
Grupo de Fisica Matematica�
Universidade de Lisboa�

E

FEB 251997

LI ,. Y

Characteristic functions and process identification
by neural networks

J. A. Dente and R. VBela Mendes

o F

to appear in Neural Networks

IFM 1/96

Characteristic functions and process identification by neural
networks

Joaquim A. Dente

Laborat6rio de Mecatr6nica, Departamento de Engenharia Electrotecnica e de Computadores�
Instituto Superior Teenico, Av. Roviseo Pais, 1096 Lisboa Codex, Portugal.�

Rui Vilela Mendes!�

Grupo de Fisiea - Matematiea, Complexo II, Universidade de Lisboa�
Av. Gama Pinto 2, 1699 Lisboa Codex, Portugal�

and�
Centre de Physique Theorique, CNRS�

Luminy, Case 907, F 13288 Marseille Cedex 9, France�

lphone: 351 1 7950790, fax: .'\51 1 7954288, e-mail: vilela@alf4.cii.fc.uJ.pt

mailto:vilela@alf4.cii.fc.uJ.pt

Characteristic functions and process identification by neural�
networks�

Abstract

Principal component analysis (PCA) algorithms use neural 'networks to extract the eigenvectors of
the correlation matrix from the data. However, if the process is non-Gaussian, PCA algorithms or
their higher order generalisations provide only incomplete or misleading information on the statistical
properties of the data.
To handle such situations we propose neural network algorithms, with an hybrid (supervised and
unsupervised) learning scheme, which constructs the characteristic function of the probability
distribution and the transition functions of the stochastic process. lllustrative examples are presented,
which include Cauchy and Levy-type processes.

2�

1.. INTRODUCTION
Let x; denote the output of node; in a neural network. Hebbian learning (Hebb 1949) is a type of

unsupervised learning where the neural network connection strengths Wi) are reinforced whenever
the products XjX; are large. IfQ is the correlation matrix

(1.1)

and the Hebbian learning law is local, all the lines of the connection matrix Wi) will converge to the

eigenvector of Q with the largest eigenvalue. To obtain other eigenvector directions requires non
local laws (S~ger 1989, Oja 1989, 1992, Dente and Vl1ela Mendes 1996). These principal
component analysis (peA) algorithms find the characteristic directions of the correlation matrix Q. If
the data has zero mean «x;> =0) they are the orthogonal. directions along which the data has

maximum variance. If the data is Gaussian in each channel, it is distributed as a hyperellipsoid and
the correlation matrix Q already contains all infonnation about the statistical properties. This is
because higher order moments of the data may be obtained from the second order moments.
However, if the data is non-Gaussian, the PCA analysis is not complete and higher order correlations
are needed to characterise the statistical properties. This led some authors (Softy and Kamrnen 1991,
Taylor and Coombes 1993) to propose networks with higher order neurons to obtain the higher
order statistical correlations of the data. An higher order neuron is one that is capable of accepting,
in each of its input lines, data from two or more channels at once. There is then a set of adjustable
strengths ~, ,H~,h . ··J:~""i. ,n being the order of the neuron. Networks with higher order neurons

have interesting applications, for example in fitting data to a high-dimensional hypersurface.
However there is a basic weakness in the characterisation of the statistical properties of non
Gaussian data by higher order moments. Existence of the moments of a distribution function depends
on the behaviour of this function at infinity and it frequently happens that a distribution has moments
up to a certain order, but no higher ones. A well-behaved probability distribution might even have no
moments of order higher than one (the mean). In addition a sequence of moments does not
necessarily detennine a probability distribution function uniquely (Lukacs 1970). Two different
distributions may have the same set of moments. Therefore, for non-Gaussian data, the PCA
algorithms or higher order generalisations may lead to misleading results.

As an example consider the two-dimensional signal shown in Fig.l. Fig. 2 shows the evolution of the
connection strengths Wll and W12 when this signal is passed through a typical peA algorithm.

Large oscillations appear and finally the algorithm overflows. Smaller learning rates do not introduce
qualitative modifications in this evolution. The values may at times appear to stabilise, but large
spikes do occur. The reason for this behaviour is that the seemingly harmless data in Fig.l is
generated by a linear combination of a Gaussian with the following distribution

I

p(x)=K(2+x2r2

which has first moment, but no moments of higher order.

To be concerned with non-Gaussian processes is not a pure acaderrjc exercise because, in many
applications, adequate tools are needed to analyse such processes. For example, processes without
higher order moments, in particular those associated with Levy statistics, are prominent in complex
processes such as relaxation in glassy materials, chaotic phase diffusion in Josephson junctions and
turbulent diffusion (Shlesinger et a1 1993, Zumofen and Klafter 1993, 1994).

Moments of an arbitrary probability distribution may not exist. However, because every bounded
and measurable function is integrable with respect to any di~tribution, the existence of the
characteristic function/raj is always assured (Lukacs 1970).

3

f(ct) = J~(1.'~ dF(x) = (~(1.'~) (1.2)

a and x are N-dimensional vectors, x is the data vector and F(x) its distribution function.

The characteristic function is a compact and complete characterisation of the probability distribution
of the signal. If: in addition, one wishes to describe the time correlations of the stochastic process
x(t), the corresponding quantity is the characteristic functional (Hida 1980)

F(~) = Jei(z':>d/J (X) (1.3)

where ~(t) is a smooth function and the scalar product is

(1.4)(x,~) =Jdtx(t)

J.l{x) is the probability measure over the sample paths of the process.

In the following we develop an algorithm to compute the characteristic function from the data, by a
learning process. The main idea is that in the end of the learning process we should have a neural
network which is a representation of the characteristic function. This network is then available to
provide aU the required information on the probability distribution of the data being analysed. To
obtain full information on the stochastic process, a similar algorithm might be used to construct the
characteristic functional. However this turns out to be computationally very demanding. Instead we
develop a network to learn the transition function and from this the process may be characterised.

2. - LEARNING THE CHARACTERISTIC FUNCTION

Suppose we want to learn the characteristic function/raj (Eq. 1.2) of a one-dimensional signal x(t)

in a domain a E [au ,aN]' The a-domain is divided into N intervals by a sequence of values ao a 1
a2 ... aN and a network is constructed with N+ I intermediate layer nodes and an output node
(Fig.3).

The learning parameters in the network are the connection strengths WOi and the node parameters

8i. The existence of the node parameter means that the output of a node in the intermediate layer is

8i Xi(a), Xi being a non-linear function. The use of both connection strengths and node parameters in

neural networks makes them equivalent to a wide range of other connectionist systems (Doyne
Farmer 1990) and improves their performance in standard applications (Dente and Vilela Mendes
1996). The learning laws for the network ofFig.3 are:

OJ (t+ 1) = 0 j(t) + 'Y (COSctjx(t) - 0 j(t»

Woj(t + 1) = Woj(t) + 11 L [8 j(t) - L Wok (th k (a j)8 k (t)]8 j(t h j(a j) (2.1)
j k

Y ,11 > 0 . The intermediate layer nodes are equipped with a radial basis function

-(a-a)212a 2e I I

Xi (a) = N (2.2)
L e-(a -(1.t)2 l2a i

k=O

where in general we use O'i=<J for all i. The output is a simple additive node.

4

The learning constant 'Y should be sufficiently small to insure that the learning time is much smaller
than the characteristic times of the data x(t). If this condition is satisfied each node parameter 8i

tends to <cos ai x>, the real part of the characteristic function/raj for a=a.i.

The WOi learning law was chosen to minimise the error function

1 2f (W) = 2 L (8 j - L WokXk(a /)ek) (2.3)
j k

One sees that the learning scheme is an hybrid one, in the sense that the node parameter 8j learns, in

an unsupervised way, (the real part of) the characteristic function f(aiJ and then, by a supervised

learning scheme, the Woj's are adjusted to reproduce the 8j value in the output whenever the input is

ai· Through the learning law (2.1) each node parameter 8i converges to <cos ai x> and the

interpolating nature of the radial basis functions guarantees that, after training, the network will
approximate the real part of the characteristic function for any a in the domain [aa ,aN].

A similar network is constructed for the imaginary part of th~ characteristic function, where now

8~(t+ 1)= 8~(t) + y(sina;x(t) - 8:(/)) (2.4)

dFor higher dimensional data the scheme is similar. The number of required nodes is N for a d�

dimensional data vector x(t). For example for the 2-dimensional data of Fig. I we have used a set�

of~ nodes (Fig.4)�

Each node in the square lattice has two inputs for the two components a 1 and a2 of the vector�
-+

argument of f(a). The learning laws are, as before

8 «(I) (I + 1) =8 (ij) (I) + 'Y (cos(a(iilx(t» - 8 (if) (I»�

Wo(ij)(t + 1) =WoW) (t) + (2.5)�

+ 1l~)8 (kJ) (t) - I:Wo(",,,) X(1M) (a(tI)8 (1M) (I)] 8 (ij) (th(i)) (a(k)))
(kJ) (1M)

The pair (ij) denotes the position of the node in the square lattice and the radial basis function is

(2.6)

Two networks are used, one for the real part of the characteristic function, another for the imaginary
part with, in Eqs.(2.5), cos(a(y) . x(l» replaced by sin(a(if) . x(l» .

Figs.5a-b show the values computed by our algorithm for the real and imaginary parts of the

characteristic function corresponding to the two-dimensional signal in Fig.I. On the left is a plot of

the exact characteristic function and on the right the values learned by the network. In this case we

5�

show only the mesh corresponding to the 8i values. One obtains a 2.0% accuracy for the real part

and 4.5% accuracy for the imaginary part.
The convergence of the learning process is fast and the approximation is reasonably good. Notice in
particular the slope discontinuity at the origin which reveals the non-existence of a second moment.
The parameters used for the learning laws in this example were y=O.00036, ,,=1.8, cr=O.25. The
number of points in the training set is 25000.
For a second example the data was generated by a Weierstrass random walk with probability
distribution

(2.7)

and b=1.31, which is a process of the Levy flight type. The characteristic function, obtained by the
network, is shown in Fig. 6. Taking the log(- log) of the network output one obtains the scaling

exponent 1.49 near a=O, close to the expected fractal dimension of the random walk path (1.5). The

parameters used for the learning laws in this example were y=O.0005, ,,=1.75, 0=0.1732. The

number of points in the training set is 80000.�

These examples test the algorithm as a process identifier, in the sense that, after the learning process,�
the network is a dynamical representation of the characteristic function and may be used to perfonn�
all kinds of analysis of the statistics of the data.�

There are other ways to obtain the characteristic function of a probability distribution, which may be�
found in the statistical inference literature (Prakasa Rao 1987). Our purpose in developing neural�
like algorithms for this purpose was both to have a device that, after learning, is quick to evaluate�
and, at the same time, adjusts itself easily, through continuous learning, to changing statistics. As for�
the peA algorithms that extract the full correlation matrix, our neural algorithm laws are also non�
local. As a computation algorithm this is not a serious issue, but for hardware implementations it�
might raise some problems.�

3. IDENTIFICATION OF STOCHASTIC PROCESSES

As we have stated before the full characterisation of the time structure of a stochastic process
requires the knowledge of its characteristic functional (Eq. 1.3) for a dense set of functions 1;(t).

To construct an approximation to the characteristic functional we might discretize the time
{tn = n~t} and the inner product in the exponential becomes a sum over the process sampled at a
sequence of times.

i L.r(I.)~(I'»)
F(r;)= (e • (3.1)

The problem would then be reduced to the construction of a multidimensional characteristic function
as in Section 2. In practice we would have to limit the time-depth of the functional to a maximum of
T time steps, T~t being the maximum time-delay over which time correlations may be obtained. If

N is the number of different 1; values for each Ie. the algorithm developed in Section 2 requires NT
nodes in the intennediate layer and, for any reasonably large T, this method becomes
computationally explosive.

An alternative and computationally simpler method consist in, restricting ourselves to Markov
processes, to characterise the process by the construction of networks to represent the transition

6

function for fixed time intervals. From these networks the differential Chapman-Kolmogorov
equation may then be reconstructed.

Let x(t} be a one dimension Markov process and P(X2,1 + dllxl ,t) its transition function that is,

the conditional probability of finding the value X2 at time 1 + dl given Xl at time t. Assume further

that the process is stationary

p(X2 ,t + .1tlx1,t) =p(x:p.1tI~) (3.2)

The network that configures itself to represent this function is similar to the one we used for the 2

dimensional characteristic function. It is sketched in Fig.s 7a-b. It has a set ofN2 intermediate layer
nodes with node parameters, the node with coordinates i(ij) corresponding to the arguments

(X2 (ij) = Xo + ;.ax ,Xl (ij) = Xo + jdX) in the transition function. The domain of both arguments
is (Xo,Xo + N/!"x). For each pair {X2 = x(l+ d/),Xl;;: xU)} in the data set, the node
parameters that are updated are those in the 4 columns containing the nearest neighbours of the
point i = {X2, Xl} (Fig. 7b).

The learning rule is

(3.3)

(3.4)

where 11;) (X) =1 if (ij) is one of the nearest neighbours of the data point and zero otherwise. a is a

neighbourhood smoothing factor. SJCt) is a column normalisation factor. In the limit of large learning
times the node parameters approach the transition function

B(i}) ~ p(xo + idX,dtlxo + jdX) (3.5)

As for the networks in Section 2, the intermediate layer nodes are equipped with a radial basis
H.mction (Eq. 2.6) and the connection strengths in the output additive node have a learning law
identical to the second equation in (2.5). The role of this part of the network is, as before, to obtain
an interpolating effect.

What the algorithm of Eqs.(3 .3-4) does is to compute recursively the average number of transitions
between points in the configuration space of the process. The spatial smoothing effect of the
algorithm automatically insures a good representation of a continuous function from a finite data set.
Furthermore its recursive nature would be appropriate for the case of drifting statistics.

For a stationary process, once the learning process has been achieved and if <11 is chosen to be
sufficiently small, the network itself may be used to simulate the stationary Markov process. A
complete characterisation of the process may also be obtained by training a few similar networks for
different (small) dt values arid computing the coefficient functions in the differential Chapman
Kolmogorov equation (Gardiner 1983).

FIGURE CAPTIONS

Fig. 1 • A two-dimensional test signal

Fig.2 - Evolution of the connection strengths Wii and Wi2 in a PCA network for the data in Fig. 1

Fig. 3 • Network to learn the characteristic function of a scalar process

-+

Fig.4 • Network to learn the characteristic function of a 2-dimensional signal x(t)

Fig.5a - Real'part of the characteristic function for the data in Fig. 1 (left) and the mesh of (); values

(right) obtained by the network.

Fig.5b - Imaginary part of the characteristic function for the data in Fig.l (left) and the mesh of ();

values (right) obtained by the network.

Fig. 6a - Characteristic function for the Weierstrass random walk (b= 1.31)�

Fig. 6b - log(-log) of the characteristic function/raj for the Weierstrass random walk (b=1.31)�

Fig. 7 - (a) Network that learns the transition function P(X2 ,6t Ixd of a stationary Markov�
process; (b) Nearest neighbours of the data point i = (x(t +M),x(t».

Fig. 8· Typical sample path of a stationary Markov process.

Fig. 9 - Transition functions obtained for (a) t=3~T and (b) t=~T.

Fig. 10· Transition function p(X,6 TIO,O) (a) and p(X,36 TIO,O) (b).�

Fig. 11 (a) Computed drift function and linear least square fit. (b) Exact drift function of the process�
(1), least square linear fits for (2) t=~T and (3) t=2~T.

Fig. 12 Diffusion function for ~T (0), 2~T (+) and 3~T (*)

4,....-----.-----+-,...,.+--.......-=-.".---.----...-----,
+, +

3 f-- , . .. :f

+

.+ ..2~
+

I�
I ~. ~
Ia1-..

: + +

I +

.1
+:::~ 1�

-3
+

"'l++: ..
-4L-_--'-__-'--__'-----'''----b~=--'----::'---'''-_--'-_-.l

-4 -3 -1 :2 3 4

Fig.! - A two-dimensional test signal

I I
1f- l·

OF"'-'
:1 .,

l! IT
D,)l"lr----I! ..'----. ..
~ !' I I

I
-1 f-

I
a :2 3 5 6

:'<104

j
......... ..-�

-1 ~ .. L .. III1\.",--.......h.y�

I
o 3 5 6

:d04

Fig.2 - Evolution of the connection strengths W 11 and W 12 in a PCA
network for the data in Fig.l

11

Fig. 3 Network to learn the characteristic function of a scala~ process

/

(Xl

FigA Network to learn the characteristic function of a 2-dimensional signal

xu)

12�

Fig.5a - Real part of the characteristic function for the data in Fig.l (left)
and the mesh of 8i values (right) obtained by the network.

Fig.5b - Imaginary part of the characteristic function for the data in Fig.l
(left) and the mesh of ei values (right) obtained by the network.

13

1

f(a)
0.8 _._

0.6

0.4 t-.. O .•••.

oj: .�
ol. . .�

-O.2,r_----'-_ _--'--------'-__l
-O.4t~·········! j

-1 -0.5 0 0.5

a

Fig. 6-a Characteristic function for the Weierstrass random walk. (b=1.3l)

T
·1 ~
.2~
-3

-4

I
-5 r
~I

-4 -3.5 -3 -2.5 -2 -1.5 - l -D.5 o
logtu)

Fig. 6-b loge-log) of the characteristic function f(ex) for the Weierstrass
random walk (b= 1.31)

14

-- +
WoUj)�

~ Xq XX~o
X� X 0000

8"1) 00000
o� 0 O..t=00X,X� XX 000 00

./\
,/ o 0 0 00

X2 = x(t + ill) Xl = x(t) o 0000
(a)� (b)

Fig.� 7 (a) Network that learns the transition function P(X2' Lltl XI) of a
stationary Markov process; (b) Nearest neighbours of the data point
.r = (x (t + Llt), x (t)) .

':r
1.5

0.5

o

0.11 0.12 0.1.3 0.14 0.15 0.16 G.17 0.18 0.19 0.2

Fig.� 8 Typical sample path of a stationary Markov process.

15

l6

to-
-<1

----.c
"0-c.-.'" <1
r.
II

----~

~,....
-''-

"0
~=:.-
~

:§
-'

:n
~

:::l C-:..;
=:-'.-
~

C
:n--...\-

r-
0"1

':J)
,.-

7 r,-----,.----,....-----r-----,-----...,-------,------,
i
i
I�
I�

:r .�
I

4~

I
I

3~

2~

I~
OI

....•.. . r

.. ~ rI\... ~. ·1/
IIIIIIIII~,II.M'!

b

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Fig.1o Transition function p(x,L1TIO,O) a) and p(x,3L1TIO,O) b).

17�

120 l(X)r , i I ! -,---

100
. . ~" .

80

W 75 .

40

70

65 "': !

f--'
(Xl

20
60

55

0
-D15 -0.1 -0.05 0 0.05 0.1 0.15

50
-0.15 -0.1 -0.05 o 0.05 0_1 0.15

(a) (b)
Fig.11 (a) Computed drift function and linear least square fit. (b) Exact drift function of the process (l), least

square linear fits for (2) t=tlT and (3) t=2~ T.

°l
.-<

I�
I�

Ia'
-0.15 -0.1 -0.05 a 0.05 0.1 0.15

Fig.12 Diffusion function for ~T (0), 2~T (+) and 3LlT (*).

