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SYMPLECTIC STRUCTURE FOR GAUSSIAN DIFFUSIONS

AUGUSTO BRANDAO
G.FM

ABSTRACT. Using exclusively information about classical Hamiltonian bound-
ary value problems (with quadratic time dependent potentials) we construct
probability measures providing a symplectic structure associated with some
inhomogeneous Gaussian diffusion processes introduced in [12].

1. INTRODUCTION

1.1. Historical Remarks. At the end of the 40’s, Feynman introduced a new
interpretation of non relativistic quantum mechanics [1]. Let us briefly discuss it,
in order to introduce some notations, by considering a one particle system in R®
(of unit mass ) described by the quantum Hamiltonian

2
H:«%A%—V

where A is the Planck constant and V' a regular scalar potential. Quantum dynamics
is given (in any time interval e.g., [0, 7)) by the solution of the Cauchy problem in
L%*(R®). and for y in the domain of H. by

hd = H.  9(0,2) = x(x)

According to Born's interpretation of ¥, the probability of finding the particle on
a certain region B (B being a Borelian in R3) at time t is given by:

/ vz, t)v(z. t)dx
B

where ¥ is the complex conjugate of ¥ Introducing the integral kernel or “propa-
gator”, written svmbolically as:

K(ta,b.ts) :/ eFSWIDY, t, <t
Qb

where S is the action of the underlying classical system i.e.. here,

b
S(w) = / (%w(sﬁ — V(w(s), s))ds
w € 2% is a continuous path joining a and b and Dw represents a formal "measure”

Dw = Macscpdw(s) on Q8 the solution to the Schrédinger initial value problem
can be represented by

Wty) = /R K(,0,, x(@)ds
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So the probability that at time ¢ the particle is in B should be:

W P = [ vttt = [ [ Ktey @i ydady

_ D(t, y) _
= a o,y t)— = K(a.tq,,y.t) dad
/B/w x(a)x(a)K(a.tq,y.t) =0 dady /I;/W x(a)x(a)K(a,tq,y.t) Yy
with

Y(t.y)
X(a)

This strongly suggests that K is formally the density of a transition probability
in the sense of the classical theory of Markov processes [2] w.r.t dy . Also observe
that Feynman'’s path integral formula provides a informal way to describe Quantum
Mechanics exclusively in terms of classical data, the action functional of the system.

Unfortunately, as it is well known today:

K(a-, ta! y*, t) = K(a»tm y? t)

e D, is not a measure (doesn’t exist) .

o K is complex valued so it cannot be the transition probability of a real valued
stochastic process. There is no probability space where to find such a sto-
chastic process compatible with Born interpretation and the results of regular
quantum mechanics.

On the other hand, Schrodinger (1932) has considered the following associated
problem of classical statistical mechanics:(Cf. [3]-[6]), when the scalar potential V
is zero.

Suppose that the position of a classical Brownian particle in a domain B € R? is
observed at times t, and ¢, ({, < t;) and found to have strictly positive probability
densities with respect to Lebesgue measure:

pr.(z)dz,  py, (2)dz
What is then the most probable evolution of a probability density compatible with
those two arbitrary measurements measurement?
Schrodinger shows that the probability density should be of the form:

Py, t) = n(t, y)i(t,y) ta <t <ts,
where the pair {7. 7} are regular positive solutions of the two adjoint heat equations:

1
on(t.y) = §An(t-y) t>t,, YyEB

. 1.,
—ou(t.y) = sANty) t<t. yeB

So the problem amounts to prove the existence and uniqueness of positive so-
lutions of the following non-linear system of equations for n(z,t,) = x(z) and
n(z.ts) = X(2),

) (2] [ ho b2 b4}y () = g1, (2)

(3) Ay (2) /}R e (2B s 2, 86)dT = pra (2)

where h denotes the (positive) integral kernel associated with the abovementioned
heat equation.

This problem was not solved by Schrédinger but by A.Beurling, almost 30 years
after in a much more general setting [4].

In particular, Beurling’s result providesus with the existence and uniqueness of
the pair {7.7} of solutions of the adjoint heat equations for any potential V' in the
Kato class [6]. Using this. Zambrini [5] established the existence of a class of R3
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Markovian (7 Bernestein”) diffusion processes Z,, for any V in the Kato class such
that:

P(zie B) = [ nie.v)ite)ay
B
d*E(Z;)
dt?
For such processes Z; we can define two transition probabilities:
Ps(s,z,t,B) =P{Z; € B|Z, =1} — Zs
Py(t.B.u.z) = P(Z; € B|Z, = z) — Z%*
where s < t < u in the time interval and Z, ., Z** denote the associated condi-

tioned processes. The Euclidean analogue of Feynman's formula ”trasition ampli-
tude” [1] can be expressed as:

= E[VV(Z,)]

(4) P(Z € B) = /B /m (s, ZYi(s. Z)ps (1. y)dady
(5) but also as
(6) P(Z € B) = /B /R n(on 2, 200" (1, y)dady

where p, ., p®* are respectively the probability densities of the conditioned pro-
cesses Zg o, ™7

The essential element of Feynman’s path integral formula is its relation with
classical Lagrangian mechanics, and, in this respect, the quadratic Lagrangians
play a very special role. In this case, Feynman shows that the sum over the paths
of his formal stochastic process is entirely characterised by classical mechanics. This
agpect has also been essential in his use of path integrals in quantum field theory.

We are going to show in details why this remains true in the nonrelativis-
tic version of Euclidean Quantum Mechanics whose existence was suggested by
Schrédinger and realized in the mid-eighties. For a recent review of this framework
and early references see, for example [18|-[7].

1.2. Basic Terminology. Let us first introduce the basic terminology for our use
of diffusions processes in this paper . A stochastic process Z(t,w) ( or simply Z,)
on a time interval I = [s.u] is defined as a randem variable on-a certain probability
space (Q, Z. P), where Q is a subset of C(I,R™) ( a trajectory of the process will
correspond to a random choice of a path w € Q), ¥ denotes the sigma algebra of the
Borelians of 2 (containing the history of the process on the time interval [) and,

“~finally, P is the probability measure that determines the process. This measure will
be characterised by the finite dimensional distributions of Z; i.e. the collection

P\Z,, € Byoon 2y, € Byl

where s <t; < ... <t, <uand By...., B, € B (where B denotes the sigma. algebra
of the Borelians of R™ ).
In this paper all the processes that we consider are Markovian, i.e.

P(Z,e B|P,,)=P(Z,€B), s<t;<t<u

where P,, denote the sigma algebra containing the history of the process until
time t; . Another fundamental concept is the transiticn function: the function
P(ty,z,t2.B) (s <ty <ty <u, z€ R, Be€ Bis a transition function if.
e P(ty,r.tq..) is a probability measure on B.
e P(t),..t2, B) is B measurable.
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e For s < t; <ty < t3 < u the following equality (Chapman Kolmogrov) is
satisfied:

P(t1,z,t3,B) = P(tz,y,t;;,B)P(tl,:E.tg,dy)
]Rn
e If Z; is a Markovian process. we define its transition function by the condi-
tional expectation

P(t\,Z:,.t2, B) = P(Zy, € B |Zy,)

Using the transition functions for Markov processes we can obtain all finite di-
mensional distributions of the process if we know its initial distribution at time
=8

Theorem 1. If Z; is a Markovian process on the interval I = [s,u], with a transi-
tion function gwen by P(ty,z,ts, B) and initial distribution Ps i.e for A€ B

P,(A)=P(Z; € A).

then for s <ty < ... <t, < u, we have

P(Z,, € By.Z, € Ba, ... Z,, € By)

:/ / / P(tn—hzn—lvtn~Bn)P(tn-21In-27tn—l-dxn—l)---
™ J B Bn._1
P(to, xo, t1,dz )Py, (dxo),

and in particular we have, for anyt > s,

P(Z; € B) = P(s,z,t, B)P,(dx)
Rn
Since the process we are going to work with are Gaussian we recall the following
definition:
A random vector X = (X, X5, .... X,,) has a Gaussian distribution if its charac-
teristic function is of the following form:

(—m (25(11‘) — Eez<u.X> — ex<m.u>—%<Cu~u>

where m = (my, ....my,), u = (uy, ..., uy) arevectorsin R™, C = (Ci), 1, k = 1.....n,
is a positive definite symmetric matrix, E denotes the mathematical expectation

and < ... > denotes the Euclidean inner product in R® . m is the mean of the
random variable X and R is its covariance i.e.

(8) m = E(X)

(9) Cik = E[(X; —m;)(Xi — mu)].

2. THE CLASSICAL MODEL

In this paper, cur basic dynamical equation will be the classical n- dimensional
(Euclidean) Newtonian equation,

(10) 4(t) = K(t)q(t)

on a time interval [ = [s. u], where K (t) is a symmetric n x n matrix on / with a

continuous dependence in t. . Moreover, we will assume that (10) is disconjugate

[9, 10] on the time interval I, ie. equation (10) has no trivial solution ¢(t) such

that g(t1) = g(¢t2) = 0. where t; and ¢, are distinct points of I. Equation (10) can
4



be regarded as the classical Jacobi equation for the Euler-Lagrange equations with
(Euclidean) Lagrangian of the form

(11 Lig.4:1) = 1dl% + V(g 1)

where |.| denote the Euclidean norm. Then

32V
K<t)=( ) i,j=1,2.3,..n
q(t)

0q:0q;
for ¢(t) an extremal of the action functional with Lagrangian L. This is the point
of view of the semiclassical (or WKB) approximation in Feynman’s approach to
quantum mechanics, [1]. Equation (10) can be transformed into an Hamiltonian
form on R?" for the Hamiltonian function given by

1 1
(12) H(q,p,t)=§lp|2—§<K(t)q,q>

The correspondent Hamilton's equation of motion will be given by the system:

4@ =p .
(13) . i=1.n
pi = Zlgjgn Ki;(t)q,

We also consider the matrix form of (13) i.e

C. = D,
(14) il g
. Dy, = Zlgzgn Ku(t)Cy

with the correspondent matrix second order differential system:

(15) Cylt)y = > Ka(t)Cy(t).

1<i<n
We will denote by C; the matrix solution (Cy, D;) = (Cy,C;) of (14). The dis-
conjugacy assumption for (10) on the time interval / implies that for any solution
(Cy, Dy) of (14) . C; can only be non invertible at one point of /. In particular, for
to € I. if one defines. Ey,(t) as the solution on / of (15) that satisfies the Cauchy
data:

(16) E,(to) =0. Ey(to) = Inxn

then £, (t) is a non singular matrix for ¢ # to.

The linearity of the Hamiltonian system ensures that the phase space has a
natural vector space structure that we can identify with R?*. Hence the canonical
symplectic structure provided by the 2 form [8]

n
w=dgANdp= qui/\dp,
=1
can be used to define an antisymmetric inner product between elements of the
phase space. Given two phase space vectors X; = (qi,.-,qL,p},..pl), Xo =
(g%, ...q%,p%. ...p%) their symplectic inner product is defined as

2n
(17) w(X1,X2) =) aip — 4P}
=]
It is easy to prove that if (X;(t), Xo(t)) are solutions of (13) on a time interval [
then w(X(t), X2(t)) is constant.
We will need a generalisation of the symplectic inner product to matrix functions.
In order to simplify the notation if A = (A,3) and B = (B,g) are n X r matrices,
then the 2n x r matrix C = (Cn3), (@ = 1,2, .,n; 3 = 1.2, ....7), with Cos = Aags,
5



Crta.s = Bas will be denoted as (A: B). Henceif C = (Cy;C2) and D = (Dy; D)
are 2n x n matrices and 7 denotes the transpose we will call the matrix function

(18) w(C,Dy=CTDy-CID,

the symplectic inner product of C and D. If X € R*™ and C = (Cy;C2) then
w(X.C)or w(C.X) can be defined asw(Ix.C) or w(C, Ix ) where I x is the diagonal
matrix with (Ix); = X, forz=1.....2n.

Although it is true that if C; and C, are two solutions of (14) on an time
interval I then w(C!.C?) is a constant matrix on I, but, in contrast with (18) w is
not antisymmetric. hence in general we do not have w(C, C) = 0. The solutions C,
of (14) ( or the solutions C; of (15) ) such that w(C.C) = 0, are sometime called
isotropic solutions of (15) on [.

Definition 1. A Lagrangian manifold M is defined as an n manifold in a 2n di-
mensional phase space such that for all points (z,p) on M and for all vectors X.Y
tangent to M at (z,p) we have:

(19) w(X.Y)=0
Some obvious consequences of this definition are:

1. In R2? it is clear that a Lagrangian manifold must be a 1- dimensional surface
i.e. a curve.

2. Any manifold of the form ¢ = constant or p = constant on a phase space is
a Lagrangian manifold. We will call singular Lagrangian manifold associated
with a configuration r € R™ a Lagrangian manifold of the form

(20) M* = {(q,p)lqg = =}

3. Any graph of a curl-free momentum field p = p(q) is a Lagrangian manifold.
If the Lagrangian manifold M is of the form

(21) M= {(g.p) e B jp= B0,
q
for some regular function S(g). this function is called the generating function
of the Lagrangian manifold. Given an arbitrary Lagrangian manifold, its gen-
erating function may not be defined. a typical example of this is the singular
Lagrangian manifold associated with a configuration z € R™:

In this paper we only consider linear Lagrangian manifolds i.e n-planes on R?".

2.1. Evolution of Lagrangian manifolds. Consider the Lagrangian manifolds
M, and M7 defined by

(22) M, = {(q,p) € R*" |p = ag — B}
(23) M7 = {(q.p) e R™ |g =z}
where « is a non negative definite invertible n x n matrix and 8.z € R™.

Our first aim is to explicitly compute the images under the Hamiltonian flow
associated with (12) of these two Lagrangian manifolds in a time interval I = [s, u].

Definition 2. Given an initial Lagrangian manifold we define its associated (ma-
trix) function F; on an interval [ = [s,u], as an isotropic matrix solution of (15)
such that:

1. If the Lagrangian manifold is defined by (22), F; is a non singular matrix for
t € I such that

(24) F.F'=a

6



2. If the Lagrangian manifold is singular (i.e defined by (23)) then F, is a non
singular matrix for t € (s.u] and satisfies F(s) = 0. A example of such a
function is E(t) the solution of (15) on I that satisfies the Cauchy data
Ey(s) =0. Es(s) = Ilxn

Lemma 1. If F;, and H, are two associated functions to a Lagrangian manifold M,
or M7 on the time interval I then w(Fy, H;) =0.

Proof. If the Lagrangian manifold is defined by (22) then both F, and H, satisfies
(24), hence:

0=F,F7' - H,H!
=F,"(FTH, - FTH,)H]"
= ~F Tu(F, H)H!
which implies that:
(25) w(Fe . H) =0

If the Lagrangian manifold is defined by (23) then F}, and H; satisfies F(s) =
H(s) = 0. Since both matrix functions are solutions of (14) their symplectic prod-
uct is time independent which implies that

M(Fg.Hg) = Fg‘Hs —F_,Hs =10
a

Proposition 1. The tmage of the Lagrangian manifolds defined by (22) or (23)
under the Hamiltonian flow defined by (12), fort € I, is given by

(26) M, = {(g,p) |[FT(t)g— FTp =6}

where F(t) is the associated function to M, (respc. MZ) and 6 = FIj3 (respc.
b = x) Moreover the expression (26) is independent of the choice of the associated
function to M, i.e if H, is another associated function to M, on I then

{la.p) IFT(t)g -~ FTp =06} = {(q,p) |HT (t)g ~ H p=6"}
where 6 = HT 3
For the proof we will need the following Lemma:

Lemma 2. On the time interval I = [s, u] and for any two configurations z.y € R"
consider Hamilton's principal function R(s,z,t.y) defined [8] as the line integral

(27) R(s,z.t,y) = /Ldt.

where L denotes the Lagrangian defined by (11) along the solution of (10), v, =
(q(7),4(T)) connecting the points (s,z) and (t,y). We have:

(28) R(s.z.t.y) == < E,E7'(t)y.y > —

b

- % < E't(S)E;t_I(S)I.I > - < E7Y(t)y.z >
where Ei(7) and E,(7) are solutions of (14) on the interval I satisfying the Cauchy
data
(29) Et(t) =0 Et(t) = Inxn;

(30) Es(3) =0 E4s) = Inxn-

7



Proof. By (27).
rlgal® 1
R(s,z.t.y) = / \. > + 5% K{(X)gx,qx >]d)\

where ¢, is the solution of (10) satisfying ¢(s) = z and q(t) = y (we will assume
for the moment that this solution is well defined on I and is unique). Hence

R _ [l 1 ko dA
(s,z,t,y) = —2—+§< (Naxr,ax >

(31)

“ldal? Lt
——d/\+—/ <q,\,q,\>d/\
s 2 2 Js

1 1

== < G,y > ——= < (g, T >
5 gty 5 qs

Using the ansatz
ar = E(T)A1 + E(7) A2
where \; € R™ . i = 1, 2 and taking into account the boundary conditions. (¢(s) = z,
q(t) = y) we will get
(32) gr = Es()E7H )y + Ex(7)E] }(8)z

Substituting in (31),

1 . 1 .
R(s,z.t.y) = 5 < E.E;Yt)y,y > -5 < E,(s)E; Ys)z,z >
(33)
1 1
+3 < E Y t)y,z > -3 < E;7'(t)z,y >
As E () E.(7) are both solutions of (14) the symplectic inner product w(E;, E;)
will be constant on the interval I, hence using (29) and (30)

w(E,(s), Ei(s)) = w(Bs(t), E(t))
E{ (s)Ex(s) - E (s)Ey(s) = EJ () Eu(t) — EJ (1) Ex(t)
—Ei(s) = E(t)
Using this equality in (33), we obtain the desired result. Observe also that as
we are assuming the disconjugacy of (13) , E,(7) and FE,(7) will be invertible
respectively on the time interval (s.u] and [s.t); in particular E(t) is invertible

which proves that (32) is the unique solution of (10) that satisfies the required
boundary conditions. O

Proof of Proposition 1. Let us assume that the initial Lagrangian manifold is given
by (22 ) ie

M, ={(g,p)lp = aq - 5}
and let us take the associated function to the Lagrangian manifold. F; which, by
definition, satisfies the following relation at time s:

FF'=qa

Then we can write the generating function for the initial Lagrangian manifold as :
1
(34) S(z) = S(FSFS“‘x,x) — By +

where v is an arbitrary real constant.

The idea of the proof is to explicitly compute V,S(t,y), where S(t.y) will be
the generating function for the Lagrangian manifold A, since, then. we will have
117 -

(35) M, = {(q,;n) Ip = %(t-q)}~

8



for S(t.y) the solution of the Hamilton-Jacobi equation on I:

oS oS
36 it
(36) iy—+—f[<t,y, y)—(]‘

subject to the Cauchy data:
(37) S(s,z) = S(z)

The solution of the initial value problem defined by (36) ,(37) is given by (cf.
1))

(38) S(t.y) = Ss(z) + R(s,z,t,y)

where R(s.z.t,y) denotes Hamilton’s principal function defined as the line integral
of Poincaré-Cartan form pdgq — Hdt evaluated along the solution of Hamilton’s
equation that connects z at time s a to y at time t. The starting configuration
z may itself be regarded as a function of y and t, i.e. as the starting point of a
trajectory that at time ¢ is in the configuration y. A simple computation will give
us (cf. [14]) the following expression for z:

(39) T =FYtyy + FTH ) E,(t)5.

where F(t) is an associated function to M,. Observing that (38) implies (cf. [11])
(40) V,S(t.y) = VyR(s.z.t,y)

we obtain. using Lemma 2,

(41) V,R = (E ET't) +E;TET )y - [E7V )Tz

As E,(t) is an isotropic solution of (15), E,(t)E!(t). in particular, is symmetric
on the interval (s, u]. Hence:
VyR = E,E7 (t)y — [ET ()] =
Using (39) we obtain:
(42) VyS(ty) = f(t)y — B8(t)
where f(t) and 3(t) are defined by

f(t) = B.ETH(t) — (B (O F(s)F (1)
8(t) = [ET ()ITF (O EL(6)8
As —F(s) = w(E4(7).F(7)) we can simplify the expression for f(t):

ft) = ES()ETN ) — [T W)TF(s)F™H(t)
= [E; Y] ET (t) = F(s)F(t)]
= [E7Y @) T[ET (1) F(t) - F(s)|F (1)
= (E; 0T ET () F()F 1(t)
= FFYt)

As F, is the associated function for M, on I, F; is an isotropic solution of (15)
which implies that FF~1(t) is a symmetric matrix in /. Using this property we
can simplifv as well the expression for 3(t);

9



(
)
= [E,(t) = F()F ' (t)E,(1)]8
W(t) = [FTHO)TFT (1) Es(1))5
= [F7Y0)IT[FTE,(t) - FT(t)Es(t))8
= [F7'(t)]Tw(F.E,)8
= [F7'(1)]TFT(s)8
= [F~H)|Té
Hence using (35) and (42) we get
(43) M, = {(a,p) Ip = BiF M (0)g — (FA(®)]76 |

Using again the fact that F; is an associated function for M, on [ we will get
for (q,p) € M.

(44) Flp—Flq=-6

If the initial manifold is a singular one associated with a configuration r € R"
ie:

M, = {(q,p) lg = =},

then we do not have a generating function for this manifold, however for ¢t > s the
corresponding momentum field is given by

Mt = {(qvp) lp = VR(S,I,t,q)}
using Lemma 2 directly we have, for t > s,
VR(s,z.t,y) = E,(t)E; (t)g — E;T(t)z

hence as E; is invertible and isotropic on the interval (s, u], we obtain (26), for the
singular Lagrangian manifold case with é = z:

M = {(a.p) IET (t)p - ET(t)g =~z }

Suppose now that we choose another associated function H; to M; on /. In
particular H; will be another solution of (15 ) on I, hence we will have the following
relation between F; and H,:

(45) H, = F,[F7'H, + G(t)w(F., H,)]
where .
G(t) = / F'F-Tdr.

applying Lemma 2. w(F,, H;) = 0 which implies:

(46) H, = F,F]'H,
and consequently for (q.p) € M,
Hip-Hlq=[F 'HJT[F[p~F[q]
= [F7YH,)TFT3
=HT3

10



Which proves that M, C M where
M = {(¢,p) lw(H:,1,,) = —H] 8}
In a similar way we could prove the reverse statement. Hence
M, = MH
O

Now instead of giving an initial Lagrangian manifold or an initial momenta field
we are given a final one. Consider the following Lagrangian manifolds

(47) Ry ={(q,p) | —p = 4q — Bz},
(48) R = {(¢:p) lg = z},

where G is a symmetric invertible n x n matrix and 3,z € R®. The trajectories
consistent to these final manifolds will be solutions, v(t) = (g(t), p(t)) of Hamilton’s
equation of motion on / such that v(u) € Ry (or ¢(u) = z) . We want to compute
for t € I the time reversed image, R; of these manifolds.

Definition 3. Given an final Lagrangian manifold we define its associated function
on an interval [ = [s,ul], F}, as an isotropic matrix solution of (15) such that:

1. If the Lagrangian manifold is defined by (47), F, is a non singular matrix for
t € I such that

(49) —F,F7 =a

2. If the Lagrangian manifold is a singular i.e defined by (48), then F, is a non
singular matrix for ¢t € [s,u) and satisfies F(u) =0

As in Lemma 1:

Lemma 3. If Ft and H ¢ are two asgociated functions on the time interval I, to a
Lagrangian manifold R, then w(F,,H,) = 0.

Proposition 2. The image of the Lagrangian manifolds defined by (47) ( or (48)
) under the time reversed Hamiltonian flow defined by (12) is, fort € I, given by

(50) R, = {(q,p) Jﬁ‘T(t)q—FTP=5}

where F(t) is the associated function to R, ( or R¥) and b = Fzé (or 6 = z).
Moreover the expression (50) is independent of the choice of the associated function
to M, i.e if H; is another associated function to R, on I then

{q.p) IFT(t)q - FTp =6} = {(q,p) |H(t)g— HTp= 6%}
where SH:HMT@

Proof. The proof follows the same lines as the proof of the last proposition i.e R,
will be now given by
_ _ 8S(t.y)

where S(t.y) is the solution for the time reversed Hamilton-Jacobi equation

8S(t.y) aS(t,y)
R

(51) +H(t,y——=—=)=0.yeR* tel

oy
satisfying:
(52) S(u,z) = 8(z)



with S$(z) denoting the generating function of R, = T(R,,), where T : RZ" — R

is defined as 7 (¢,p) = (¢, —p). .

Remark 1. It follows from propositions 1 and 2 that the images of the Lagrangian
manifolds M, and R, can be written in terms of the symplectic product i.e

(53) M, = {(¢,p) lw(Fy,1y,) = FT B}
(54) R = {(g.p) lw(Fu.1,,) = 3}

where 1,, = (6i;¢: ; 6pi)i<ijen » Ft = (F,, ;) and F, = (Fy, F,), with F; and
F, denoting the solutions associated with M; and R,.

Remark 2. From the proof of Proposition 1 we can obtain explicit expressions for
the solution of the Hamilton Jacobi equation initial value problem given by (36)
and (37). Using (43) we obtain

(55) S(t.y) = (FF7 Ny — FT T8y + .

As the above expression is a solution of the boundary value problem (36) and (37)
we can easily show that -, is a solution on I of the first order differential equation:

. T 52
(56) o+ |FET)T =0, 4(s) = 7

Using proposition 2 we obtain in the same way a solution of the boundary value
problem (51) and (52):
(57) S(t.y) = ~(FoF7 L y) ~ FTTBy + 4.

In this case. 9;. solves the time reversed equation on the time interval I, (56 )
le

: AT 2 . .

(58) Y + ‘Ft T/Bt =0, 7("’) = Yu-
2.2. Consistent Solutions. Consider the pair of Lagrangian manifolds M, and
R, defined by the associated functions F, and F} on the an interval I = [s,u] and
the two R™ vectors 6.6

Consider the problem of finding regular trajectories m, = (m(t),m(t)) € R?"

such that m(t) is a solution of Hamilton’s equations of motion (13) on [ satisfying
the following boundary conditions:

(59) m(s) € M,
(60) m(u) € R,

it turns out that this boundary value problem is equivalent to find. for each t € I,
the intersection . L, N R;:

Proposition 3. Consider a pair of Lagrangiean manifolds M, and R, defined by
the associated functions F,.F, on the time interval I. satisfying w(F;.F;) # 0.
Then, for each t € I, the set M, N R is a single element set given by

(61) L[\ Re = {(m,)}

with my = (m,,m,), where m, is the solution of Hamilton’s equations of motion
(13) on I satisfying the boundary conditions given by (59) and (60). Moreover we
can write m; as

(62) m, = F,w(F. F)| 15 + B [[w(® F)T] s

where ¥ = (F,.F,), and F, = (F,.F,) This solution m, will be referred as the
"M,R, consistent solution "
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Proof. Consider (g, p) in the intersection set. Then, by Propositions 1 and 2.

w(Fthq.p) =-4
w(Fe Iy p) =-6

hence using the fact that w(F,.F,) # 0 and solving the system we will get the
unique solution:

m, = F[w(F.F)|7%% + F, [[w(F, F,)|T] "6
That it is obviously a solution of Hamilton’s equations of motion that satisfies

the required boundary conditions.
a

Remark 3. In the conditions of the above proposition we can also consider for any
t € I and y € R™ the pairs of Lagrangian manifolds M, RY and MY, R, , where the
Lagrangian manifolds RY and M} both denote the singular Lagrangian manifold
at time t associated with the configuration y ( we adopt different notation since R}
is viewed as a final condition with respect to the Lagrangian manifold M, on the
time interval [s,¢] whereas M is an initial manifold with respect with the manifold
R, on the time interval [t,u] ). We can take E,(7) as the associated function to
RY on the interval [s,u] and E(7) as the associated function to the manifold M} .
Denoting by ',vffz (T) and 'yﬁ‘f, (7) the consistent solutions to the pairs of Lagrangian
manifolds MY, R, and M,, RY respectively, we will have, applying proposition 3,
the following expressions:

Yo, 0 (7) = Fo[w(E(r), F)] 'y + Be(r) [[w(Be(r), F)T] '8
MR (1) = By(r)[w(F(r), E)] 46 + F(r) [w(B(7), E)]T] 'y
but as

W(B (7). F(r)) = E(t)TE(t) - E(t)TF(t) = F(t)

W(B(T).E,) = F)TE(t) — F()TE(t) = ()T
we get:
(63) va.re(T) = Fr F() "y + Eo(r) [F(1)T] 76
(64) yMER(7)y = Eo(r)[ET ()] 16+ F(r) [F(1)] 'y

3. EUCLIDEAN (OR PROBABILISTIC) QUANTIZATION

We will show that there is a natural way to associate to a pair of Lagrangian
manifolds a Gaussian probability density function defining a R™-valued diffusion
process.

3.1. Associating a Gaussian probability density to a pair of Lagrangian
manifolds. Proposition 3 allow us to consider a regular solution m(t) of §(t) =
K(t)q(t) on I = [s.u] with boundary values given by the pair of Lagrangians mani-
folds L, and R, Any configuration y # m(t) will determine two points, respectively
(y,p1) € M; and (y.p2) € R;, to which can be associated a pair of trajectories
B4 (7) = (¥(7).¢"¥(r)) and 7[5 (7) = (gey (), ey (7)) where ¢“¥(r) and g y(7)
7 € [s,u] = I denote. respectively, solutions of Hamilton’s equation of motion
satisfying the relations:

v (s) €M, Yaiv(w) € Ry

Y Ru
Yt (t) =@wp) \p® = (v.pe)

13



Definition 4. Given a pair of Lagrangian manifolds M,, R, with associated func-
tions defined on a time interval / = [s.u], we will call the area associated to the
pair of manifolds the symplectic inner product defined by:

(65) ARt y) = WXy (1), YH¥ (7))

where X ,(7) and Y*¥(7) are respectively the solutions of Hamilton’s equations
(13), defined by:

Lemma 4. Considqr a pair of Lagrangian manifolds M, R.u defined by its asso-
ciated functions F.F on I = [s,ul, and by the two vectors 6,6 € R™. Then we can
write the associated area Aﬁ‘: (t.y) as

(66) Al (ty) = (y = m(t)TCH(t) (y — m(t)

where m(t) and C(t) are respectively the projection onto the configuration space
of m,, the consistent trajectory to the pair of Lagrangian manifold, a symmetric
matriz defined by:

(67) my = Fw(F,F)]7'%6 + B [[w(F.F)T] 6

(68) C(t) = F(t)w(F.F) 7 FT(t)

Moreover C(t) is independent of the choice of the associated functions F, F, to the
Lagrangian manifolds M,, R,,.

Proof. As associated functions to the pair of Lagrangian manifolds on the time
interval I. they are isotropic, which implies tbat F, F't'l and F' tF'f‘ are symmetric

matrices on the interval I. Hence F,F,”! — F,F[ ! is also a symmetric matrix on
I. But

. P . - . i
EF R =FTFTRF Y - FTE, R F?
i P - T
= Ft_T[FtTFt - F, Ft]Ft_l
=C7'(1)
which proves that for all t € I. C(t) is a symmetric matrix.

-

Now we prove (66). By (65) we can write:
(69)  Afy(t.y) = Wi (M) (7)) = wivgg (7). m(r) - w(m(r). v (7))

Using (63) and (64), we compute the first term of (69):

(70)  w(v (), Vi () = T ETTE 4y T Tw(F. F)Fly + 6T F Yy
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but,
A -~ - -~ —1 ~ -
yTF T8 = yTF‘T{Fw“(F,F)J [Fw™'(F,F)]é

=y F~Tw(F. F)F ' [Fu~Y(F,F)]$
(71) =yTe Y (t)Fw™ Y (F. F)é

§TF Ty =T FTWT(F.F)F 1 [WT(F F)F1 "y
= 6Tc_TFw'T(F.F)y
(72) =yTc 1 Fu~T(F, F)é
hence
w('yﬁ{(r).qﬁ‘,‘y(r)) =yTet [Fw'l(l:‘. F)é + FwT(F. F)6] + yTF~Tw(F,F)Fly

=yTe ' m(t) +y e (t)y

(73) =y e () (m(t) - y)

By similar computations, we also verify that:

(74) w(rpt. (7). m(r)) = 6TF~H(m(¢) - y)
(75) Wy (), m(r)) = (y - m(t))T F~Té

Using (69), (73), (74) and (75) we will get

Afy (ty) = wlng (7). 7 (7)) — w(rif (1), m(t) — w(m(t), vi%s (1))
=y (©)(m(t) = y) = 6TFH(m(t) — y) - (y - m(t)TFTS
= (y —m)CTH{t)(y — my)

Now we prove that C(t) is independent of the choice of the associated functions
to the Lagrangian manifolds. Let us denote by H, another function associated to
the Lagrangian manifold L,. Using the argument of the proof of Proposition 2. we
have the following relationship between F; and H, for t € I:

H, = F,F;'H,
Therefore
H [w(F, H)] T = F,F7 H, [w(F, F.F7 H,) T ET
= FF7 H, [w(F, F)F  H, T ET

= F,[w(F,, F)] ' ET
— C(t)

A similar argument is valid if one replaces F, by another associated function to
the Lagrangian manifold R,,. O

Definition 5. A pair of Lagrangian manifolds M, R, is called a compatible pair
in the time interval I = [s, u] if:

e Their associated functions F;, F, ¢ are defined on I.

e C(t), defined by (68), is positive definite on the interior of I and non negative

definite for t = s and t = u.
15



Proposition 4. Given an arbitrary final (respectively. initial) Lagrangian mam-
fold with an associated function F, (respectively. F;) defined on the interval I =
(5. u] there exists a family of compatible initial (respect. final ) Lagrangian manifolds

Proof. Consider a final Lagrangian manifold R, and F, its associated function
defined on the interval /. For any n x n non singular matrix o, let us denote by P
the positive definite matrix

(76) P=oo’
We now define a family Ff of solutions of the matrix differential equation on .
F, = K(t)F,
(where. as usual. K(t) denotes a symmetric non singular matrix on /) by
t
(77) Ff =FP+ Ft/ FOURTTdA
which. in turn. will allow us to define a family of initial Lagrangian manifolds.
MEPS:
M7 ={(g.p): p= FJ[F] g = [FT]776},
compatible with R,. Observe that for any P fulfilling (76) we have
(78) w(Fy, FP) = Inxn

An analogous argument is valid if one starts from a fixed initial Lagrangian manifold
M.
O

Remark 4. In fact we can always choose for two compatible Lagrangian manifolds
on /, associated functions such that (78) holds.

Indeed consider F; and F, any associated functions for the pair of Lagrangian
manifolds on the time interval I. If (78) is not verified we can replace F, by
H = F,w(Ft,Ft)‘T (which is also an function on I associated to the Lagrangian
manifold R,). Then

w(H,.F;) = w(w(F,.F,)"TF.F,)
= (pzW(Ft.Ft)-T)TFt - (F W(quFt)—T)TF:
W(Fstt)ﬁlw(Ft'Fc) = Inxn

Proposition 5. If R, (respectively. M) is a final (respect. initial) Lagrangian
manifold with associated function E, (respect. F,) on I. then the pair AI&.RU
(respect. Mg, R} )is compatible in the interval [to,u] (respect. [s.to]) and for all
configurations y € R™ .

Proof. A solution associated to the singular manifold M7 on the time interval
[to. u] is given by E; (t) ( i.e. the solution of the matrix equation (15) satisfying the
Cauchy data E;, (t9) = 0. Ezo(to) = Ixn). The corresponding matrix (68) relative
to this case is:
C(t) = Eyy(8) [w(Fr, By ()] T F(2).

To prove that the pair of Lagrangian manifolds are compatible we need to prove
that the above expression is non negative definite. For this, we write E; (t) on
[to, u] as:

E(t) = F(2) Ut FTHOVETT(NAA| FT (to)
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Then we obtain for C(t):

E(t)[w(Fe. E(8)] T ET(t) = Eu, () [F7 (t0)] 1 ET (t)

- £ [ PN ET ()] FT(t0) (£ o)l 7

= F(t) [/t F‘l(A)F‘T(A)dAJ FT(1),

which is clearly a non negative definite matrix. In the same way we can prove that
given an initial Lagrangian manifold L, such that the associated solution F (t) is
invertible on the time interval [s,u], then, for all configurations z € R™ and all
to € I — {s}, the pair of Lagrangian manifolds M,, R} are compatible.

Finally, for s < t; <t < u and for all configurations z,z € R™, the pairs of
singular Lagrangian manifolds M, R;, are compatible. In this case the associated
functions are E;, (t) and Eh(t) = —L,,(t), hence the corresponding C(t) is given
by:

Eu(6) [w(Bo (). B ()] Eu®)

which is clearly a positive definite matrix.

O

In a two dimensional phase space there is no restriction on the pairs of boundary
Lagrangian manifolds i.e all pairs of Lagrangian manifolds with associated functions
on an interval I are compatible.

Let us consider the following pairs of Lagrangian manifolds in R?:

M, = {(¢,p) € R? |p = aq - B}

R, ={(g,p) eR?* | —-p=dq - j3}
where a. a. 8. 8 € R. Consider associated functions F;, F, on the time interval I. By
definition of associated function, both functions have a definite sign on the interior

of the interval . Without loss of generality we can assume also that w(F,, F,) = 1.
Hence two cases are possible:

1. F,F, >0

2. F,F, <0

In the first case. we have C(t) > 0 on I so the Lagrangians manifolds are com-
patible. For the second case. we consider the following two Lagrangians manifolds:

(79) M, = R.
(80) R, = M,

As it can easily be verified, the correspondent functions for the pair M, R, will
be given by H;, H; defined as
(81) H =F
(82) H, =F,

Therefore we will have H; H, < 0 and:

w(Hy H,) = w(F,, F) = -1

which implies that C(t) > 0
Returning to the general case, we state the main result of this section i.e. we can
associate to any compatible pair of Lagrangian manifolds a Gaussian probability
density:
17



Theorem 2. A pair of compatible Lagrangian manifolds M,, R, define on the
time interval I a Gaussian probability density p(t,y) whose mean 1is the consistent
trajectory associated with My R, and variance C(t) given by

(83) C(t) = Flw[Fy, F)] 7 FT

where F, and F, are the functions associated with the Lagrangian manifolds M, and
R,.

Proof. By Lemma 4. a pair of Lagrangian manifolds defines a symplectic area Alt,y)
defined by

Alt,y) = (y — m()TCTH(B)(y — m(t))
As we are assuming that the pair of Lagrangians manifolds are compatible C(t)
in the above expression is a non negative definite symmetric matrix which implies
that

oy, t)dy = —m— exp(~ A(t,))dy
\2me(t)
is a Gaussian density function having as mean the consistent trajectories and vari-
ance (83)
O

3.2. The associated probability density and a system of adjoint heat equa-
tions. Given a pair of compatible Lagrangians manifolds Ls, R, we know, using
last section results. that we have a Gaussian probability density function associated
to the manifolds. We now show that this density can be expressed as a product of .
positive solutions of the adjoint heat equations.

an
84 i S
(84) 5 —Hn
on .
(85) 5 =H7

where y € R™ and t € [ and
1
H= -§A + (K(t)y,y)

with A'(t) denoting a symmetric n X n positive matrix with a continuos dependence
in t.

Proposition 6. Consider a pair of compatible Lagrangian manifolds M,, R, on
an time interval I. Then (up to a normalising factor) we can write the associated
density as a product of two positive solutions n(t,y), 1(t,y) of the adjoint heat
equations (84) and (85), satisfying boundary conditions on the interval I = [s, u]
which are specified by the pair of Lagrangian manifolds.

Proof. Let us first consider the compatible Lagrangian manifolds on a time interval
I=[su:

(86) M, = {(q.p)| p = aq — 8}
(87) R, = {(g,p)| —p=éaq -G},

where, as usual. a.& are invertible symmetric matrix and ,6,5 € R™. This pair
will determine a pair of generating functions (up to additive constants v, and 7, )
S(s,z) and —S(u, z), namely

S(s,z) = %(aa:,:z) — Bz + 74

R 1 .
-S(u.z) = -3 (Gz,2) + Bz + A,

18



For any ¢ € I, the solutions S(t.y) and S(t, y) of the Hamilton Jacobi equations
(36) and (51) with boundary conditions given, respectively, by S(s.z) and S(u, z)
are given according to propositions 1 and 2. by:

: 1,
(55 bis) S(t.y) = S(EF yy) - FT T8y +

. A 1,4 A ST .
(57 bis) S(t,y) = §<Fth oy) = By + 4
where ~; and 4, are, respectively, solutions on I of the first order differential equa-
tions (56) and (58). Adding (55) with (57) we will obtain:
- A,
(58) S(e.) + $(ty) = 268 |

where A(t.y) is the symplectic area associated to the pair of manifolds and g de-
notes a reminder, to be determined. Let us take m;, the consistent solution to the
manifolds M,. R,. Obviously A(t,m;) = 0, which implies

g = S(t.my) + S(t,my).
Using (38).
g = Ss(ms) + R(s,ms.t,m¢) + R(t.my,u,my) + §(u,mu)
= S;(ms) + R(s,mg,u.my) + g(u.mu)

Hence g does not depend on the variables (t.y), t € I. Using Theorem 2,we can
express the associated probability density, p(y,t) as

= g _Alt.y)
plt.y) = @r) det C o) exp( 5 )
- T S = e v
(89) 1 exp(=S(t.y) — 8(t,y) + )

B ¢ (27)" det[Fyw(F, F)E]
_ _exp(=S(t.y) exp(-S(t.y) | (2m)"
VEm)rded Il fomn) det(Fy| V 1w(E.F)|
Which implies that this density can be written as

(90) ply, t)dy = N™'n(t.y)a(t, y)dy
where N is a normalising constant defined by

exp(g)

‘ (2m)"
(91) N= \/— exp(g)
w(F.F)|
and 7n(t.y) and 7(t,y) are defined by:
exp(—=S(t,y))
(2m)" | det|F]]|
exp(=5(t,y))
(27)"| det[£,]|
which, as we can easily verify, are positive solutions of the adjoint heat equations
(84) and (85). Also the boundary conditions satisfied by n and 7 depend on the
pair of Lagrangian manifolds M,. R, . N
Although (90) was obtained assuming that both Lagrangian manifolds were non

singular. a similar expression follows in the case where one or both of them are
19
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singular. If one considers the pair M7, R, ( were, as before M7 denotes the singglar
Lagrangian manifold associated with an initial configuration z € R™) then. using
(28), changing S(t.y) for Hamilton’s principal function R(s,z,t,y), we obtain :

. 1
(92) R(S~I~t-y)+5(t,y) = 'Q‘As.x(tvy)—*'gl

where A, ,(t,y) is the symplectic area defined by (65) and associated with the pair
of Lagrangian manifolds MZ, R, . Substituting, in (92), y by m,.(t) (the solution
consistent to the Lagrangian manifolds M, and R,,), we find that:

g1 = R(s,z,u.ms o (u)) + S(u,my) = (s, z).

Adapting to this case the calculations used in (89),

(93)
exp(—R,z(t.y)) exp(=S(t,y)) (2m)" o
s.z(t- ): = exp(g )
p y \/(211')" det[Es(t)] \/(QW)"Idet[Fg]\ Idet[W(F.Es(t))M 1
) . 2 ;
= h(s,z,t,y)n(t.y) ]det[ﬁ'(s)][ exp(S(s, )
_ h(s.z,t, y)n(t,y)
exp |det27;“)("s> 1(—§(S’I))
_ hls.z,t y)a(t y)
n(s, z)

Here h(s.z.t,y), s <t is the fundamental solution of (57) which, as can be easily
verified, can also be written as

exP(_Rs.x(ta y)) )
(2m)™ det [ E4(t))

The case where one considers the pair of Lagrangian manifolds M,, RZ or M7 RZ
are treated similarlv. We would obtain respectively:

(84) ot y) = MDA Y v 2)
n(u. z)

(95) Pz (t.y) = h(s.z,t,y)h(t.y, u, 2)

|

3.3. Diffusion Processes. In section 3.1, we saw how a pair of compatible La-
grangian manifolds determine a probability density and how this density is written
in terms of a pair of solutions of adjoint heat equations with boundary values spec-
ified by the pair of Lagrangian manifolds. In this section, we will show that a pair
of compatible Lagrangian manifolds determine a Gaussian diffusion process. Our
setting will be given by the pair of compatible manifolds M,, R,,. We will begin by
the definition of a R™- valued a diffusion process Z; on the time interval [s,u] by
means of the value of the density associated with the pair My, R, at time s. p(s, )
and a transition function . This process will verify E[Z;] = m;, where E denotes
the mathematical expectation and m, denotes the consistent solution associated
with the pair of Lagrangian manifolds. In this sense, we call Z, the Euclidean
quantization of m;. It is crucial to stress that. as suggested by Feynman’s path
integral approach [1], the probabilistic framework is extracted exclusively from the
classical model.
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Let us first define a transition probability function: Given any configuration
r € R™ and a Borelian B € B we define for t;.t such that s < t; < t < u the
function:

(96) Qs (.8) = [ ol (tu)dy
1 B ty

where pf;‘ (t,y) is the density associated to the pair of Lagrangian manifolds L} R,
L)
which was given (c¢f. Theorem 6) by

h(ty,z,t, y)n(t,
pBe (t,y) = (t1 ; y)n(t,y)
“ n(tlvl)

We can easily verify that Qfg (t,y) is a transition probability using the semigroup
1

properties of the solution of the heat equation or using the additivity of the solu-
tions of the Hamilton Jacobi equation. Together with the initial probability density
provided by the density associated with the pair of manifolds M,, R, at time t = s,
ie pfl‘: (s.z) and the transition probability defined by (96), we satisfy the conditions
of existence of a Gaussian diffusion process Z; (cf. [12]) called the Euclidean quan-
tization of the classical solution consistent with M, R,. This process will verify,
by construction.

(97) P(Z, € B) = /B plt. y)dy

But we could as well start from the ” final ” information i.e. the value of
the probability density associated with the pair of Lagrangian manifolds M;, R, at
time u, p(u, 2) and use a time reversed version of the probability function Qf%‘ (t,y)
constructed as follows: . '

Consider for t < t; < u and y, € R™ the density p,,*(t,y) associated with the
pair M, R; :

R, _ n(tvy)h(tvyvt%z)
t, =
Pu, (13) n(ta, 2)
and define for r € R", B € B and t;, t5 such that s <t; < t3 < u the function:
' R} R}
(98) Quli(t1,B) = /BPM2 (t1,y)dy

which is, as easily verified a (backward) transition probability function. This will
enable us to construct a R™ valued Gaussian diffusion process Y; with a backward
transition function given by (98) and final probability given by the probability
density associated with the pair of manifolds M, R, at time t = u, pfj:(u. z). This
process satisfies (cf. [12]) as well

(09) P(Y, € B) = /B ok, gy

Y, and Z,, as diffusion processes having the same probability density for all ¢ in
[s,u]. We will call this process the Euclidean quantization of the MR, consistent
trajectory. Summarising we have:

Theorem 3. Given any pair of compatible manifolds in an interval I = (s, u|, there
etists a Gaussian diffusion process Z, such that:
o E[Z,] = m, where m, is the solution consistent with the pair of Lagrangian
manifolds, hence in particular we have
d2
~SElZ) = K()E|Z]
where K (t) is a symmetric n X n matriz non singular on 1.
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o The variance of this process is completely described by the functions F; and
F, associated to both Lagrangian manifolds i.e

Clt) = Fz[w(pt-,pt)]_lﬁtT

3.4. Uniqueness. One can see that the Euclidean Quantization, Z; associated
with a pair of compatible Lagrangian manifolds M, and R, in a time interval J
solves the following Itd’s sde’s

(100) dZ, = (A(t)Z, + a(t))dt + dW,

(101) d.Z, = (A*(t)Zy — a*(t))dt + d. W, ,

with respect to the past and future filtration (P;) and (F;) respectively. Here d
and d, denote forward and backward differentials and W and W, are R™-valued

Wiener processes w.r.t these filtration [12]. The drift terms are given in terms of
the associated functions of the Lagrangians manifolds i.e

F(t) = FESY. a(t) = ETTET
frit)y=FEFCN ot ()= FTTE S
Now we will prove the reverse statement. Consider a R™-valued Gaussian diffu-

sion process Z, with a fixed identity diffusion matrix and satisfying the following
hypothesis:

(H1) The expectation of the process m; = E(Z,) is a solution of the ordinary
differential equation on /

(102) my = K(t)m,.

This assumption establish the link between the diffusion process Z;, and
the classical Hamiltonian system.

(H2) The variance, C(t) of the process is non zero on the interior of the time
interval. Also let us denote by C; and C, the nonnegative values of the
variance at the endpoints of the interval I, i.e C, = C(s) and C,, = C(u).

(H3) Z,; satisfies in [ the following forward and backward Itd’s sde’s

(103) az, = (f(t)Z, + B(t))dt + dW,
(104) deZy = (f*(t) 2, — B(t)")dt + d.W, ,

where f(t), f*(t) are two non singular symmetric matrices on the time interval
I.

Lemma 5. Consider a R™-valued Gaussian diffusion process Z, defined on the
interval I, satisfying the assumptions (H2) and (H3). Then its variance is given by

(105) C(t) = My w™ (M, M) M,

where M, and M} satisfy the (deterministic) matriz equations on [
(106) Mt = f(t)Mtv M, = Iixn

(107) M} = f*(t)M7, M} = Inxn

Moreover, if assumption (H1) is satisfied, then the expectation m, of the process
can be written as

(108) my = M7w ' (M. M})6 + Myw™T(M,. M})é*
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Proof. The general solutions of (103) and {104) are given respectively by

t t
(109) Z; Mt(zs+/ M;‘f(,\)d,\+/ M dWy)

L

(110) Z, :M;(Zu+/ fM;]-lg*(A)d,w/ (M3]™1dW, )
t t

where M, and M} satisfy (106) and the last integrals are It6’s forward and back-
ward integrals [17]. Using (109), we can conclude (cf.[2]) that the variance C(t) of
the process is the only positive definite matrix solution of the following ordinary
differential equation

C(t) = fF(OC(t) + CE)f(H)T + 1. C(s) = C,

But C(t) is also the variance of the backward process. Hence the solution of the
above ordinary differential equation must be also the solution of

Ct) = FrHCt) +CO)f* )" ~ 1, Clu) = C.
As f and f* are both symmetric matrices we conclude that C(t) verifies:
2f()Ct)y + I =2f"(t)C(t) - 1
hence
(111) Ct) = (f7(t) = f(t)~!
Using (106) and (107) we obtain
C(t) = (M7 [M;?]™" = M M,)™!
= (M~ Tw(M,, My)M™)~!
= M;w™ (M, MM

Taking expectations in both sides of (109) and (110) and differentiating with
respect to t we will get

(112) e = f(t)m. + 6(t)
(113) my =f"(t)ym, — 3" (),
obtaining

f&)me + B(t) = f*(tym, — 57().
which implies that
me = (f7(t) = f(£)”"
And by (111 ) we get:

(114) m, = C(t)[8(t) + 87 (t)]

Since m; is, by assumption. a solution of Hamilton’s version of equations (10) of
motion we obtain that 3(t), 3*(t) are solutions of the differential equations:

B(t) + f(1)B(t) =0
3ty - f1(1)8* (1) =0
Using (106 ) and (107 ) the solutions are
(115) Bty = M7Té
(116) 3*(t) = [(M;]"Té*
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where 6 and 6* are two arbitrary vectors of R™. Substituting in (114 ), the following
formula holds for the expectation:

my = C(t)[B(t) + 87 (t)]
= Mw M MM [M7T6 + (M;)T6
= M;w "M, M})é + Myw™T(M,,M])6*
a

Theorem 4. Consider a R™- valued Gaussian diffusion Z, on an interval I, satis-
fying the assumptions (H1), (H2) and (H3). Then Z, is the Euclidean quantization
of the pair of Lagrangian manifolds My R, given by :

(117) M, = {(q,p) Ip= fiq - 5"(s)}
(118) Ry ={(g:p) | - p = fuqg + Bu}
Proof. Consider F,. F, defined as

(119) F,=M;

(120) F, = M,

where M;, M} are defined by (106) and (107). As f(¢) and f*(t) are symmetric
matrices non singular on the interval I, F, and F, are disconjugate solutions of
(102). Using these functions together with & and 6 defined by (115) and (116) we
can introduce a pair of Lagrangian manifolds :

(121) M, = {(q.p) Ip= F.F]'q— F7T6}

(122) Ru={(a,p) | —p=F.E  q- F7Té)
They define a Gaussian process whose mean is given by:

(123) me =Fw(F.F)]7'6 + £, [[w(F.F)T] 7'

(124) =M; (WM, M) 76 + M, [[w(M,, M})|T] 7' 6

and variance given by
C(t) = Mjw Y(M, MHMT
a

Remark 5. In [13] the authors consider diffusions satisfying the sdes (100) and (101)
as 7 Gaussian Bernstein processes” associated with the quantum Hamiltonian

1
H= —5A+%< Kt)z,z >

in the following wayv: The forward and backward drifts are related to a pair of
positive solutions n. n* of the adjoint heat equations (84) and (85):

Y _ tyz + 80t)
yn
V! . .
2 )z -8
" iz t

From these two relations we can easily obtain (102). In the present paper,
however. we insist on starting exclusively from the classical Hamiltonian system.
Now we see that these Bernstein processes are ., in fact, associated to a pair of
Lagrangian manifolds. It should be noted that in [13] the necessary assumption of
symmetry on the matrices f, f/* is missing. ).
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4. EXAMPLES

4.1. The Bernstein bridge. Let H be the time dependent quadratic Hamiltonian
on R?"
1
H = 5lpl*~ < K(t)g,q >
where K (t) denotes a symmetric non singular matrix on the interval (s, u]. The
Bernstein bridge associated with H is characterised as a Bernstein diffusion Z,
with boundary data given by Z; = z, Z, = 2, where z and z are two configurations

in R™. This implies that the variance of Z; satisfies C(s) = C(u) = 0. By Lemma
5. using in particular (106) and (107), the matrices M; and M} are determined by

the boundary conditions:
M, =TI |M; =0
M, =0 M =I,xn

M, = E,({)E]*(s), M} = E,(t)E ! (u).
Using (107) we can write the variance of the process as:

C(t) = Es()w™ By, E)ET(t) t e [s,u]

which implies that :

where E, (t) = —E,(t). Using now (107) the mean of the process is:
my = E,()w Y (Ew, Ey)z + Ey(t)w~ T (E,, E)z

The formulas for the mean and variance suggest that we can rescale (M, and
M) so that
M, = E,(t), M} = E,(t)
This shows that the Bernstein bridge is the Euclidean quantization associated with
the pair of Lagrangians manifolds:

(125) Mg = {(q,p) lg =z}
(126) R, ={(q,p) lg = z}

The stochastic differential equations satisfied by the process Z; are. respectively

(t z

(127) dZ, = {E“ Zi + =——dt + dW,
E.(t) EL (1)
, Ey(1) z
= | —_ W/
(128) dZt {Ea(t) Zt EJl(t)]dt +d t

with respect to the past and future filtrations.
When K = 0 this is the rigorous version of Feynman’s example (cf. p179-180 of

1

4.2. Brownian motion starting at zo € R. The Brownian motion can be char-
acterised as a Bernstein process associated with the free Hamiltonian

2
p
H==—
2

on I = [0,T) that satisfies the forward sde
dZy =dWy, Zo =<z

As the forward drift is zero we must have M; = 0 on the time interval and as
Mr =1Vt eI weget Mi =1 and é = 0. Using the same reasoning as in the
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previous example (since Z; = z we must have C(0) = 0) we get M; = Ey(t) = t.
With these values. the expectation will be
my = &M + 6M[6 _ s
w(M;, M7)
but as mg = z this will imply that 6* =z and m; = z vVt € I.
As for the variance of Z,,

MM
Cty= ———< =t
O = S M)
Hence the associated Lagrangian manifolds will be, in this case
(129) Lo = {(¢.p) lg = }
(130) Rr = {(q,p) Ip = 0}
The backward stochastic differential equations satisfied by this process is
1 T
d*Z, = [—t_Zt - ﬁ]dt +d. W,

4.3. The Ornstein-Uhlenbeck process on the time interval [0,1]. The pro-
cess is defined as a solution of:

(132) Zo =TI
Equation (131) shows that we should choose f(t) = A and 3(t) = 0 on the whole

interval. This is equivalent to choose a final Lagrangian manifold (i.e at time ¢t = 1)
of the form

Ry = {(q,p) Ip= Aq}
the missing Lagrangian manifold will be determined by the initial condition, (132)
. Hence we should choose

Lo = {(¢:p)| ¢ =z}
this will correspond to choose M*(t) = eo(t) and 6* = z, where e((t) is the solution
of

G(t) = A%q(t), q(0) =0. ¢(0) =1

1
eo(t) = Esinh(at),a = sqrtA

Hence we can conclude that this Ornstein-Uhlenbeck on the interval [0.1] can
be considered as the EQ under the Hamiltonian

1 q2
H=2p?- )
2P 2

of the pair of Lagrangians manifolds Ly, Ry. Moreover the expectation of the
process will be

SM; + 6*M, ze at
m(t) = = = zre
() w(My, M) M(0)
and its variance A i
oft) = ———L_ = —(1 — e~ 20

W(Mt N A/[;) 2(1
The backward differential equation will be
z :
_ sinh(/\t)J
If Zy is N(z,co) then one can easily find that

d*Zt = {)\COth/(at)Zt ] dt + dW’t

M, = -}(sinh(kt) + coe ™%
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and

5=
cy
which will give us mean and variance
1
(133) m, = {i—smh(z\t) + coe ™
Co A
1
(134) c = Xe"\‘sinh()\t) + coe” P
The backward differential equation will be
1 - 2Xcy + et 2 etz

d.Z, = [\ ldt + dW,

—1+2Xco + e2M 7t T co(—1 + Acg + e2At)
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