropped the subscript on ¢ and where A = 10—2—(—2. To solve this

approximately we substitute § = e” into (A.2) which gives

.4 2 A
N+ §£77 +n° = o 2t4/3 (A4.3)
where we have used H = 3% and a = at?/?® for a matter dominated Universe

(a = (6mGp,)!/?). Suppose initially 7 + &7 > 7?. Then the solution of (A.3) with

n? = 0 on the left hand side is
3A o3

n = ——-2a2t (A.4)
For 7 + &1 <« 7? the solution of (A.3) is
3A1/2
n = T —t/3 (A.5)
a

The condition for the solution (A.4) to hold is

t < oty = (X) (4.6)

Thus solution (A.4) will hold at early times. Let the temperature at which t = t,
occurs be T,. Then from (A.6) T, is given by

L. 0 _ 2Ty (A7)

T.  6GpoAz 3T,

Thus we find that shortly after a perturbation enters the Jeans length and so

begins to grow exponentially due to the negative pressure, T < T, will occur

15



and so most of the growth will be described by the solution (A.5). In terms of the

temperature we can write (A.4) and (A.5) as

3T,
=37 (T; > T > T,) (A.8)
and )
3 T* 1/2
n=1 <?> (T. > T) (4.9)

From (A.8) the total growth of the perturbation between Ty and T, is
exp( — %) ~ 1.1. Thus in the following we will ignore the exponential growth
between Ty and T,. For the cases of interest to us (scales at present smaller than

1Mpc) the perturbation will enter the horizon during radiation domination. In

this case the growth of the perturbation is given by

T, 3 (/T \Y?

8 = beq (Tﬂ) exp (E {(T) —1]) i Teq > To > T (A.10)
3 T 1/2

8 = beqexp (5 {(—Tﬂ) — 1]) ; Te > Teq > T (A.11)

where 8. is the value of the perturbation at Teq.
(ii) Ay¢* correction
In this case a negative pressure will arise when Ay < 0. The equation for the

growth of perturbations is then

§+2Hé = =6 (A.12)

where A = k‘fz. As before we substitute § = €7 into (A.12) which gives

T e A
i+ S—tr] +n° = pereTY (A.13)
We follow the same steps as before. If 77 + %7} < n?, then the solution is
—3AY2 _ —3A'Y? ( T )
n=-—>: = — (A.14)
205223 20%/2 \ T,

If 7j + &7 > 7n*, then the solution is

3A 3A [T\’
_ — 2 A5
T Jastils T 4ol (T,,) ( )

16



(A.15) is valid for t > t, = (0%)3/4. The corresponding temperature is T, = \/gTJ.
In this case Ty is the temperature below which the perturbation becomes larger
than the Jeans length. Thus (A.14) is valid essentially during the whole time
that the perturbation is smaller than the Jeans length. For the perturbations of
interest (smaller than 1Mpc at present) the perturbations enter the horizon during
radiation domination and begin growing at T.q. The growth of a perturbation for

Tj < Teq is then given by

§ = eqexp (\/g [TT—; - TEJD (4.16)

17
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