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Abstract

We discuss the possibility that dark matter in the Universe could be due to the
oscillation of the Brans-Dicke scalar in extended inflation models. The constraints
following from the requirement that the energy density perturbations due to quan-
tum scalar field fluctuations are within observational limits and from the require-
ment that the energy density in the oscillating Brans-Dicke scalar induced by the
expansion of bubbles at the first-order phase transition is smaller than the criti-
cal density at present are discussed for the case of a coupling of the Brans-Dicke
scalar to the Ricci scalar of the form ¢**?/M™". General approximate solutions of
the equations of motion are given in the slow-rolling approximation, and the case
of n = 0 (minimal extended inflation) and n = 2 are discussed in detail. It is shown
that the dominant source of energy density fluctuations produced during inflation
are due to isocurvature fluctuations of the Brans-Dicke scalar. The requirement
that the fluctuations in the microwave background due to the isocurvature fluctua-
tions are not too large requires that the reheat temperature at the end of inflation
is less than 3x10*3GeV. It is shown that in the case where gravity is neglected in
discussing the expansion of bubbles, the model is consistent with the requirements
that the range of non-Newtonian corrections to the gravitational potential is less
that lcm and that there should be no inhomogeneities in the cosmic microwave
background radiation due to large bubbles for only a very small range of reheat
temperatures at the end of inflation. This suggests that the Brans-Dicke scalar
is not favoured as a candidate for dark matter if the isocurvature density fluctu-
ations are to account for the density perturbations. If we do not require that the
isocurvature fluctuations account for the density perturbations, then the range of
reheat temperatures can be larger. The range of non-Newtonian corrections to
the gravitational potential in this case is not expected to be much smaller than
the present upper limits from Cavendish-type experiments. The possibility that
gravity can suppress the growth of large bubbles is considered, leading to a new

scenario for the end of extended inflation in which the phase transition is per-



colated by nucleation alone, without the expansion of bubbles. In this case the
average radius of the bubbles at the end of extended inflation may be much smaller
than in the conventional case where gravity is neglected. As a result, the bubble
fluctuation constraint is removed as well as the constraint from large unthermal-
ized bubbles, allowing for a much larger range of reheat temperatures at the end of
extended inflation. The possible advantages of an oscillating Brans-Dicke scalar
with respect to structure formation are considered, in particular the possibility
that the Brans-Dicke scalar could account for both cold and hot dark matter in a
combined CDM-+HDM scenario for structure formation, with the hot component
arising from excitation of the Brans-Dicke scalar field by the expansion of bubbles

at the first-order phase transition.



1. Introduction.
There has been much study in recent times of the possibility that inflation
could be successfully terminated by a first-order phase transition if the rate of

(1.2]

bubble nucleation per horizon volume increases with timel*?. In particular, the

idea of inflation in the context of a Brans-Dicke theory of gravityl®4! (’extended in-

12 In such a model, the Hubble parameter

flation’) has attracted much attention!
decreases as a power of time, rather than being constant as in the case of Einstein
gravity. As a result, the rate of bubble nucleation per horizon volume increases
with time, allowing inflation to be terminated by percolation of the first-order
transition. Although it was originally hoped that extended inflation would allow
the construction of inflation models based on a conventional GUT phase transition
with none of the fine-tunings associated with new or chaotic inflation!®®! scenar-
ios, it became apparent that the simplest extended inflation models, in which
there was no potential for the Brans-Dicke scalar, were unsuccessfull®?). This
was because in the absence of a potential, the distribution of the bubble radii is
compatible with the homogeneity of the cosmic microwave background radiation
(CMBR) only if the Brans-Dicke parameter w is less than about 25, in conflict
with the non-observation of deviations from Einstein gravity in radar-echo delay
experiments*® which required that w be greater than 500. (Recently this conflict
has been questioned®], as we will discuss later). The simplest solution to this
problem is to introduce a potential for the Brans-Dicke scalar giving 1t a mass,
so reducing the range of non-Einstein gravitational effects to a range at least as
small as the Earth-Sun distance. Indeed, the omission of a potential for the Brans-
Dicke scalar could be interpreted as a fine-tuning of the original extended inﬂa’;ion
model, in the sense that one is fine-tuning the potential to be zero.

The inclusion of a potential for the Brans-Dicke scalar naturally suggests the
interesting possibility that the Brans-Dicke scalar could account for dark matter
in the Universe. If the Brans-Dicke scalar at present is oscillating about the

minimum of its potential, then its energy density would behave as a density of

non-relativistic matter 1%, in other words as cold dark matter (CDM). This would



provide a very simple 'minimalist’ model that could in principle both allow for a
natural 'GUT driven’ inflation (avoiding the need for an ad hoc inflaton sector)
and also account for dark matter, which is made necessary by the condition = 1
(2 = p/pe, where p. the critical energy density in the Universe at present) which
in turn follows from inflation. (In the following we use the term ’GUT’ to refer
to a generic matter sector which provides a false vacuum energy density driving
extended inflation and in which the standard model is embedded. It need not
necessarily be a grand unified theory based on a simple gauge group such as
SU(5)). In a sense such a model both enables inflation to be realised in a natural
way (in the sense of no tunings of the conventional matter sector of the model,
in contrast with new or chaotic inflation models(®®}) and self-consistently offers a
solution to the problem of requiring dark matter in order to account for Q =1
which is in turn a side-effect of inflation. The model has the added advantage
of being essentially specified by just three parameters, namely the mass of the
Brans-Dicke scalar, the reheat temperature at the end of extended inflation, and
a parameter specifying the coupling of the Brans-Dicke scalar to the Ricci scalar.
This allows for a meaningful investigation of the range of parameters for which
the model is consistent with constraints following from the observed isotropy of
the CMBR, the energy density of the Universe at present, and limits on the range
of non-Newtonian gravitational forces. In this paper we wish to discuss critically
whether a Brans-Dicke scalar can account for dark matter and be consistent with
these observational constraints.

11 we discussed the Brans-Dicke scalar dark matter model
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In a previous paper
(which we refer to in the following as the extended inflation dark matter or EIDM
model) for the case of the simplest coupling of the Brans-Dicke scalar to the Ricci
scalar. There it was shown that requiring that the energy density perturbations
arising from scalar field fluctuations during inflation are not too large and requiring
also that the energy density at present arising from spatial variations of the Brans-
Dicke scalar induced by the expansion of bubbles at end of inflation is not too

large placed significant limits on the coupling of the Brans-Dicke scalar to the



Ricci scalar and on the mass of the Brans-Dicke scalar. In the present paper we
discuss in more detail the limits on the EIDM model parameters. In particular we
consider how the limits are affected by considering more general couplings of the
Brans-Dicke scalar to the Ricci scalar, of the form %R (n=0 corresponding to the
minimal EIDM model discussed in ref.11). In addition, following the suggestion
of ref.9 that the growth of bubbles may be prevented if gravity is strong enough
during extended inflation, we consider how the inclusion of gravity can alter the
nature of the first-order phase transition (in particular the mean radius of the
bubbles at percolation) and so alter the constraints on the model.

The paper is organised as follows. In section 2 we review the EIDM model. In
section 3 we discuss the constraints on the model for the case of the minimal (n=0)
EIDM model. In ref.11 these constraints were in fact underestimated. This will
be corrected here. In section 4 the case of extended inflation where the final 60
e-foldings of inflation are dominated by higher order couplings (n=2) to the Ricci
scalar is considered. In section 5 we consider the possibility that gravity dominates
the dynamics of bubble growth and percolation during the final 60 e-foldings of
inflation. In particular we suggest a new scenario for the end of extended inflation
in which the phase transition is percolated by the nucleation of bubbles alone,
without their expansion. In section 6 we discuss our conclusions. In appendix A we
give a slow-rolling approximation solution of the equations of motion for the case
of a coupling to the Ricci scalar of the form ¢**?R. In Vappendix B we review the
constraints coming from the non-observation of deviations from Newtonian gravity,
and in appendix C we give a discussion of the anthropic principle determination

P

of the value of ¢ at the end of inflation.



2. The Extended Inflation Dark Matter (EIDM) model
The extended inflation model with a general coupling to the Ricci scalar is

described by the action!!!
s= [a L9, 60"
= | &xv/—g |~ )R+ 50,60 + V (¢) + 167 Limaster (2.1)

The effective Planck mass is then Mpj s = {(¢)?/%. Define & = {(¢), and w(®) by

f ;o df
w(@) == 2(f')2 s f = @

(2.2)

(During inflation the potential energy of ¢ can be ignored). The equations of

motion are then(!:12!

. . 1 ' 192 G
@+3H¢_m[8w(p—3p)—w@] (2.3)
. . 2
k 8rp & w ([
H 4+ — = — - —H+ = | = 2.
Ta? 3% @ +6<<I>> (24)
where a is the scale factor, ' = %, and p and p are the energy density and

pressure of the matter fields. In the following we consider

¢n+2

Ho) = I

(2.5)

where M is a parameter with dimensions of mass (for n=0 we consider { (¢) = g‘%,
where w is the usual constant Brans-Dicke parameter®4). We will consider k=0
throughout in the following.

In the original discussion of the EIDM model('!} it was assumed that the phys-
ically significant period of inflation (corresponding to the final 60 e-foldings of in-
flation) occured when the coupling of ¢ to R was of the form (2.5) with n=0. How-
ever, it possible that the cosmologically significant period of inflation (AN, £ 60,
where AN, is the number of e-foldings before the end of inflation) will occur when
the coupling to R is different from the minimal (n=0) case. This coupling may
be regarded as the dominant coupling of ¢ to R when f(¢) is considered as an

o

expansion in powers of 7, with M a mass scale associated with an underlying

complete theory for which (2.1) is the effective low energy theory.



From (2.2) and (2.5) we find that in general w is given by
n

w= YRS (n _I{\_/Iz)z = (2.6)
It is straightforward to solve (2.2) and (2.3) in the slow-rolling approximation
(Appendix A). It is shown in appendix A that the condition for the validity of the

slow-rolling approximation is that w 2 3 throughout inflation.
The scenario of the EIDM model, as discussed in ref.11, is based on having
a potential for the Brans-Dicke scalar such that after inflation the scalar can co-
herently oscillate about the minimum of its potential, corresponding to a density
of cold scalar particles in the Universe at present. The scalar field at the end of
inflation has to be close to the minimum of its potential (§¢/¢ < 107¢/w!/?), in
order that it doesn’t contribute too much to the energy density at present. This
is a fundamental problem for this scenario, since in general we do not expect the
value of ¢ at the end of extended inflation to equal the value corresponding to the
minimum of its potential. However, if inflation generates domains of effectively
constant ¢ of a size much larger than the size of the observable Universe, then it is
plausible that the closeness of the scalar field to the minimum can be determined
by anthropic selection, similiar to the scenario of the axion plus inflation model
of Linde[’®l. (This is discussed in more detail in Appendix C). As we will discuss
later, this requires that some apparently fixed parameters of the model can vary
on scales much larger than the observable Universe. The model is then constrained
by the requirements that the energy density perturbations induced by quantum
fluctuations during inflation are smaller than the bound from the homogeneity of
the cosmic microwave background radiation (CMBR) (a stricter requirement is
that these fluctuations can account for the fluctuations required for galaxy forma-
tion and possibly observed by COBE!); that the space dependent fluctuations
of the Brans-Dicke scalar induced by the growth and percolation of bubbles at
the end of extended inflation (bubble fluctuations) do not contribute too much to
the energy density of the Universe at present; that the range of non-Newtonian

gravitational effects, which is determined by the mass of the Brans-Dicke scalar,



is less than about lcm, which corresponds to the upper limit from Cavendish-type
experiments if w < 105 Bl(this is discussed further in Appendix B); and that there
should not be too many large unthermalised bubbles (those larger than the hori-
zon) at the time of decoupling of the microwave background, in order to avoid
unacceptable inhomogeneities in the CMBRI27],

The broad conclusion of ref. 11 was that it is possible to satisfy all constraints
on the model, thus making the EIDM model a viable model for dark matter.
However, the calculation of the density perturbations due to quantum fluctuations
of the scalar field in ref.11 was incorrect and underestimated their magnitude.

Therefore in the next section we will consider again the EIDM model for the

minimal extended inflation model with n = 0.



3. Constraints on the minimal n=0 extended inflation model

(a) Cosmological constraints on the parameter space.

In general the cosmological constraints on the EIDM model are due to the
following requirements .
(i) We require that the perturbations of the energy density due to quantum fluctu-
ations of the scalar fields during inflation are within the bounds set by observations
of the cosmic microwave background radiation (CMBR).[6:14]
(i) We require that the energy density due to fluctuations of the Brans-Dicke
scalar induced by bubble expansion and percolation at the first-order phase tran-
sition (bubble fluctuations) is less than the critical energy density required to close
the Universel!ll.
(iii) We require that the mass of the Brans-Dicke scalar is large enough to ensure
that the range of non-Newtonian gravitational effects is small enough not to have
been observed in solar-system or terrestrial tests of Newtonian gravity(®l.
(iv) We require that there be no CMBR inhomogeneities due to large unther-
malised bubbles[?7].
These are the main constraints determining the allowed parameter space. In addi-
tion it is necessary that the energy density of the false vacuum should be sufficiently
small that the classical equations of motion used in our discussion are valid, which
requires that V, < M} .4, where V, is the false vacuum energy density during
inflation.

Following the general slow-rolling approximation solution of Appendix A, the

solutions of the equations of motion in the n=0 case are

s

&= do(1+ At —t,)) (3.1)
Aw

H= ATAG=5) (3.2)

a=(1+A(t —1t,))” (3.3)

where

647V, 1/z
- < o ) (3.4)

-~



and we take a, = 1 and t = t, at the beginning of inflation.
We see that for A(t —t,) > 1, which will generally be the case if the number
)1/2 (t —to,). Thus the

of e-folds of inflation is greater that 60, we have ¢ = (‘5—4;7\'“

value of ¢ at the end of inflation is purely determined by the duration of inflation.
Inflation ends when I' &~ H*, where T is the bubble nucleation rate per unit volume
per unit time. Therefore from (3.2) we have (t — t,) = wI'~!/%. Therefore we see
that ¢ at the end of inflation will be fixed in all domains if I" and V, are the same
in all domains. In order that ¢ can be determined by anthropic selection (ap-
pendix C) we must allow for the possibility that V, or [’ can vary on length scales
much larger than the observable Universe, thus allowing ¢ to take different values
in different domains at the end of inflation. Since such a possibility is difficult to
dismiss a priori, it is best to assume that it is the case and then to confront the
resulting model with constraints from observations.

(1) Constraints from energy density perturbations due to quantum fluc-
tuations during inflation.

We first determine the dominant energy density perturbations.

I. Adiabatic energy density perturbations.

These were considered in the original discussions of extended inflation!*?l. The

magnitude of an adiabatic energy density perturbation when the perturbation

re-enters the horizon after inflation is given by(?®l

B!

: 3.5
5 (3.5)

dadi ~

tan,
where 6 = 6p/p and tan, is the time at AN, e-foldings before the end of inflation

when the perturbation leaves the horizon. From (3.1)-(3.4) we find
H2 (tay,) = H2e™0" (3.6)

where t. is the time at which inflation ends and He = H(t.). Therefore

H? 2 AN,
d)erw (3.7)

Oadi =



II. Isocurvature Perturbations.

The isocurvature perturbations are due to fluctuations in the scalar field which
persist to the present and contribute to the energy density in the oscillating scalar
field. The magnitude of the quantum fluctuation of the scalar field when it crosses
the horizon at tan, is

_ H(tan.)

6¢q (tan.) = — (3.8)

Since §¢q grows like ¢ (3.1) when its wavelength is larger than the horizon we

have
_ H(te) 24N
6a (1) = Tocet (3.9)

We denote the space-independent displacement of ¢ from the minimum of its
potential by §&(t). This is assumed to account for 2 = 1 dark matter once é¢(t)
starts oscillating about the minimum. Then the perturbation of the energy density

on scales at present which correspond to those crossing the horizon at tan, is given

by
s~ 269q(t)
1Ss0O 5¢(t)

Here t is the time at which the perturbation re-enters the horizon. (In ref.11

(3.10)

this was incorrectly taken to be &5, = (8¢q(t)/84(t))?, which underestimates &, ).
Since when the fluctuation is outside the horizon é@q (t) and 8¢ (t) both evolve
like a~%/2 when H < m and are essentially constant when H > m, we see that .,

can be calculated at t = t.

2004 (t.) ’
biso X ————— 3.11
6p(te) 1s given by s
§6(t,) = (-:%%) 56 (ty) (3.12)

where T, is the present photon temperature and g(T) is the number of degrees of
freedom in thermal equilibrium at T. T, is defined as the temperature at which 6¢

starts oscillating, corresponding to H(T;) & m. For T; occuring during radiation



domination (T; > Teq &~ 5.5h%eV) we find

a5\ "

Thus

T 1//2 3/2 2 1/2H tc 28N,
6iso=2(g( ’)) @—:) (;;) (t) e (3.14)

where we have used 1m?§¢(t,)? = pe.

From (3.14) and (3.7) we find

Sico 1/2 Mo )/4 T3/2 7 \1/2
biso _ on' (m “2 & ( ) (3.15)
6adi m Pc/2 24w
where 2s
T 4ar3g (T
o = Gg( ’Y) m g( 1) (3.16)
g (Ty) 45
The isocurvature perturbation will be dominant if
7 (24w)’ p?
- Tc 1
n > o7 T6 Mp, (3.17)
Since Ts—”;fl—m = 3x1073¢h*GeV (where p. = 7.5x107*"h?GeV* and h= 0.5 to 1.0),

and since for values of w < 10° we require that m 2 107'*GeV in order not to

conflict with bounds on non-Newtonian gravitational forces (Appendix B), we see

that the isocurvature perturbation will be dominant over the adiabatic perturba-

_1an1/4 ) )
tion, with 80/ 8aai 2 (18_3:) / 2~ 10°. Therefore the energy density perturbations

in the EIDM model will be larger than in conventional extended inflation models,
which have only 6.q;. In the following we will take the isocurvature perturbations

to be dominant.

ITI. Bounds on model parameters from requiring that é;;, does not cause

unacceptable CMBR inhomogeneities.

In general, requiring that 65, < k on re-entering the horizon gives an upper

bound on the ¢ mass. Using (3.14) we find

m < mg(Te,w) (3.18)

10



where

my(Te,w) =

K ME (20)° (_ Mm \*
7 Te T¢  \R,T.T,

f= (wg(Te) )”2 ( 45 )"'/8 (gm))” (wg(m )”“’ (g(m) *
™ 45 dmig (Ty) g(Th) 45 g(Te)
(
In this we assume that the false vacuum energy density V, completely thermalises
at the end of inflation, with the reheat temperature T. given by‘%g(Tc)Tﬁ =
Vo. R, is the radius in the Universe at present corresponding to the size of the
fluctuation responsible for the perturbation of the CMBR. For R, we consider
the radius in the present Universe which corresponds to a region at the time
of decoupling which subtends an angle of about 1" of arc at present, the scale
of small-angle observations of the microwave background®. Thus we consider
R, = 2x10**h~'GeV~'. (This corresponds to a region about 15 times the size of
the horizon at Tge. &~ 0.3eV). With g(T;) = g(T.) = 100 (corresponding to the
fields of the electroweak model) and g(T,) = 2 we have

B\ © k4h?
1) L GeV (3.21)

mg(n,w) = 2.9x107 (5.5}(10_27;7- p

where we have defined n by T. = n10'%GeV.

IV. Constraints from scalar field fluctuations induced at the first-order

phase transition (’bubble fluctuations’).

The equation for ¢ in the false vacuum can be written as

s

o(t) = o(tg)(1 + Ap(t — tg)) (3.22)
where )
N 647V, 12

Ap = (_———.Sw¢(tg)2) (3.23)

and tg is the time at which a given bubble is nucleated. When a bubble is nucleated
in a GUT, the solution for the bubble will be such that the energy density after

tunnelling will either be in the wall of the bubble or will be thermalized inside

11



the bubble in a time-scale short compared with the expansion time H~! (this is
true for GUT mass scales small compared with Mpy; see ref.6 p.294). Either way,
since R = 0 inside a bubble with zero energy density or with a purely radiation
energy density, we see that inside the bubble Ag is effectively zero (V, effectively
zero), and so the field ¢ will not evolve once a point in space has crossed inside the
bubble. As a result, the value of ¢ at the end of inflation, when all the bubble walls
have collided and thermalised, will depend on how large the bubble was at the
end of inflation, which is determined by its nucleation time tg. Since the bubbles
will have a distribution of sizes around a mean size which is of order H~'(T,) 1311,
when inflation ends at T, there will be space-dependent fluctuations of the value
of ¢ with a wavelength ~ H™'(T.).

If we assume that ¢(x,t) is constant once x has crossed inside an expanding

bubble, then the value of ¢ inside a bubble as a function of r will be

B(r) = (1 + Apr)(ts) (3.24)

At the end of inflation, assuming that the initial radius of the bubble is small

compared with the horizon at T., we have rg ~ t. — tg and so
(;')(I‘B) = (1 + ABI‘B)¢(tB) = ¢(te) (325)

where ¢(t.) is the value which ¢ has in the false vacuum at t. in the absence of

bubbles. We associate a mean value of ¢ with a bubble of radius rg

‘ 3 [, 1
<o) >= = [T () dr = (1 - ZApmm)g(t.) (3.26)
B
Then since most bubbles at percolation have a mean bubble radius Ty of the order

of H™1(t.), the fluctuation induced in the otherwise smooth ¢ background by the

expansion and percolation of the bubbles will be

) y . Ap,__ , A _
b¢p =< ¢(rp) > — < ¢(TB) >~ —413‘(1‘13 —1p)¢(tp) = —ffrH Yte)d(te)  (3.27)
where we have defined rg — 15 = f,H~!(t.) for the average bubble at the end

of percolation. Here f. ~ (fg/H~")(érg/Ts), where §rp is the mean deviation of

12



the bubble radii from the mean radius Tg. We expect that rg/H~! > 0.1 and
6rg/fs ~ 1 are reasonable assumptions, which gives a lower bound for f, of 0.1.
We will therefore consider 0.1 < f; < 1. Since for Agrg < 1 we have ¢(tg) =~ &(t),
we find that AgH™!(t.) = % and so

erpl
\/§w1/2

Thus at T, we have spatial fluctuations of the otherwise perfectly smooth value

S ~ (3.28)

of ¢(t.), imprinted by the expansion and percolation of bubbles at the first order
phase transition. The wavelength of these bubble fluctuations is initially of order
f.H-*(T.), which is much smaller than the size of the observable Universe. (With
T. = n10'®GeV, a region of radius H™'(T.) at T. will correspond to a size in the
present Universe &~ 1/n meters.)

The evolution of the bubble fluctuations from T. to the present follows from

the equation for ¢
. : , . 1
§¢ +3Hép — a ? V2 6¢ = — |V (§¢) + z}—d)R (3.29)
w
In the limit R=0, V=0, an exact solution of this is
/ AO . . 2 2
¢ = —Sin(k7)Sin(k.x) ; k* = k| (3.30)
a

where dr? = dt?/a(t)® The solution is a good approximation if R # 0 so long
as J%l > H. This is true in the case of interest, since for radiation or matter
domination H decreases faster than % and initially J%l ~ H.. Thus the amplitude

of the space-dependent perturbation §¢(x,t) will drop as a™!

until the potential
term becomes significant. This will occur when %‘J ~ m. After this time the
spatial gradient term in (3.29) becomes negligible in the evolution of A(t), and

the solution is then

do = A(t)Sin(mt)Sin(k.x) ; A(t) x 1 (3.31)

a3/2

Since at the temperature at which '—E‘» ~ m is satisfied (which we denote by T}) the

condition m > H is also satisfied, the scalar field will oscillate according to (3.31)

13



as soon as T < T}. Thus the bubble fluctuations have an amplitude which evolves
as a~! from T, to T}, and as a=%/? from T% to T.,. T is effectively the temperature
at which the Brans-Dicke scalars corresponding to the bubble fluctuations become
non-relativistic, the Brans-Dicke field having been effectively heated by bubble
expansion at the first-order phase transition. The energy density at present due
to spatially averaging over the bubble fluctuations is then ~ m?A(T, )?. Requiring
that this be less than the critical energy density of the Universe at present then

gives a constraint on the initial amplitude §¢(x,t.) of the bubble fluctuation of ¢

g;TeTI 1z Pc 1/2
§(x,te) < T (m—2> (3.32)
where " "
0_; — (g(Tc)> (g(TI)> (333)
° g (T1) g(T,)
and
. _ ( 45 )1/2 fr mMp1 (3 34)
b \4mdg (T.) P g (T3)° T.

where we take the initial wavelength to be {,H"!(t.). From (3.32) we obtain an

upper bound on the mass of the Brans-Dicke scalar

m < mp(n,w) (3.35)
where
’ g 2a* Ty pew
my(n,w) = —_frT?’Y—Mm* (3.36)
1/2
- 45 K .
and a* = (4ﬂ3g(Te)1/3g(T;)2/3> . Numerically (3.36) gives
nh?w

my(n,w) = 1.4x107 " GeV (3.37)

T

V. Numerical bounds on the n=0 model from quantum and

bubble fluctuation constraints.

14



As discussed in appendix B, for all values of w less than 10°, which is the range
we will consider here, the non-observation of non-Newtonian forces in Cavendish-
type experiments imposes a lower bound on the ¢ mass, m > m, = 1071 GeV. As
discussed above, we also have upper bounds on m from the quantum and bubble
fluctuation constraints (m < mg(n,w) and m < my(n,w)). In addition, if we wish
that the quantum fluctuations in the ¢ field explain the density perturbations

614] then we

responsible for galaxy formation and possibly observed by COBE!
must require also that my; < my. In the quantum constraint we will consider
k = 107° corresponding to §p/p < 107° at horizon crossing for CMBR fluctuations
on an angular scale of 1'. In the bubble fluctuation constraint we consider f; to be
in the range 0.1 to 1. We take h = 0.5 throughout.

The constraint my > m,, required for a range of allowed masses to exist, gives
an upper bound on 7, 7,, for a given value of w. The constraint my, > my gives
a lower bound 7 > m. This lower bound applies if we require that it is possible
for the quantum fluctuations to account for the observed density perturbations,

which requires that m = mg. If we do not require this, then we obtain a lower

bound on 1 from my, > m,, which gives a lower bound n > 7, where

T

) f
= 7.35x107*—— .
i 35x10 oh? (3.38)

In table 1 we give the bounds on 7 for various vales of w for the cases f, = 0.1
and 1. In table 1 we also give the upper bound on the ¢ Vmass Mpay following from
m, = my. Since in general we require that m < Min(mg, my), the largest value of
m as a function of n corresponds to mgq = my,.

From table 1 we see that in general the value of 7 is constrained to be q;ite
small (7 < 3x1073) for the range of w we have considered. This corresponds to
a reheat temperature after the first-order phase transition T, which is less than
3x10'3GeV, which could pose problems for models which have baryon number
violating interactions which can induce proton decay if the GUT mass scale is of

the order of the reheat temperature®; this depends on how the masses of particles

mediating proton decay are related to the false vacuum energy of the GUT. In
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addition, if we impose the bound from requiring that there be no distortion of
the CMBR due to horizon sized bubbles at the time of decoupling, which requires
that w < 25 for the n=0 model®7), then we see from table 1 that it is possible to
have w < 25, but the range of allowed n between 7, and n is very small, making
the model seem rather unnatural. Also, for w < 25 the upper bound on 7 gives a
very low reheat temperature T. < 3x10'2GeV. In general as w becomes large 7,
tends towards an w independent limit, , = 1.1k*/?h!/2, which is seen from (3.21)
by letting my = m, and taking w to infinity. With the above values of h and k
this gives an upper limit on T, of 2.6x10'3GeV.

If we do not demand that the quantum fluctuations can account for the ob-
served density perturbations (m # m,), then we consider 7 rather than 7. In
the case with f, = 0.1 we see that for w = 25 the lower bound becomes 1.2x107°,
allowing a much larger range of  and so making the model more natural, although
some other mechanism for generating the density fluctuations required for galaxy
formation and possibly observed by COBE is then necessary.

Thus we see that the constraints imposed by the quantum and bubble fluctu-
ations, together with the constraints from the non-observation of non-Newtonian
forces and the absence of CMBR inhomogeneities due to horizon size bubbles at
decoupliﬁg, disfavour in the context of the EIDM model the possibility that the
Brans-Dicke scalar can account for dark matter if quantum fluctuations are respon-
sible for the density perturbations leading to galaxy formation and the COBE ob-
servations, and in addition require that the reheat temperature following inflation
be not much larger than 3x10'?GeV. ,

We see also from table la) that for w < 25 the largest value of the mass of
the Brans-Dicke scalar corresponds to 2x107*3GeV. This corresponds to a range
for the non-Newtonian force of 0.1lcm. Since this is a lower bound on the range
when w < 25, it seems quite possible that non-Newtonian forces will be observed
experimentally in this model in the near future.

Clearly the EIDM model would be more attractive if the energy density pertur-

bations could be explained by the isocurvature quantum fluctuations of ¢ without
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any unnatural looking tuning of n (essentially corresponding to a tuning of the
mass scale of the GUT). In the following we consider two possible ways to alter
the constraints on 7. Firstly we consider the constraints in the case with n=2
rather than n=0. Then we consider the possibility that gravity is dominant in the
nucleation and growth of the bubbles®], unlike our discussion up to now which has

ignored the effects of gravity on bubble growth.

17



4. Constraints on the n=2 extended inflation model.

In this section we consider how the above constraints are altered when we
assume that during the physically significant final 60 e-foldings of inflation the
coupling of ¢ to R is dominated by a higher order term corresponding to n=2.
The natural interpretation of this is that the model described by (2.1) is an effective
theory of a more fundamental theory which has a mass scale M associated with
it. Then the coupling of ¢ to R may be expanded in powers of ({%) 2.

From Appendix A, the slow-rolling solutions for n = 2 are

6= doexp (G (1~ 1)) (4.1)

H = H,exp (—% (t—to) (4.2)

() =R (e (-5 - w)) (43

o K =64 8”3V°)1/2 o (4.4)

The analysis of this model follows the same steps as in the n=0 case. We will

simply state the results.

I. Quantum fluctuations.

As in the case of the n=0 model the isocurvature perturbations are found to
be the dominant perturbations. For the adiabatic energy density perturbation we

find

: 1/2 5/2
adi 3 M2 .
where in general w in this case is a function of ¢
M2
w = 1247 (4.6)

and, using Mpjes = the value of w at the end of inflation is given by

M
32Mp,”

wfr =
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For the case of the isocurvature perturbations we have

5 9 g(T,)\ " (E)m m? YK (AN, +wp)*? (4.7)
T "\ g(Ty) T, 2pc N :

From these we find that &, > 6aq; if

m > 1.1x10722

h*w? (ANe + wr

< )4 GeV (4.8)

e

where we have defined ¢ by M = eMp;. The validity of the slow-rolling approxi-

> 3, implies that € 2 96.

~ ~

mation, which requires wy
Since, as in the case n=0, n > m, = 107'*GeV is necessary in order that

non-Newtonian forces have a short enough range to remain unobserved, we find

1/2

that (4.8) is satisfied and that ghi Z 600 - (AN‘":(LW).

From (4.7) we obtain an upper bound, m < mq (7, €), where

ANI3 M4,,,2 2
g (7,¢) = —rEMAer (2pe) (4.9)
B4 T8 TS (AN, + wr)
and : 1/2 -3/8 1/2
™ \g(Th) 4mg (T) 45 ‘
Numerically this gives
., €9h%kd 60 &
mgq(7,€) = 5.9x107% " <ANe n w{) GeV (4.11)

II. Bubble fluctuations.

The arguement is essentially the same as for the n=0 case. For a bubble
nucleated at tg the value of ¢ inside the bubble assuming that ¢ doesn’t evolve

once a point crosses inside the bubble is given by

K
¢ = ¢(tp)exp (f) (4.12)
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As before we take the mean bubble radius Tg after percolation of the first-order

phase transition to be ~ H(t.)™'. Then

Krg ~ KH(t,)™' = = (4.13)

W
Since wg > 3 is needed for the slow-rolling approximation to hold we see that K—?
will be smaller than 1. Then

, , Kr
o=~ ¢(tp) (1 + T) (4.14)
and the mean fluctuation in ¢ due to expansion of the bubbles during the first-

order phase transition will be

K _ 4f, M3/?
¢~ 7¢ (r8 — TB) ¢(te) = i

(4.15)

where as before we take rg — 75 = f.H(t.)™", and 64 is defined as in (3.27).
Requiring that the energy density from this fluctuation is less than the critical

density gives an upper bound, m < my(7,€), where

* 2 %
: gi ‘' TepcM
my(n,€) = =————— (4.16)
32T3 M} f:
Numerically this gives
h?
my(7, €) = 4.2x10713 iflfGev (4.17)

T

III. Constraints on the model from quantum and bubble fluctuations.

The constraint from non-Newtonian forces gives as before m > m, = 10714 GeV.
Since the expression for mgq(n,€) in this case is simpler than the corresponding
expression in the n=0 case (3.21) we can give analytic expressions for the upper

and lower bounds on 7. From m, > m, we find n < n, where

60 )3/4

Ny = 3.05 10—3 3/4} 1/2k1/2 (___
7 b e AN. o

(4.18)

We consider first the case where the quantum fluctuations are able to account for

the density perturbations leading to galaxy formation. If quantum fluctuations
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are to account for the density perturbations then we need mq < my which gives

n > m where
m = 4.8x1072¢/°h?/0K4/9f1/* (4.19)

Note that as € increases, 7, increases faster than 7, so increasing the range of
allowed 7.
If we are to have an allowed range of  then we require 7, > 7. Using as before

h=0.5 and k = 107%, this requires that
e > 21547 (4.20)

This also implies that w; > 6.7f/7. From (4.18), with the above values of h and
k, we find n, = 8.7x1075¢3/4 (_Aﬁ%a—js/ct' Thus the upper bound on 7 will imply a
low value for the reheat temperature T. = n10'¢GeV unless € is quite large. The
largest possible value for 1, occurs for wy 2 AN, ~ 60. This gives an upper bound
on 7, of 2.6x10~° (which is the same result as for the n=0 model). However this
limit would probably be a problem for the number of horizon-sized bubbles at
the time of decoupling, since it requires wy 2 60. Since during extended inflation
w decreases with time in the n=2 model, this implies that w is larger than the
CMBR large-bubble constraint w < 25.

As shown in the preceeding section, a problem with the n=0 model is that for
w < 25 the range of n between 7, and 7, is unnaturally small. In the n=2 case, if
we consider wy = 25 then ¢ = 800, which gives a range of n

1.3x107° > 5 > 1.0x107%}/° > 7.7x10~* (4.21)

7

where in the last term we have used f, > 0.1. Thus the range of values of 7 remains
small even if we consider n=2. Comparing with the w = 25 result from table 1a),
we see that the range in the n=2 model is only slightly larger than in the n=0
model. The upper bound on the reheating temperature in the n=2 case for w < 25
is 1.3x10*3*GeV, which is larger than in the n=0 case (3x102GeV).

We conclude that considering an n=2 model does not improve significantly on

the 7 tuning problem of the n=0 model in the case where quantum fluctuations
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explain the energy density perturbations responsible for galaxy formation. The
n=2 model becomes better with larger values of ¢, with a larger range of allowed
n for a given €, but is likely to have problems with the constraint from too many
horizon-sized bubbles at decoupling. We note that larger ¢ corresponds to largel‘
values of M = eMp,. The slow-rolling approximation requires that ¢ 2 96, which
corresponds to a mass scale M 2 102GeV.

If we do not require that quantum fluctuations explain the galaxy-forming
density fluctuations, then the lower bound on 7 comes from my > m,. This gives
n > 1, where

, P .
m = 2.4x10 2h_22 (422)

For example, wy = 25 and h=0.5 gives n; = 1.2x107*f,. With f, = 0.1 we have 5, =
1.2x107%, which is much smaller than the corresponding value of m, 7 = 7.7x107%,
thus allowing a much wider and so more natural range of values of  between 7,
and 7,.

We conclude that higher-order couplings of ¢ to R do not significantly improve
on the models with n=0, and still require n to occur within a rather unnatu-
rally small range of values if the galaxy-forming density perturbations are to be
explained by quantum fluctuations produced during inflation. The slow-rolling
approximation requires a mass scale M (associated with some complete theory)

which is at least 96Mp;.
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5. Consequences for the phase transition and the EIDM model of
including the effects of gravity on bubble growth.

In this section we consider the possibility that gravity could significantly relax
the constraints on the EIDM model as compared with the situation when the
effects of gravity on the expansion of bubbles is neglected.

In the n=0 model it was originally believed that in order for large unthermalised
bubbles not to perturb the isotropy of the CMBR it is necessary for w to satisfy w <
25 271, However, the bubble distribution leading to this conclusion was calculated
neglecting the effects of gravity on bubbles nucleated at early times, in particular
those which grow to be larger than the horizon at decoupling. It was subsequently
shown in ref.9 that since the effective Planck mass (and so the gravitational energy
of the bubbles) is increasing with time during extended inflation, it is possible for
bubbles to collapse before the end of inflation due to the effect of gravity on their
evolution. We briefly review the results of ref.9 and then consider how they may
alter the nature of the phase transition and the constraints on the EIDM model.

From ref.9 the equations determining the growth of bubbles when the effects

of gravity are included are

—2(1 + R? {2 ‘ '
e e G PR S [ R

43+20 @
where U = R(da/dt)/a and

2 —a’? =1 (5.2)
a(t)r(r) = R(7) (5.3)

- UR+ (1+R2-12)" /
t=— T (5.4)

Here ’'dot’ denotes differentiation with respect to 7, the comoving time on the

bubble wall, and the metric in the false vacuum outside the bubble is
ds® = dt? — a(t)?(dr? + r2dQ?) (5.5)

R is the physicial radius of the bubble, p is the energy density in the false vacuum,

and o is the surface energy density of the bubble wall. ® is as defined in section
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2, with M2, . = ®. Using the assumption that bubble nucleation occurs as in
conventional Einstein gravity('®], with Mp) replaced by the effective Planck mass
Mp) oft, the initial radius of the bubble is

3+2wp 3 2w 8mo - (5.6)
2w o 4 3+2wP(ty) '

Ro=3

where the bubble is nucleated at t, and initially R = 0. In order to see the
dynamics of the bubble we solve (5.1) approximately. We assume that initially
U < 1, which is equivalent to RH <1, which is true if the initial bubble radius is

small compared to the horizon. Then (5.1) can be written as

. —2(1+R) 3 20 8 ey
L A [ M

and

. S o\1/2

i~ (1+R? (5.8)
From (5.7) we see that R will start to collapAse if initially

3 2w  8mo _ p ;
i (3+20) @ o (5-9)

Also, from (5.6) the condition that the initial radius of the bubble is primarily

determined by gravitational effects is

3 (_20_ \8ma_p 5.10
4 \ (3 + 2w) i o (5.10)

which is essentially the same as (5.9) for w > 1. In terms of { = pH(t,)/ 0,0

3 2w 1/2
< §<3+2w> (8-11)

s

(In ref.9 using an exact numerical solution of the equations of motion the condition

(5.9) can be written as

for bubbles to recollapse is f < 1). To see the time-scale of the collapse we assume
U < 1 throughout, and we assume that the time scale of collapse is small enough
that ® can be taken as constant throughout i.e. 6t < (-;’;)—1 We will make an

overestimate of the collapse time by neglecting the first term in (5.7), i.e. we

consider

i =k, (1+R2)" (5.12)
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where
3 2w 8mo  p
k= (2 2 T2 _ P 5.13
° (4 (34+2w) @ cr) ( )
For R? < 1, the solution is
ky,

R =R, — 567’ (5.14)

where 7 = 7, + 7 and the bubble is nucleated at 7,. Thus if R < 1 throughout,
the time for the bubble to collapse would be §7. = (2Ro/ks)*/?. Since, from (5.8),
for R < 1 we have t = 1, we see that §7 &~ §t. Thus the time §t. for collapse to

1/2
occur is 8t = (%(%9) / . Forf <z k, = R%. Thus we find

[CRIN]

2
Ste ~ /jRo H™! 15
| 3Re < (5.15)

Since (%) = %, the assumption 8t < (%)_1 is justified. Therefore the bubble
will recollapse in a time short compared with the expansion rate of the Universe.
(This result assumes that R < 1 throughout the collapse. In fact, R > 1 will occur
when the bubble has collapsed only to 2R,. However, a better estimate of the
overestimate for the collapse timescale which allows for R? > 1 gives essentially
the same result, 6t. ~ gRO). This holds for f < % (f < 1 in the exact numerical
solution).

Once f 2 1 the bubble can expand after nucleation. This gives a new scenario
for the end of extended inflation. The usual condition for the end extended infla-
tion is that the rate of bubble nucleation per horizon volume per expansion time
HF—4 becomes of order 1. Then in a given horizon volume it becomes possible for
two or more bubbles to expand and collide. However, once the effect of gravity
is taken into account, we see that 1t is also necessary that f 2 1 also occurs, oth-
erwise the bubbles cannot expand after nucleation. One can then consider the
possibility that initially f < 1 during extended inflation but % > 1. Since H
decreases during inflation, { will eventually increase until f &~ 1. Then the bubbles
can expand and, since F{FT > 1, the phase transition will percolate and so extended

inflation will be brought to an end. The important feature of this scenario for

the EIDM model is that since % > 1, the mean seperation of the bubbles once
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the transition has percolated will generally be much smaller than H(t.)™!, i.e. the
factor f; introduced in the previous sections will be much smaller than 1. This will
effectively remove the bubble fluctuation constraint from the model, leaving only
the upper bound 7, from the quantum fluctuations. Note that this scenario for
ending extended inflation also eliminates the problem pointed out in ref.9, where
it was suggested that the condition f ~ 1 at the end of extended inflation requires
a fine-tuning of the parameters of the model. We see from our discussion that this
condition is in fact a natural consequence of this mechanism for ending extended
inflation.

In fact the scenario described above, in which it is assumed that f ~ 1 at the
end of inflation, is not quite correct. The initial radius of the bubbles at nucleation

is R,, where from (5.6)

R, é (3 + 2w> ¢
H-* 3
for f < 1. Thus R,/H™! reaches a value ~ 1 as f — 1. This would suggest that the

(5.16)

2w

average radius of the bubbles at nucleationis ~ H™!,if f & 1 at the end of extended
inflation. What actually happens in this case is that the transition ends purely
by rapid nucleation (without any bubble expansion) before f ~ 1. For w > 1, the
initial radius is R, &~ %H”l. The number of bubbles nucleated per unit volume in
a time interval 6t is I'6t. The condition (ignoring the recollapse of the bubbles)
for the bubbles nucleated during ét to percolate the transition is TR36t 2 1. The
bubbles recollapse in a time ét. =~ R,. So ét. is the longest time interval we
can consider for the percolation condition without the bubbles recollapsing. Thus
the percolation condition will first be satisfied when I'R? =~ 1. Therefore when
percolation occurs purely by nucleation we find f = fﬂﬁ_‘% ~ 3 (_}%)—1/4. Since by
assumption H_r; > 1, we see that in this case f can be much smaller than 1 when
inflation ends.

Thus we see that including the effects of gravity not only eliminates the problem
of large unthermalised bubbles and so the bound w < 25, but can also result in a
phase transition in which the bubbles at the end of inflation are much smaller than

the horizon, so eliminating the bubble fluctuation constraint on the EIDM model.
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As a result, the lower bounds on the reheat temperature are effectively removed.
The upper bound can also be relaxed, since we can now take w as large as we
wish, which allows 7, to take its largest possible value 7, = 1.1h/2k*/2, With the
previously used values for h and k we find that T. can be as large as 2.6x10'3GeV.

The condition for gravity to dominate the formation of bubbles and prevent

e e -1/4 .
percolation initially, f < % (g—,) , Tequires

i

(5.17)

2 I -1/2 Vi/2 T -1/2
M%leﬂ‘o < 3mo ( > T ( )

2V, \H¢ 62 \H*
where Mpig, is the effective Planck mass at the beginning of extended infla-
tion. To obtain the last term in (5.17) we use the thin-wall approximation model
for the bubble used in ref.9 in which ¢ = !33/\5—, with A a self-coupling for the
scalar field which undergoes the first-order phase transition. The validity of the

classical equations of motion requires that V, < M}, .. Thus a range of V,,

2\ 2
(Q;) (%) Mprero < Vo < Mpeg o, Will exist if X is small compared with 1.

kid
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6. Conclusions and Discussion

In this paper we have discussed in some detail the question of whether a Brans-
Dicke scalar in the context of extended inflation models could account for the dark
matter in the Universe. Such a question is important given that the extended
inflation scenario is the only inflation scenario which can be driven by the energy
density of the matter sector which contains the fermions, Higgs bosons and gauge
bosons of the standard model (the only sector we know about apart from gravity),
and given that the Brans-Dicke scalar is an obvious possibility for dark matter in
such a scenario. In general for the Brans-Dicke scalar to be a natural dark matter
candidate we require that the false vacuum energy or bubble nucleation rate vary
over length scales much larger than the observable Universe, in order that the value
of ¢ at the end of inflation can be determined naturally by anthropic selection. In
the case of the minimal n=0 extended inflation model we found that the range of
reheating temperatures at the end of extended inflation is strongly constrained by
the requirements that the energy density perturbations generated during inflation
(which were shown to be dominated by the isocurvature fluctuations of the Brans-
Dicke scalar) are acceptably small, that the energy density due to fluctuations
of the Brans-Dicke scalar induced by bubble expansion at the first-order phase
transition is not too large, and that non-Newtonian corrections to the gravitational
potential are of a short enough range to be unobservable. In general we find that
there is an upper limit on the reheat temperature at the end of inflation of about
3x10*GeV. In addition, if we require that the isocurvature fluctuations account
for the density perturbations leading to galaxy formation, then there is a lower
bound on the reheat temperature which is very close to the upper bound for values
of w which are small enough to avoid the creation of CMBR inhomogeneities due
to unthermalized horizon-sized bubbles at decoupling (w < 25). In this case the
small range of allowed reheat temperatures makes the n=0 extended inflation dark
matter model seem rather unnatural. Also, in this case the upper bound on the

reheat temperature is low, about 3x10*?GeV.

The small range of reheat temperatures allowed when quantum fluctuations
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account for the density perturbations clearly disfavours the Brans-Dicke scalar as
a dark matter candidate in this case. If we do not require that the isocurvature
fluctuations account for the density perturbations then the range of reheat tem-
peratures may be increased, making the model seem more natural. However, in
this case we need a new mechanism to account for the density perturbations.

A potentially significant observation is that the range of non-Newtonian cor-
rections in models where the effect of gravity on the growth of bubbles is small
is not likely to be much larger than the present upper bounds of about 1cm on
their range. From table 1 we see that for w < 25 the range is expected to be not
much smaller than about 0.1cm (m < 1.9x107'3GeV). So in this case we expect
non-Newtonian corrections to the gravitational potential to be observable in not
too distant future.

In order to overcome the unnaturalness of the n=0 model in the case where
the density perturbations are due to quantum scalar field fluctuations we consid-
ered two possible departures from the minimal extended inflation model. We first
considered the possibility that during the final 60 e-foldings of inflation the cou-
pling of the Brans-Dicke scalar to the Ricci scalar is dominated by a higher-order
n=2 term in an expansion of the coupling in powers of f&, with M a mass scale
associated with some underlying complete theory. We found that the unnatural-
ness of the n=0 model in the case where the isocurvature fluctuations account for
galaxy formation is not significantly improved on in ther n=2 model, although the
upper bound on reheat temperature in the case where the value of w at the end of
inflation wy is less than 25 is slightly larger than for the n=0 model at 1x103GeV
compared with 3x10'2GeV. In order that the slow-rolling approximation ne;:es—
sary for inflation is valid we require that M 2 96Mp;. In general we conclude that
considering an n=2 extended inflation model produces no major improvement over
the case of the minimal n=0 model.

The second possibility we considered was that gravity could play a significant
role in the dynamics of bubble expansion and the percolation of the first-order

phase transition. This leads naturally to a new scenario for the end of extended
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inflation. Rather than a picture in which the nucleation rate per horizon volume
increases with time until more than one bubble is nucleated in a horizon volume
in a time H™!, leading to percolation of the phase transition with bubbles of a
mean radius of the order of the horizon, we can now have a picture in which
gravity prevents the growth of bubbles and the phase transition completes when
the radius of the bubbles at nucleation is large enough that nucleation alone can
percolate the transition, without requiring growth of the bubbles. In this case the
mean radius of the bubbles at the end of extended inflation can be much smaller
than the horizon, which eliminates the lower bounds on the reheating temperature
arising from the bubble fluctuation constraint. Therefore if gravity dominates the
dynamics of the phase transition then not only is the constraint on w from large
unthermalized bubbles (w < 25) eliminated, but also the model no longer requires
unnatural tuning of the GUT scale. However, it should be noted that the upper
bound on the reheating temperature 3x10'3GeV will remain. This could be a
problem for GUTs which have interactions leading to proton decay if the mass
scale of particles mediating proton decay is approximately equal to the reheating
temperature.

The EIDM model for dark matter has some potential advantages over most
conventional particle models of dark matter. The model allows (in the spirit of the
original extended inflation model) for a GUT without requiring the fine-tuning of
couplings needed by the new and chaotic inflation scenarios in order to avoid large
density perturbations. In addition, the fact that the amount of dark matter in this
model is determined by the initial value of a scalar field following inflation allows
for an anthropic selection explaination of the similarity of the dark matter zlmd
baryon densities in the observed Universel’®l (appendix C). This is in contrast with
particle physics explainations of dark matter in particle physics models which have
fixed parameters throughout the Universe, in which the dark matter and baryon
densities are determined by completely unrelated physical processes (although
there are exceptions!'®]).

The EIDM model also provides some interesting possibilities for structure for-
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mation scenarios which deviate from the conventional CDM scenario based on
scale-invariant density perturbations(®. There have been indications from ob-
servations of large-scale structure that the power spectrum of density pertur-
bations from the conventional CDM model provides insufficient power on large
scales (larger than about 20h~'Mpc)l!*2%]. The EIDM model allows for two pos-
sible ways to have a power spectrum which deviates from the conventional CDM
model. The first possibility, which is not specific to the EIDM model but is a gen-
eral feature of extended inflation models, is that the spectrum of fluctuations is
not scale-invariant[l:?. For the minimal n=0 extended inflation model the density
perturbations i, (3.14) on a scale R, at present satisfy &5, Rg/(“"l), where we
have used e*Ne/¥ er)/(“’“”. In order to have an increase in power by a factor of 2
between 10h~!Mpc and 25h~'Mpc we therefore require w < 3.7. However, we see
from table 1 that this is possible only if gravity effects remove the lower bounds on
n coming from bubble fluctuations and if the value of 1 is very small n < 6x1075,
corresponding to a very low reheat temperature after inflation < 10'2GeV.

The second possibility for deviations from the conventional CDM model of
structure formation is one which is specific to the EIDM model. This is the pos-
sibility of the Brans-Dicke scalar providing both a cold dark matter and hot dark
matter (HDM) component of dark matter simultaneously. The idea is that the
coherent oscillations of the Brans-Dicke scalar can provide a cold component of the
dark matter, while the energy density of the space-dependent bubble fluctuations
can provide a hot component ot dark matter. From (3.29) and (3.30) we see that
when the gradient energy of the space-dependent scalar field fluctuations do}mi-
nates their evolution, which occurs when T > T3 (3.34), the scalar field behaves
like an effectively massless scalar field (the Brans-Dicke scalars having been effec-
tively heated by bubble expansion at the first-order transition). Once T < T}, the
evolution of the fluctuations will be dominated by their mass, with their energy
density evolving like a density of massive scalars. Thus as far as considering the
free-streaming length associated with the energy density of particles corresponding

to the space-dependent scalar fluctuations is concerned, the scalars behave similar

31



to a density of neutrinos of mass around T}. For the free-streaming length to occur
at scales of interest to structure formation we require that Tt be of order 10e VISl
The remarkable feature of the EIDM model is that this is a natural value for T}
in the model. From (3.34) we find that T} = 2x1073(m/10~**GeV)(f./n)eV. Thus
with 7 = 107* (a typical value from table 1 for w < 25) and with f, = 0.1 we find
Tt = 2(m/107*GeV)eV. Thus with m around 107*3GeV (a typical value of ma,
from table 1) we obtain T} ~ 20eV. This shows that it is quite natural for a hot
dark matter component due to bubble fluctuations to have a free-streaming scale
which is of the right size to allow density perturbations in the hot dark matter
to contribute to large-scale structure formation while being smooth on smaller
scales, where only perturbations in the coherent oscillation cold component of the
dark matter will contribute. Thus we see that the EIDM model allows a combined
CDM+HDM structure formation model with only a single dark matter particle,
the Brans-Dicke scalar. The only problem with this scenario is how to understand
why the energy density of the CDM and HDM components of the dark matter
should be similar, but this is a likely to be problem for all CDM+HDM scenarios.
We note from table 1 that the typical value of mp,sy, which corresponds to the value
of the Brans-Dicke scalar mass for which the HDM energy density is of order the
critical density when quantum fluctuations account for density perturbations, is
between 107*GeV and 107'*GeV for w < 100, which is just the range at which T}
leads to an interesting free-streaming length. So a combined CDM+HDM scenario
seems plausible in the context of the EIDM model. We note that this requires that
gravity is not significant in determining the growth of bubbles during inflation,
so that the bubble fluctuations exist. We also note that it may be possible; to
generalize this mechanism to other oscillating scalar CDM candidates if they are
non-minimally coupled to gravity in an extended inflation scenario.

We conclude that in reply to the question ’Can the Brans-Dicke scalar ac-
count for dark matter in extended inflation models?’ the answer is probably not
if we wish that quantum scalar field fluctuations generated during inflation can

account for the energy density perturbations in the Universe, unless the effects of
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gravity dominate the dynamics of bubble nucleation and growth during inflation.
If we allow for the possibility that some other mechanism generates the density
perturbations then the model in which the effect of gravity on bubble dynam-
ics is negligible becomes more plausible. In this case we expect non-Newtonian
corrections to the gravitational potential to be observable in the near future.

The Brans-Dicke scalar as a dark matter candidate is an important possibility.
We have shown that the resulting extended inflation dark matter model can be
severely constrained by observations, and has new and interesting features with
respect to the influence of inflationary first-order phase transitions on the physics
of light scalar dark matter and with respect to the possibilities for modification of
the conventional cold dark matter model of structure formation.

This research was supported by the Grupo Teorico de Altas Energias (GTAE),
Portugal.
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Appendix A. Extended inflation models and general slow-rolling so-
lutions of their equations of motion.

In this appendix we give a general slow-rolling approximation solution to the
equations of motion for the case of a coupling to the Ricci scalar of the form ¢**2R.

The extended inflation model with a general coupling between the Brans-Dicke
scalar ¢ and the Ricci scalar R is described by the action (2.1) As discussed in

section 2, the equations of motion of the extended inflation model are

. . 1 1ag
. . 2
k 8rp w (P
He~ =2 g 22 A2
T2 T3 3 *’6(@) (42)

where & = {(¢) = “ﬁCI:Z (for n=0, f(¢) = g’é), w = g—; and p and p are the energy
density and pressure due to the matter fields. (The potential energy of ¢ may be
neglected during inflation).

We consider the equations in the limit where a) & < 3H® and b) % < H (slow-
rolling approximation). In addition we make the assumptions that c¢) 327V, >
w'®? and d) H? > s (%)2 (In all these the modulus of the quantites appearing in
the inequalities should be understood). It will be seen that c¢) and d) are satisfied

whenever the slow-rolling approximation is satisfied.

The equations of motion are then

n

°H@~32(+QV(EJHQV (4.3)
D = Tin 1\12 o *
and ,
, 8wV,
H* = A4
T (A.4)
Together these give
b = Kdiin (A.5)
where K is given by
9 2 \V 1/2
g - tot?2) @”°) (A.6)
Mn+2 3
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(For n=0 K is given by K = 2 (%ﬁ)l/z). The solution for @ is then

w

(2=0) gy

2—n _2-n
Pants) =— q)g(n-n) = T
* 2(n+2)

except for the case n=2, which has the solution

& = doexp(K(t ~ t,))
Thus for n=0 the solution is

¢ = (1+A(t—1t))

where

K
A= (20)/F 2

(o]

and

a=a,(1+ At —t,))

For n=2 the solution is

, , K
s (Ko=)

>

o(2) - 2 (- [- =)

The conditions for the assumptions a) to d) to be valid are as follows.

a):
o> (3n +2)
© 3 (n+2)
b):
w?>> 4
c):
S n
>
3(n+2)
d):
w> 3
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(A.14d)



Thus (A.14b) gives the tightest constraint. This condition will be satisfied for
w 2 3. We see from the expression for w
2\ n+2
o= s (o) (419
that since ® increases with time for n > 0, w decreases with time. Thus the slow-
rolling approximation is justified if w is large compared to 1 initially and if during

extended inflation it doesn’t become smaller than about 3.



Appendix B. Bounds on m from non-Newtonian gravity experi-
ments.
The deviation of the gravitational force from the Newtonian form in a Brans-

Dicke model can be obtained by a Weyl scaling to the Einstein framel!¢]

guu - QZ (t) guu (‘Bl)

In order to obtain the conventional form for the gravitational action we define a
scalar field ¢ and choose 2 to satisfy

M3 P
2 7Pl .
= Tona = P ( ?!’o) (B.2)

Then the action (2.1) becomes (with the metric now defined by g, )
M3 1 1 2
/d4x\/——g lﬁ R - _-2-6#1#18“1/; - W(y) — e—w%??#cra“a — e'ffV(a) (B.2)

where y2 = 22£3 M2 and W(v) is the Weyl-scaled potential from V(¢). At

present = 1 so ¥» — 0. At the low momentum transfers involved in non-
Newtonian gravity effects we can expand the exponential as eV~ (1- %‘f)
Then the coupling of ¥ to nucleons, coming from the Weyl-scaled quark mass
term e"%quq, will be

2¢ myNN (B.4)

o

A coupling of a scalar to nucleons of the form

Cxo

myNN (B.5)

will give rise to a correction to the gravitational potential between two masses of

the form(t7 ,
inM; M
AV = _ GnMaM, a exp(—pr) (B.6)
R
where
Ck M},

Gy is Newton’s constant and g is the mass of the scalar. From (B.4) we find Cy =

landf= %

=, which finally gives

16
o= (B.8)
2w+ 3
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This result is true for all n, since the Weyl-scaling does not depend on w being a
constant with respect to t. One simply replaces the constant w of the n=0 case by
the value of w(t) at the end of inflation w¢. This gives the correct normalization
for the v kinetic term.

In ref.8 the values of a allowed by terrestrial Cavendish-type experiments and
geological data and by various satellite and solar system tests of the gravitational
potential are discussed. From fig.1 and 2 of ref.8 it is seen that for a 2 10~*
(corresponding to w < 10°) non-Newtonian forces are ruled out on length scales

~

larger than about lcm. Larger values of w allow non-Newtonian forces to exist on
larger length scales. (If w 2 10'° there is no limit on the range of non-Newtonian
forces from terrestrial or solar-system tests). In our discussion we concentrate on
the case of w < 10* and require the most generally safe condition that the range of

non-Newtonian corrections (corresponding to 4~ !) be less than lem. This requires

that the mass of the Brans-Dicke scalar be greater than about m, = 10714GeV.
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Appendix C. Anthropic principle determination of ¢ at the end of
inflation

In this appendix we discuss the analogue in the EIDM model of the anthropic
principle arguement originally proposed by Linde in the context of an axion model
in which PQ symmetry is broken before the end of inflation[*®l. This arguement
explained the smallness of the deviation of the axion from the minimum of its
potential at the end of inflation. The arguement for the EIDM model is slightly
different because in the axion model the energy density perturbations leading to
the formation of galaxies are independent of §¢. (where §¢. is the deviation of
the scalar of interest from the minimum of its potential at the end of inflation),
whereas in the EIDM model the energy density perturbation é;s, is proportional
26¢

#, and so is not constant with respect to d¢..

From (3.12) and ¢. = V8w Mp; we find that if ¢ oscillations account for

to

dark matter with Q@ < 1 at present then we need §¢./¢. < 107%/w?/?, where
m > 107'*GeV has been assumed. We therefore need to explain why §¢/¢ is so
small at the end of inflation.

We take the baryon number density to entropy ratio ng/s to be fixed through-
out the Universe. We assume that inflation naturally generates domains where ¢.
takes an effectively constant value (different in different domains of the Universe)
over regions much larger than the size of the observable Universe. This requires
that either V, or I vary on scales much larger than the observable Universe. In
the EIDM model dark matter is due to coherent ¢ oscillations. Thus in a given
domain we have for the density of dark matter pan

T 3
Pdm = (T—1> Pdm o (Cl)

when T < T, where T is the temperature at which é¢ starts oscillating (H(T;) =
m), and pamo ~ %m%d)? is the initial dark matter density at T;.
The matter-radiation equality temperature T,q in this domain (at which tem-

perature the density perturbations leading to galaxy formation begin to growl*])
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is given by

1/2
Pdm o 47"35 (ch)
T, = . a= (28l e 2

L ( 45M3, (€.2)

Since the growth of the perturbations § is proportional to a [, the temperature

Tn at which the perturbations 6;s, go non-linear (850 = 1) is then
Tnl - ch6iso (03)

The density of a galaxy remains roughly equal to the value of the density of the
Universe when it goes non-linear®!3l. Thus

frn 3
pdmgalz(f) Pdmo X pémoéio (04)

The density of baryons in a galaxy is (with ng/s constant)
PBgal X Til X p?imo(sio (CS)

In the case of axions &, is independent of é¢.. In the EIDM case 5o x §471.

Thus we find (assuming pam > pB)
Pdm gal X 6¢§ (6¢§) (06)

PBeal < 667 (667) (C.7)

where for comparison we give in brackets the expressions for the axion casel!3l,

From this we see that if we look at a region of the Universe where for example §¢.

is ten times the value in our region, we find that in this region

Pdm gal — 105
Pdm gal U
PB gal
ga. — 103
PB gal U

where the subscript U denotes our Universe. So a small increase in 6¢, results in
galaxies with much higher baryon and dark matter densities than in our Universe.
It is then argued (although it is difficult to prove) that such dense galaxies will
result in a physical enviroment which will be unfavourable to the evolution of

lifel*3l. It follows from the above arguement that there should be some upper limit
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to the value of é¢, for which life can evolve. The anthropic principle arguement
amounts to saying that we are most likely to exist in a Universe with §¢. near
that upper limit. (Anthropically acceptable regions of the Universe with smaller
d¢. are less likely if ¢ at the end of inflation can take a random value in a given
domain, since there will then be more domains with é¢. around its largest possible
value, with the probability being proportional to §¢. [*]).

It is worth emphasizing that this anthropic selection, whilst relying on as-
sumptions regarding the probability of life forming within galaxies, is natural if a
domain structure with smooth §¢. in regions the size of the observable Universe
occurs in the EIDM model. This scenario also has the advantage of allowing the
possibility of the similarity of pg and pgm in the observed Universe being under-
stood as a result of anthropic selection. This is because the most likely domain will
have pam 2 pp if the domain with the largest §¢. permitted by anthropic selection
is the most probable, since anthropic selection plays a role in selecting é¢. only
when pam > pp. Therefore the most probable ratio of baryons to dark matter in a
galaxy will occur when pan, is of the order of pp if it should be the case that smaller
ratios of baryons to dark matter, corresponding to larger é¢., are anthropically
disfavoured. As discussed above, because the galaxies that result for larger §¢.

are much more dense, it is plausible that this anthropic selection does occur.
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Table 1a. Constraints on n for f, = 0.1

w
104
1000
500
250
100
50
25
11.0
5.0
3.0

Nu

2.6z1073
2421073
2.3z1073
2121073
1.521073
8.7z10~*
312107
2.6z107°
6.1z10°¢
6.1210°¢

m

7.2z107*
8.9z10~4
9.1z10~*
9.0z10~*
7.5z10¢
5.0z107*
2.2z107*
2.62107°

m

3.8z10°8
3.0z10°°
6.0210°7
1.2210°¢
3.0z10°¢
6.0210°°
1.2210°%
2.6z10°°

Momaz (GeV')

2.5z10710
3.1z10° 1!
1.6z10~11
7.9z10°12
2.6210712
8.8z10°13
1.9z10°13
1.0z1071¢

RULED OUT BY BUBBLE FLUCTUATIONS
RULED OUT BY BUBBLE FLUCTUATIONS

Table 1b. Constraints on n for f, =1

w
10*
1000
500
250
100
50
25
18.7
15
10

T
2.6210°3
2.4z1073
2.32z1073
2.1z107®
1.521073
8.7z10°*
3.06z107*
1.55z10~4
8.2z107°
1.72107°
6.12107°
6.1z10°°

" " Momas (GeV)
9.3z10"* 3.0210~7 3.2z10°
1.1z107%  3.0z107% 4.0z107'2
1.2z107%  6.0z107% 2.1z10712
1.22107*  1.2z107% 1.0z10712
9.62z10"* 3.02z10°% 3.4z10°13
6.5z10"*  6.0z10~° 1.1z10°!3
2.77z107* 1.2z10°* 2.4z10°!*
1.55z10~* 1.55z10~* 1.0z107!*

RULED OUT BY BUBBLE FLUCTUATIONS
RULED OUT BY BUBBLE FLUCTUATIONS
RULED OUT BY BUBBLE FLUCTUATIONS
RULED OUT BY BUBBLE FLUCTUATIONS
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