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1 Statement of the problem 

A number of problems in geophysics, helioseismology, signal processing involve 
recovery of a function Q( r) from measurements of the following form: 

R 

L\; =1 J(;(r)Q(r) dr + 0; , i=I,2, ... ,M, (1) 

where the kernels f{j are known functions, K i , Q E £2[0, R], and the errors 0; 

are limited by 

for some positive e. This inverse problem is ill-posed: for small error levels e there 
exist solutions Q(r) reproducing the data L\; within the errors while having very 
large deviation from the true function S?(r·). Besides, the precise solution can be 
found only if the kernels J{;, i = 1,2, ... form an infinite complete set offunctions 
(Xia & Nashed 1994). 

Christensen-Dalsgaard et ai. (1990) have compared methods suitable for the 
inverting helioseismic data. All of these numerical methods are linear, so that 
the approximating solution Q(r) is the linear combination of the data L\j: 

M 

Q(r) =L cj(r·)L\; . (2) 
;=1 

In this report we consider the optimally localized averages inversion method 
(Backus & Gilbert 1968) where the coefficients c;(r) are explicitly determined to 
control the resolution and error magnification. We consider the subtractive vari
ant of the method (SOLA method), widely used for the inversion of helioseismic 
data (Jeffrey 1988; Pijpers & Thompson 1994) as well as for 8ignal processing 
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(Oldenburg 1981; Louis & MaaB 1991). For the SOLA method the coefficients 
c;(1') minimize the functional 

(3) 

where 

A(1', 1") = L
M 

J{;(r')Ci(r) 
;=1 

is the averaging kernel characterizing the resolution of the method, T( r, 1") is a 
given target function, p > 0 is a trade-off parameter which must be chosen, and 

M 

A2(r) =L cl(1') 
i=l 

is the error-magnification coefficient. For simplicity we have assumed that all 
data have the same standard deviation; this can always be achieved through 
suitable normalization of the data and kernels. We do not impose the condition 

l R 

A(r, 1") dr" = 1, l' E [0, R] , (4) 

on the coefficients c;(1') (Oldenburg 1981; Pijpers & Thompson 1994) but require 
this normalization for the target function. It is clear from equation (3) that the 
coefficients c;(1') and the solution Q are functions of p; thus we denote the 
approximating solution obtained by the SOLA method by QI'(1'). 

The purpose of present report is to consider the choice of trade-off parameter 
p and the convergence of the SOLA solution as e --+ O. 

2 The relation with Tikhonov regularization 

The method of Tikhonov regularization can be successfully applied to the solu
tion of the helioseismic inverse problem (Christensen-Dalsgaard et ai. 1990). Due 
to discrete form of helioseismic data L1;, i = 1,2, ... , M, the semi-continuous 
form of the smoothing functional (Wahba 1977) must be used. Then the regu
larized solution s)~eg(1') minimizes in the space £2[0, R] the functional 

M[ R ]2
M-

1 ~ 1 J(;(1')!?(r) d1' - L1; + ILIIS2IIL[o,Rj , 

and has the following form: 

s)~eg(r) = [{(r)(Q + pE)-1 L1 , (5) 

where 



Trade-off parameter in SOLA inversion 3 

Q is an M x M matrix with elements 

=lR 

qj,k Kj(r)Kk(r) dr, j, k = 1,2, ... , M ; 

E is the M x M unit matrix, and .1 = (.1 1 , .1 2 , ... , .1M ) T .� 

The SOLA and Tikhonov techniques are related by� 

Theorem 1. Between SOLA solutIOn and Tikhonov regularized one the 
following relation is valid: 

(6) 

Hence the SOLA method yields the regularized solution smoothed by the 
target function T(7', r'); the two solutions are identical if the target function is 
the Dirac £5 function. A similar relation was found by Jeffrey (1988) between the 
SOLA solution for the 8-function target and the solution of Philips (1962) and 
Twomey (1963). This relation allows us to concentrate on the case T(r, r') = 
8(r - r') because different target functions can be incorporated easily by the 
transformation (6). The relation (6) shows that in the SOLA method the trade
off parameter J.l has the same function as the regularization parameter in the 
Tikhonov method. Therefore, the choice of J.l may be based on methods well 
known in the regularization theory. In this report we consider objective methods 
which guarantee the convergence of the approximating solution Qi"(r) of the 
inverse problem to the true solution Q(7') as e --t O. 

3 The discrepancy principle 

WI? introduce the rms misfit p(J.l) of the solution to the data by 

(7) 

The discrepancy principle, commonly used in Tikhonov regularization, states 
that the optimal choice of the trade-off parameter J.l is the solution of the equation 
p(J.l) = e. This definition satisfies the followi:lg 

Theorem 2. Let Qi"(r) be defined by equation (5) and satisfying the in
equality p(J.l) ::; e. Then the discrepancy principle provides the smallest 
coefficient of error magnification J1(J.l, r) and the maximal err07' in fitting 
the target 8 function. 

We illustrate the application of the discrepancy principle to the inversion of 
helioseismic data. We use a set of 834 kernels Ki(r) for modes of solar oscillation 
in the frequency range 2 - 4 mHz and the artificial rotation law il(r) defined 
by Christensen-Dalsgaard et al. (1990). The dotted line in Fig.1 shows results 



4 A. A. Stepanov and J. Christensen-Dalsgaard 

of the inversion, assuming an error level e of 0.1%. The approximating solution 
recovers rather well the original function [2(1') except at the centre and surface. 
The problem for small radius l' is connected with the fact that at l' = °all 
kernels K; are zero. We show in section 4 that the problem near the surface can 
be solved by using a semi-optimal choice of trade-oft' parameter f..L as well as a 
target function T(1', 1") differing from the 5 function. 

Additional experiments with such data show that the discrepancy principle 
yields a good approximation only for small error levels (e less than 1%), which is 
rather smaller than the realistic measurements errors, whereas for larger values 
of e the solution is oversmoothed. The dashed line in Fig.1 shows results for an 
error of 3% which are not satisfactory. 
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Fig. 1. Exact rotation rate (solid line) and regularized solutions obtaiued with trade-off 
parameters determined from the discrepancy principle, for error levels e of 0.1 % (dotted 
line) and 3% (dashed line) 

4 The choice of trade-off parameter 

If the data {Ll;} have no errors, i.e., Ci = 0, it follows from equation (5) that 
si~eg(1') converges to the function [2+(r') = KQ+ Ll as f..L --+ 0; here Q+ is the 
generalized inverse matrix of Q. If the kernels K; (1') are linearly independent ,Q+ 
is simply Q-l. From Nashed & Wahba (1974) it follows that in the space £2 [0, R], 
[2+(1') is a least-squares solution of equation (1) with the minimal norm and as 
M --+ 00 converges to the exact solution [2(1'). To investigate the convergence of 
the approximating solution sil'(1') to the function [2+(1') as e --+ 0 as well as to 
choose the trade-off parameter f..L we have obtained the following estimate: 

(8) 

where the vector w = Q+ Ll. Thus convergence will be achieved if f..L --+ 0 as 
e --+ 0 in such way that the right-hand side of equation (8) tends to zero, that is 
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if A(Ii, r)e --> 0 as well A(Ii, r)1i --> O. Thus tt.e trade-off parameter Ii cannot tend 
to 0 too quickly but must be consistent with the level e of errors. For example, 
the equality Ii = e would guarantee the necessary convergence but such choice 
of Ii is suitable only in the formal limit of e --> O. For a given fixed level of errors 
e > 0 we have to obtain a constructive formulation of choice of Ii. We do it on 
the basis of the estimate (8), assuming that the value e is known a priori. 

The right-hand side of equation (8) shows that the error in the approxi
mating solution consists of the resolution error A(Ii, r)lillwl12 and the magnified 
error A(Ii, r)e. As we have previously noted, the discrepancy principle provides 
a minimum only for the second term; as a result, the resulting solution is as a 
rule oversmoothed and has insufficient resolution. The estimate (8) shows that 
in principle the overall error in the approximating solution can be reduced by 
increasing the magnified error and improving the resolution. 

The methodology for the choice of the trade-off parameter Ji depends on the 
available a priori information on the norm Ilwlk 

A. Optimal choice of trade-off parameter: 

We define the optimal value of liopt by minimizing the right-hand side of the 
inequality (8), 

Jiopt = argmin A(Ji, r)(e + JillwI12)' l' E [0, R] , (9) 

where argmin denotes the argument Ji for which the functional is minimal. This 
loral criterion defines a trade-off function liopt = Jiopt(r) for r E [0, R]. 

B. Semi-optimal choice of trade-off parameter. 

If the norm IIwl12 is unknown a priori, the choice 

Ii(r) = argmin {A(Ji, 1')(11 + e)}, r E [0, R] , 

ensures convergence of the right-hand side of equation (8) to 0 as e --+ O. We 
should note that because the value IIwl12 in the space L 2 [0, R] may be arbitrarily 
large, convergence of the regularized solution to the true one may be arbitrar
ily slow, with arbitrarily large absolute errors in the approximating solution. 
Evidently, the error may be constrained if an estimate of IIwl12 can be obtained. 

For all the solutions obtained with this semi-optimal trade-off parameter 
the approximating solution is significantly increased near the centre of the Sun, 
compared with the solution obtained using the discrepancy principle, bringing 
it in closer agreement with the exact solution; however, as in Fig. 1 there is still 
a deficiency near the surface. To avoid the latter discrepancy, we depart from 
the formally ideal resolution and use a Gaussian target function of the width (7 

instead of the D-function target. This approach was used previously by Pijpers & 
Thompson (1994) (see also Oldenburg 1981). The parameters (7 and Ilwl/2 were 
chosen such as to satisfy the condition P(Ii) ::; e and to obtain well-localized 
averaging kernels A(r', r'). Specifically, we used (7=0.03 and IlwIl2=40. 

The regularized solution with the semi-optimal value of Ii recovers the true 
rotation function much better near the centre than does the solution obtained by 
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Fig. 2. Exact rotation iaw (solid line) and solut.ion (dot.ted line) obtained with optimal 
choice of trade-off funct.ion and a Gaussian target function, for an error level e of 3 

the discrepancy principle, but it displays rapid oscillations similar to those ob
tained by Christensen-Dalsgaard et ai. (1990) for the spectral-expansion method. 
However, the SOLA solution using Gaussian target function, shown in Fig. 2, 
quite well approximates the true function [2(1"), assuming an error level e repre
sentative of current observations. 
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