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1. Introduction 

The intersections of Brownian motion paths have been investigated since the For
ties [20]. One can consider intersections of sample paths with themselves or e.g. 
with other, independent Brownian motions [36], one can study simple [5] or n-fold 
intersections [6] and one can ask all of these questions for linear, planar, spatial or 
- in general- d-dimensional Brownian motion: evidently self-intersections become 
increasingly scarce as the dimension d increases. 

Intersection local times of Brownian motion were studied by many authors, 
see e.g. [1], [3]-[11]' [15], [18]-[38]. A more systematic review than we can give 
here of the subject will be found e.g. in the recent reference [15]. 

An informal but rather suggestive definition of self intersection local time of 
Brownian motion B is in terms of an integral over Dirac's - or Donsker's - 8
function 

; L = Jd2t 8(B(t2) - B(t l )), 

intended to sum up the contributions from each pair of "times" t l , t2 for which 
the Brownian motion B is at the same point. 
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In Edwards' modeling of polymer molecules by Brownian motion paths, L is 
used to model the" excluded volume" effect: different parts of the molecule should 
not be located at the same point in space. As another application, Symanzik 
introduced L as a tool for constructive quantum field theory in [31]. 

A rigorous definition, such as e.g. through a sequence of Gaussians approx
imating the 8-function or in terms of generalized Brownian functionals [10] [30] 
[33], will lead to increasingly singular objects and will necessitate various "renor
malizations" as the dimension d increases. For d > 1 the expectation will diverge 
in the limit and must be subtracted [18] [32], clearly L will then no more be pos
itive. For d > 3,5,7, ... further subtractions have been proposed [33] that will 
make L into a well defined generalized function of Brownian motion. 

For d = 3 another renormalization has been constructed by Westwater to make 
the Gibbs factor e-g

•
L of the polymer model well-defined [35], for yet another, 

recent approach see [1]. 
Yor, in [38], first suppresses the short time accumulation of self-intersections 

by the regularization

8(B(t- 2) - -B(t1 )) ~.8(B(t2) - -B(t1) + c) 

and shows, again for d = 3, that a multiplicative renormalization 

gives rise to another, independent Brownian motion as the weak limit of regular
ized and subtracted approximations to L. 

In the present note we study similar limits, for arbitrary d ~ 3, using a 
Gaussian regularization of the 8-function for which the chaos expansion of the 
corresponding regularized L e is available [10]. For a suitably subtracted and renor
malized local time, each term in this expansion converges in law to a Brownian 
motion. 

We prepare and state these results in the following section 2, in section 3 
we give their proofs. In a companion paper [3] we extend these results to the 
corresponding series. 

2. Definitions and Main Results 

2.1. White Noise Analysis and Local Times 

We reproduce here some White Noise Analysis concepts as introduced in [10], 
referring to [14] for a systematic presentation. 
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Brownian motions Bi , i = 1, ... , d, have version in terms of white noise Wi via 

Hence we consider independent d-tuples of Gaussian white noise w = (WI, ... ,Wd) 
and correspondingly, d-tuples of test functions f = (il, ... , Id) E S(R, Rd), and 
introduce the following notation: 

d d 

r;,= (nI, ... ,nd), n = L ni, r;" = IT ni! 
I I 

d 

< f, f > = L Jdt H(t) 
i=1 

and similarly for <: w®n' :, Fn' > where for d-tuples of white noise the Wick 
product: ... : [14] generalizes to 

- d 
w0ni. w0n '= JO,. .• . \CI. t .. 

i=1 

The vector valued white noise w has the characteristic function 

C(f) = E(ei<w,f» = r dJ.L [w] ei<w,f> = e-~<f,f>, (2.1)
j S·(R,Rd) 

d 

where < w, f > = I: < Wi, Ii> and Ii E S(R, R). 
i=1 

The Hilbert space 
(L2

) = L 2 (dJ.L) 

is canonically isomorphic to the d-fold tensor product of Fock spaces of symmetric 
square integrable functions: 

(£2) ~(; SymL2(Rk, k!dkt))0d = J, (2.2)
k=O 
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for the general element of (L2 ) this implies the chaos expansion 

cp(w) = I:
00 

<: w®r; :, Fr; > (2.3) 

with kernel functions F in J. 
It is desirable to introduce regularizations for the intersection local time, with 

a view towards the construction of well-defined, "renormalized" intersection local 
times in higher dimensions where the latter do not exist without subtractions. A 
computationally simple regularization is, for c > 0, 

with 
1B 2be (B (t2) - B (t1)) =(21rc)-d/2 e_ (t );:(t,)I2 (2.4) 

It has the following chaos expansion, which we quote here only for d ~ 3 : 

Theorem 2.1. [10J For any c > 0, Le - E (Le) has kernel functions FE J given 
by 

(2.5) 

8(u)8(t - v) . ((v - u + c)-X: + (t + c)-X: - (v + c)-X: - (t - u + c)-X:) 

ifall Ili are even, and zero otherwise, with V(Sl, ... , sn) =max(sl, ··'l sn), U(Sl, ... , sn) = 
min(sll '.'l sn), and x = (n + d) /2 - 2. 8 is the Heaviside function. 

Each kernel function is thus the sum of four terms. The first one gives rise to 

Definition 2.2. 

Mt(d, rt, c) = r crs(v - U + c)-X: : w®n' (s) : (2.6)� 
J[O,tl n� 

d� _ r crs(v - U+ c)-X: Q9 :wi(si) ...Wi(S~) :� 
J~~n i=l� 

4� 
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d ni t Si d 

- L L 1ds~ 1'" ~-lS(V - U + c)-X 0 :Wi(S;) ...Wi(S~J : 
i=l m=l 0 0 t=l 

- t ni it dBi(T) iT ~-lS(T - U + c)-X : w®~(s) : 
i=l 0 0 

d t 

- L 1dBk(v)mk(V) (2.7) 
k=l 0 

- L
d 

Mk,t (2.8) 
k=l 

The others give 

Nt(d,n:,c) _ r dns((t+c)-X_(v+c)-X_(t-u+c)-X) :w®n(s): 
Jro,tjn 

All of the above processes are continuous. 

Definition 2.3. We denote the nth order contribution to the regularized local 
time Lf; by 

Remark 1. Our key observation is that, as c goes to zero, 1\11 is more 
singular than N, and that it is a Brownian martingale. 

2.2. The main theorems 

Theorem 2.4. For d 2: 3, the renormalized M converge in distribution to inde
pendent Brownian motions {3i: 

with 
2 ---. { n(n - 1) if d = 3 

kn = n! n!(d-4)! '[ d 3 (2.9) 
(n+d-5)! 1 > 
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while for d = 3 

II(v - U + E:)-XII~2([o,tln) = n(n - l)t IInE:1 (1 + 0(1)) 

•
To show convergence of these martingales by Theorem VIII.3.11 of [16] we 

must show convergence of characteristics. Since the processes M are continuous 
this reduces to showing convergence in probability of (rI\lfi , rl'Vfk)t as E: -'> +0. This 
will be taken care of by proposition 3.6 which we prepare now: 

(rl'Vfi,rlvh)t = r20ik it dv(mi(v))2 

and we need to estimate 

Let us note that 

2E ((rMi, rMk)t) = E (r MiMk) = Oikr2 : 
k n! II(v - U + E:)-XII~2([o,t)n) 

E ((rMi, rMk)t) = Oik nk k;' (t + 0(1)) 
n 

Next we intend to show that the rhs gives indeed that the rest of (rMi, rl'Vfk)t goes 
to zero. The kernel of the highest order is 

C(i) ( I. . ')( )-X( I )-X') -ltd 8(---+ ---+ Sl'Sl" ... ,Sn-l,Sn_l - T T-VVV T-U+E: T-U +E:2n -2 {j 0i 

(3.1) 

V(/) and U (I) are the largest and the smallest of the S~/), and (7!i) k == Oik. 

(For n = 2: U(/) = v(1) = s(1)). 

Remark 2. The integral (3.1) can be calculated in closed form (using e.g. {12} 
nos. 2.15 and 2.263.4), but one gets a useful approximation by introducing the 
following auxiliary functions: 

H2n- 2 (Sl, ... , Sn-l; s;, ...,S~_l; E:; d) 
= (v V Vi - U V u' + E:)-(n+d)/2+3(v V Vi - U /\ u' + E:)-(n+d)/2+2 

where v =max(si), U =min(si) and v' =max(s~), u' =min(sD. These 
functions majorize the kernel functions 
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Lemma 3.3. For n > 2, and x > 1 

O G (i) (' I )< 2n-26i 81,81;, ; 8n -1, 8 n -1 (3.2) 

< ~l H2n- 2(81 , , 8n-1; 8~, ... , 8~_1; e; d)
x-

Proof: 

o < ltdT8(T-vVVI)(T-u+e)-X(T-ul+e)-X 

< it dT(T - U V u' + e)-X(v V v' - u A u' + e)-X 
vvv' 1 

< --(v V v' - u V u' + e)-x+l(v V v' - u A u' + e)-X
x-l 

This estimate suffices to show 

--+ --+
Lemma 3.4. For 2 n - 28i =1= 0 

r2G(~ __ -+ 0 in £2(R2n- 2)
2 n -2 8 i 

as e goes to +0. 

Proof: Consider first n 2: 3. By the above estimate it is sufficient to show that 

lim r4 II H2n- 211 ~2([0 t]2n-2) = o. 
e:->+O ' 

IIH2n-211~2(R2n-2) - J~-1 8 J~-1 8' (V V v' - u V u' + e)2-2x(v V V' - u A u' + e)-2x 

t 

du lvl 

- Cn l dv l v 

dv' l v 

du' 

(v _u)n-3(v'_u,)n-3 

(V V v' - u V u' + e)n+d-6(v V v' - u A u' + e)n+d-4 

< Cne8-
2d I t 

/e: dy lY 

dy' lY 

dx ly' dx' 

1 
(y - x V x' + 1)d-3(y - x A x' + 1)d-1 
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and then decompose the x-integration into the following two domains 

X' < x and x < x' 

In the first case 

8 
I e -

2d it/€: dy i 
Y

dy' i 
yl 

dx' 1~ dx (y _ x + 1)d-3~y _ x' + l)d-l 

8 /1- e -
2d it/€: dy i 

Y

dy' i 
yl 

dx' (y _ X + l)d-l 1~ dx (y _ x ~ 1)d-3 

We first estimate the last integral 

y - x' if d = 3 
In (y - x' + 1) if d = 41~ -(Y---X-~-l)-d--3 dx ~ { 
d~4 if d> 4 

and one finds 
0 (1) if d = 3 

I = { 0(c7-2d) if d> 3 

Hence, in both cases, r 4 I vanishes as e -- O. 
The second case is 

t c l yl� 
8 2d� / 1 1I = e - I dy lY dx ( )d-l l Y 

dy' dx' ( I )d-3 (3.3) 
o 0 y-x+l x x y-x+1 

Estimating the last integrand by 1 we find 

Y y' ( )2

1d I 1 dx' 1 < y - x 
x y x (y - x' + 1)d-3 - 2 

Substitution of these estimates into the integrals over x and y gives for d 2: 3 

I
t/€: lY ( )2 if d ={ 0(1) 3 

I :s const.e8
-

2d dy dx ( y - X )d-l = O(c-lIne) if d = 4 
o 0 Y - x + 1 O(c7 - 2d ) if d > 4 
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so in that r 4 I vanishes as c -+ O. For n = 2 it is sufficient to use the estimate 

o < G2 = it d78 (7 - U V u') (7 - u+ c)1-d/2(7 - U' + c)1-d/2 

< it d7(7 - u V u' + c)1-d/2(u V U' - u /\ u' + c)1-d/2 = H 2(u, u') 
uVu' 

and to verify that 

•With this lemma we have established that the highest order term of the (renor
malized) quadratic variation goes to zero in quadratic mean for any t > O. The 
kernels Gk of the other terms are obtained by integrating over pairs of s, s' such 
as e.g. m 

(i) .'• . ,i
t 

Sym 0 dsG2(n_6.) (s, S, S2, S2""" Sn-l, sn_l)' 

these new functions are in fact also bounded by an expression like (3.1), and hence 
by (3.2), so that for all c > 0, 

With this goal we show 

Lemma 3.5. Let n ;::: 2 and m > 1 , and let Fn,m be a function symmetric in the 
variables S and in the variables s', with 

o < Fn,m(Sl, ... ,Sn-l,Sn,S~,.",S~_l'S~) (3.4) 

< cit d78 (7- max (s, S')) (7- min (Si) + c)-m(7- min (s~) + c)-m
o I~n I~n I~n 

Then 3em < 00 such that 

o < it dsFn,m(Sl,' .. ,Sn-l, S, s~, . .. ,S~_l' s) (3.5) 

< em t d78 (7- n:tax (s, S')) (7- ~in (Si) + c)-m+l/2(7_ min (s~) + c)-m+l/2Jo I<n I<n I<n 
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Proof: Under the assumption of the lemma 

t 

f dsFn,m (SI' ... , Sn-l, S, S~, ... , S~_I' S) :S 
o 

t t 

cfdsJ'dr8(r- max (Si'S~,S)) ( r- min (Si'S) + c) -m (r- min (S~, s) + c)-m 
O~t~n-l O~t~n-l O~t~n-l 

o 0 

Using 
u = min Si , u' = min S~ 

O~i~n-l O~i~n-l t 

V = max Si Vi = max s' 
09~n-l ' O~i~n-l t 

(For n = 2: U(I) = V(I) = sf)). Assuming without loss of generality that u < u' we 
can decompose the s-integration of our estimate as follows 

t t 

C f ds f dr8 (r - max (v, Vi, s)) (r - min (u, s) + c) -m (r - min (u' , s) + c)-m 

o 0 

·8 (r - max (v, Vi, s)) (r - min (u, s) + c)-m (r - min (u' , s) + c)-m 

- c j dr (J ds(r-s+€)-2m+ Jds(r-u+€)-m(r-s+€)-m� 

vVv' 0 u� 

+ "]' ds (r - u + €)-m (r - u' + €)-m + Jrds (r - u + €)-m (r - v! + e)-m) 

~ vv~ 

We now show that each of the four terms obeys the postulated estimate (3.5) 

t u t 

Jdr Jds (r - S+ c) -2m :S 1 Jdr (r - u + c) -2m+l 
2m-l 

vvv' 0 vVv' 
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t 

:::; 2m
1
_ 1 j d78 (7 - Vv V') (7 - u + C)-m+~ (7 - U' + C)-m+~ 

o 

since u < u' and m > 1/2. 
The second term 

t u' 

j d7 j dS(7-U+c)-m(7-S+C)-m 

vvv' u� 

t� 

< 1 jd7(7-U+C)-m(7-U'+C)-m+l
m-1 

vVv'� 
t� 

< 1 j d78 (7 - VV V') (7 - u + c)-m+~ (7 - U' + c)-m+~ . 
m-1 

o 

using again u < u'. The third term 

t vvv' 

j d7 j ds (7 - U+ c) -m (7 - U' + c)-m 

vvv' u'� 

t� 

- j d7 (7 - U + c) -m (7 - U' + c) -m (V V V' - u') 

vvv'� 
t� 

< j d7 (7 - U + c) -m (7 - U' + c) -m (7 - u') 

vVv'� 
t� 

< j d78 (7 - V V V') (7 - u + c)-m+~ (7 - U' + c)-m+~ . 

o 

Finally 

t

j d7 j tds (7 - U + c)-m (7 - U' + c)-m 

vvv' vvv' 
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tJdr (r - u + c;)-m (r - u' + c;)-m (r - v V v') 

vVv'� 
t�

< Jdr (r - u + c;) -m (r - u' + c;) -m (r - u') 

vVv'� 
t� 

< Jdr8 (r - v V v') (r - u + c;)-m+~ (r - u' + c;)-m+~ 

• 
o 

Combining this Lemma with the previous one we conclude that for all kernel 
functions Gk with k 2: 2 arguments 

lim r411SymGkll2 ~ lim r411Gkll2 ~ lim r411Hkl12 = a 
e-++O e-++O e-++O 

i.e. we have shown 
Proposition 3.6. 

Proof of Theorem 2.4: The above limit is clearly (up to constants) the quadratic 
variation of a Brownian motion. Theorem 2.4 is then a consequence of e.g. Theo
rem VIII.3. 11 in [16], which in the present case of continuous martingales requires 
convergence in probability of quadratic variations for a dense set of t. 

To control the remaining terms Nt(d, Tt, c;;) in the chaos expansion we observe 
that 

IINt(d, Tt,c;)II~L2) - Tt! 11(t + c;)-X - (v + c;)-X - (t - u + c;)-XII~2([o,tJn) 

< Tt! (II (t + c;)-XII~2 + \I (v + c;)-XII~2 + II (t - u + c;)-XII~2) 

The first of these three norms is equal to tn(t + C;)-2x, i.e. 0(1). The second 
one IS 

i
t / e 1t vn-l xn i4 dr ~s(v + C;)-2x = n dv = nc - dx-:---""'7""""'"~-:-

J[O,tl n o (v + c)n+d-4 0 (x + 1)n+d-4 

0 (1) for d = 3 
- O(lnc) for d = 4

{ 0(c4- d ) for d > 4 

13 



which are suppressed by the renormalization 

1 
r2(e) = {llne l - for d = 3. 

ed- 3 for d> 3 

A similar estimate holds for the third term of N, so that we have shown 

Lemma 3.7. 

ms - lim r(e)Nt(d, Tt,e) = O. 
e:--+O 

In fact the convergence is uniform in any finite t-interval. Next we show 

Lemma 3.8. The processes {r(e)N.(d, Tt,e;) : e > O}, {r(e)M.(d, Tt,e;) : e > O}� 
and their linear combinations are tight.� 

Proof: A criterion for tightness of M (following [17], p.64) is� 

sup E IrMt - rMs\O< S CT (t - s)1+13 , (3.6) 
e:>0 

\IT> 0 and 0 ::; s < t ::; T and for some positive constants a, (3 and CT' 
As a first step we show 

sup E IrMt - rMsl 
2 S CT (t - s) (3.7) 

e:>0 

by direct calculation: 

v
2E IMt-M s l = Tt!n it dv l cr-1s (v - u + e)-2x 

The second integral may be estimated as follows v� lv (v - u)n-2
cr-Is (v - U + e)-2)( = (n - 1) du n+d-4 

O o (v-u+e) 

< (n - 1)c3-d lv/e: dx 1 d-2 

l
o (x + 1) 

_� (n _ 1) { In (v + e) - In e for d = 3 
O(e3-

d
) for d> 3 
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Renormalization of this estimate by the factor r 2 makes it bOllllded on [0, T], 
and the integral over v gives the desired estimate (3.7), Le. 

(3.8) 

Note that the kernel functions of K are all dominated by those of M. Hence we 
have also, possibly with a larger constant CT, the estimate 

(3.9) 

By the hypercontractivity of the Ornstein-Uhlenbeck semigroup (see e.g. [14], p.235), 
one has for nth order white noise monomials r.p E (L 2 ), and any a > 2 

For r.p = rK t - rK s ,and using the above estimate for the 2-norm, we get 

E IrKt - rKsl Q 

~ CT (t - st/2 

as required to ensure tightness. The estimates for rN etc. are of the same kind.• 
Proof of Theorem 2.5: We need to consider 

rK=rM+rN 

knowing that, as c -+ +0, the rK are tight by Lemma 3.8, the rM converge in 
law, and the rNt go to zero in mean square. The latter two facts are sufficient, via 
the Cramer-Wold device (see e.g. [17] p.61), for finite dimensional convergence of 
rK; tightness then implies convergence in law. 
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