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ABSTRACT We prove a generalization of Bismut-Ité6-Kunita formula to infinite di-
mensions and derive an uniqueness result for Wiener space valued processes An
application to a special class of (Bernstein) processes is discussed

1. INTRODUCTION

In this paper we will work with the Sobolev spaces for Banach space valued
Wiener functionals introduced by [PTS]. which are constructed using the operator
norm for the derivatives instead of the Hilbert-Schmidt norm. The corresponding
Sobolev norms are strictly weaker than the usual Malliavin Sobolev norms. For the
construction of these weaker Sobolev spaces we refer to [PTS].

Let (. H. X) be the classical Wiener space. namely X is the space of continuous
functions z : [0,1] = R such that z(0) = 0. p the Wiener measure and H the
corresponding Cameron-Martin space. Let B be a Banach space and L, (H;B) the
Banach space of bounded n-linear B-valued operators defined on H with the norm

I1Tllop = sup  ||T(hy. - . hy)|B.
hi€H, [lhi]I=1

Let LY(H;B) be the subspace of finite dimensional linear mappings defined on H
with values in B. and let LY(H; B) be its closure in L;(H; B). The spaces L%(H:B)

are defined recursively using the canonical identification.
LH(H; B) —> L] (I‘I. Ln-l (H‘ B))

Namely, L?(H:B) = L{(H; L% _,(H; B)).

In order to define the H-derivative of a B-valued functional, we consider the set
W1 (X;B) of the B-valued Wiener functionals f such that, for each h € H there is
a functional f; verifying:

(1) fa(z) = f(z) p a.e. in x:

(i1) The functional fi(z + th) is strongly Bx/Bp-measurable and there exists a
Ly(H: B)-valued strongly messurable functional D f for which the equality

t
falr +1th) = fr(z) +/ Df(zx + sh)hds.
0
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is satisfied for every t € R and y almost everywhere in z.

The Wiener functional Df will be called the H-derivative of f and is uniquely
defined up to a set of measure zero (cf. [KSK], Proposition 3.2]). This defines the
first H-derivative of elements in W!(X;B).

The construction of the higher order H-derivatives D' is made by recurrence.
For that, the following spaces of k-jets are introduced:

BO = B,
Br:=B x Li{(H;B) x --- x Ly(H;B), k >0,

with the norms.

k 1/
(S0, St Sullsa,, = (ISoll + D USilB,) 1 < p< +oo.
=1

Given f € W(X;B), the 1-jet of f is defined as the Bj-valued functional
71(f) = (f, Df).
Hence, for any f € W'(X;B) such that j;(f) € W(X;B;) one can define the

second derivative of f and, in a recursive way, the higher order derivatives and the
sets

WE(X;B) := {f € WF1(X;B) : jx-1(f) € WH(X; Bi-1)}.

By definition, given f € W*(X; B), D* f is the L;(H; B)-valued functional obtained
by taking the Li(H;B) component of j;(jr—1(f)). For a f € W¥(X;B), we will
denote ji(f) = (f,Df,---,D*f).

The weaker Sobolev spaces W,f(X; B) are defined, for each &, p > 1, by:

WIXiB) = {f € WHXiB): [ s, du < oo,

which is a Banach space for the norm

! 1/p
7= ([ NietHI, , i)™
x g
We observe that for each k, p > 1,
W!(X;B) C W(X;B),

where W} (X;B) are the Sobolev spaces introduced in [MVII], provided with the
norm defined in [MVII] also denote here by || - ||,p.
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2. A BisMUT-ITO-KUNITA FORMULA IN INFINITE DIMENSIONS

In this section we generalize the Bismut-Ito-Kunita formula [KNT], [BST] for
our Wiener space framework. This formu.a gives the rule for the composition of
Wiener functionals and semimartingales with values on the Wiener space.

On a probability space (2, F,P) provided with a complete right continuous
filtration, consider a semimartingale on the Wiener space X of the form:

1 i
Xt:_X0+/ Asd.s+/(I+Bs)dW8,
0 0

where W is a X-valued Brownian motion and A € L*([0,T]x Q; X), B € L8([0,T] x
Q; Ly.s.(H; H)) are progressively measurable processes.

We shall assume the existence, for each t € [0, T], of a function I&t X — R such
that K as function of ¢t and z € X is square integrable and

(2.1) ES(X) = [ Efta)Kils)dufa)

X

for all functionals f for which both sides of the last equality make sense. Assume
that Ko belongs to the L?(X) space.

Under these conditions we derive the following result:

Theorem 2.1. Let F: [0,T] x X x 2 — X be a Wiener functional such that for
each x € X F.(z) 1s a continuous semimartingale of the form

(2.2) Filz) = Fy(x) +/ as(x)ds +/ (I +bg(x ))dWs,
0 0

where:
(1) W is a X-valued Brownian motion;
(11) For gy —aex in X, a(z) : [0,T] x Q - X, b(z) : [0,T] x Q = Lys(H;H)
are progressively measurable processes;

(iti) For P —a.ew, t € [0,T), ai(w) € WP(X;X), by(w) € WP(X; Ly.s.(H; H))

and the integrals
T T
E[ ol dt B[ b, d
0 0

are finite jor each 2 < p < co. If
(1) For each t and r, a;(z) — z € H;
(v) For each 0 <t <T,1=1,2,3, D'az) ¢ LYH;X), p-a.e. n z;
(vi) Almost surely Fy € m,,Wg’(X; X) and Fy € L?(Q; Wsp) for every p > 2
(vit) VFy 1s the form [+ Ho with Hy a Ly s (H; H)-valued functional, D" Fy(z) =
L2(H:X) for n = 1,2,3, p-a.e. in z,
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then F;(Xy) 1s a stochastic process with an almost surely continuous version given
by the following equation:

t s i
Ff(X»:Fo(XoH/ (I +bs(X.)) dW3+/ au(X,)ds
[¢] 0

t

+/ (VFS(‘YQ),As)dsﬁ—/ (VFy(X,),I + B,) dW,)

0

+ / Tr((I +'B,)*V2E,(X,)(I + B,)) ds
0

1
2

T / Vbe(X,)(I + B,) d{W, W)
0

o

Remark 2.2. This theorem generalizes the It6 formula shown in [KU] for non ran-
dom Wiener functionals F.

Proof. Let {e;}$2, be an Hilbertian basis for H. For each n we denote by EY"- the
conditional expectation on V), where V), is the finite dimensional subspace of H
generated by {ej, -+ ,e,}, by II" : X — R" the extension to X of the orthogonal
projection of H — R™, and by II,- the orthogonal projection of the separable
Hilbert space Ly s.(H; H) to R™ x R™.

For simplicity, denote by F,;, an;, bn;, respectively, the approximations

I"(EY"F,), I"(EY"a;), M. (EV"by), t € [0,T). It follows from (2.2) that

t t s
(2.4) Frsbg ks Frolm) +/ any(z)ds + / (I +bn,(z))dWs.
0 0

i), it follows that, for each ¢, almost surely F}
> 2. Thus, by [CRZ] and [PTS], we may conclude

Assuming the assumptions (i)—(v
belongs to all spaces W} (X;X), p
that

(2.5) Fugy ang € (\WE(Va; V), bay € [\ WE(Va;R™ x R™).
P P

Furthermore, denoting generically F; or a; by f;, t € [0,T], it holds by [CRZ]
and [PTS],

I (B fo)llsp < N fells.ps

(2.6) -
IHn(E""be)ll3,p < |[bell3,p, Yn € Nt € [0,T7,

and the sequence {II"(E"" f,)}, (resp., {II(EY"b;)},) converges to f; (resp., b;)
in W:f (resp., W?) for all integer p > 2.

Conditions (2.5) and the Sobolev imersion theorem enables us to rewrite each
function Fpy, an¢, bns, t € [0,T], on the form, respectively:
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for P-almost everywhere C? functions on R", f,,, an, : R® = R™ (., : R* —
R"xR". Consequently, we are in conditions to apply the Bismut-It6-Kunita formula
([KNT], [BST]) to the process (2.4). We obtain:

t 1
Fud X0) = F, (XOH-/ (1+bm(xs>)dws+/ tno(X,) ds
o} 0
t -1
+/ (VFnS(Xs),AS)ds+/ (VF,n (X.), (I + B,)dIV,)
0 0

41 [ Tr((I + By)*V2F,,(X,)(I + B,))ds

2 /s

t o
+/ \7bn3(XS)(I+Bs)d<I/V,W>3.
0

Hence, from (2.8), we can deduce,

(2.9)
4
<E{ sup HFm(Xt) - Fmt(X‘)”i(]>

0<t<LT ;

< k{ (EHFno(Xo) - F’"O(XO)H;>4
2} 4
2H 4>
J)

- "
-+ <E sup / (VF o (Xs) = VE, (X)) Ag) ds
0

Lo<t<T

) t N
+ (E sup / (bn (X)) = b o(X,)) dW,
0

\ LOS’ST

t
+ <E sup / (Gns(Xs) - ams(Xs)) ds
Lo<t<T || Jo

|

)

2}>4
)

/: Tr[(I + B,)* (V2Fny(X,) — V2 Fm (X)) + B,)] ds

il

ot
+ <E[ sup / (VE, (Xs) = VE,(X,),dW,)
0<t<T 0

+ (E[ sup /(VF,,S(XS)~V,7Fm3(_\',§),BsdeVs)
o<t<T || Ju

(]
+ —| E| sup
24 0<t<T

+ (E[ sup ’
0<t<T

I

/t(vz),,s(xs) — Vb (X)) + Bo) d(W, W)
0

| v

where k 1s a positive constant.

Next, we will estimate the norms envolved in the right hand side of the inequality

(2.9)

)

For example, considering the first, the second and the penultimate terms of



the right hand side of (2.9) we have. respectively,

E||Fao(Xo) = Fmo(Xo)||x

1/2 ) 1/2
< </(Ko(:r))2d/ﬂx)) | (/ B Fao(z) ~ Fmo(2)][% dus2) )
X X

< 1Kol 2% (E|| Fro = Froll3sxix))

I(E”Fno - Fmo||%Vv§;(x:x))l/4 (¢! independent of n and m);

y 2

E[ sup / (brs(Xe) = b o( X)) dW, ]
0<t<T H
§4E/ [bne(Xe) = bm(Xe) llang(HH)d

0

’ 4 1/2
S4(/ /E”b"'(I)'b"”“’)”cgs(H;H)dﬂ(fc)dt> '
o Jx
1/2
</ / bl )dt)

, . 1/4
't CI(/(; E“b”t N bmt“Ls(x:Cu 5 (H?H))dt>

T 1/4
8 :
< gt (/0 E“bnt — bmfl|W§(x;LH,5 (H:H))dt> felt independent of n and m).

2}

by the Doob and Hélder inequalities; and

t
E{ sup / Tr((I + Bs)* (V2Fpy(X,) = V2Fm (X)) + B,)] ds

0<t<T

§4TE/ (IBe||* + 4|B.| + 1)|| V2 Fue(X.) - V2F

< 4T/ E|| V2 Fa(X0) = V2 F Xt
[¢]

|4dt>1/2.
{(E/OT |[Bt{18dt)l/2+4<E/0T ]]B,![4dt)l/2}
af |

7
+ 4T</ E||V2Fp(X¢) = V2Fm (Xt)
0

e Feanl ” K (z)du(z)dt

1/2
(/ /Env? il2) = V(o) Kil2) dit) dt



T 1/2
c{(/ /EHsznt(x)-VQFm(x)”Mp(x)dt)

1/4

(/ /EHV"’ (@) = V2 Fo(2)| dit(a dt) }

1/4
8
<t (/0 E||Fny - Fm‘”Wg(x;X)dt> (c!*T independent of n and m),

applying the Holder inequality.

The remaining terms of (2.9) can be estimated analogously. Thus we conclude
from (2.9) that
(2.10)

4
(E[ sup HFnt(-Xt) - Fmt(Xt)”%(]>

0<t<T

T T
< C{E/ “a"t - amtl'%g(x;x)dt + E./O Hb"t - bmt“%‘V;(X;LH,S.(H;H))dt
0

T
+ E/O 1Fne = Frntllfgs xix) 4t + EllFno — Fmoll%@(x;x)},

for a positive real number ¢ independent of n and m.
Since F,,, (= I"(E"" F})) converges to F} in WS(X X), t € [0,T], and by (2.6)
1t holds

S QC”Ft X

| (¥ F) - Filly , < el[I"(B¥ R[5 , + ¢ B[ ls.e

Hs,s Vn € N,

[X
tlls,s

for a positive constant ¢, with

T T T
B [ Rl e < BRI+ B [l e B [+ b e,

we may conclude by the Lebesgue dominated convergence theorem that

T
. 8
nlgx;oE/O 1 Fui = Fol e syt = 0.
Therefore, Fp,, n € N, is a Cauchy sequence in L¥(Q x [0, 7] :W:,?(X; X)), te

T
(2.11) lim E [ ||F., —F dt = 0.
0

8
n,m-—o0o mt”W;;B(xQ()

Analogously, we derive the following equalities:

T
8 —
n }r‘fflooE/ ane = am I x x4t = 0,

T
2.12 8 =
( ) . };r_nmoE /. |65 — bmtﬂwg(x;cH_s,(H;H))dt =0,
8
Jhm B[ Fao = Fonollsx,x, = 0-



Thus, by (2.10), (2.11) and (2.12) we obtain

lim E| sup HFM (X:) — Fno( X2) “x =¥,

TR oy o<t<T

which implies the existence of a subsequence of F,, (still denoted by F}), such that

lim sup “Fnt (K= Bk Xl =0 g8 P,

1, =00 ot HX

these means, by Cauchy criteria, almost everywhere the sequence Fy,(X:), n € N,
converges uniformly in the interval [0, 7.

Finally, since X is a stochastic process with continuous sample paths and Fl,; is a
continuous semimartingale - (2.4) - which admits a representation as.a C? function
(as we observed on (2.7)), it follows that the application t — F},;(X}) is continuous,
which enables us to conclude (by the uniform convergence) the continuity almost
everywhere of the application t — F;(X}). |

Remark 2.8. The estimates we obtained for each term of the right hand side of (2.9)
also enable us to conclude that each term of (2.9) converges uniformly on [0, 7] to
the correspondent term of the right hand side of (2.3).

3. AN UNIQUENESS RESULT

We shall use the theorem obtained in last section to derive an uniqueness result
for solutions of Wiener space valued stochastic differential equations.

Given a : [0,T] x X = X, b:[0,7T] x X = Lpy.s.(H;H) such that, for each
t €[0,T],

(3.1) ac € (YWI(X;X), b e[ \WP(X;La.s(H;H)),
p p

and, for every 2 < p < oo, the integrals

4 I8
(3.2) | vl [ e, i
0

are finite, consider the following stochastic differential equation
(3.3) dX; = a(t, X¢)dt + (I + b)(¢, Xy) dW,.
We assume that, py-a.e. r € X, exists a weak solution,

(3.4) (X (@) BELERF, PR} )

(3 3) for the initial condition X (0) = z. We also assume the existence, for each
€ (0,7, of a function K;; : X — R such that

(3.5) K,.(-) € L*([0,T] x X;R),
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and
(3.6) | B duta) = [ f(e)Kui() o)

for all functionals f for which both sides of (3.6) make sense. With respect to (3.4)
we also shall assume

The existence of two subsets of X,C and D,
(3.7) of Wiener measure zero, such that

P q.s. w, CBzr—)X”( ) € D is a bijection, for each t € [0,T].

We remark that this assumption enables us to think about the i inverse stochastic
process X” (z). About this one assumes

X' (z) is a diffusion process, say

(3.8) -
dX, (z) = A(t,z)dt + B(t,z) dWy;
with,
A, € N,WP(X;X)Pa.e., and
(3.9) T
E/O | Ae]l3 , dt < oo for every 2 < p < oo;
(3.10) vt [0,T),n=1,2,3, D"4, € L2(H;X);
B is the form B = I + B’ with
(3.11) By e N,WI(X;Lpy s (H;H))P a.e., and
’ T
E/o | Btll%,, dt < oo for every 2 < p < oo;
(3.12) For each t,VXl_t1 is the form I + L;, with

Ly a Ly s (H;H) — valued functional;

For each ¢, exists a real function K, square integrable on [0,7] x X such that

(3.13) LEm%Hﬂw /f VK () du(z),

for every functional f for which this equality make sense.



Proposition 3.1. Under the conditions (3.1)~(3.2), (3.5)-(3.13), u-a.e. z € X,
(X5 (@), W), (, F, P),{F})
18 the unique weak solution of the stochastic differential equation
dYi(z) = — (VYi(z),a(t, z)) dt + (VYi(z), Vb(t, 2)( + b(t, z)))dt
(3.14) + %Tr(([ +b)° (t,2)V?Yi(2)(I + b)(t, 7)) dt

— (VYi(z), (I + b)(t,z) dWy),

for the initial condition Y (0)(z) = z.

Proof. p-almost every z € X, let ((Z((z), W), (Q,F,P),{F}}), be a weak solution
of (3.14) for the initial condition Y'(0)(z) = z. As usually, we denote this solution
briefly by Z,(z). :

Suppose Z(z) satisfy all the hypothesis of the theorem 2.1 with the condition
(2.1) replaced by (3.6). Thus, by application of the theorem 2.1 we get

d(Zt(Xlt(l‘))) VZt(X“(.T)),(l(t,Xu((L'))) dt

—
+ (VZ(X1(2)), Vb(t, X1¢(2))(I + b)(t, X1:(x))) dt
-+ %Tr((l -+ b)*(t,X“(a:))VZZt(X”(z))(I + b)(t, X1¢(z))) dt
(VZd(X1u(2)), (T +)(2, Xre(2)) dW)
+(VZ(X14(2)), alt, Xe(2))) dt
+(VZi(X1e(2)), (I +b)(t, Xq1(z)) dWy)

+ 5 Tr{(L+8)" (6 X)) V2 Zd Xau(2))(T +8)(t, Xae(2))) dt

— Tr((I + b)*(t, X14(2)) V2 Zo(X 1o (2))(T + b)(t, X14(2))) dt
— (VZi(X14(2)), VO(E, X1e(2))(1 + b)(2, X1:(2))) dt

=0 waez:
which enables us to conclude
(3.15) vt € [0, T, paex,Z;0 Xlz) =z, ae P,

since Zo(Xi0(z)) = z, p a.e. z € X. Hence, given the existence of the inverse
process X, (z), it follows from (3.15)

vt €[0,T], pae.z,2:(z) = X;;'(z), a.e. P.

Summarizing what we have been proved we conclude p a.e. z in X there exists at
most one weak solution of (3.14) for the initial condition Y'(0)(z) = z. Furthermore,
if such solution exists, then necessarilly it will be ((X;'(z), W), (Q,F,P),{F}!}).
Thus, it remains to prove that X' () satisfy the equation (3.14) to complete this
proof.



Applying once more the theorem 2.1 we will get
0 =d(X; (X1:(=)))
= A(t, J\’ll(:l:)) dt + B(t, X”(.’L')) th
+ (VX7 (Xn(2)), (1 +0)(t, X1u(2)) W)
+ (VXR (X1d(2)), alt, Xie(2))) dt
ETr((1 48" (6, Xau(2) V2 X (Kar(@))(T + )t Xio(2)) d
+ (VB Xy(2)(I + b)(t, X1:(=))) dt,

which enables us to conclude, by the nullity of the coefficients drift and dispersion
of the stochastic differential equation on the right hand side of the above sequence
of equalities,

Alt,z) = = (VX7 (2),a(t,2)) + (VXL (2), Vb(t, 2)(I + b(t, z)))

+ %Tr(([ +b)* (t,2)VEX (2)(] + b)(¢, )

B(t,z)(h) = —(VX;'(z),(I +b)(t,z)(Rh)), h € H,
i.e., X1, (z) is a solution of the equation (3.14). |
With this result we can now prove the following uniqueness result.
Theorem 3.2. Given a, b satisfying (3.1)-(3.2), consider the stochastic differential
equation

For almost every z € X, let ((X14(z), W), (Q, F, P),{F}}) be a weak solution of the
equation (3.16) for the initial condition X(0) = z on the conditions (3.5)-(3.13).
Ifpae ze€X, ((Xoe(z), W), (2, F,P),{F}}) is another solution of the equation
(3.16) for the same initial condition such that for each t € [0,T] there ezists a
function Koy : X = R square integrable on [0,T] x X in such a way that

[ EfCa(e)duta) = [ fa)Kai(a) due)

X X

for all functionals f for which both sides of this equality make sense, then
P[Xyi(x) = Xoy(), YVt € [0,T]] = 1,

i.e., the pathwise uniqueness holds for the equation (3.16).

Remark 3.3. The situation where the coefficients are time-independent has been
intensively studied in the framework of Dirichlet forms (for example, [AR]). The
applications we have in mind are those where these methods do not apply (see
Section 4).
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Proof. By the proposition above and by application of the theorem 2.1 we have

d(XTH(X2e(2))) = — (VXM Xaele))y alt, Xae(2))) it
+ (VXS (Xae(2)), Vb(E, Xae(2))(I + b)(t, Xax(2))) dt
% -1—Tr((1 )" (8, Xoo(2)) VEX SN (X (2))(I + B)(t, Xae(2))) dt
~ (VXN (X2e(2)), (T + b)(¢, X24(z)) dWy)
+ (VX (X2e(2)), a(t, Xae(2))) dt
(VXn (Xa2e(z)), (I 4 b)(t, Xo4(x)) dWy)

4 2Tr( (I +b)*(t, Xau( ))VQX—I(th(x))(I + b)(t, X2:(z))) dt

— Tr((1 4+ B)* (8, Xae()) VX5 (Xae(@))(T + B)(t, Xae(2)))
— (VX (Xa2e(2)), Vb(t, Xo1(2))(I + b)(t, Xos(z))) dt
=0, pae.z,

which enables us to conclude, by X 3! (X20(z)) = = p almost everywhere in z,
VYt € [0,T], pa.e.z,X1¢(z) = Xot(z) a.e. P.
Thus, for all t € [0, T,

[ ElXu(e) = X duta) =0

which implies,
Vi € [0,T] 38n C X,;Bi € © =X Nde)=-P(2)\ B:) =0 and
Xi(z)(w) = Xos(z)(w), Vz € Af,w € By,

In particular,

Vt € [0,T]NQ, X1y(z)(w) = Xaulz)(w), Ve € (A, we [)Bs;
te[0,TINQ te[0,7]1NQ
following by the continuity of the processes X;4(z), Xo¢(z),
pae.z € X, P[X14(z) = Xoe(z), Vt € [0,T]] =

as we wanted to prove. }

4. AN APPLICATION

In this section we shall apply an adaptation of theorem 3.2 to prove the unique-
ness of some Bernstein processes taking values on the Wiener space. For the con-
struction of these processes we refer to [CZI]. These are processes Z;, t € [—1,1],
which are weak solutions of the forward It6 stochastic differential equation,

(41) de = dI’V‘t i (Zt - V].OgT]t(Zt)) dt, t e [0, 1] -

12



for the initial probability distribution
P(Zoel) = / nong du, T CX,
r

where W is a X-valued Brownian motion adapted to the increasing filtration of
the past events Py, and 1, = e~(1"YHQ with t < 1, is a solution of the infinite
dimensional forward heat equation 8n,/8t = Hmn, associated to the Hamiltonian
H = —L +V, L being the Ornstein-Uhlenbeck operator on the Wiener space (cf.
[MVI], [MVI]I]) and V a functional potential. The probability density of Z at a
fixed time ¢t € [0, 1] is given by ny nf du (cf. [CZI]). The conditions assumed in [CZI]
were:

(A.1) V is a positive Wiener functional belonging to the space W;?(X;R), for some
2 < p < 4oo; .
(A.2) 6 is a bounded positive functional belonging to W;P(X;R) and such that
logd € L*(X). :
Applying to the time-reversible property of the Bernstein processes (cf. [CZII)),
these are also solutions of the backward It stochastic differential equation:

(4.2) d,Zy =d W/} +(Zy — Viegn;(Z,))dt, te[-1,0],

where W* is a Brownian motion adapted to the decreasing filtration of the future

events F;, d, denotes the backward differentiation, and n} = e~ (FDHG* with

t > —1, is a solution of the infinite dimensional backward heat equation —9n} /9t =

Hn;. An additional condition is assumed in [CZI]:

(A.3) #* is a bounded positive functional belonging to W7?(X;R) and such that
log §* € L*(X).

In this example, we have a process defined as a weak solution of a stochastic
differential equation for a initial distribution which is not concentraded on a given
point of X. So, to apply theorem 3.2 we must consider a more general notion of
inverse process. Let us denote by X;(p) the probability distribution of a process
X at time t with initial probability density p. A process X, is defined as inverse
of the Bernstein process Z; if for each fixed time ¢, the probability distribution of
X at time t is g n§ dp having as initial probability distribution n; n; du. Using the
notation introduced above, this means,

Xi(Zi(nong dp)) = Xe(neni dpn) = no ng dpe

or, in an equivalent way and using the same notation, X(Z;) = [ in law.
With this definition. we have the following result.

Lemma 4.1. The inverse of the Bernstein process Zy, t € [—1,1] ezists and 1s ¢
solution of the backward stochastic differential equation

d Xy = d W] + (X4 = Vioger (X)) dt, te[-1,0],
and the forward stochastic differential equation

dX[ = de - (Xt - VIOgth(;Yf)) dt, t e [O, l] y
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for the initial probability density po pl du, where pf = e~ IHVHY 4yith ¢ > —1, and
or = e~ A—DHG* with t < 1. In particular, Z;]' = Z_,.

Proof. The result follows from the time-reversible property of the Bernstein pro-
cesses. |

We observe that to this particular example, if conditions (3.1), (3.2), (3.9) and
(3.11) are verified, the proof of theorem 3.2 adapted to this special case enables us
to conclude that given Zj, t € [0, 1], another solution of (4.1) for the initial density
To N dy, then

ulZ, =2, Ve [0,1]] =1,

that is, the pathwise uniqueness for the equation (4.1) holds. Hence, to be able
to apply this result it remains to prove that the assumptions (3.1)-(3.2), (3.9) and
(3.11) are satisfied. We devote the rest of this section to verify (3:1)-(3.2), (3.9)
and (3.11), namely to prove that the integral

1
/:—1 |V log ntl‘sv;(x;ﬂ) dt

is finite, for each 2 < p < 0o, which is enough for our purpose. In order to show
this, we recall the Feynman-Kac formula on the Wiener space proved in [CZI]. Let
X be the Ornstein-Uhlenbeck process having £ as its generator (cf. [MVI]). One
possible way to describe this process is by the expression:

(4.3) Xi(s) = e tz(s) + At e~ (=8 dW, (s),

for s € [0,1]. Under the conditions (A.1) and (A.2) the following Feynman-Kac
representation in terms of the Ornstein-Uhlenbeck process X, holds:

(4.4) el 2)= Ex,t<9(X1)exp = /t1 V(X,)ds) A

for all t < 1, p-almost everywhere in z; where E; ; denotes a P; conditional expec-
tation given that X,(-) is the path ¢ € X. Using this representation and the Jensen
inequality one gets the following estimation:

1
(4.5) () 2 exp Ey ¢ (log 0(X,)— / i . O ds).

Lemma 4.2. Let V and 6 be two Wiener functionals under the conditions, respec-
tively, (A.1) and (A.2). If, in addition,

(1) V and 8 belong to every WP (X;R);

(11) 671 and ezp(V') are L? integrables, for all 1 < p < oo,
then

1
[ 15108l ey < oo

14



for each 2 < p < oc.

Remark 4.3. The assumption E,exp(pV) < oo for all 1 < p < oo could be relaxed
so that potentials with quadratic growth could be considered.

Proof. For the framework of this proof we refer [CZI].
Step 1. We start by proving

1
/ E,||Vlogmn|5 dt < oo,

-1

for each 2 < p < o0.
Observing that

1/2

v ||? \1/2 -
< B Vnl?) (Bl 72) ',

(4.6) E,[|Viegm|P = E,

it follows by the estimation (4.5) that

1
Eu|nt|"2p < E#expEI,t< — 2plog6(X:) + 2p/ V(Xs) ds);
t

where, by the Jensen inequality (J.1.), the properties of the conditional expectation
(C.E.P.), the positivity of V (P.) and the invariance of the measure p for the
Ornstein-Uhlenbeck process X; (I.M.), we get the following estimation for the right
hand side of the above inequality:

1
E#expEI,t(—2plog€(X1) + 2p/ V(Xs)ds) < (by J.I.)
t
1
E‘,Er,,exp<——2plog9(X1) +2p/ V(Xs)ds) =
t (by C.E.P.)
1
B [(60X) Texp2p [ V(XL ds] < (by P.)
4
- 2 ! ds\1/? ,
(Bu (X)) ™) (Buexosy [ vix)T)" < (by J.0)
-1
‘ - 1 /! 1/2
(EH(G(X;)) 4p)1/2(E,‘-2-/ exp(8pV(Xs)) d\e) <
-1 (by LM.)

(E,6=**)""* (B exp(8pV))'/*.

Consequently, taking the expectations on (4.6) we obtain

! 1
/E*‘"W”f””dtS/ (B[ Vne?)" " (Eplne =)' at
1
: / (EullVnel*) /2 (Bu6747) " (Eexp(spV)) /" dt
-1

1 1/2
< o(Bu87%)""* (Buexp(spy))/* (/ Eullvndl” d’)
-1

1&



It remains to prove the implication
(4.7) 0,V € W*#(X;R) = n, € WP(X;R), t € [-1,1],

analogous to another one of the same kind obtained on [CZI]. Indeed, using the
representations (4.3) and (4.4) we have

Vm(z) = e—lEr,t(Ve(Xl)exp = /1 V(Xs)ds)
(4.8) ;

—Eué(Xl/VVX) =% ds exp — /V ds)

which implies, by the positivity of V and by the invariance of the measure u for
the process X, an estimation of the type

BVl < B,|[{evo(x1) - 9(X1)/1 VV(X,)e™* ds fexp - /tl V(X,)ds”p

t
p
3

< () {e BV + E,||6(X:) / IV(X,)e ds

for a positive constant ¢(p) (depending only on p); where

)/1 VV(X,)e™ ds“p

(E 921’ ( /uvv ue-sczs) )1/2

< var=ter(5,e) " (&, [ Ivvixoipeas)”

= (2¢)"(E,.6) it (EMIIVVIIZP)

Hence, taking the expectations we get

/_ 11 B, Vnd? dt < c(p){ BuIva + (Bu2r) " (Bawvier) ),

which valid the implication (4.7).
Step 2. Next, we prove that

1
[ BT gl g o <
-1

for each 2 < p < 0.

We need the L? norms estimations of LF, with F € WI(X;R), in terms of
Sobolev norms introduced in [MVII] by means of Poincaré-type inequalities due to
Krée and Meyer,

(4.9) allCF|Lr < |\V2F)1» < ||CF) 1>,
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where ¢; and ¢, are positive constants, 1 < p < +00.
Since we have

L 1
(4.10) Llogn, = % - §|!V10g0t||2a

then, twice applying (4.9) we get

1 1
/ E,||V?log n||P dt < c’z’/ E,|Llogng|P dt
-1

-1

C(p){ /_ 11 E, .

1 1
<cp){( [ BVl / Byfni|~* dt)"”

-1 -1

L:T]t

IN

P 1
dt+/ E, ||V logn|?” dt}
-1

1
+ [ BV o dt}.
-1

Therefore, by the first step, we just need to estimated the integral

1
/ E, |9 dt,
-1

with 1 < p < +0o0.
Using the representations (4.3) and (4.4) we obtain

1
Vzn, = e"QEr,t(VZO(Xl)exp ——/ V(Xs)ds)
t

1 1
_26-151,,(\’79(2{1)/ TV(X,)e™ ds exp-—/ V(X,)ds)
(4.11) ! o
—E“(()(Xl)/ VAV (X, )e™? ds exp—/ V(Xs)dS)

t t

1 1 N
+E,_,t(9(X1)(/ VV(X,)e™* ds)’ exp—/ V(X,)ds).

Hence, taking the expectations on both sides of the above equality we get an esti-
mation of the type

1 V172

E,||Vn|Pdt <c E 2g)|? 6%» i 2p
WIV20 17 dt < e(p){ Eull V26117 + (EL|IV6[2?) " (ELIVV)?)

+ (Euéﬂp)”2 ((Eu”VzVI(QP)l/Z + (EuHVVHM)]/z)}a

which proves the implication

—1

6 c WP(X;R), VeW,?(X;R) = n € WH(X;R), t € [-1,1],
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similar to another one proved in [CZI].
Step 3. Now, we will prove that

1

for each 2 < p < oo, where L}, ¢ (H; H) means the class of i-linear Hilbert-Schmidt
operators.

From the third derivative of logn;, and using the same arguments above, we canu
deduce

1 1 1
[ Bt ognipa <o) ([ BT i) ([ Bylnd-ean’”
= | -1

Lo (/ E “V 77t”2pdt 1/2 / E HVIOgm”Qp dt)1/2

/ E,||V? log ns||?? dt) /2 / E||Vlognt||2-”dt)l/2}

Therefore, by the first and second steps it remains to estimate the first integral of
the right hand side of the above inequality to conclude (4.12). Using once more the
representations (4.3) and (4.4) we have

1
V377, = e'aEr,t(V?’O(Xl)exp—/ V(Xs)ds>
t
1 1l
—(1+2€_2)E1,t(v29(X1)/ VV(X,)e *ds exp—/ V(Xs)ds)
t
1 il :
—3e“1EI,,(V9(X1)/ VV(X,)e 2 ds exp—/ V(Xs)ds>
t 1
1 9 1
Be'lEr,t(VG(Xl)(/ VV(X,)e™* ds) exp—/ V(Xs)ds)
1 . 1 ;
- Eeu(00%0) [ VOV ds exp - [ V() ds)
; 1 1 3 1
+3E1,t(9(X1)/ VA (X e)eH ds/ VV(X,)e *ds exp——/ V(Xs)ds)
il : t 1 t
_E“<6(X’ )(/ VV(X,)e™* ds) exp—/ V(Xs)ds).
1 t

Hence, taking the expectations and estimating the L? norms of the third derivative
of ny, one can prove, in an analogous way as we have done on the above steps, that
it holds the implication:

6 € W2P(X;R), V e WiP(X;R) = n, € WP(X;R), t € [-1,1].

Step 4. To complete the proof, we will prove that
1
4 P
[-] E'IJ”V log nt![‘::;l.s.(H;H) dt < oo,
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for each 2 < p < oo.
By computation of the fourth derivative of logn, and applying once more the
above arguments, we obtain

1 1 1
| Bavttogndr i< cw){( | BVl d) ([ Buln ar)
-1 —1

1 1
4 (/ E‘LHVUU'[‘Q}) dt 1/2(/ EpHV1OgntH2p dt)1/2
1 -

+ (/.1 E,,uv ”‘l,z”dt VA / E|IV log n||*? dt)"/*

! V2
+ (/ E#” ntHZPdt 1/2(/ E“HVQIOgnt”%)dt)l/?
-1 ,

1 1
+ (/ B, [V log || dt)m)(/ E, ||V logn||* 4t)"/?
J=1

-1

1
+ / E,||V log 1l dt .
-1

Hence, from the above steps, it remains to study the LP-integrability of the
fourth derivative of n;. To do this, we apply the same scheme used before: from
the representations (4.23) and (4.4) we get the expression of the derivative V*n,
and, taking the expectation and estimating the L? norms of V*n, we prove that
the implication holds,

§ e WIPIX;R), VeWPX;R) = n € WIX;R), te[-1,1],

which complete the proof. |

Remark 4 4. Given 6* on the conditions (A.3), belonging to every spaces W} (X;R)
in such way that 8* 7' is L? integrable, for all 1 < p < oo, we may conclude, by the
same steps of this proof, that Vlegn; is L?([-1,1]; WP(X:H)) integrable, with
2<p< oo

The several results of this section and the mentioned adaptation of theorem 3.2
prove the following theorem.

Theorem 4.5. Under the conditions of lemma 4.2, the pathwise uniqueness for
the equation (4.1) holds.
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