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1. Introduction

The intersections of Brownian motion paths have been investigated since the For-
ties [20]. One can consider intersections of sample paths with themselves or e.g.
with other, independent Brownian motions [36], one can study simple [5] or n-fold
intersections [6] and one can ask all of these questions for linear, planar, spatial or
- in general - d-dimensional Brownian motion: evidently self-intersections become
increasingly scarce as the dimension d increases.

Intersection local times of Brownian motion were studied by many authors,
see e.g. [1], [3]-[11], [15], [18]-[38]. A more systematic review than we can give
here of the subject will be found e.g. in the recent reference [15].

An informal but rather suggestive definition of self intersection local time of

Brownian motion B is in terms of an integral over Dirac’s - or Donsker’s - §-
function

L= /dzt §(B(t2) — B(t1)),

intended to sum up the contributions from each pair of ”times” t,ts for which
the Brownian motion B is at the same point.



In Edwards’ modeling of polymer molecules by Brownian motion paths, L is
used to model the ”excluded volume” effect: different parts of the molecule should
not be located at the same point in space. As another application, Symanzik
introduced L as a tool for constructive quantum field theory in [31].

A rigorous definition, such as e.g. through a sequence of Gaussians approx-
imating the é-function or in terms of generalized Brownian functionals [10] [30]
[33], will lead to increasingly singular objects and will necessitate various ”renor-
malizations” as the dimension d increases. For d > 1 the expectation will diverge
in the limit and must be subtracted [18] [32], clearly L will then no more be pos-
itive. For d > 3,5,7,... further subtractions have been proposed [33] that will
make L into a well defined generalized function of Brownian motion.

For d = 3 another renormalization has been constructed by Westwater to make
the Gibbs factor e79% of the polymer model well-defined [35], for yet another,
recent approach see [1].

Yor, in [38], first suppresses the short time accumulation of self-intersections
by the regularization

5(B(ts) - B(t) = 8(B(t2) - B(t:) + F)
and shows, again for d = 3, that a multiplicative renormalization
r(€) (Le — E(Le))

gives rise to another, independent Brownian motion as the weak limit of regular-
ized and subtracted approximations to L.

In the present note we study similar limits, for arbitrary d > 3, using a
Gaussian regularization of the §-function for which the chaos expansion of the
corresponding regularized L. is available [10]. For a suitably subtracted and renor-
malized local time, each term in this expansion converges in law to a Brownian
motion.

We prepare and state these results in the following section 2, in section 3
we give their proofs. In a companion paper [3] we extend these results to the
corresponding series. :

2. Definitions and Main Results

2.1. White Noise Analysis and Local Times

We reproduce here some White Noise Analysis concepts as introduced in [10],
referring to [14] for a systematic presentation.
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Brownian motions B;,i = 1, ..., d, have version in terms of white noise w; via

t
B,(t) =< Wws, 1[01,4,] >=/ wi(s)ds.
0

Hence we consider independent d-tuples of Gaussian white noise w = (wy, ..., wq)
and correspondingly, d-tuples of test functions f = (fy,..., f4) € S(R, R?), and
introduce the following notation:

d d
n= (n1,...,nq), n=2n¢, H!=Hni!
1 1
d
<f,f>=z/dtff(t)
=1

— d
< FL fO" 5= /d”t Fi(ty,ota) ® FE™(ty, o )

and similarly for <: w®% : F > where for d-tuples of white noise the Wick
product : ... : [14] generalizes to

The vector valued white noise w has the characteristic function

1

C(f) — E(ei<w,f>) =/ d/.l, {W} ei(w,f> —e 2<f,f>’ (21)
S*(R,R%)

d
where <w,f > = %" <w;, fi> and f; € S(R, R).

=1
The Hilbert space
(L) = L*(dp)

is canonically isomorphic to the d—fold tensor product of Fock spaces of symmetric
square integrable functions:

(L?) :(8% SymIL?(R*, kldkt))®d = 3, (2.2)

k=



for the general element of (L?) this implies the chaos expansion

o(w) =Z<: w®" . > (2.3)

;l:=0

with kernel functions F' in §.

It is desirable to introduce regularizations for the intersection local time, with
a view towards the construction of well-defined, "renormalized” intersection local
times in higher dimensions where the latter do not exist without subtractions. A
computationally simple regularization is, for € > 0,

L= /0 dt; /0 "dt,6. (B (tz) — B (1)),

with Bes e ?
5. (B (t2) — B (t1)) = (2me)™ Y2 e~ 227

It has the following chaos expansion, which we quote here only for d > 3 :

(2.4)

Theorem 2.1. [10] For any € > 0, L, — E (L) has kernel functions F' € § given
by

€,

n n = -1
F (s1,...,8:) = (=1)2 (}f(%-{— 1)(2m)%/222 g!) . 5

OOt —v) - (v—u+e)™*+(t+e)*—(v+e)*—(t-—u+e)™)

if all n; are even, and zero otherwise, with v(sy, ..., Sn) = maz(sy, ..., Sn), ¥(S1, ..., Sn)
min(sy, ..., Sn), and x = (n +d) /2 — 2. © is the Heaviside function.

Each kernel function is thus the sum of four terms. The first one gives rise to

Definition 2.2.

M,(d, ') = d*s(v—u+¢e)™* : w®" (s) (2.6)
[0,z
d
= d"s(v—u+¢) "@ : wi(8])..wi(sy,)
0,6 et
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d d

- ZZ/ dst / d"l's(v—u+¢e)” ”®:w1~(s§)...wi(8;):

i=1 m=1"0 i=1

= Zm/dB / A ls(r—u+e)" i w &n=; i(s):

=1

. [ dBwmeo 27)
d
ZMIC,L (2.8)

The others give

—

Ny(d, 7, e) = /W s ((E+ ) — (4 e)™ = (E—ute)™) : BT (s) :

All of the above processes are continuous.

Definition 2.3. We denote the n ** order contribution to the regularized local
time L. by

Ky(d, 7,e) = (-1)3 (%(%H)(zﬁ)d/’zg% g!) (My(d, 7, ) + Ny(d, 7, &)

Remark 1. Our key observation is that, as £ goes to zero, M Is more
singular than N, and that it is a Brownian martingale.

2.2. The main theorems

Theorem 2.4. For d > 3, the renormalized M converge in distribution to inde-
pendent Brownian motions (;:

(rM;,;1=1,...,d) 5 (, /f’ikn =1, ...,d)
e—+0 n

k2=W'{ nin—1)ifd=3

with

g e i > 3 2

5



Theorem 2.5. For d > 3, the renormalized n ** order contributions to the reg-
ularized local time L. converge in distribution to Brownian motions 3

rK(d,T’L",E) ——> c——»dﬂ

with

3. Proofs

Proposition 3.1. My, are orthogonal Brownian martingales

Proof: Orthogonality is obvious. For the martingale property see [13] and [2], it
is a consequence of the fact that the kernel functions of M; in (2.6) do not depend
on t (except through the limit of integrations).l

Their limiting behavior, as € — 40, is studied in the following lemma (from
now on we shall consider only the situations which require renormalisation, i.e.,
d>3.)

Lemma 3.2. Ase — +0,

2 Mk g |ne| ford =3
HMk,tH2 I kn (t +o(1)) {g—(d—3) ford >3
Proof:
2 Neg — —x[|?
| Mg.sll; = polil Hi(v—u+e) “Lz([o,t)n)
Ford >3

v —u+e) (2o = /d"SU—u+s)‘2"
= e / “ ,f’_;i';;
et ((Z%% o(1))
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while for d = 3
(v —u+ 5)—}{1‘;([0,7:11‘) =n(n—1)t[lne| (1 + o(1))

||

To show convergence of these martingales by Theorem VIIL3.11 of [16] we
must show convergence of characteristics. Since the processes M are continuous
this reduces to showing convergence in probability of (rM;, rMy), as € — +0. This
will be taken care of by proposition 3.6 which we prepare now:

¢
(rM;, M), = r2(51-;c/ dv (mi(v))2
0

and we need to estimate
t — .
/0 dv (mi(0))? = S W 1, GE)

Let us note that

B ((rMy,mMi),) = B (r*MiMe) = 85 =R (0 = u + &) Lo 0m

E ((rM;,mM,),) = 5ik—n’5k§ (t+ o(1))

Next we intend to show that the rhs gives indeed that the rest of (rM;, 7 M), goes
to zero. The kernel of the highest order is

t
G(;n o7, — (81,81, 1 Sna1,80_1) = /o dro(r —v V) (r—u+e) ¥ (r—u' +e)™*
(3.1)
v") and u{) are the largest and the smallest of the sgl), and (?Jk = i.
(For n = 2: u{) = v) = s"),
Remark 2. The integral (3.1) can be calculated in closed form (using e.g. [12]

nos. 2.15 and 2.263.4), but one gets a useful approximation by introducing the
following auxiliary functions:

. a!
H?n—2(311 <esy Sn—15 81, .-

n——l?E d)
= (’U \VJ '1), —uV u’ + 8)—(n+d)/2+3 ('U Vi ,U/ —uA u/ + 6)—(n+d)/2+2

where v = maxz(s;),u = min(s;) and v = maz(s)),w = min(s]). These
functions majorize the kernel functions




Lemma 3.3. Forn > 2, and » > 1

I OO TR S (3.2)
1

x—1

0

IA

INA

.o / .o
H2n__2(81, ey Sp—13 815 ey Spp_15 €5 d)

Proof:

t
0 < /dTE-)('r——vVv’)(T—u+s)"‘('r—u'+e)“"
0

t
< dr(t—uVu +e)*(vVv —uAu +¢e)7*

wVv!

< (Vv —uvVau +e) oV —uAY +e)7F

% —
This estimate suffices to show
Lemma 3.4. For 27 — 26; # 0
2 ~(%) . 2/ p2n—2
TGzW—sz*iéo in L*(R*"™°)

as € goes to +0.

Proof: Consider first n > 3. By the above estimate it is sufficient to show that

) 4 2
Jim [ Hanzl 2o 4j2n-2) = 0.

“HQn_ZHiz(Rzn—z) = /d""ls / A7l (VY —uVvu + ) (o vy —unu +e)7

t v v v’
= cn/dv/dv’/du/ du’
0 0 0 0
(‘U - u)n—S(v/ —u
(vVv —uVu +e)ttd-b(y Vo —uAu + )it

t/e y Y y
cped 2 / dy / dy’ / dz / dz’
0 0 0 0
1

(y—zVa +1)43(y—zAz + 1)1

)'n.—3

IA

8



and then decompose the x-integration into the following two domains

2 <z andz < 2’

In the first case

8—2d t/sd yd y’dl yd 1
I = &% / '/ x/ z
/0 Y % ), s (y—z+1)43

(y —a’' + 1)4-1
ey t/e y / y’ 1 Y 1
= - d d dx’ dzx
© / y/o y/o -+ 0% J, Tly—z+1)83

We first estimate the last integral

v 1 y—2a' if d=3
de < In(y—2'+1) if d=4
_ -3t =
/x' (y—z+1) L if d>4
and one finds
j o@1) if d=3
T O(E™2%) if d> 3

Hence, in both cases, r* I vanishes as ¢ — 0

The second case is

8-2d
/ dy/dx _x+1d1/dy/dx

Estimating the last integrand by 1 we find

/dy/ dl x'+1)“§(y—x)2

2

Substitution of these estimates into the integrals over z and y gives for d > 3

O() if d=3
I < const.g®~ 2d/ dy/ 12d1= Oge)“lin&‘) if d=4
‘“ ) O(e™) if d >4

—x + 1) (3.3)




so in that r* I vanishes as € — 0. For n = 2 it is sufficient to use the estimate
i
0 < Go =/ drO (r —u V) (T——u+s)1‘d/2(r—u’ + g)l-4/2
0

t
< / dr(r —uVu + )2 (uvd —uAu +e)Y? = Hy(u,u)
u

vu!

and to verify that
Nt 2
51_13_107' “H2“L2([0,t]2) = 0.

|

With this lemma we have established that the highest order term of the (renor-
malized) quadratic variation goes to zero in quadratic mean for any ¢ > 0. The
kernels Gy of the other terms are obtained by integrating over pairs of s, s’ such
as e.g. in

t
() . ’. . !
Sym/ dst(_ﬁ_?)(s,s,SQ,s%,...,sn_l,sn_l),
0 1

these new functions are in fact also bounded by an expression like (3.1), and hence
by (3.2), so that for all € > 0,

|Gkl < const. || Hkl|
With this goal we show

Lemma 3.5. Letn > 2 and m > 1, and let F,, , be a function symmetric in the
variables s and In the variables s’, with

0 < Fom(S1y---18n=115n0,81, -+ Sn_1, Sn) (3.4)
t
< o [ are (r-mas (5:9) ) (r= min () + &) (= min () +£) "
0 i<n i<n i<n

Then 3c,, < oo such that

t
0 < /dan,m(sl,...,sn_l,s,s'l,...,s;_l,s) (3.5)
0

IA

t
Cm/ dr® (""" maz (3,51)) (T— m<m (81) + &)™ V2 (r— min (s}) + )™ Y2
0 <n <n

i<n

10



Proof: Under the assumption of the lemma

t

/ /
/dan,m (8150 S, 85 81, oy Sy, §) <

0
t t —m —m
/ : : /
clds | dr®|7— max (s;s},s)]||7— min (s;,s)+¢ T— min (s;,8)+¢€ .
0<i<n—1 0<i<n—1 0<i<n—1
o o
Using
u= min s , ¥ = min s
0<i<n—1 0<i<n—1
v= max s , v = max s,
0<i<n—1 0<i<n—1

(For n = 2: u®) = v® = s{?). Assuming without loss of generality that u < v’ we
can decompose the s-integration of our estimate as follows

c/ds/dr@ (7 — max (v,7',8)) (r — min (u, s) + &)™ (r — min (v, s) +&)"

t u u’ vV’ t
=c/d7' /+/+/+/ ds

0 0 oV
-© (7 — max (v,7v/,8)) (t — min (u,s) + &) (r — min (v, s) +&)7"
t u u’
= c/dT /ds(r—s+€)_2m+/ds(T—-u+8)_m('r—s—}-s)—m
vV’ 0 u
vV’
+ / ds(r—u+e) " (r—u +&) "+ / rds(r—u+¢e) " (r—u +e)™"
u’ vV’

We now show that each of the four terms obeys the postulated estimate (3.5)

t u t
1
d d _ —2m< _ —2m+1
/ T/ s(r—s+¢) < 57 /dT(T u+e)

A2 T 0 vV

11



t

<
—2m -1
0

since u < v’ and m > 1/2.
The second term

t

/ dT7dS(T—u+g)_m(T_s+€)—m

vV’
. t
< — d — Mo o) —m+1
S T3 T(r—u+e) ™ (r—u +¢)
vV’
) t
S g [ O —o V) (r—ut )T (r—u o)

0

using again u < u’. The third term

t vV’
/dfr/ds('r—u+6)'m(7'——u'+e)_m
vV’ u’

= /dT(T—u-i—e)—m('r——u’+€)—m(vVv'—u')

Aol
t

IA

dr(t—u+e) ™ (r—u +¢e) " (1 -1

vV’
t

< /dT@(T—vVv') (T—U+E)-m+% (T—u’+g)"m+%.

0

Finally

m

dr / Tds(t—u+e) " (r—v +¢€)”

vV’ vV’

12

/dT@ (T—v V) (T —u+e) ™ (r — o +6)"™2
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= /dT(T—U+5)—m(T—U,+E)—m(T—UV'UI)

vV’
t

< /dT(T—u-i—E)—m(T—u'+5)—m(7’—7f')

v’/

t
< /dr@ (r—vVv)(r—u+e) ™% (r—o +E)—m+%
0

|
Combining this Lemma with the previous one we conclude that for all kernel
functions G with k > 2 arguments

Jim, r* 1SymGyl|* < Jim r#|Ge|* < Jim r# || Hifl* = 0

i.e. we have shown
Proposition 3.6.
. N
ms — El_l’I_I'_lo (rM;, rMy), = 61-;5—771:373

Proof of Theorem 2.4: The above limit is clearly (up to constants) the quadratic
variation of a Brownian motion. Theorem 2.4 is then a consequence of e.g. Theo-
rem VIIIL.3.11 in [16], which in the present case of continuous martingales requires
convergence in probability of quadratic variations for a dense set of ¢.

To control the remaining terms N;(d, 7', ¢; ) in the chaos expansion we observe
that

2 —x -3 —x||2
“Nt(d’ W, 5)“([,2) = ! “(t + E) - (U + 5) - (t —u+ 6) “LQ([O,t]")

< W (H(t +e) |+ [+ )R+ |t —u+ 5)"”||2Lz)

The first of these three norms is equal to t*(t + £)~2*, i.e. O(1). The second
one is

t n—1 t/e n—1
d*s(v+¢e)™* = n/ L — —ne""d/ dg—
o 0 (

0, v+ €)n+d-4 - T+ 1)‘n+d-—4

O(1) for d=3
= { O(ne) for d=4
O(e*?) for d>4

13
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which are suppressed by the renormalization

2/ line|™" for d =3
T(E)—{ g4=3 for d>3 °

A similar estimate holds for the third term of NV, so that we have shown

Lemma 3.7.

ms — lim 7(e)Ny(d, ™, ¢) = 0.

e—+0

In fact the convergence is uniform in any finite t-interval. Next we show

Lemma 3.8. The processes {r(¢)N.(d, 7 ,&;) : € > 0}, {r(e)M.(d, 7, ¢&;) : € > 0}
and their linear combinations are tight.

Proof: A criterion for tightness of M (following [17], p.64) is

sup E [rM; — rM|* < Cr (t - s)Hﬂ, (3.6)

e>0

VT >0 and 0 < s <t <T and for some positive constants «, 8 and Cr.
As a first step we show

sup E |rM, — rM,|* < Cr (t — s) (3.7)
e>0
by direct calculation:
t v
E|M, — M,|* = —r?!n/ dv/ A ls (v —u+e)
3 0

The second integral may be estimated as follows

v v n—2
P ls(v—u+e)™™ = (n—1 / du (v u)
./0 ( ) ( ) o (v—u+e)tt
3—d ‘U/Ed 1
< (n—1)e&"" r—
s ) 0 (z +1)%*

- (-1 In(v+¢)—Ine for d=3
O(e3?%) for d>3

14



Renormalization of this estimate by the factor 2 makes it bounded on [0, T,
and the integral over v gives the desired estimate (3.7), i.e.

My — M2 < er (t — s) (3.8)

Note that the kernel functions of K are all dominated by those of M. Hence we
have also, possibly with a larger constant cr, the estimate

|rK;, — rK,||3 < cr (t — s) (3.9)

By the hypercontractivity of the Ornstein-Uhlenbeck semigroup (see e.g.[14], p.235),
one has for n* order white noise monomials ¢ € (L?), and any o > 2

lells < cnallelly
For ¢ = rK; — rK, ,and using the above estimate for the 2-norm, we get
E|rK, —rK,|* < Cr (t — s)**

as required to ensure tightness. The estimates for 7NV etc. are of the same kind.l
Proof of Theorem 2.5: We need to consider

rK=rM+rN

knowing that, as ¢ — +0, the 7K are tight by Lemma 3.8, the rM converge in
law, and the rV; go to zero in mean square. The latter two facts are sufficient, via
the Cramér-Wold device (see e.g. [17] p.61), for finite dimensional convergence of
rK; tightness then implies convergence in law.
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