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Testing a solar model: the forward problem 3

1 INTRODUCTION

The present chapter addresses the forward problem, 1.¢.. the relation between
the stricture of a solar model and the corresponding frequencies. As iinportant.
however, is the extent to which the frequencies reflect the physics and other as-
sumptions underlying the model caleulation. Thus in Section 2 1 consider some
aspects of solar model computation. In addition, the understanding of the diag-
nostic potential of the frequencies requires information ahout the properties of
the oscillations, beyond what was supplied in the chapter by Leibacher. This is
provided in Section 3. Section 1 investigates the relation hetween the properties
of solar structure and the oscillations by considering several examples of modi-
lications to the solar models and their offects on the frequencies, while Section
5 considers further analyses of the observed frequencies. Finally, the prospects
of extending this type of work to other stars are addressed in Section 6.

Phe present chiapter assumes as background the chapter by Leibacher in
this vohune. Other general presentations of the properties of solar and stellar
oxcillations have been given by, for example, Unno et al. (1989). Gough &
Toomre (1991). Gough (1993) and Christensen-Dalsgaard (1994).

1.1 A little history

The realization that observed frequencies of solar oscillation might provide in-
formation about the solar interior goes back at. least two decades. Observations
of fluctuations in the solar limb intensity (Hill & Stebbins 1975; Hill, Stebbins
& Brown 1976), and the claimed detection of a Doppler velocity oscillation with
a period close to 160 minutes (Brookes, Isaak & vau der Raay 1976; Severny,
Kotov & Tsap 1976) provided carly indications that global solar oscillations
might be detectable and led to the first comparisons of the reported frequencies
with those of solar models (e.g. Scuflaire et al. 1975; Christensen-Dalsgaard &
Gough 1976; Iben & Mahalify 1976; Rouse 1977). Although the reality of these
carly claims is questionable, they undoubtedly provided an important starting
point for this type of work.

At about the same time the first detailed observations of the five-minute
oscillations of high degree (Deubner 1975; Rhodes, Ulrich & Simon 1976) con-
firmed their nature as trapped acoustic modes of oscillation in the outermost
parts of the Sun, previously inferred by Ulrich (1970) and Leibacher & Stein
(1971). More detailed computations of frequencies for solar envelope models
vielded results in overall agreement with the observations and suggested that
the observed modes were overstable (e.g. Ando & Osaki 1975, 1977: it should
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be noted that later stability analyses, taking into account the interaction with
convection, indicate that the modes are stable; see Balmforth 1992a). Further
comparisons of the observed and computed frequencies indicated that the solar
convection zone was deeper than previously assumed (Gough 1977a; Ulrich &
Rhodes 1977) and showed that the frequencies were sensitive to details of the
cquation of state of matter in the Sun (e.g. Berthomicu ef al. 1930; Lubow,
Rhodes & Ulrich 1980).

The first definite detection of modes extending through most of the Sun
resulted from whole-disk Doppler measurements which clearly showed oscilla-
tions in the five-minute region (Fossat & Ricort 1975; Claverie et al. 1979);
particularly important was the identification in the latter data of an approxi-
mately uniformly spaced set of peaks in the power spectrum, corresponding to
the asymptotically predicted behaviour of the frequencies of low-degree acoustic
modes. A much more detailed spectrum, resolving individual modes, was ob-
tained in almost continuous observations over several days from the geographical
South Pole (Grec, Fossat & Pomerantz 1980).

The connection between these low-degree modes and the high-degree oscil-
lations mentioned above was established by obscrvations by Harvey & Duvall
(1984). This enabled an unambiguous identification of the radial orders of the
low-degree modes and provided extensive data on the structure of the solar inte-
rior. Further observations using a variety of techniques have since then dramat-
ically increased the number of identified modes and the accuracy with which the
frequencies have been determined, providing the current basis for helioseismic
investigations.

1.2 Definition of the forward problem

(iiven a set of observed frequencies, probably the most immediate and obvious
method of analysis is to compare them with frequencies computed for a solar
model. This essentially defines the forward problem, as a test of a solar model.
As such, the oscillation frequencies have several major advantages over other
measurements that might relate to the structure of the solar interior: they can
be determined observationally with great accuracy; different modes probe very
different aspects of the structure; and, given a solar model, the frequencies can
be computed with substantial precision. As discussed 1n more detail below
the last statement must be qualified: aspects of the superficial region of the
Sun introduce uncertaintics in the computed frequencies which must be kept in
mind when carrying out the comparison with the observations. Nonetheless, the
{requencies remain very powerful diagnostics of the solar interior.
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In some sense the solar model in itself is uninteresting: what requires test-
ing are the assumptions and physical properties that underly the calculation of
the model, thus improving the basis for general stellar-evolution calculations.
Furthermore. the accuracy and extent of the solar data allow the properties of
matter in the Sun to be probed in considerable detail, thus providing informa-
fion that is totally inaccessible in laboratory studies. In this sense, therefore,
the forward problem links the physics to the observed frequencies. This point
of view will be employed extensively in the following.

Faced with the inevitable discrepancies between the computed and observed
frequencies, what does one do? The obvious goal is to correct the model, or
more fundamentally the physics, in such a way as to reduce the discrepancies.
One approach is to compute several models and frequencies, adopting that model
whicli best fits the data. At the opposite extreme, techniques for inverse analysis
(sce the chapter by Gough) offer systematic ways of determining the corrections.
In between is a grey arca of least-squares fits to the data, varying small sets of
suitably chosen parameters. Such procedures were employed extensively in the
analysis of the carly, limited helioseismic data (c¢.g. Christensen-Dalsgaard &
Gough 1980; Gabriel, Scullaire & Noels 1982). Although the current wealth of
data makes inverse technigues attractive, parameter fitting still has an important
tole to play for more specialized applications, where the data can be combined
in such a way as to isolate specific aspects of the solar interior. An example of
this will be considered in Section 5.2

2 PHYSICS OF SOLAR MODELS

2.1 Introduction

T'he computed solar models, and hence their frequencies, depend on assumptions
about the physical properties of matter in stars, in particular the equation of
state, the opacity and the rates of nuclear reactions; these aspects of the calcula-
tion might be called the microphysics. Furthermore, the computations involve a
number of simplifying assumptions, often covering much complex physics which
might be called the macrophysics:

e The treatment of convection is approximated by mixing-length theory
which provides a parametrization of the structure of the uppermost part
of the convection zone in terms of the mixing-length parameter a..

e The dynamical effects of convection (the so-called turbulent pressure) are
ignored.
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e It is assumed that there is no mixing outside convectively unstable regions.

o Iffects of magnetic fields are ignored.

Similarly, the calculations of oscillation frequencies are often done in the adi-
abatic approximation. Even when nonadiabatic effects are taken into account,
their treatment is uncertain, since there is no definite theory for the perturba-
tion in the convective flux, induced by the oscillations. Also, the perturbations
in the turbulent pressure are usually neglected.

The goals of the analysis of observed frequencies are evidently to test both
the microphysics and the simplifying assumptions. This is complicated by the
fact that a given region of the model in general is affected by several aspects of
the microphysics, e.g. both the opacity and the equation of state; under these
circumstances it may evidently be difficult or impossible to isolate the cause of
discrepancies between observations and models.

The computation of solar models requires the specification of a number of
parameters. The age of the Sun can be estimated from ages determined for
meteorites (e.g. Guenther 1989; Appendix by Gi. Wasserburg in the paper by
Bahcall & Pinsonneault 1995). The present ratio Z/X between the abundances
of heavy elements and hydrogen on the solar surface is approximately known
from spectroscopy (e.g. Anders & Grevesse 1989; Grevesse & Noels 1993). Also,
the computed models must match the photospheric radius and surface luminosity
of the present Sun. This is achieved by adjusting the initial abundance Y of
helium and a parameter characterizing convective energy transport. The latter
parameter (in mixing-length theory taken to be the ratio a¢ between the mixing
length and the pressure scale height) serves to fix the value s of the specific
entropy in the bulk of the convection zone, where the temperature stratification
is essentially adiabatic and where s is therefore nearly constant.

In the following I provide a brief overview of the some aspects of the physics
of particular relevance to the analysis of the oscillation frequencies.

2.2 Microphysics
2.2.1 Equation of state

As mentioned in Section 1.1 the potential for using the observed frequencies to
test the equation of state was recognized quite early. A detailed analysis of the
treatment of the thermodynamical properties of solar matter and its effect on
the frequencies was given by Christensen-Dalsgaard & Dappen (1992).
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The theoretical description of the solar plasmais complicated by the interac-
tons hetween its constituents, which strongly affect, e.g.. the degree of partial
ionization in the outer parts of the Sun. A specific problem is to ensure that
matter becomes fully jonized in the deep solar interior; this is normally achieved
by including some formulation for the so-called “pressure ionization”, taking ef-
foct at high density. We are sull far removed from a definitive treatment of these
processes. However. an essential feature of any treatment is that it be thermody-
namically consistent. 11 this is not the case, the results oblained depend on the
details of how, for example. the oscillation equations are formulated, potentially

feading to unpredictable results.

Here 1 eonsider the following equations of state:

o The Eggleton. Faulkner & Flannery (1973) formulation (in the following
FI'F). This uses the basic Saha equation, assuming all atoms or ions to be
i the ground state, and includes a simple but thermodynamically consis-
tent treatment of pressure ionization.

o ‘e CEEFF formulation. This corresponds to EFF, but with the addition
of Coulomb effects in the Debye-Hickel approximation. It should be noted
that these effects result in corrections to pressure and internal energy of
the gas, as well as to the chemical potentials and hence jonization balance.
The effects on ionization, which dominate in the outer parts of the model,
have sometimes been ignored, leading to thermodynamic inconsistencies.

e The so-called MHD formulation (Hummer & Mihalas 1988; Mihalas,
Dappen & Hummer 1988; Mihalas et al. 1990). This provides a detailed
treatment of the interactions within the gas, involving a probabilistic de-
«eription of the level populatious.

These formulations are all based on what has been called the chemical pic-
ture (¢.g. Déappen 1992), where the constituents of the gas are regarded as
atoms, ions and electrons. However, equally detailed descriptions exist in the
physical picture, where the properties of the gas are described directly in terms
of the interactions between fundamental particles, handled through many-body
activity expansion. For practical applications the most imiportant example is
the Livermore equation of state (e.g. Rogers, Swenson & lIglesias 1995), which
forms the basis for the OPAL opacities discussed in the following section.
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2.2.2 Opacity

Uncertainties in the opacity have substantial effects on the solar models and
frequencies. Early inversions for the sound speed (Christensen-Dalsgaard ef al.
1985) indicated that the the opacity should be increased in the solar interior,
relative to the then used tables. Such increases have in fact been found in recent
opacity calculations, substantially reducing the discrepancies in the structure
of the radiative interior hetween the models and the Sun. Nonetheless, it is
likely that some of the remaining difference may still be caused by errors, at a
level of a few per cent, in the opacities. A particular uncertainty concerns the
opacity in the solar atmosphere: much of the difference between the observed
and computed [requencies can be eliminated through a substantial increase in
the low-temperature opacity (¢f. Section 5.3), although the reality of such large
opacities is doubtful.

Of particular importance in the recent revisions of the opacity calculations
has been the inclusion of large numbers of spectral lines, which have been found
to dominate the opacity in extensive regions of the density-temperature plane.
The result has been increases in opacity of up to factors of 2 - 3, although the
changes under conditions relevant to the Sun have heen somewhat smaller. Two
independent calculations, using rather different techniques, have been carried
out: by the Opacity Project (OP; e.g. Seaton ¢t al. 1994); and by the Livermore
group (e.g. Iglesias et al. 1992) resulting in the so-called OPAL table. The
results of these two sets of calculations agree to within a few per cent.

The models discussed in this chapter were computed with the OPAL tables;
the low-temperature opacities were obtained from Kurucz (1991). To illustrate
the sensitivity to the opacity 1 also consider several cases of modifying artificially
the opacity in restricted temperature ranges.

2.2.3 Nuclear reactions

The nuclear reactions responsible for the Sun’s energy output are discussed in
the chapter by Bahcall. The details of the reaction networks are of crucial impor-
tance to the computed neutrino fluxes. In contrast. the oscillation frequencies
are relatively insensitive to the reaction parameters. This is to some extent
caused by the calibration of the initial composition to obtain the correct lumi-
nosity for the model of the present Sun: a change in the reaction parameters is
compensated by a change in the composition, leaving the structure of the model
largely unchanged. Dziembowski et al. (1994) found that a 3 per cent change in
the basic p—p reaction rate caused changes in sound speed and density which are
harely detectable with the present helioseismic accuracy. They also considered
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an increase in the *He +°He rate of a sufficient magnitude to bring the computed
capture rate in the *’Cl radiochemical neutrino experiment into agreement with
the measurements; interestingly, this resulted in changes in sound speed and
density which might well be detectable in the oscillation frequencies, at least if
other uncertainties in the structure of the model could be eliminated.

Here | largely employ nuclear parameters from Parker (1986).

2.2.4 Microscopic diffusion and gravitational settling

Microscopic diffusion and gravitational settling are not normally considered part
of a “standard model calculation”. Indeed, crude estimates (e.g. Eddington
1926) suggest that the average diffusive time scale far exceeds the typical lifetime
of stars. However, more careful calculations show that the effect is significant in
solar evolution (e.g. Noerdlinger 1977; Wambsganss 1988), particularly in view
of the high precision with which solar models can be tested.

An initial study of the effects of diffusion and settling on solar oscillations
was carried out by Demarque & Guenther (1988). Cox, Guzik & Kidman (1989)
considered detailed effects on solar models and oscillation frequencies. The dom-
inant effect is the settling of helium out of the convection zone. Solar models with
diffusion were also computed by Proffitt & Michaud (1991}, while Christensen-
Dalsgaard, Proffitt & Thompson (1993) showed that helium settling, causing a
steep gradient in the helium abundance at the base of the convection zone, very
substantially improved the agreement between the sound speed of the model
and the solar sound speed as inferred from helioseismic inversion. In addition,
there was a significant effect of the accumulation of helium in the core. These
results are discussed in Sections 4.3 and 5.1.

Settling similarly causes the heavy elements to sink, slightly depleting the
convection zone and the outer parts of the radiative interior and enriching the
core. This mainly affects the structure through a modification of the opacity in
the radiative interior. Also, the current photospheric value of Z/X is smaller
than the initial value. Proffitt (1994) found that when this effect was taken
into account, the resulting sound-speed profile below the convection zone, but
excluding the core, was rather similar to the result obtained with helium settling
and diffusion alone. It should be noted, however, that different heavy elements
diffuse at different rates. With diffusion and settling the relative mixture of
the heavy elements therefore varies with position. This causes very substan-
tial complications, which so far have not been dealt with consistently, in the
interpolation in the opacity tables.
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2.3 Macrophysics
2.3.1 Outer convection zone

There seems little doubt that most of the solar convection zone is very nearly
adiabatically stratified: here a minute superadiabaticity is sufficient to drive the
convective motion required for the energy transport. The calibration of solar
models to the correct radius essentially fixes the structure of this region, and
hence the depth of the convection zone (Gough & Weiss 1976). In the uppermost
part of the convection zone, however, the density is so low that energy transport
requires a substantial superadiabatic gradient. Only here do different treatments
of convection result in significant differences in solar structure.

In general, prescriptions for convection include free parameters, such as the
mixing-length parameter a. in mixing-length theory. One such parameter is
required for the calibration, controlling the change in specific entropy s from
the bottom of the atmosphere (where s is essentially determined by atmospheric
structure, as fixed by theoretical or semi-empirical atmospheric models) to the
nearly adiabatic interior of the convection zone. This calibration fixes the inte-
gral of the superadiabatic gradient ¥V — Vad, where V=dInT/dInp and V4 is
its adiabatic value. However, the detailed behaviour of V — Vaq differs between
different treatments of convection. Canuto & Mazzitelli (1991, 1992) developed
descriptions based on assuming a full turbulent spectrum, and using as mixing
length the distance to the top of the convection zone; this formulation resulted
in a substantially higher and sharper V — V,4 in the superadiabatic region than
for traditional mixing-length models. Lydon et al. (1992) based their treatment
on correlations obtained from hydrodynamical simulations of turbulent convec-
tion, finding V — V,4 similar to, although slightly lower and broader than, the
results of mixing-length theory. In this treatment, as well as the in the work of
Canuto & Mazzitelli, adjustable free parameters were not explicitly used. Mon-
teiro, Christensen-Dalsgaard & Thompson (1995ab) made an extensive survey
of various types of convection formulations and their effects on the computed
oscillation frequencies.

These convection treatments are all local, in that they assume that the con-
vective flux at a given point is determined by the conditions, including the
superadiabatic gradient, at that point. In reality convective eddies must sample
a range of positions within the Sun, and the energy transport is determined
by eddies originating over a range of levels. Procedures for taking such effects
into account were developed by Spiegel (1963) and Gough (1976), although the
application to solar modelling has been slow. Exceptions are the work by Xiong
& Chen (1992) and by Balmforth (1992) who in addition considered effects of a
time-dependent formulation of non-local mixing-length theory on solar oscilla-
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tions.

In the strongly superadiabatic region the convective velocities reach a sub-
stantial fraction of the sound speed. As a result, the convective momentum
transport makes a significant contribution to hydrostatic bhalance in the aver-
age model. Nonetheless, this so-called turbulent pressure is usually ignored in
computations of solar models. Indeed, a consistent treatment of turbulent pres-
sure in local mixing-length models is plagued by mathematical difficulties at the
boundaries of the convectively unstable region {Gough 1977b). These problems
are avoided in non-local treatments where there are no such sharp boundaries.

The near-surface part of the convection zone has also been modelled through
detailed hydrodynamical simulations (e.g. Stein & Nordlund 1989). These show
a strong asymmetry of the flow: rapid radiative cooling at the surface causes
strong narrow cold downdrafts which persist throughout the computational do-
main, with slow upwelling in between. From such siinulations mean models can
be constructed through horizontal and temporal averaging. These models con-
firm that the stratification becomes neatly adiabatic at depth, with an adiabat
which is relatively close to that obtained in calibrated mixing-length models.
Furthermore, the models clearly demonstrate the importance of turbulent pres-

sure.

Conditions at the base of the convection zone remain uncertain. [t seems
inevitable that motion extends beyond the unstable region. Simple models (Sha-
viv & Salpeter 1973; Schmitt, Rosner & Bohn 1984; Pidatella & Stix 1986; Zahn
1991) predict a nearly adiabatic extension of the convection zone with relatively
vigorous motion, followed by an abrupt transition to the radiative gradient. As
discussed in more detail in Section 4.5 the resulting near-discontinuity in the
sound-speed gradient might have observable effects on the oscillation frequen-
C108.

2.3.2 Mixing in the solar interior?

A potentially serious uncertainty in solar modelling concerns mixing caused by
material motion in the solar interior. It is plausible that penetration beyond the
convection zone induces weaker motion. possibly in the form of internal gravity
waves, in the radiative intetior. Such motion could have substantial effects on
the composition profile resulting from microscopic diffusion and gravitational
settling. Indeed, the reduction of the solar photospheric lithium abundance
by roughly a factor 100 relative to the solar-system abundance indicates that
mixing well beneath the convection zone must have occurred at some phase of
solar evolution (e.g. Christensen-Dalsgaard, Gough & Thompson 1992); lithium
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depletion in the pre-main-sequence phase may also have been an important fac-
tor (r.¢g. Ahrens, Stix & Thorn 1992; Swenson ¢f al. 1991). Schatzmann ef al.
(1981) considered the effects on solar evolution of substantial turbulent diffusion,
finding that this might lead to a significant reduction in the predicted neutrino
flux; the physical basis for the assumed diffusion coefficient was somewhat ques-
tionable, however.

The solar spin-down from a normally assumed initial rapid rotation is likely
to have caused regions of strong shear in the solar radiative interior which could
have led to instabilities and hence mixing. In an ambitious effort, Pinsonneault
et al. (1989) have computed models of such effects, with approximate expressions
for the transport resulting from the instabilities. The results showed substan-
tial effects on the photospheric lithium abundance, reproducing the observed
depletion, while the effect on the central hydrogen abundance was small. De-
tailed analysis of models including rotational instabilities indicated no significant
changes in the oscillation frequencies (Chaboyer et al. 1995). It should be noted,
however, that the computed rotation profiles seem to be inconsistent with he-
lioseismic determinations of solar internal rotation (e.g. Duvall et al. 1984;
Tomczyk, Schou & Thompson 1995). Zahn (1992) developed a procedure to
evaluate mixing due to turbulence induced by meridional circulation. Detailed
results for the Sun have apparently so far not heen obtained, however.

2.4 Structure of the solar convection zone

The fact that the bulk of the convection zone is nearly adiabatically stratified
considerably simplifies the analysis of solar oscillation data. Here to a very good
approximation pressure p and density p are related by

dinp 1
dlnp_l'—;’ 1)

where T’y = (Olnp/d1np)aq. As a result, the structure of the convection zone
is independent of opacity: it is determined by the value of the specific entropy
s, by the composition (uniform, because of the very efficient mixing) and the
equation of state. Consequently, modes of oscillation that are trapped in the con-
vection zone are ideally suited to test the properties of the equation of state and

to determine the solar composition (see also Christensen-Dalsgaard & Dippen
1992).

From equation (1) we may easily obtain an approximate expression for the
adiabatic sound speed c. Introducing u = p/p we have from the equation for
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hydrostatic support that

du _1dp 1-dlnp>w4@<1-L> @)
E_pdr( dlnp/ — 2 /"’

where (7 is the gravitational constant and i is the mass interior to radius r.
In equation (2) we may take m =~ M, the total mass of the Sun, since the
convection zone contains only about 2 per cent of the solar mass. Outside the
Jdominant ionization zones of hydrogen and belium, which are confined to the
outer 2 - 3 per cent of the radius, we can furthermore assume I'; to be constant.
Within this rather crude approximation we can therefore integrate equation (2),

to obtain i | :
~ ] - A 3
ex @t (1-5) (0- ) ®

=T~ GM(T, - 1) (1 - L) : )
r R

lhere R*. which serves as a constant of integration, is approximately equal to the
photospheric radius £ of the star. Thus in the deeper parts of the convection
zone ¢(r) is essentially determined by the total mass and radius of the Sun, as
well as by (a suitable average of) T'y. It should also be noted that equation (2)
relates the derivative of u, which can be determined from the observed oscillation
frequencies, to the thermodynamic properties of the gas as described by I';.
This relation may therefore be used to determine the helium abundance of the
convection zone (Dappen & Gough 1984, 1986) or to test the equation of state
(Dziembowski, Pamyatnykh & Sienkiewicz 1992).

or

2.5 Overview of solar structure

Figure 1 provides a summary of the physics and uncertainties of solar internal
structure. In the radiative interior the situation is complicated by the simulta-
neous dependence on the equation of state, opacity, energy generation rate and
composition profile. On the other hand, since matter is essentially fully ionized
in this region the uncertainties introduced by the equation of state are sub-
stantially reduced. Also, I indicated in Section 2.2.3 that the details of nuclear
reactions have modest effects on the oscillation frequencies. Thus in this part of
the Sun we expect that the oscillations will be used predominantly to measure
aspects of the opacity and the composition profile. As argued in Section 2.4 the
convection zone, on the other hand, depends on composition, specific entropy
and the equation of state. Furthermore, the composition can be assumed to be
independent of position in the convection zone; this offers some hope that uncer-
tainties in the composition and the equation of state can be partially separated
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Figure 1: Schematic representation of solar structure. The thin hashed area near
the surface indicates the region where the physics is uncertain, because of effects
of convection, nonadiabaticity, etc. At the base of the convection zone, convec-
tive overshoot and diffusion introduce additional uncertainty. The structure of
the adiabatic part of the convection zone is determined by the equation of state
(EOS), and the constant values of specific entropy s, and composition (given by
the abundances X and Z of hydrogen and heavy elements). Beneath the con-

vection zone the structure also depends on opacity k and the energy generation
rate €.

(Gough 1984a). It is obvious, however, that one cannot exclude errors in the
equation of state which essentially mimic a change in composition.

Much of the uncertainty in the physics is concentrated very near the surface.
This is true of the dynamical effects of convection, since convective velocities are
likely to be very small elsewhere, and of the details of convective energy trans-
port; furthermore, unless the interior field is much stronger than the observed
photospheric field, effects of magnetic fields on the average solar structure are
similarly concentrated. Also, as discussed by Leibacher (this volume) potential
errors in the treatment of the oscillations, associated with nonadiabatic effects
and fluctuations in the turbulent pressure, are concentrated in this region; in
contrast, the oscillations are expected to be adiabatic to very high precision in
the solar interior. These near-surface uncertainties have a substantial effect on



Testing a solar model: the forward problem 15

the oscillation frequencies which may influence the analysis of the observations.
Fortunately, as argued in Section 3.44 it is to a large extent possible to sep-
arate the effects of the superficial errors, hence isolating those aspects of the
frequencies which provide reliable information about the solar interior.

3 PROPERTIES OF ADIABATIC OSCILLA-
TIONS

3.1 Introduction

The basic properties of solar oscillations are described in the chapter by
1Leibacher. However, for completeness the present chapter contains certain basic
definitions already given there. Also, in the following analysis of the sensitiv-
ity of the oscillation frequencies to aspects of structure we shall need a(.i(lit,ional
insight. Much of the material presented here has been adapted from Christensen-

Dalsgaard (1994).

Although claims for detection of g modes have been made, the existing iden-
tified observations of solar oscillation are confined to p and f modes. Thus [ shall
restrict myself to these modes. Furthermore, | generally assume the oscillations
{0 e adiabatic. It was noted by Leibacher that nonadiabatic effects on the
frequencies are important very near the surface; however, the physical nature of
these offects is still badly understood, and so they must at present be regarded
as a source of uncertainty in the analysis of the observed frequencies.

As usual. the modes are described in terms of spherical harmonics ¥;™; the
degree [ is related to the the length ky of the horizontal component of the
wavenumber, at distance r from the centre, by

kyp ==, with L2 =1l +1). (5)

We neglect rotation and other departures from spherical symmetry. Then the
angular frequencies wy depend only on the degree and the radial order n of
the modes In addition to wy, we shall often consider the cyclic frequencies
Unt = wai /27,

The frequencies of a solar model are complicated functions of the structure
of the model. However, all available evidence indicates that our present solar
models are fairly close to the actual solar structure. This motivates analyzing the
observed frequencies in terms of departures from the frequencies of some reference
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model. If the differences between the Sun and the model are sufficiently small,
there is an approximately linear relation between the model and the frequency
differences (see also Section 3.4). Similarly, the effects of changing some aspect
of the model physics is conveniently described in terms of the corresponding
model and frequency differences. Several examples of this are given in Section
1.

Computation of adiabatic frequencies for a given model is relatively straight-
forward. However, the results are not immediately easy to interpret. lnsight
into the relation between the frequencies and the structure of the model can be
obtained from the asymptotic properties of the modes. Most of the observed fre-
quencies correspond to acoustic modes of relatively high radial order or degree,
for which the asymptotic description is [airly accurate. Although the asymp-
totic theory cannot replace precise numerical computation, it may still be used
to obtain quantitative results. Examples of this are given in Section 5.1.

The {-mode frequencies depend only weakly on solar structure. To leading
order, they satisfy
Wi~ goky (6)

where g, is the surface gravitational acceleration. To this accuracy the infor-
mation content in the f-mode frequencies is clearly limited. The observed fre-
quencies show departures from equation (6) which are substantially larger than
the corresponding departures for computed frequencies for normal solar models;
the origin of these departures is so far uncertain (e.g. Rosenthal & Gough 1994;
Rosenthal & Christensen-Dalsgaard 1995; Rosenthal et al. 1995a). Thus in the
following I shall predominantly consider p modes.

3.2 What do the oscillation frequencies depend on?

The adiabatic oscillation equations (see the chapter by L ibacher) obviously
depend on the structure of the equilibrium model. A close. inspection reveals
that the coeflicients are determined solely by the set of equilibrium variables

psps g, (7

\

as functions of r. However, the equilibrium model satisfies the stellar structure
equations; in addition it may be assumed to have a given mass and radius, which
at least in the case of the Sun are known with high precision. If p(r) is given,
the interior mass and hence g(r) can be determined from simple integration;
given g, the equation of hydrostatic support may be integrated from the surface
to provide p(r) (the surface pressure is known from empirical models of the
solar atmosphere). Thus of the set (7) only the two functions p(r) and T)(r)
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are independent, and the adiabatic oscillation {requencies are determined solely
by these two functions. Conversely, if no other constraints are imposed, the
observed frequencies give direct independent information only about p and I'y;
from p, p may then be determined from the constraint of hydrostatic support.

The equation of state relates I'y to p, p and the chemical composition. To
a fair degree of approximation the chemical composition can be specified by a
single parameter, such as the abundance Y by mass of helium. In this approx-
imation just three quantities should suffice to specify fully the thermodynamic
state. Given that p, p and I'y can be obtained from the oscillation observa-
tions, knowledge of the equation of state should enable the determination of
any other thermodynamic variable, including Y, from these observed quantities.
Outsidc the major ionization zones I'y is very nearly constant and hence gives a
poor determination of the thermodynamic state; however, it varies sufficiently
in the helium ionization zones to allow a determination of Y, provided that the
properties of the equation of state are known with sufficient accuracy. Indeed,
procedures for such a determination of the helium abundance of the Sun have
heen proposed (e.g. Dappen & Gough 1984, 1986; Vorontsov, Baturin & Pamy-
atnykh 1991; Kosovichev ef al. 1992). Alternatively, such analyses provide a
test of the equation of stale, if the helium abundance is otherwise constrained.
As discussed in Section 5.2, an apparently quite efficient technique can be ob-
tained on the basis of the asymptotic behaviour of the oscillations in the helium
ionization zone.

The preceding discussion was made in terms of the pair (p,I'1). However,
any other independent pair of model variables, related directly to p and I';, may
he used instead. Since most of the observed solar oscillations have essentially the
nature of standing acoustic waves, their frequencies are largely determined by
the behaviour of sound speed c; hence it is natural to use c as one of the variables,
combined with, e.g., por I';. As discussed in Section 5.1 below, the observations
are sufficiently rich that the observed frequencies may be inverted to obtain an
estimate of the sound speed in most of the Sun. It follows from the equation of
state, approximated by the ideal gas law, that this essentially provides a measure
of T/u, T being temperature and g the mean molecular weight. However, it is
important to note that measurements of adiabatic oscillation frequencies do
not by themselves allow a determination of the temperature in a star. Only if
the mean molecular weight can be otherwise constrained (e.g. by demanding
that its variation in the stellar interior results from normal stellar evolution) is it
possible to estimate the stellar interior temperature. This limitation is of obvious
importance for the use of observed solar oscillation frequencies to throw a light
on the apparent deficit of observed solar neutrinos (e.g. Christensen-Dalsgaard
1991).
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3.3 Simple p-mode asymptotics

The asymptotic properties of solar oscillations were discussed by Leibacher (this
volume). Here I repeat and extend a few simple aspects of the asymptotic
description, for use later in the present chapter.

3.3.1 Simple derivation of Duvall law

A relation central to the understanding of p-mode behaviour is the Duvall law.
This can be derived very simply from the dispersion relation for plane sound
waves:

w? =k, (8)
where k is the wave number. 1 write |k|* = k2 + k}, where k), is given by
equation (5). Thus

2 g2

2 Lt

kr E C2 r2 . (9)
This equation describes the geometry of the ray along which the wave propa-
gates; propagation, with real k,, is confined to the region outside the turning
point r = r,, where r, satisfies

=2, (10)

A more careful analysis (briefly summarized in Section 3.3.5) shows that the
waves have an outer turning point R, located just below the photosphere. To
obtain a standing wave (i.e., a mode of oscillation) we must require, roughly, an
integral number of oscillations in the radial direction between the lower turning
point and the photosphere, although taking into account the phase shifts at the
extremes of the propagating region; thus

R
/ kdr = n(r +a) . (11)

where o takes care of the behaviour near the turning points. From equation (9)
we therefore obtain

R L2\ "*dr [n + a(w)]r
/n (1 a w’r?’) P w ’ (12)

which is the Duvall law.

It might be noted that analysis of the asymptotics of low-degree modes in-
dicates that in the asymptotic relations L should be defined as

L=1+1/2, (13)
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instead of the definition given in equation (5). (Note that the distinction between
these two definitions is only significant for low-degree modes.) In the following
applications of the asymptotic theory equation (131 will be used.

3.3.2 Effects of changing the dispersion relation
To investigate the effects of changes to the model in the asymptotic approxima-
tion, we replace equation (8) by

W=k of(r), (14)

where 6 is a small modification which, as indicated. is assumed to be given as
a function of r. Instead of equation (9) we therefore obtain, to leading order in

of,
Lo 1\
b= (F"?"ZZ”)
2 2\ /2 2.2\ -1/2
:ﬁ J_LC AAlv‘lhé_C (5f (15)
<l wir? 2w? wir?

By substituting equation (15) into the condition (11) for a standing wave we

obtain

(n +a)r R 1 122 1/2 Eii—l‘/ﬂ . L2c? —1/26fd_r (6)
w = /n T oo ¢ 2w? U wir? ¢

Here the last term shows the effect of the perturbation on the Duvall law.

We can now find the effect on the oscillation frequencies of the perturbation.
We assume that the result is to change the frequency from w to w + éw. Also
it should be recalled that a = a(w) in general depends on w. Finally, we note
that the perturbation, in addition to 0f, may involve a change da to the phase
function a. Multiplving equation (16) by w and linearizing in éw and éa yields

do R . L2\ dr N /R - L2\ 7V 1262 S dr
"Eéw - 6w/r. Tt c v " wir? wirz w ¢
1 /R L2\ dr
“5 ). (1'w2r2 6f7 - méa . (17)
From this we finally obtain
Sw 1 R L2\ dr b
09 _ S o
Sw_2w2/n (1 e ST (18)
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where

G- /” | L2\ " e da 9
R T wrr? LT (19)

This is the desired general expression.

If the terms in da/dw and éa are neglected, equation (18) has a very simple
physical interpretation: the equation shows that the relative change in w? is just
a weighted average of 6f/w?, with the weight function

2 9\ —1/2
WW:E(“%) : (20)

wr

It is easily seen that W(r)dr is just the sound travel time, corresponding to
the radial distance dr, along the ray describing the mode. Hence the weight in
the average simply gives the time that the mode, regarded as a superposition of
plane waves, spends in a given region of the star.

3.3.3 Asymptotic effects of changes in structure

To investigate the effects of modifications in solar structure, we consider a change
in the sound speed from ¢ to ¢+ é¢; as a result, the dispersion relation for sound
waves is changed to
2 211,12 4 - 2 201,12 2 8¢
w? = Ak 4+ 2cbclk]? = Fk|F + 2w~ . (21)
¢

This is of the form given in equation {14), with §f = 2w*6c/c. It follows from
equation (18) that the frequency change is given by

Iy R 2.2\ ~1/2
s~ | (1~ch) bedry nto (22)

w w?r? ¢ c w

Note that equation (22) is of the form

bw W
S22 3t () + ol (23)
where e
R 2\ bedr
Hi(w) = /r. (I - Tzwz) P (24)
and

Ho(w) = balw) . (25)
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Some properties of this equation were discussed by Christensen-Dalsgaard,
Gough & Pérez Herndndez (1988) and Christensen-Dalsgaard, Gough & Thomp-
son (1939). As pointed out in the latter reference, H;(w/L) and H,(w) can be
obtained separately, to within a constant, by means of a double-spline fit of the
expression (23) to p-mode frequency differences. The dependence of H, on w/L
is determined by the sound-speced difference throughout the star, whereas Ha(w)
depends on differences in the upper layers of the models.

3.3.4 Effect of perturbation in gravitational potential

The derivation of the Duvall law implicitly made the Cowling approximation,
neglecting the perturbation @ in the gravitational potential. It is very simple to
estimate the effect on the frequencies of including ®'. For plane acoustic waves,
including the effect of self-gravity, the dispersion relation is

w? = k|? = 4nGp (26)

(Jeans 1929). This is again of the form (14), with 6/ = —47Gp. It follows from
equation (16) that the modified Duvall law is

r(n+a) (R LA\ dr oG (R M s T gr o)
= A l"wz,.z + w? ) ” ) :

@ c l €

Note that, as r, is a function of w/L, equation (27) may be written as

W),

where the functions F(w) and Fg(w) are defined by equation (27). An expression
of this form, with additional correction terms, was obtained by Vorontsov (1991).

From equations (18) and (19) we obtain an approximate expression for the
difference 6w® = wF) — L(C) between the frequency w!F) obtained taking the
perturbation in the gravitational potential into account, and the frequency w(©)
obtained in the Cowling approximation. The result is

R L2\ 4r
‘ZTrG/ pll-—== —
Sul®) 1 T w?r? c

TR R e\
./r. (1 IR ¢
Thus the frequency change induced by the gravitational potential perturbation

depends on an average of the density structure of the equilibrium model, over
the region where the mode is trapped.

(29)

[
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Figure 2: The thin lines show scaled frequency corrections §u(®) resulting from
the inclusion of the effect of the perturbation in the gravitational potential, for a
normal solar model. Points corresponding to a given degree have been connected
with a continuous line (I = 0), short dashes (I = 1) or long dashes (1>1). In
accordance with the asymptotic expression (29) 6u(® has been scaled by —v/vet,
using a reference frequency vies = 3000 pHz, and the results have been plotted
against v/(1+1/2) (lower abscissa) and r /R [cf. equation (10); upper abscissa).
The heavy continuous line corresponds to the asymplotic frequency difference
6@ = 6w(®) 21 computed from equation (29).

It might be noticed that equation (29) directly relates the frequencies to
the density structure of the model. However, the effect is evidently strongly
diminished for modes of moderate or high degree, which do not penetrate into
the high-density region near the core. This is illustrated in Figure 2 which shows
the asymptotic and computed frequency corrections resulting from including the
perturbation in the gravitational potential.

3.3.5 Refinements of asymptotic theory

The preceding asymptotic analysis was highly simplified, although sufficient for
much of the following. For completeness, I here note some extensions.

It was shown by Gough (¢f. Deubner & Gough 1984) that a more accurate
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asvinplotic representation, valid both for p and g modes, is

2

. 2.2 N2 12,
w,/ [1>‘i;_,,[’_(_2<1_~—7—)1\ i’:Tr(n~1/?_). (30)
Ty

wt ot W/ c
where 1, and r, are adjacent zeros of the integrand. Here the characteristic
acoustical cut-off frequency w, is defined by
: IH
i Lt (31)
Y dr
where we have introduced the density scale height f by
din .
Ho =L (32)
dr

also, N is the buoyancy frequernicy. Near the surface, the term in w. dominates
and'dcﬂnes the point r = Ry, with w(R.) =~ w. where the mode is reflected:
this occurs essentially at the photosphere although for frequencies below about
2000 jHz the reflection point shifts deeper with decreasing .frequency. Waves
with frequencies exceeding the (nearly constant) value of w, in th(\'atmosphere
(corresponding to a cyclic (requency v, =~ 5300 pHz) are essentially free to
travel out into the solar atmosphere, and hence do not form normal modes (sce,
however. the chapter by Brown).

One may obtain the original form of the Duvall law, equation (12), from
equation (30) by neglecting the term in N? and expanding the bracket in the
integral on the left-hand side to take out the dependence on w? (e.g. Christensen-
Dalsgaard & Pérez Hernandez 1992); the coutribution from w? is essentially
absorbed in a(w). A more careful analysis (Brodsky & Vorontsov 1993; Gough
& Vorontsov 1995) results in a further refinement of the Duvall law. The result
may be written as

F (%) + ;]7]:'2 (%) = 7w [ﬂ + a(w) + (g)zag(u)} . (33)

Here ['(w) is defined by equations (27) and (28), while F,(w) is analogous to
Fg(w) introduced in those equations, but includes also a contribution from N2 as
well as other terms. The term in a;{w) on the right-hand side arises because the
waves propagate obliquely at the upper turning point. It becomes of substantial
importance for modes whose degree exceeds a few hundred.

3.3.6 Asymptotics of low-degree modes

For low-degree modes one may show. by expanding the Duvall law, that

{1 ; Av?
un,:(n+;+;+a)_\uv(/ﬂ,z—6) R (34)

V.
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where ‘
[ rrdr]”
Av = 12/ --]\ (35)
\L 4] C J
is the inverse of twice the sound travel time between the centre and the photo-
sphere, and
1 [C(R) R dcdr]

1Al R 0 d_rvr—‘: (36)

L

(c.g. Tassoul 1980; Gough 1986). Neglecting the term in A, equation (34)
predicts a uniform spacing Av in n of the frequencies of low-degree modes. Also,
modes with the same value of n +1/2 are predicted to be almost degenerate.

Vnl ™ Vn-1i42 - (37)

As discussed by Leibacher (this volume) this frequency pattern has been ob-
served for the solar five-minute modes of low degree and may be used in the
search for stellar oscillations of solar type. The deviations from the simple re-
lation (37) have considerable diagnostic potential. They may be expressed in
terms of

 Av  Rdedr
bui = vt — vno e > — (41 4 ())47771/,1; o drr

(38)

where we neglected the term in the photospheric sound speed ¢(R). This equa-
tion indicates that é,; is predominantly determined by conditions in the solar
core. It should be noted, however, that the accuracy of equation (38) is ques-
tionable: it appears to agree fortuitously with frequencies computed for models
of the present Sun, whereas it is less successful for models of different ages or
masses {Gabriel 1989; Christensen-Dalsgaard 1991). In fact, the normal asymp-
totic approximation breaks down in the core where conditions vary rapidly, and
the derivation of equation (34) neglected the perturbation in the grav:tational
potential which, as we have seen, is important for low-degree modes. Nonetheless
it remains true.that é,; is a useful diagnostics of the structure of the core.

3.4 Perturbation analysis of effects of model changes

So far 1 have considered effects of solar structure only in terms of the asymp-
totic description of acoustic modes. To obtain more precise results, which in
addition are valid for f and g modes, we must return to the original equations
of adiabatic oscillations. In this way we obtain relations, precisely valid in the
linear approximation, between changes in the structure and the corresponding

frequency changes. In addition, the analysis provides further insight into aspects
of the oscillations.
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3.4.1 Reformulation of the oscillation equations

A great deal of insight into the properties of adiabatic oscillations can be ob-
tained by regarding the equations as an eigenvalue problem in a Hilbert space
(Eisenfeld 1969; Dyson & Schutz 1979; Christensen-Dalsgaard 1981). The start-
ing point is the perturbed equations of motion (see the chapter by Leibacher).
After separation of the time dependence as exp(—iwt), these can be written as

W8 = F(ér), (39)

\V}lh""t’

, ,
Flér)=-vp -ve - Lg. (40)
4 4

Here ér is the displacement vector, p, p' and ¢ are Eulerian perturbations of
pressure, density and gravitational potential and g is the equilibrium gravita-
tional acceleration. As indicated, F is a linear functional of &r. To see this,
note that from the continuity equation,

o+ div (pér) =0, (41)

¢’ is a linear functional of ér. The gravitational potential perturbation ¢’ may
then be obtained by integrating the perturbed Poisson’s equation. In the adja-
batic case p’ can be obtained directly from p’ and &r. This defines the adiabatic
operator F,. The nonadiabatic case is more complicated, but here also it is pos-
sible to obtain p as a linear functional of 8r (see Christensen-Dalsgaard 1981).

[ now introduce a space M of vector functions of position in the star, with
suitable regularity properties, and define an inner product on M by

<€n>=[ g nav, (42)

for £, in H; here “*” denotes the complex conjugate, and the integration
is over the volume V of the star. I also introduce the domain D(F) of the
operator F as those vectors in H satisfying the surface boundary condition that
the Lagrangian pressure perturbation vanish. The central result is now that,
as shown by Lynden-Bell & Ostriker (1967), the operator F, corresponding to
equation (40) for adiabatic oscillations is symmetric, in the sense that

<& Faln) >=<Fo()n >, for&,n e D(F). (43)

From equation (43) a number of useful properties of F, follow immediately.
The simplest result is that the squared eigenfrequencies are real. I introduce the
functional £ on D(F) by

_<LFO >

nE) = =

(44)
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it follows from equation (43) that E(£) is real. 1f wg is an eigenvalue of the
problem with eigenvector &, i.e.,

Falbo) = wito (45)

then
B(&o) = wd (48)

and hence w? is real. Also, the eigenfunctions may be chosen to be real at all r.

As is well known, a second property of a symmetric operator is that eigen-
vectors corresponding to different eigenvalues are orthogonal. Thus if

Fully) = W2&; Fol) = w3k wi#Fwl,  (47)

then
<&,6>=0. (48)

A very important result concerns the effect of a small perturbation to the
oscillation equations. This perturbation could result from a small change to
the equilibrium model, to the inclusion of nonadiabatic effects (Christensen-
Dalsgaard 1981) or to the inclusion of the effect of large-scale velocity fields,
such as rotation, in the model. I characterize the perturbation by a change §F
in the operator defining the oscillation equations. If #ry and wy are solutions to
the adiabatic oscillation equations,

wg&l'o = .7'-&(61'0) 3 (49)
the change in w? caused by the perturbation §F can be obtained from first order
perturbation analysis (e.g. Schiff 1949) as

2 < 61‘0, 6}‘(6!‘0) >

bur e < érg, 61y > (50)

Thus the frequency change can be computed from the unperturbed eigenvector.
Some consequences of this relation are discussed in the following sections.

3.4.2 Effects of changes in solar structure

As an example of the use of equation (50), we consider in more detail changes in
the frequencies caused by changes in the equilibrium model. The effects on the
oscillations of the change in the structure can be described as a perturbation § F,
in the operator characterizing adiabatic oscillations. According to equation (50)

k]
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the corresponding relative frequency change. for a mode (r, 1) with cigenvector
£, in H, s then .
b _ 1wy < EubFallor) >

. 2 T 2 :
@il 2wy 2wy < £ &t >

(51)

1t is convenient in the following to express €q in terms of its radial and
Jorizontal amplitudes &,(r) and () (assumed to be real) in a spherical-
harmonic decomposition. chosen such that

Je B B
< 5 L‘ém' >= tﬂ/ [Er.nl(r’z + {h.nl(r)llrzﬂ dr . (52)
0
We can express this quantity in terms of a normalized inertia £, defined by

- ‘v]lfijo”{fr.nl(r)z + éh,nl(r)z]/’urzd?' — /\Imode , (53)
T T MG (R + Gl RY M

where Al is the total mass of the star, and Mnode is the so-called modal mass.
Also. we similarly represent §F, on component form as

SF (&) = (0:[&n], onl&ut]) (54)

where ¢,16,)(r) and ¢nléa](r) are functions of 7. Then we can write equation
(51) as
E,,{‘— = [nl N (55)

where

21 [ () [€n)(r) + Enni(r)dn[€n] ()] pridr ‘
MW [{rz,nl(H) + s‘ﬁ,n:(ﬁ)]

Thus [, gives the integrated effect of the perturbation, normalized to the total

I = (56)

photospheric displacement.

There is a close analogy between the exact equations (55) and (56) and the
asymptolic expression (22). In both cases the factor multiplying éw represents
the fact that modes with larger inertia are more difficult to perturb. The effect
on the frequencies of the change in the model is described by the right hand sides
of equations (22) and (56), and depends on the overlap between the eigenfunction
and the change in the model.

Equations (55) and (56) provide a somewhat formal linear relation between
the change in the model and the change in the frequency. It follows from the
discussion in Section 3.2 that the changes in the coefficients of the oscillation
equations, and hence the changes ¢,[£.](r) and ¢u[€u](r) in the components of
§F,, can be expressed in terms of changes in two suitably chosen model variables,
for example density and sound speed. For simplicity, I assuime that the change
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in the model occurs without a change in its radius (this would in general be the
case for models of the Sun, where the radius is known with high accuracy) and
let 6p and éc denote the differences in p and ¢ between the equilibrium models,
at fixed r. Then equations (55) and (56) can be expressed as

= [1\';7~<r>§€(r) + K50 2 )] ar (57)
0 c P

5u.)n[

Wni

(e.g. Gough & Thompson 1991), where the kernels RS and K9 are com-
puted from the eigenfunctions. Examples of such kernels are shown in Figure 3.

As implied by Section 3.2, the pair (¢, p) in equation (57) can be replaced by
other suitable pairs, such as for example (¢, I'y) or (p,T'1). Further transforma-
tions are possible if the equation of state and the heavy-element abundances are
assumned to be known. Then ['; is determined by p, p and the helium abundance
Y. Also, since p can be obtained from p under the assumption of hydrostatic
equilibrium, 6T} can be expressed in terms of just ép and Y. Here p may be
replaced by suitable quantities obtained from p, p or their derivatives. A con-
venient parameter is u = p/p, related to the sound speed by ¢* = ['yu. Thus
equation (57) becomes

R ¢ §
o | L\'i?*”u-)@m K0 o ar (58)
0 u Y

Wni

here the kernels I{ir'"}(r) are only of substantial magnitude in the regions where

[’y varies significantly, i.e., in the main ionization zones.

3.4.3 Effects of sharply localized feature

Equation (57) provides the general relation between differences between solar
models and the corresponding frequency differences. We now assume that the
Sun contains a sharply localized feature at some radius 7 = rq; examples of such
features are the sudden change in the slope of the sound-sj.ced gradient at the
base of the convection zone, or the rapid variation of I'; in the second helium
ionization zone. The effect of the feature on the frequencies can be estimated
by introducing a suitably smoothed model which only differs from the actual
model in the close vicinity of the feature {Monteiro, Christensen-Dalsgaard &
Thompson 1994); éc and &p are then taken to be the differences between the
actual and the smoothed structure, such that they would be non-zero only near
ro. Hence the effects of the feature on the frequencies are essentially given by
K& (rg) and K% (rq)

The behaviour of the frequency effects can be understood by noting that
the kernels are, very roughly, proportional to the square of the eigenfunction.
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Figure 3: Kernels 1?[\'1(5"7) (panel a) and RI\'Y(I';'“) {(panel b) for an 1 =1, n = 21
mode (with frequency v = 3.1mHz) of a model of the present Sun. For clarity
the plots have been truncated: the mazimum value of RI\'S"’) is 45, while the

ertreme values of RKY) are =24 and 16.

For high-order acoustic modes one finds that the amplitude § of the radial
displacement depends on r and w roughly as

£, ~ cos|wr — (o + %)Tr] ) (59)

=% )

is the acoustical depth, and « is the phase function introduced in equation (12).
Thus the kernels behave roughly as cos(2wr + ¢) for some phase ¢. It follows
that the frequency changes induced by a sharp feature oscillate as a function of
frequency, with a “period” determined by the depth 7 at which the feature is
located: features localized near the surface give rise to frequency changes vary-
ing slowly with frequency, whereas deeper features cause more rapid variations
(e.g. Thompson 1988; Vorontsov 1988; Gough 1990). This is illustrated in Fig-
ure 4, where kernels of low-degree modes have been plotted against frequency at
fixed locations corresponding approximately to the base of the convection zone
(Figure 4a), the second helium ionization zone (Figure 4b) and the photosphere
(Figure 4c).

where
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Figure 4: Kernels K,(j‘p)(ro) at ro = 0.72R (panel a) ro = 0.98R (panel b) and

ro = R (panel ¢), for modes of degree I < 5, plotted against frequency. For
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3.4.4 Effects of near-surface modifications

It was argued in Section 2.5 that the near-surface region introduces substantial
uncertainty in the computation of oscillation [requencies. The effects of these
crrors on the frequencies can be analyzed by means of an analogue of equations
(55) and (56), where now the perturbation 6.F represents incorrectly treated
features in the model and the physics of the oscillations. These may include
errors in the hydrostatic structure, such as would be introduced by the neglect
of turbulent pressure, as well as errors in the physics of the oscillations, e.g. the
assumption of adiabaticity. [ assume that 6F is localized near the solar surface,

in the sense that
o [E)(r) >0, su[E)(r) =0 for R—r>6, (61)

for some small 8. Thus in equation (56) for /,; the integration extends essentially
only over the region [ — o, R]. Modes extending substantially more deeply, i.¢.,
with = r, > 6, correspound to waves which propagate almost vertically in
the region of modification; thus at a given frequency the eigenfunctions are
essentially independent of [ in this region: as a result [y depends little on {
at fixed w. The same is therefore true of £y dwy. To get a more convenient
represeutation of this property, we introduce

Ly

Eo(wm) '

Qu =

(62)

where Fi{w) is obtained by interpolating to w in by at fixed [. Then Qnbw, is
independent of [ at fixed w, for modes such that R—r, > 6. This behaviour may
e used to identify, and eliminate, the effects of the near-surface uncertainties.
Q. has been plotted in Figure 5 for selected values of /. Its variation with [ is
largely determined by the change in the penetration depth. Modes with higher
degree penetrate less deeply and hence have a smaller inertia at given surface
displacement. As a consequence of this their frequencies are more susceptible
to changes in the model. Thus unscaled frequency differences resulting from
near-si face effects are expected to show strong dependence on [. An example
of this is discussed in Section 4.1.

It should also be noticed that, according to trapping of the modes near the
surface as determined by the behaviour of we [¢f. equations (30) and (31))
low-frequency modes are evanescent in the uncertain region, with much smaller
amplitudes than in the interior. Thus for such modes the near-surface effects
are expected to yield very small frequency changes. Finally, the discussion in
Section 3.4.3 indicates that near-surface effects are likely to give rise to frequency
changes varying slowly with [requency (see also Figure 4), unless, of course, the
effects are themselves rapidly-varying functions of frequency.
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It follows from the preceding discussion that equation (57) should be replaced

by

nl ?

& _ /If l:l\’(c.u)(r)éc(r) + 1\'7(j.ﬂ)[,,}6710(7,) dr + Q;llg(w”l)’ (63)
Wit 0

where the function G(w) accounts for the effect of the near-surface uncertain-
ties. § must then be determined as part of the analysis of the frequency differ-
ences, or suppressed by means of suitable filtering of the data. This equation
is closely equivalent to equation (23), where the term H,(w,) contains the con-
tributions corresponding to G(w) Furthermore, Q. corresponds asymptotically
to Su, apart from a constant scaling factor. Indeed, in Figure 5(b) the dashed
line shows ,S;n,/TO; here Sy is defined as in equation (19), but excluding the term
in da/dw, and 7g is the limit of Sy for r, — 0, corresponding to the acoustical
radius of the star evaluated from equation (60), with r = 0.

The arguments presented here assumed that the eigenfunctions of the modes
were essentially independent of degree in the region of modification. This ceases
to be true at sufficiently high , leading to departures from the simple frequency
dependence of the scaled frequency differences. Antia (1995) showed ‘hat even
for moderate degree the resulting /-dependence may be comparable with the
observational errors so that it might affect the results of inversion. Procedures to
handle such effects have heen developed on the basis of higher-order asymptotic
treatments, such as equation (33) (e.g. Gough & Vorontsov 1995).

4 APPLICATION TO MODELS AND OB-
SERVED FREQUENCIES

[t was argued in Section 1.2 that the principal interest in the forward problem
lies in the connection between the physics of solar models and their frequen-
cies. To explore this connection, the present section considers various examples
of physics modifications and their effects on the models and frequencies. The
results are interpreted in terms of the properties of the oscillations presented in
Section 3, particularly the asymptotic frequency changes discussed in Section
3.3.3. Furthermore, I briefly consider some aspects of the observed frequencies.
More extensive results from the observations are presented in Section 5.

The results discussed here are largely based on complete solar models, ob-
tained from evolution calculations starting at chemically homogeneous zero-age
main-sequence models. These have been calibrated to have solar radius and
luminosity, by adjusting the composition, characterized by the initial helium
abundance Yp, and a parameter describing convection (¢f. Section 2.2). To save
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computational effort, an alternative is to consider static models of the present
Sun: here the abundance profile is based on scaling the hydrogen-abundance
profile X(m) for a given reference model, as a function of mass m, by a factor x
such as to obtain the correct luminosity. This is often adequate to obtain insight
into effects of modifications to the physics, as long as these occur outside the
energy-generating core. Finally, when studying the properties of the convection
sone. iL is convenient fo consider models of the solar cnvelope alone. In such
models. the surface luminosity and radius are chosen to have solar values and the
composition is typically assunmed Lo be constant. Also, Fhe convection parame.ter
is typically adjusted such that the model has a prescribed depth of convection
zone. For physics modifications that are largely confined to the convection zone,
such as those resulting from modifying the equation of state, this ensures that
the radiative interior is approximately unchanged.

4.1 Effects of changes in the superadiabatic region of the
convection zone

To illustrate the effects of near-surface uncertainties, I first consider a model
where the treatinent of the superadiabatic gradient has been artificially modified
[see Christensen-Dalsgaard (1986) for details]. In Figure 6, panel (a) compares
the resulting ¥ with the result of using mixing-length theory, whereas panel (b)
shows differences, at fixed r, between various quantities in the modified and the
reference models. Here static models of the present Sun were used. The effects
are confined o the outermost parts of the convection zone; the deeper parts of
(e convection zone and the radiative interior are virtually unchanged.

Frequency differences between the modified and the reference model are il-
Justrated in Figure 7. Panel () shows the original differences, which clearly
depend strongly on both degree and frequency. It was argued in Section 3.4.4
that the [-dependence should be mainly associated with the variation of the
mode inertia. This is confirmed by panel (b) where the frequency differences
have been scaled by the normalized inertia @ defined in equation (62). The
scaled differences are virtually independent of degree for [ < 300, corresponding
to modes that propagate essentially vertically in the region where the model is
modified. It should also be noticed that, in accordance with the discussion in
Section 3.4.4, the differences are very small at low frequency and vary slowly
with frequency.

This example illustrates the usefulness of scaling frequency differences to
highlight effects of near-surface errors in the models. Thus in the following I
shall almost exclusively consider differences scaled in this manner.
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The behaviour of V — V4 illustrated in Figure 6 was chosen with no phys-
ical basis. However, as noted in Section 2.3.1 refined versions of mixing-length
theory have suggested that ¥V —V,4 might be sharper and higher than in mixing-
length models. Figure 8 illustrates an example of such a model and the resulting
scaled frequency differences; it is based on a parametrization by Monteiro et al.
(1995b) of the convection treatment developed by Canuto & Mazzitelli {1991).
Within the range of degrees considered, between 20 and 300, the scaled differ-
ences are essentially independent of degree, as shown by the small scatter of the
points in the plot. Also, as discussed in Section 5.3, the frequency differences
for log,g(3c) = 3 bear a striking resemblance to the differences between the ob-

served frequencies and those of a model computed with the normal mixing-length
theory.

4.2 Opacity increase near the base of the convection zone

The effects of modifications of the physics of the radiative interior may be illus-
trated by considering changes in the opacity. Indeed, as mentioned in Section
2.5, the opacity is likely to be a dominant source of uncertainty in the deep
interior of the model. Although the actual error in the opacity is likely to be
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a complicated function of temperature and density, the effects are most easily
understood by analyzing the consequences of a localized increase. The analysis
is based on static models with scaled hydrogen abundance.
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Figure 9: Logarithmic differences at fired radius r between the model with mod-
ified opacity and the reference model, in the sense (modified) - (reference). The
following line styles have been used: §lnc: ———; §lnp: ----emmennee ;
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I consider an increase in the Rosseland mean opacity « defined as a function
of temperature by
Slogk = Acexp[—(y/Alog T)*, (64)
where
z —logTy for z < logTy
y=<0 for logTy <z <logT> (65)
z —logT; forz>logT,,

log being the logarithm to base 10. I confine the change near the base of the
convection zone, by choosing logT} = 6, logT> = 6.6 and AlogT = 0.15,
and take the maximum change to be A, = 0.1. The resulting changes in sound
speed, pressure and density are shown in Figure 9. The corresponding frequency
changes are largely determined by the the change in the sound speed. This
is dominated by the increased depth of the convection zone in the modified
model, resulting directly from the increase in the opacity: since the gradients
of temperature and sound speed are steeper in the convection zone than in
the radiative region below, there is a region where the sound speed increases
more rapidly with depth in the modified model; therefore, the sound speed is
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sharply higher in the modified model just beneath the convection zone, as seen
in the figure. In contrast, the sound-speed difference js very small in the bulk
of the convection zone: this is consistent with equation (1) according to which
the sound speed in this region, at given r, depends little on the details of the
structure. The only visible exception is in the jonization zones near the surface,
where the changes in composition and mixing length required to calibrate the
modified model cause small additional differences in the sound speed.

Phe corresponding scaled frequency differences are shown in Figure 10(a).
They clearly reflect the behaviour of the sound-speed difference and the region
to which the modes are confined, as determined by the location of the turning
point r (cf. equation 10). For low-degree modes which penetrate well beyond
ihe base of the convection zone the frequencies are increased by the sound-speed
increase in the outer parts of the radiative region. In contrast, high-degree modes
are trapped in the convection zone and are dominated by the small negative
sound-speed differences in the ionization zones. For [ = 20 — 50 the behaviour
depends strongly on frequency: higher-frequency modes penetrate more deeply,
according to equation (10), and hence sense the positive sound-speed difference
below the convection zone, whercas low-frequency modes are largely confined to
the convection zoue.

The preceding discussion indicates the close link between the frequency dif-
forences and the location of the turning point. This is clearly in accordance
with the asymptotic relation, equation (23), between the sound-speed difference
and the frequency differences. It becomes obvious when, as in Figure 10(5),
scaled relative differences are plotted against v/ L which according to equation
(10) determines 7. [t is obvious that the general behaviour of the frequency
differences is indeed dominated by H,(w/L), with a sharp transition where the
turning-point position 7, of the modes coincides with the base of the convection
zone. al r ~ 0.72R. For modes trapped in the convection zone, the frequency-
dependent term Hy(w) dominates; this comes predominantly from the negative
sound-speed difference (hardly visible in Figure 9) in the hydrogen ionization
zone, and hence varies slowly with frequency. A similar contribution is visible
for the deeply-penetrating modes; here an additional rapid variation with fre-
quency is induced by the sharp difference at the base of the convection zone (cf.
Section 3.4.3).

4.3 Diffusion and settling of helium

Helium diffusion and settling cause significant changes in the abundance profile
of models of the present Sun and hence in the structure and frequencies of the
models. Figure 11 shows differences hetween a model with diffusion and a normal
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Figure 10: Scaled frequency differences corresponding to the model differences,
resulting from opacity increase near the base of the convection zome, illustrated
i Figure 9. Modes of the same degree | have been connected, according to the
following line styles: [ = 0—3: - il = 4-30: ————— [ = 40—100:
R ;=150 —400: ——————— ; L =500 —-1100; — — — — . (a)
Absolute differences, plotted against frequency. Selected values of I have been
indicated. (b) Relative diffcrences, plotted against v/L (lower abscissa) and the
corresponding turning-poini position [cf. equation (10); upper abscissa).
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solar model (Christensen-Dalsgaard et al. 1993). Settling of helium causes an
increase in the hydrogen abundance by about 0.03 in the convection zone, with
a sharp gradient at its base. In the outer parts of the radiative interior X is
still somewhat higher than in the normal model, while the central abundance is
reduced. as a result of the accumulation of helium. The increase in X near the
hase of the convection zone leads to an increase in the depth of the convection
zone, and hence a substantial increase in sound speed in this region, just as in
the case of the opacity increase discussed in Section 4.2, As in that case éc/c is
small in most of the convection zone, whereas the change in composition results
in a considerable change in ¢ in the ionization zones of hydrogen and helium,
due to the change in I'y.
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Figure 11: Differences, at fired r, between a model of the present Sun includ-
ing diffusion and gravitational settling of helium and a normal model without
diffusion. The dotted line shows the difference 6X in the hydrogen abundance,
and the continuous line shows the fractional difference 6c*/c? in squared sound
speed. Adapted from Christensen-Dalsgaard et al. (1993).

As in the case of the opacity increase discussed in Section 4.2 the change
in the frequencies is largely controlled by the location of the lower turning
point. Thus Figure 12(a) shows scaled frequency differences, at selected val-
ues of /, between the diffusive and non-diffusive models, plotted against v/L
(with L = [+ 1/2). Here the scaling has been done in terms of the asymptotic
factor Sy, normalized by 7o, such that it tends to unity at low degree (note
that, as indicated by Figure 5, 5,/7o is closely equivalent to Q). Hence the
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Figure 12: Scaled frequency differences corresponding to the model differences
shown in Figure 11, plotted against v/(I+1/2). The upper abscissa shows the lo-
cation of the lower turning point, which is related to v[(1+1/2) through equation
(10). Points corresponding to fized | have been connected. (a) Original scaled
frequency differences. (b) Scaled differences, after subtraction of the function
Ha(w) obtained from the spline fit.
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scaled frequency differences correspond in magnitude to the differences for low-
degree modes. As in Figure 10(6) the dependence of Sév/v on v/L is dominated
by a substantial positive sound-speed difference at the base of the convection
zone: modes with v L > 100 pllz sense this feature and hence display a posi-
tive frequency difference; in contrast, for v/L £ 100 pHz the modes are entirely
trapped in the convection zone, and the frequency difference corresponds to the
term Hy(v) arising from differences near the surface, particularly the difference
in X,

This qualitative description suggests that the frequency differences may be
analyzed in detail in terms of cquation (23). To do so, | have determined the
functions H, and Hy by means of the spline fit of Christensen-Dalsgaard et al.
(1989). where details about the fitting method may be found. Briefly, the proce-
dure is o approximate H,(w/ 1) and Hy{w) by splines, the coefficients of which
are determined through a least-squares fit to the scaled frequency differences.
The knots of the splines in w = w/L are distributed uniformly in log w over the
range considered, whereas the knots for the w-splines are uniform in w. I used
28 knots in w and 20 knots in w. Figure 12(b) shows the result of subtracting
the Minction Hy(w) so obtained from the scaled frequency differences. It is evi-
dent that what remains is in {act very nearly a function of w/L alone, directly
reflecting the behaviour of éc/e, as discussed above.
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Figure 13: Scaled frequency differences corresponding to the model differences
shown in Figure 11, after sublraction of thc function H,(w/L) resulting from
the spline fit.
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The residual scaled frequency differences after subtraction of the term in
Hy(w/L) are shown in Figure 13. These are clearly largely a function of fre-
quency, although with some scatter. The behaviour is dominated, at low fre-
quency, by an oscillation with a ‘period’ of around 800 zHz. According to Fig-
ure 4 this corresponds to the effect of a sharp feature located around 7 ~ 0.98R.
i.e., at the second helium ionization zone: it is caused by differences in the ion-
ization zone resulting from the difference in helium abundance. The remaining
slow trend is associated with changes in the hydrogen ionization zone and the
atmosphere.
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Figure 14: Logarithmic differences at fired radius r between the model with re-
duced central opacity and the reference model, in the sense (modified) - (ref-
erence). The following line styles have been used: §lnc: ———— §lnp:

4.4 Opacity decrease in the core

The solar neutrino problem (see the chapter by Bahcall) has motivated a number
of suggestions for modifications to solar models designed to reduce the flux of
high-energy neutrinos, by reducing the core temperature of the Sun. One such
suggestion involved postulating the presence in the Sun of Weakly Interacting
Massive Particles (WIMPs) whose motion was assumed to contribute to the
energy transport. In this way the temperature gradient required for radiative
transport, and hence the central temperature, could be reduced (Steigman et al.
1978; Spergel & Press 1985; Faulkner & Gilliland 1985).
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Figure 15: Scaled frequency differences corresponding to the model differences,
resulling from opacity decrease in the core, ilustrated in Figure 14. Modes of
the same drgrrf { have been connected, according to the following line styles
I =0-3: 38 l=4-300 ————— 1 =40 -100: ------oeooo
/= 150 — 400: ——————— ;1 =500 -1100: — — — Selected values ofl
have been indicated.

Ilere 1 model this effect through a reduction in the core opacity (see also
Christensen-Dalsgaard 1992). Specifically, the opacity was modified as in equa-
tions (64) and (65), but with A, = =04, logTy = 7.1, logT, = 7.5 and
Alog7 = 0.04. The resulting model differences, based on scaled static models,
are shown in Figure 14. Clearly the central temperature has been reduced, lead-
ing to a decrease in the neutrino flux. This is accompanied by a reduction in the
central sound speed and a dramatic increase in the core pressure and density.
The changes in composition and mixing length required to obtain the correct
luminosity and radius induce additional modifications in the outer parts of the
model, including a modest increase in the depth of the convection zone, visible
in the sound-speed difference.

Scaled frequency differences between the models are shown in Figure 15. The
positive sound-speed difference just below the convection zone leads the the now
familiar variations for the modes penetrating beyond the base of the convection
zone. However, in addition the strong variations in the core cause a substantial
dependence of the frequency differences on [, amongst the low-degree modes.
This arises both from the depression of the sound speed and the increase in
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density; according to equation (29) the latter modification increases the effect
of the perturbation in the gravitational potential and hence contributes to de-
creasing the frequencies. The resulting negative contributions to the frequencies
are largest for the lowest-degree modes, leading to the variation in év with [.
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Figure 16: Parameters in least-square fit to the small frequency separation (cf.
equation 66), using a reference order ng = 21. The small crosses show various
normal solar models using varying physics. The filled circle and diamond are
models with up-to-date physics, without and with helium seltling, respectively.
The filled square shows results for the model with reduced core opacity, illustrated
in Figs 14 and 15, while the filled triangle is a model with a partially mired core.
The error boz shows observed values from Elsworth et al. (1990).

As a result of this /-dependence the small frequency separation &, (cf. equa-
tion 38) is reduced substantially by the reduction in the core opacity. To illus-
trate the effect, and compare it with unmodified solar models and the observed
values, I follow Elsworth et al. (1990), approximating &, as

bpt 51 + S[(TL —ng), (66)

where ng is a suitable reference order, and the coefficients 61 and s; are deter-
mined through a least-squares fit. The results are shown in Figure 16. Normal
solar models, particularly with the inclusion of helium settling in the core, are
in good agreement with the observations. In contrast, the model with reduced
core opacity is clearly inconsistent with the observed values. The figure also
shows results for a model with partial mixing of the core, based on the hydrogen
profile of Schatzman et al. (1981). This has a reduced neutrino flux relative to
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normal models, but is again inconsistent with the observed frequency separation,
althongh the computed value is now too large.

Results such as these clearly argue against an astrophysical solution to the
solar neutrino problem: there is a strong tendency that proposed models with
reduced neutrine fluxes ave inconsistent with the helioseismic data. However, as
mentioned in Section 3.2 the observed frequencies do not in themselves constrain
ihe solar internal temperature and hence the neutrino flux. In fact. one might
imagine constructing a model involving both reduced core ?pacity and .part.ial
inixing, choosing the magnitude of the effects sugh as to bring both osc1lIaF10n
frequencies and nentrino fuxes into agreement with the measured }'aluos. SlI‘Ch
4 model would cleacly be somewhat contrived, and hardly plaus?blo‘j but its
possible existence highlights the need for further afs,sumptions, if helioseismology
is to provide constraints on the neutrino production of the solar core.
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Figure 17: Temperature gradient V = dInT/dInp in normal solar model (dashed
line) and model with overshoot of 0.21H,. H, being the pressure scale height.
(Adapted from Monteiro et al. 1994.)

4.5 The base of the convection zone

Normal solar models predict a sharp transition between the lower part of the
convection zone, where the temperature gradient is very nearly adiabatic, and
the radiative region below where the temperature gradient decreases sharply
with the increasing temperature. This is illustrated in Figure 17. It is evident
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that the sound-speed gradient displays a very similar behaviour, resulting in a
near-discontinuity in the second derivative of sound speed at the base of the con-
vection zone. The resulting inflection was visible even in carly determinations
of the solar sound speed through asymptotic inversions of ohserved frequencies
(Christensen-Dalsgaard et al. 1985). Christensen-Dalsgaard, Gough & Thomp-
son (1991) carried out careful analyses to determine the location of the break
in the gradient of the sound speed as inferred from inversion, and testing the
methods on artificial data; in this way they determined the depth of the solar
convection zone as dy, = {0.287 £ 0.003) R.
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Figure 18: Oscillatory signal corresponding to the base of the convection zone,
for observed solar frequencies from Libbrecht, Woodard & Naufman (1990), plot-
ted against reduced frequency. The parametcrs 4 and Tq (the latter being the
acoustical depth of the discontinuity) have been obtained from a fit to the data.
(From Monteiro et al. 1994.)

The discontinuity in the second derivative is a sharp ‘cature, in the sense
introduced in Section 3.4.3, and hence may be expected to introduce an oscil-
latory signal in the oscillation frequencies. An even more extreme behaviour
is predicted by simple models of convective overshoot (cf. Section 2.3.1). The
resulting temperature gradient, also illustrated in Figure 17, is essentially dis-
continuous at the point where the motion stops. Thus at this point there is also
a discontinuity in the sound-speed gradient, which again introduces oscillations
in the frequencies.

The detailed effects on the oscillation frequencies of these properties were
analyzed by Basu, Antia & Narasimha (1994), Monteiro et al. (1994), Roxburgh
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Figure 19: Normalized amplitude of the oscillatory frequency signal induced by
the base of the convection zone, as a function of overshoot distance in units of
the pressure scale heght I,. The solid line shows a fit to computed frequencies,
whereas the dotted line was obtained from an analytical approrimation to the
amplitude. The shaded arca shows the amplitude inferred from the solar data
(Libbrecht et al. 1990), with a width corresponding to an estimate of its error.
{From Christensen-Dalsgaard et al. 1995a.)

& Vorontsov (1994) and Christensen-Dalsgaard, Monteiro & Thompson (1995a).
As shown by Monteiro et al. (1994) the signal in the frequencies is essentially a
function of w—v4L?/(2w74), where 74 is the acoustical depth of the discontinuity
(in the first or second sound-speed derivative) and v4 = fr':(c/rz)dr, rq being
the radius of the discontinuity. In Figure 18 the oscillatory component of the
observed frequencies have been plotted in this form. There is indeed a clear
signal, with a ‘frequency’ which corresponds to the depth of the convection zone

as inferred by Christensen-Dalsgaard et al. (1991).

Frequencies of solar models without and with overshoot show a similar be-
haviour. However, the amplitude of the oscillatory signal depends on the extent
of overshoot. Figure 19 shows fitted amplitudes, normalized to a frequency of
2.5mHz, as a function of the overshoot distance in units of the pressure scale
height H,, together with the similarly fitted amplitude for the solar frequen-
cies. It is evident that in the Sun overshoot of this form can at most extend
approximately 0.1H, (Basu et al. 1994; Monteiro et al. 1994).

Although these results place interesting constraints on the structure at the
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base of the solar convection zone, it must be realized that the proposed model for
overshoot is highly simplified. In particular, it assumes that the effects on the [re-
quencies can be characterized by a spherically symmetric ..nd time-independent
structure. In reality, overshoot must display substantial variations as a function
of position and time. The oscillations sense an average of these variations; thus
it is no surprise that the observed frequencies indicate a relatively smooth struc-
ture. More careful investigations, involving also hydrodynamical simulations of
conditions at the base of the convection zone, will be required to obtain firmer
helioseismic bounds on the extent of overshoot.

4.6 The equation of state

It was argued in Section 2.4 that the convection zone is weil suited for studies of
the properties of the equation of state of solar matter. Although conditions very
near the surface are complicated by the uncertain structure of the strongly su-
peradiabatic region, in the deeper parts of the convection zone the stratification
is very nearly adiabatic, and the structure is largely controlled by the equation
of state and the composition.
r/R
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Figure 20: Adiabatic ezponent I'y = (91lnp/dlnp),, plotted at the conditions
(Inp,InT) in a normal solar model. The lower abscissa indicates logT (log
being to base 10) while the upper abscissa shows the corresponding fractional
radius /R. The solid line was obtained using the EFF equation of state, while
the dashed line is based on the CEFF formulation.

Much of the uncertainty in the treatment of the thermodynamic properties
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of solar matter is related to the ionization processes, which depend crucially on
the interactions between the constituents of the gas. The hydrogen and first
helinm ionization zones are situated so close to the surface that their structure
may be affected by the uncertain physics of convection. However, at the second
helium ionization zone these offects are probably sufficiently weak that analysis
of the influence of this region on the frequencies may be used for tests of the
equation of state, or for determinations of the solar envelope helium abundance.

In the present section [ illustrate the sensitivity of the structure and the
oscillation frequencies to the treatment of the thermodynamic properties, by
considering formulations of increasing complexity [see Christensen-Dalsgaard &
Dappen (1992) for a.much more detailed treatment]. Comparisons with the
ohserved frequencies are deferred to Section 5.2.
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Figure 21: Logarithmic diffcrences at fired radius v between models computed
with the EFF and CEFF equations of state, tn the sense (EFF) - (CEFF). The
following line styles have been used: élnc: ————— Slnp: ——ceveeeeiaas :
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4.6.1 Comparison of EFF and CEFF formulations

The EFF and CEFF treatments (see Section 2.2.] for details) differ in the in-
clusion in CEFF of Coulomb effects. These predominantly affect the structure
of the convection zone through a change in the ionization balance. To illustrate
this, Figure 20 shows I') computed with the EFF and CEFF equations of state,

o
3
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at conditions corresponding to a solar model. The jonization zones are reflected
by dips in I'y: the dominant dip near the surface results from the combined ef-
fects of the hydrogen and first helium ionization zones, while the second helium
jonization zone is visible as a separate dip, at r =~ 0.98R, log T ~ 5. Inclusion
of Coulomb effects, illustrated by the dashed line, causes a shift of the second
helium zone towards lower temperature.
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Figure 22: Scaled frequency differences corresponding to the differences llus-
trated in Figure 21 between models computed with the EFF and CEFF equations
of state. Modes of the same degree | have been connected, according to the follow-
ing line styles: | =0—-30: ———— - [ = 40— 100 ------- IR ;1 =150—-400:
——————— ; =500 -1100: — — — —.

Differences between models computed with the EFF and CEFF equations of
state are illustrated in Figure 21. The shift in the ionization causes an oscilla-
tory feature in 6Ty which is reflected in the sound-speed difference. The effects
in the inner parts of the model are considerably smaller. The corresponding
scaled frequency differences are shown in Figure 22. These are dominated by
the model changes in the hydrogen and helium ionization zones, leading the
frequency differences which depend little on degree for [ < 100; here the vari-
ation with frequency clearly displays an oscillation associated with the second
helium ionization zone. For higher degree, the modes get trapped close to the
surface and hence are affected predominantly by the positive sound-speed dif-
ference in the hydrogen and first helium ionization zones. It should be noticed
that the frequency changes are comparatively large, up to about 10 uHz. Hence
they are easily visible in the observed frequencies. Indeed, it was shown by
Christensen-Dalsgaard, Dippen & Lebreton (1988) that the observations were
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Figure 23: Logarithmic differences at fized radius r between models computed
with the CEFF and MHD equations of state, in the sense (CEFF) - (MHD).
The following line styles have been used: §Inc: ———— §lnp: --eommemennn- ;
Slnp: ——————= ; 6InT: — ——— ;6InTy: — —.—-... Panel (a) shows
the entire model, panel (b) the outer parts of it.
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Figure 24: Frequency differences corresponding to the differences illustrated in
Figure 23 between models computed with the CEFF and MHD equations of state.
(a) Original scaled frequency differences. Modes of the same degree | have been
connected, according to the following line styles: | = 0 —30: —— - | =
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(b) Scaled differences after subtraction of the function 'H, (w/L) resulting from
the spline fit in equation (23).
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clearly inconsistent with the BEFI equation of state (see also Section 5.2 below).

4.6.2 Comparison of CEFF and MHD formulations

To illustrate the considerable seusitivity of the oscillation frequencies to the
equation of state I next consider differences between models computed with the
CEFF and MHD equations of state. These formulations differ mainly in the
treatment of the partition function. The resulting model differences, shown in
Figure 23, display a great deal of structure, much of it evidently still associated
with the hydrogen and helium ionization zones. Also, the changes are roughly
an order of magnitude smaller than those obtained between the EFF and CEFF
models. The associated scaled frequency differences, shown in Figure 24(a), are
correspondingly smaller and somewhat more complex than those obtained for the
EFE CEFF differences. Fven so, the oscillatory signature of the second heliurn
ionization zone is clearly visible. Also, it should be noticed that the magnitude
of the differences is still much bigger than the observational error; thus it is
plausible that the observations can distinguish between these two formulations.
I Section 5.2 1 show that this indeed the case.

The finer details in the frequency differences can be shown more clearly by
carrying out a fit of the form given in equation (23). Here [ concentrate on the
function H,(w), by showing in Figure 24(8) the residuals after subtraction of the
fitted function H,(w/L). These residuals are indeed predominantly a function of
frequency and very clearly displays an oscillation, with a ‘period’ approximately
corresponding to a feature at the location of the second heliumn ionization zone.

5 ANALYSIS OF OBSERVED FREQUEN-
CIES

In the preceding section 1 considered a few aspects of the observed frequencies of
solar oscillation; these indicated that the structure of the solar core is similar to
that of normal solar models, and placed stringent limits of a possible adiabatic
extension of the convective envelope through convective overshoot. Here I make
a more detailed comparison of the observed frequencies with the models.

Two different sets of observed frequencies are used in the analysis. One
is the compilation by Libbrecht et al. (1990) which combines Big Bear Solar
Observatory data for [ > 3 with low-degree data obtained from whole-disk ob-
servations (Jiménez et al. 1988). In the second (in the following BISON-BBSO)
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Figure 25: Scaled frequency differences between the BISON-BBSO set of observed
frequencies and the normal solar model of Christensen-Dalsgaard et al. (1993),
in the sense (observations) - (model), plotted against frequency. Modes of the
same degree | have been connected, according to the following line styles: | = 0 —
o 1=4-30: ——————— 1 =40-100: -~~~ ---eue- ;1 =150—-400:
------- ;1=500 - 1100: — — — —

the modes with { < 3 were obtained from more recent data from the BISON
network (Elsworth et al. 1994). The observations are compared with models
differing predominantly in the equation of state, or in the inclusion or aeglect of
diffusion and gravitational settling of helium. Except where otherwise noted, the
models were computed as done by Christensen-Dalsgaard et al. (1993). This
includes the CEFF equation of state, OPAL opacities and ihe Parker (1986)
nuclear reaction parameters. Calibration to the luminosity of the present Sun
required an initial helium abundance ¥, ~ 0.28.

5.1 Asymptotic analysis of observed frequencies

A first step in the analysis is evidently to consider differences between observed
and computed frequencies. The suspicion of problems in the superficial layers
of the models motivates the inclusion of scaling by the normalized mode inertia
Qu or the equivalent S, /7 (cf. Section 3.4.4). Typical results, for a normal
solar model with no diffusion, are shown in Figure 25. It is evident that the
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scaled differences do indeed depend mostly on frequency, as would be the case
if the errors in the model were concentrated near the surface. The departures
from this trend are so small as to be barely visible in a plot of this form. The
dominant effect is a separation between modes of degree I < 20 and { > 50,
with a transition for intermediate modes. This is strongly reminiscent of the
behaviour found in Sections 4.2 and 4.3 to result from an increased depth of
the convection zone, suggesting that the convection zone in the model is too
shallow (this effect was first noticed by Christensen-Dalsgaard & Gough 1984).
Nonetheless, it is clear that a more careful analysis is required to uncover the
details of this and possible other problems in the interior of the model.

"To isolate the more subtle features I employ the asymptotic analysis already
used on computed differences in Section 4.3. Tigure 26(a) shows the scaled
differences (using now the asymptotic scaling) against v/L and hence turning-
point position. It is evident already from this raw difference plot that in this
case the term in M, dominates, as was also noted in Figure 25. However, there
is also evidence for a contribution from H,. This becomes clearer if the spline
fit is carried out and the contribution from H; is subtracted from the scaled
differences. The result is shown in Figure 26(b), together with the fitted function
Hi(w/L). There is again a sharp step corresponding in position to r, ~ 0.7R,
i.c., the base of the convection zone. This confirms the evidence from the simple
inspection of frequency differences in Figure 25 that the convection zone in the
Sun is slightly deeper than in the model. Indeed, the convection-zone depth in
the model is dp = 0.278 R, somewhat smaller than the solar value of dy, = 0.287R
inferred by Christensen-Dalsgaard et al. (1991).

It is evident that there is considerably more scatter in Figure 26(b) than in
the corresponding Figure 12(5). This is due to observational errors, both random
and systematic. In particular, it may be noticed that there is an apparent break
at around v/L ~ 15 uHz. In fact, the observed frequencies were obtained from
two separate sets of observations, the merge taking place at { = 400; it has
later been found that there were slight systematic errors in the high-degree
set. Furthermore, there appear to be problems at low degree, corresponding to
the highest values of v/L. These difficulties are clearly reflected in the fitted
Hi(w/L).

The residual after subtraction of the fitted H, from the scaled differences,
and the fitted H,, are shown in Figure 27. The residuals are indeed largely a
function of frequency. They are dominated by a slowly varying trend which,
as argued in Section 5.3 below, reflects errors in the near-surface region of the
model. However, there is also a weak but clearly noticeable oscillatory signal.
As discussed in Section 5.2 this probably reflects differences between the Sun
and the model in the helium abundance and equation of state in the convective
envelope.
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Figure 26: Asymptotically scaled frequency differences between the observed fre-
quencies of Libbrecht et al. (1990) and the normal solar model of Christensen-
Dalsgaard et al. (1993), in the sense (observations) - (model), plotted against
v/(l+1/2). The upper abscissa shows the location of the lower turning point,
which is related to v/(l + 1/2) through equation (10). (a) Original scaled fre-
quency differences. (b) Scaled differences, after subtraction of the function
Ha(w) obtained from the spline fit. The heavy solid line shows the fitted function
H] (w/L)
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Figure 27: Sealed frequency differences between observations and model, shown
i Figure 26(a), after sublraction of the function Hy(w/L) resulting from the
spline fit. The heavy solid line shows the fitted function Hy(w).

The function H,(w/L) is related to the sound-speed difference between two
models. or between the Sun and a model, through equation (24). Given a
dotermuination of H; this equation is an integral equation for éc/c, with the

solution

be _ _2a_d /“((ﬂ — )R, () dw (67)
¢ m dinr Ja,

(Christensen-Dalsgaard et al. 1989), where a = ¢/r and a, = a(R). This pro-
vides one of the simplest examples of an inverse analysis to infer properties of
the solar interior from the observed frequencies (see the chapter by Gough). In
fact, the asymptotic relation (12) and refinements of it also lead to absolute
inversion methods whereby the solar sound speed is determined without refer-
ence to a solar model (e.g. Gough 1984b; Christensen-Dalsgaard et al. 1985;
Vorontsov & Shibahashi 1991).

Tests of the inversion method given by equation (67) show that it provides
reasonably accurate results in the range 0.2R < r < 0.95R, where the asymptotic
description is approximately valid (Christensen-Dalsgaard et al. 1989). Here 1
apply it to the differences between the solar and the computed frequencies shown
in Figure 26. The results are shown as the dotted line in Figure 28. The thin
lines illustrate the effects of the error estimates for the solar frequencies, as
quoted by the observers. Evidently the formal error on the result is extremely
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Figure 28: The dotied line shows the sound-speed difference 6c/c between the
Sun and a normal solar model, inferred by applying equation (67) to the function
Hi(w/L) shown in Figure 26(b), corresponding to differences between observed
and model frequencies. The solid line shows éc/c, similarly obtained, between the
Sun and a model including diffusion and gravitalional settling of helium. The
thin lines indicate 1o error imits, based on the crrors in the observed frequencies.
Adapted from Christensen-Dalsgaard et al. (1993).

small. Also, the sound-speed differences are small, corresponding to errors in
T/u in the models of generally less than 1 per cent. Nonetheless, the differences
are clearly much larger than the errors resulting from the observations.

To illustrate the effects of improvements in the descripuion of the solar inte-
rior the solid lines show the sound-speed difference obtained from the differences
between the solar frequencies and those of a model including the effects of he-
lium diffusion and settling (Christensen-Dalsgaard et al. 1993). It is interesting
that the relatively subtle, and previously commonly neglected, effect of gravita-
tional settling leads to a substantial improvement between the model and the
observations, partly by increasing the depth of the convection zone in the model.
This is a striking illustration of the power of helioseismology to probe the details
of the physics of the solar interior. Furthermore, it should be stressed that the
models were computed without any attempt to match the observed frequencies.
It is remarkable that our relatively simple description of solar evolution, using
physics based on laboratory experiments, permits us to reproduce the sound
speed in the solar interior to within a fraction of a per cent. On the other hand,
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it must be pointed out that the model is not unique: it is likely that modest
modifications in the opacity. well within the precision of current opacity tables,
might introduce changes in the sound speed of similar magnitude. ‘The sepa-
ration of opacity uncertainties from effects of diffusion and settling is a major
challenge, which will undoubtedly require better physical understanding of the

processes involved.

The results of Christensen-Dalsgaard et al. (1993) are in apparent conflict
with those obtained by Guenther, Pinsonneault & Bahcall (1993), who concluded
that current frequencies do not permit a definite helioseismic test of the effects
of diffusion. However, Guenther et al. (1993) based their analysis on simple
differences between ohserved and computed frequencies. Thus their results were
dominated by the the effects of the near-surface uncertainties in the model,
causing frequency differences of order 10 uHz, which apparently masked the
rather smaller effects resulting from diffusion. This provides a clear illustration
of the need for careful analysis to isolate the sometimes quite subtle features of
the solar interior in the observed frequencies.

5.2 Test of the equation of state

In Section 4.6 | demonstrated the sensitivity of the computed frequencies to
description of the thermodynamics of the solar interior. A closely related issue
is the use of the observed frequencies to determine the helium abundance in the
convection zone. Here I illustrate how comparisons with the observed frequencies
may be used to test the equation of state.

An early indication of the power of the frequencies in this regard was obtained
by Christensen-Dalsgaard, Dappen & Lebreton (1988) who compared observed
h"cquenries with frequencies computed with the EFF and MHD equations of
state (cf. Section 2.2.1). Figure 29 shows corresponding results, although com-
paring instead the EFF and CEFF formulations. In both cases, the differences
are dominated by a frequency-dependent trend, clearly resulting from errors in
the near-surface layers. However, it is evident that in the EFF model there is
a very considerable dependence of the differences on degree at given frequency,
indicating a dependence on the turning-point position and hence a sign of er-
rors in the interior of the model. It should be noticed that this spread is found
even amongst modes of degree { > 50 trapped in the convection zone, where the
equation of state is the dominant source of uncertainty. Also, the differences
are comparatively large at low frequency, again indicating a component of the
error in the model outside the superficial layers. In contrast, the spread with
! is much reduced in the CEFF model; also, much of it occurs for modes with
turning points near the base of the convection zone (compare, for example, with
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Figure 29: Scaled frequency differences between the BISON-BBSO set of ob-
served frequencies and frequencies of two solar models, in the sense (observa-
tions) - (model), plotted against frequency. Modes of the same degree | have
been connected, according to the following line styles I=0-3:
l=4-30: —— [=40—-100: ------------- =150 —400: ——-——-— :
=500 -1100: —— —— . (a) Model compulcd with the EFF equation of
state. (b) Model computed with the CEFF cquation of state (this uses the same
data as Figure 25).

Figure 10) and corresponds to the comparatively large sound-speed difference
between the Sun and the model already inferred from the inversion in Section
5.1 (¢f. Figure 28). Furthermore, the differences at low frequency are now quite
small. Thus there are strong indications that the CEFF model provides a bet-
ter representation of the solar convection zone than does the EFF model. The
improvement in the models resulting from the consistent inclusion of Coulomb
effects was also noted by Stix & Skaley (1990).

A more detailed comparison can be made, as usual, by carrying out a fit
of the form given in equation (25) to the differences between the observed and
computed frequencies. Figure 30 shows the resulting functions H;(w/L) for
models computed with the EFF, the CEFF and the MHD equations of state. The
fit only determines H; to within a constant: in fact, it follows from equation (67)
that the sound-speed difference is essentially determined by the gradient of H,.
Thus the figure clearly confirms the improved agreement resulting from using
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Figure 30: Functions Hi(w/L) fitted to asymptotically scaled frequency differ-
cnces between the BISON-BBSO set of observed frequencies, in the sense (ob-
servations) - (model), and three solar models: a model using the EFF equation
of state (dashed line), a model using the CEFF equation of state (solid line),
and « model using the MID equation of state (dot-dashed line). The physics
otherwise corresponds to the non-diffusive model of Christensen-Dalsgaard et al.
(1995). The upper abscisse shows the location of the lower turning point, which
is related to v)(1 + 1/2) through equation (10).

the CEFF formulation. compared with EFF. On the other hand, there is no clear
distinction in this type of analysis between the MHD and CEFF formulations
(sce also Christensen-Dalsgaard & Dappen 1992). The fairly steep rise in H;(w)
at low v/(! + 1/2) may be associated with near-surface errors in the model and
oscillation physics or witl. errors in the assumed asymptotic formulation. Also,
the curves clearly show the increase in Hy near v/(/+1/2) = 100 uHz, associated
with the difference in convection-zone depth between the models and the Sun.
The effects of the equation of state on H;(w/L) were also investigated by Antia
& Basu (1994) and Basu & Antia (1995).

The phase function a(w) appearing in the Duvall law (equation 12), or the
function Hz(w) obtained from the asymptotic fit, apparently provide even more
sensitive discrimination between different equations of state and measures of
the envelope helium abundance Y.. Vorontsov et al. (1991) analyzed properties
of a(w) to infer that Y. ~ 0.25. A similar value was obtained by Christensen-
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Dalsgaard & Pérez Hernandez (1991) from analysis of Hy(w). Also, Pamvatnykh,
Vorontsov & Dappen (1991) investigated the sensitivity of functions related to
a(w) to various aspects of the convective envelope. A serious problem in using
these phase functions is the fact that they are generally dominated by contribu-
tions coming from the uncertain near-surface region. However, it was argued in
Section 3.4.4 that these contributions are generally slowly varying functions of
frequency, whereas contributions coming from somewhat deeper parts of the Sun
oscillation with frequency (see also Figure 4 and Section 4.1). Vorontsov, Baturin
& Pamyatnykh (1992) developed a polynomial fitting procedure which provided
a separation between the slowly and the rapidly varying parts of the phase
function. Working in terms of phase-function differences, Pérez Hernandez &
Christensen-Dalsgaard (1994a) introduced a filtered function H5(w), obtained by
passing H,(w) through a high-pass filter and hence suppressing the near-surface
effects. Here 1 illustrate the use of such procedures by showing in Figure 31 the
result of applying this filter to the H,(w) resulting from differences between ob-
served and computed frequencies, together with the original H,(w). It is evident
that the slowly-varying trend has indeed been eliminated, leaving an oscillatory
function of frequency with a period corresponding roughly to the depth of the
second helium jonization zone (cf. Section 3.1.3).
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Figure 31: The solid curve shows the function H,(w) obtained in a fit to scaled
frequency differences between observations and model (see Figure 27). The
dashed curve shows the result Hy(w) of applying the high-pass filter of Pérez
Herndndez & Christensen-Dalsgaard (1994a) to this function.

The signal shown in Figure 31 contains contributions from several different
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Iigure 32: Residuals, with 30 error bars, from fils of the filtered phase functions
HY(w) corresponding to differences between observed and model frequencies. The
fils involve contributions from changes in the hclium abundance, mizing-length
parameler and near-surface structure. The solid curve corresponds to a reference
model using the MHD equation of state, while the dashed curve corresponds to
the CEFF equation of state. (From Pérez Herndndez & Christensen-Dalsgaard
1994b.)

sources, including errors in the equation of state, differences between the com-
position and the specific entropy of the solar and the model convection zones
and residual effects of the near-surface errors. To separate these effects Pérez
Hernandez & Christensen-Dalsgaard (1994b) carried out a least-squares fit to
the observed H(w) of a linear combination of three contributions: a contribu-
tion from a change in the envelope helium abundance; a contribution of a change
in the mixing-length parameter (and hence the specific entropy in the adiabatic
part of the convection zone); and a contribution corresponding to a change in
the atmospheric opacity and representing effects of near-surface errors. The ef-
fect of each individual parameter was represented by a function H(w) obtained
from differences between an envelope model incorporating a change in the given
parameter and a reference model. Figure 32 shows the residuals of such fits to
Hi(w) obtained from differences between the observed frequencies and frequen-
cies for two reference models: a model computed using the CEFF equation of
state and a model computed with the MHD equation of state. It is evident that
the MHD model provides a much closer fit to the observations, when analyzed
in this way, than does the CEFF model. In fact, the residual for the CEFF case
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is of the same order of magnitude as the oscillatory component of H3(w) for the
differences between the CEFF and MHD equations of state (cf. Figure 24b);
this suggests that there is relatively little cross-talk between the effects of using
the CEFF equation of state and the remaining uncertainties in the model, in
particular the helium abundance. It should be noted, however, than even for the
MHD model the residuals are substantially larger than the 3¢ error bars shown
in the figure, indicating that the MHD model is still not consistent with the
Sun at the level of the observational errors. Nonetheless, these results suggest
that the MHD equation of state provides a better representation of the thermo-
dynamic properties of solar matter than the CEFI formulation, at least in the
second helium ionization zone which dominates the signal shown in Figure 31.
This is hardly surprising: the CEFF treatment is relatively simple, compared
with the complex handling by MHD of interactions between the constituents of
the gas.

A similarly detailed test of the Livermore equation of state (cf. Section 2.2.1)
has yet to be carried out. However, preliminary results indicate that the H,(w)
corresponding to the difference between models computed with the Livermore
and the MHD equations of state differs in shape from the effect of a change in
Y.; this suggests that the Livermore formulation may be less successful in fitting
the observations than MHD. On the other hand, it appears from sound-speed
inversions there may be problems with the MHD formulation at temperatures

somewhat exceeding that of the second helium ionization zone (Dziembowski et
al. 1992).

As a result of their fit, Pérez Hernandez & Christensen-Dalsgaard (1994b)
estimated the envelope helium abundance as Y, ~ 0.242, largely consistent with
the value of 0.25 quoted above. Similar values were also obtained by Basu &
Antia (1995) from analyzing H, and H,, using either the MHD or the Livermore
equations of state. However, these results may still compromised by errors in the
equation of state, and by possible systematic errors in the analysis procedure.
Kosovichev et al. (1992), using non-asymptotic inversion techniques, made an
extensive investigation of the uncertainties in the inferred value of Y, resulting
from differences in the equation of state, the choice of mode set and the inversion
procedure; the results suggest that current estimates of Y. must be viewed with
some caution. Nevertheless, it is interesting to compare the results with those
obtained from the calibration of solar models to the correct present luminosity,
where a value of the initial helium abundance Y5 of 0.27 - 0.28 is typically
required. This is probably inconsistent with the helioseismic estimates, even
given the uncertainty in the equation of state. However, the results of Section 4.3
on models with helium diffusion and settling (see in particular Figure 11) shows
that these effects reduce ¥, by about 0.03 relative to the initial value. Thus for
calibrated models that include helium settling the present value of Y, is close to
the values inferred from helioseismology.
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Despite the problems of separating eflects of composition and equation of
state. the results shown here demonstrate that current observations of solar
uscillations are sensitive to aspects of the equation of state beyond the inclusion
of the Coulonl effects. This offers hope that these data, and the substantially
more accurate data expected from new helioseismic experiments, will provide
new physical insight into the properties of the thermodynamics of hot partially

jonized gases.

5.3 Matching the near-surface effects

Pigure 28 indicates that with the inclusion of helium diffusion and settling the
interior structure of solar models is very close to the that of the Sun. Also, the
results in Section 5.2 suggested that the MHD equation of state provides a rea-
sonable representation of the thermodynamics of the solar convection zone. To
illustrate how these propetties are reflected in the comparison between observed
and computed frequencies, Figure 33(a) shows scaled {requency differences be-
{ween the Sun and a model including helium settling, computed with the MHD
equation of state {Basu ¢ al. 1995). It is obvious that there is little evidence
liere for errors in the interior of the model, as would have been indicated by
an {-dependence of the scaled differences or a substantial difference at low fre-
quency. The only significant exception is probably at very high degree where
the assumption of vertical propagation in the near-surface layers breaks down
(c.g. Antia 1995; see also equation 33). The remaining scatter is likely to be
predominantly observational.

| argued in Section 2.5 that the frequency-dependent difference could derive
from a number of errors in the model or frequency computations. As a simple
illustration of the effects of ncar-surface modifications on the comparison be-
{ween observations and models [ here consider a model using the same physics
as for Figure 33(a), except that the opacity has been increased by a factor 2.34
al. temperatures below about 8100 K. The resulting scaled frequency differences
are shuwir in Figure 33(b). The change in atmospheric structure resulting from
the opacity increase has clearly eliminated much of difference between obser-
vations and model; similar effects were also noted by Christensen-Dalsgaard
(1990), Kim, Demarque & Guenther (1991) and Turck-Chiéze & Lopes (1993).
However. it is evident that there remain significant variations. Some of these are
undoubtedly associated with the remaining differences between the interiors of
the Sun and the model, illustrated in Figure 28. In addition, there is an indica-
tion of an oscillatory variation with frequency which might be related to errors
in the equation of state or convection-zone helium abundance, as well as a con-
tribution varying more slowly with frequency and hence probably concentrated
verv near the surface.
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Figure 33: (a) Scaled differences between observed frequencies and frequencies
of a model including helium diffusion and settling, computed with the MHD
equation of state. Crosses indicated modes with | < 500, diamonds are modes
with 500 < | < 1000 and triangles are modes with 1000 < [. (b) As (a), but
for a model where in addition the almospheric opacity has been increased by a
factor 2.34.
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It should be stressed that opacity errors of this magnitude in recent tables are
quite unlikely. Thus this calculation cannot be regarded as a realistic attempt
to explain the frequency-dependent part of the difference between observations
and models. Instead, it is presented here as a simple example of the effects of
near-surface changes. Similar effects arise from other types of modifications.
[t was shown in Section 4.1 that the observed behaviour can be mimicked by
making the superadiabatic gradient steeper, as in, for example, the Canuto
& Mazzitelli (1991) formulation (e.g. Paternd ef al.  1993; Monteiro et al.
1995ab; cf. Figure 8). Superficially similar effects arise when turbulent pressure
is taken into account in the equilibrium model, or from effects of convective
fluctuations (e.g. Rosenthal et al. 1995b), while the effects of nonadiabaticity
or the perturbation in the turbulent pressure are still somewhat uncertain, due to
the difficulties in modelling the effects of convection (e.g. Christensen-Dalsgaard
& Frandsen 1983; Cox, Guzik & Kidman 1989; Balmforth 1992b; Guenther 1994;
Rosenthal et al. 1995h).

The situation concerning the near-surface problems in the modelling is clearly
rather unsatisfactory at present. However, hope is provided by the availability
of increasingly realistic hydrodynamical simulations of this region, accompanied
by a better physical understanding of the relevant processes. Also, the expected
more accurate observations may permit us to distinguish between the different
models proposed to account for the frequency behaviour. Finally, potentially
very important information concerning convective effects might be obtained from
observations of solar-like oscillations in other stars covering a range in effective
temperature and surface gravity.

6 TOWARDS THE STARS?

It is evident that observations of solar oscillations are providing extremely de-
tailed information about the properties of the solar interior. This gives a precise
test of stellar evolution theory, including the physical information that enter into
it, as applied to the Sun. However, the Sun is only a single specific example of
a star, with a comparatively simple structure. It is obviously of great interest
to obtain similar information about other stars.

This encounters two problems. Detection of small-amplitude oscillations,
such as those observed in the Sun, is greatly complicated by the low light-level
available for stars other than the Sun. And the apparent extent of such stars is so
small that essentially no spatial resolution is possible; thus with few exceptions
the observations are limited to modes of low degree, as in whole-disk observations
of solar oscillations (see Leibacher, this volume). As a result, the data for
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any individual remote star will always be much less extensive than the data
available for the Sun. This, however, must be balanced against the possibility
of studying stars of greatly varying parameters, such as mass and age, covering
a corresponding range of physical properties and phenomena. A very important
example are convective cores which are only found in stars more massive than the
Sun: the properties of such convective cores and the associated mixing, which
may include overshooting or weaker turbulence, are highly uncertain; yet such
processes play a major role for the evolution of the stars on the main sequence
and beyond.

The early analyses of this nature predates the first results of helioseismol-
ogy. For a long time there appeared to be discrepancies between the observed
periods of classical Cepheids and evolution models of these stars; the problem
was particularly acute for double-mode Cepheids, as first pointed out by Pe-
tersen (1973). This and other discrepancies between pulsation observations and
evolution calculations were reviewed by Cox (1980). The new computations
of opacities, where a more careful treatment of lines has led to very substantial
opacity increases (see Section 2.2.2), have largely solved these so-called “Cepheid
mass problems” (e.g. Moskalik, Buchler & Marom 1992; Kanbur & Simon 1994;
Christensen-Dalsgaard & Petersen 1995). It is interesting that the effects in
the Cepheids are dominated by the opacity at temperatures between 10° and
10°K: this temperature range falls within the solar convection zone and the
corresponding opacities have no effect on solar structure. Thus studies of the
double-mode Cepheids complement the information that can be obtained about
opacity from helioseismology.

Extensive data are now available for pulsating white dwarfs (for a review, see
e.g. Winget 1991), providing precise measures of white-dwarf masses, informa-
tion about the thickness of the outer hydrogen layer, constraints on the rotation
rate and magnetic field and in some cases measurements of evolutionary effects,
visible as frequency changes. On or just after the main sequence observations of
B Cephei stars and other pulsating B stars are providing information about the
properties of relatively massive stars (e.g. Gautschy 1990); the recent opacity
revisions have provided a natural explanation for the excitation of oscillations in
these stars (e.g. Cox et al. 1992; Kiriakidis, El Eid & Glatzel 1992; Moskalik &
Dziembowski 1992). Also, extensive sets of frequencies, which may even include
g modes, are becoming available for § Scuti stars (e.g. Breger et al. 1993; Bel-
monte et al. 1994; Frandsen et al. 1995; for a review, see Matthews 1993). Both
B stars and § Scuti stars have convective cores and hence promise information
that is unavailable for the Sun. Furthermore, by solar standards the amplitudes
are large, with relative intensity variations of order 10-3, making the oscillations
relatively easy to detect; even so, the identification of the modes still give rise
to considerable uncertainty. Finally, the rapidly oscillating Ap stars (e.g. Kurtz
1995) display frequency spectra with some superficial similarity to the solar os-
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cillations of low degree, although strongly affected by the large-scale magnetic
fields of these stars.

Fven though a variety of stars are therefore good targets for asteroseismic
investigations, it would clearly be of particular value to detect and study solar-
like oscillations in stars other than the Sun. The diagnostic potential of such
data is relatively well understood (Ulrich 1986; Christensen-Dalsgaard 1934,
1988, 1993; Gough & Novotny 1993; Brown et al. 1994; Audard, Provost &
Christeusen-Dalsgaard 1995). Furthermore, information on the dependence of
the mode amplitudes and line widths on stellar parameters would provide im-
portant information about the excitation and damping processes, eventually
perhaps leading to a hetter understanding of the properties of outer stellar con-
vection zones. The detection of such oscillations has been elusive, however. So
far a number of suggestive results have been obtained (e.g. Gelly, Grec & Fossat
1986: Innis ef al. 19915 Brown et al. 1991 Pottasch, Butcher & van Hoesel
1992). although with no definitive identification of oscillations. Also, a very am-
bitious project involving a substantial number of large telescopes reached a very
low detection threshold but still failed to make definitive detection (Gilliland
el al. 1993). Basic problems in these attempts have been atmospheric noise in
hroad-band intensity measurements and photon noise and spectrograph stability
in velocity measurements.
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Figure 34: Observed power spectrum of n Bootis. The inset shows the window
function. (From Bedding & Kjeldsen 1995).

6.1 7 Bootis

The atmospheric effects can to a large extent be eliminated by making differen-
tial measurements, comparing the intensity in spectral lines with the intensity
in the neighbouring continuum. Kjeldsen et al. (1995) showed that the inte-
grated intensity in the Balnier lines, expressed in terms of the equivalent width,
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provides a sensitive measure of oscillations in stellar atinospheres. In this way
they were able to detect probable solar-like oscillations i1 the sub-giant star
n Bootis, from 6 nights of observations with the 2.5 m Nordic Optical Telescope.
Figure 34 shows the relevant part of the resulting power spectrum. There are
clear indications of excess power in the frequency range 700 — 950 xHz, of a
shape superficially similar to the amplitude distribution in the solar five-minute
oscillations.

The interpretation of the spectrum is greatly complicated by the presence
of strong daily side lobes. Through a correlation analysis Kjeldsen ef al. deter-
mined the large frequency separation Av (cf. equation 34) as Ay ~ 40.3 uHz.
To determine individual frequencies they carried out a so-called CLEAN anal-
ysis on the spectrum. Such techniques are subject to considerable uncertainty
in data with comparatively low duty cycle; in particular, there is some risk of
mistaking a side lobe for the niain peak. However, Kjeldsen et al. inferred
frequencies of thirteen modes, including several closely-spaced pairs which they
identified as having / = 0 and 2, in accordance with the asymptotic expression

(34).
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Figure 35: Evolutionary tracks in the HR diagram, for models with Z = 0.03,
X = 0.7 and a mizing-length parameter calibraied to obtain the proper solar
radius. Models are shown with masses of 1.6 M¢,1.63Mg and 1.66 M. The
error bor indicates the observed location of n Boolis. (Adapted from Christensen-
Dalsgaard et al. 1995b).

The interpretation of these data was considered by Christensen-Dalsgaard,
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Bedding & Kjeldsen (1995h). The star is sufficiently close that its distance is
known with reasonable precision; from this its luminosity can be determined as
I = 954 0.7L,. Also, spectroscopy shows that the effective temperature is
Ter = 6050 £ 60 K and that the heavy-element abundance is somewhat higher
than solar. Figure 35 shows the location of the star in a Hertzsprung-Russell
diagram, together with evolutionary tracks for Z = 0.03 and three masses.
These identify the star as being past the phase of central hydrogen burning,
and with a mass of about 1.6 M. Calculation of adiabatic frequencies shows
that it is possible to find models in the error box with a Av which is consistent
with the observed value. 'This provides an excellent test of the consistency of
the frequency observations with the more classical stellar data: Awv is essentially
proportional to the the characteristic dynamical frequency way, = (GM/R%)!/?
and hence is predominantly determined by the stellar radius; thus it is largely
fixed by the location of the star in the HR diagram. On the other hand, this
property also indicates that Aw is relatively insensitive to the details of the
stellar internal structure.

100.0

10.0

1.0

Dimensionless frequency

0.1 1 1 L i -\‘
0.0 0.2 0.4 0.6 0.8 1.0
/R

Figure 36: Dimensionless buoyancy frequency N = (GM/R®)™V2N plotted
against fractional radius r/R for a model of the present Sun (dashed line) and
a model of n Bootis (solid line). The dot-dashed lines show the dimensionless
characteristic acoustic frequency S = (GM/R®)™V2S,, where S, = cL/r, for
[ =1 and 2 in 7 Bootis. The heavy horizontal line indicates the location of a
mode in 1 Bootis of frequency 850 pHz, typical of the observed frequencies.

To assist the understanding of the behaviour of the oscillations in 7 Bootis,
Figure 36 shows the buoyancy frequency and characteristic acoustic frequencies
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in a model of 7 Bootis, in units of wgyn, and compare them with the buoyancy
frequency in the present Sun. The dominant difference between the two models
is the very large peak in N near the centre of the n Bootis model. This is
caused by two effects: during main-sequence evolution the retreating convective
core leaves behind a steep gradient in the hydrogen abundance, leading to a
highly stable stratification and hence contributing to a large value of N (e.g.
Dziembowski & Pamyatnykh 1991; Audard, Provost & Christensen-Dalsgaard
1995); in addition, the increasing central condensation as the core contracts after
hydrogen exhaustion drives up the gravitational acceleration in the core, further
increasing N. As a result, the maximum value of N exceeds the acoustical cut-
off frequency in the stellar atmosphere. Thus all trapped acoustic modes may
in principle be affected by the buoyancy frequency, taking on g-mode character
in the core.

It should be recalled (see Leibacher, this volume) that a given mode behaves
like a p mode where its frequency w satisfies w > N and w > S) and like a g
mode where w < N and w < Sj; in regions where N < w < §; the mode is
evanescent, either decreasing or growing exponentially. Thus, at the frequencies
characteristic for the observations of  Bootis, indicated by the horizontal line
in Figure 36, the modes have extended p-mode regions in the outer parts of the
star and a small g-mode region near the centre. The separation between these
two regions is quite small for | = 1, leading to a substantial coupling between
the two types of behaviour; with increasing I, the separation increascs rapidly
and the coupling becomes small.

The effects of this structure on the oscillations are illustrated in Figure 37.
The frequencies of the radial modes, shown by dashed lines in panel (a), decrease
approximately with wq,n as a result of the increasing stellar radius. The same
general trend is shared by the | = 1 modes when they behave like p modes.
However, the figure shows the presence in addition of g-mode branches, with
frequencies increasing with age as the maximum value of N increases. This
leads to resonances where frequencies of modes of the same degree undergo
avoided crossings instead of crossing (e.g. Aizenman, Smeyers & Weigert 1977);
on the other hand, there is no interaction between modes of different degree. The
effect on the mode inertia E normalized at the photospheric amplitude, defined
in equation (53), is shown in panel (b); for clarity two modes with = 1 have
been indicated in both panels by triangles and diamonds, respectively, at the
points corresponding to the models in the evolution sequence. Where the [ = 1
modes behave as p modes, their inertia is very close to that of a radial mode of
similar frequency. However, the g-mode behaviour corresponds to an increase
in the amplitude in the interior and hence in £. At the avoided crossing there
is an interchange of character between the two interacting modes. (It should be
noted that the density of models in the sequence is insufficient to resolve fully
the variations with age in E, leading to the somewhat irregular behaviour in
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Figure 37: (a) Ewvolution of adiabatic frequencies for model of mass 1.60 Mg.
The lower abscissa shows the effective temperature Tegr, the upper abscissa the
age of the model in Gyr. The dashed lines correspond to modes of degree [ = 0,
and the solid lines to | = 1. The vertical solid line indicates the location of the
model whose frequencies are illustrated in Figure 39. (Adapted from Christensen-
Dalsgaard et al. 1995b). (b) The change with age wn the normalized mode
inertia (cf. equation 53). The solid lines show modes with | = 1, each model
being indicated by triangles or diamonds as in panel (a), whereas the dashed line
shows the radial mode with approzimately the same frequency.
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panel (b); however. the overall variation is clearly visible.)

The properties of the oscillations are further illustrated by the eigenfunc-
tions shown in Figure 38, for the two modes with [ = 1 undergoing avoided
crossing at the vertical line in Figure 37 as well as for the neighbouring radial
mode. The displacement amplitudes have been weighted by p'/*r, so that they
directly shows the contribution at a given radius to the mode inertia E, (cf.
equation 53). The [ = | mode in panel (a) is evidently very nearly a pure
acoustic mode, with an vertical displacement behaving almost as for the radial
mode, apart from the phase shift associated with the difference in frequency.
In contrast, the second [ = 1 mode has very substantial displacement ampli-
tudes in the core, leading to the comparatively large normalized inertia shown
in Figure 37; this is particularly visible in the enlarged view in Figure 38(¢c). It
should be noted, however, that the separation between the g-mode and p-mode
propagation regions is quite small in this case (see also Figure 36), leading to
substantial coupling between the two regions and causing the large minimum
separation in the avoided crossing and a maximum normalized inertia which is
still relatively small, despite the g-mode like behaviour in the core. In contrast,
for modes with [ > 2 the separation between the propagation regions is larger
and the coupling is much weaker; as a result, a frequency plot corresponding to
Figure 37(a) shows two sets of frequencies apparently crossing with no avoid-
ance, and the maximum inertia for, for example, [ = 2 in the frequency region
illustrated is around 3 x 1077.

The normalized inertia may provide a rough estimate of the likely surface
amplitude of the modes, at least if the modes are excited stochastically by
convection (e.g. Houdek et al. 1995): in that case the mode energy is likely
to be independent of degree, at fixed frequency. It follows from equation (53)
that kinetic energy of a mode can be expressed as A?E,, where A is the surface
amplitude. Assuming that the energy is independent of degree, the amplitude
An of a mode of degree [, order n and normalized inertia E,; satisfies

Ani N[ En ]—1/2
Ao(vmr) — [FO(Unl) '

where Ao(v) and Eo(v) are obtained by interpolating to frequency v in the
results for radial modes. In particular, the modes with strong g-mode character
in Figure 37 would be expected to have roughly half the surface amplitude of
the pure acoustic modes.

(68)

To compare the fine structure in the observed and computed frequency spec-
tra it is convenient to use an echelle diagram (e.g. Grec, Fossat & Pomerantz
1983). Here, the frequencies are reduced modulo Av by expressing them as

Ut = Vo + kA + Dy (69)
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Figure 38: Eigenfunctions of selected modes in the model indicated by a vertical
line in Figure 37. In panel (a) the amplitudes of the vertical displacement are
shown for the | = 1 mode indicated by triangles (solid line) and the neighbouring
radial mode (dashed line). Panels (b) and (c) are for the | = 1 mode marked
by diamonds: the solid and dot-dashed lines show the amplitudes of the vertical
and horizontal displacement, respectively.
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Figure 39: Echelle diagram with a frequency separation of Av = 40.3 uHz. The
open symbols show computed frequencies for a model with M = 1.60My and
Z = 0.03; here the reference frequency was u(()md) = 856 pHz. Circles are used
for modes with | = 0, triangles for | = 1, squares for | = 2 and diamonds for
I'=3. The size of the symbols indicates the expected relative amplitude of the
modes (see text); symbols that would otherwise be too small have been replaced by
crosses. The filled circles show observed frequencies from Kijeldsen et al. (1995),

plotted with the same Av but with a reference frequency of V[(,Ob!) = 846 uHz.

(where v is a suitable reference frequency and k is an integer), such that 7,
is between 0 and Av. In the echelle diagram vy + kA is plotted against Uy,
The result is shown in Figure 39. The open symbols are for a 1.6 Mg model
that was chosen to have Ay =~ 40.3 uHz; the reference frequency was u((,mad) =
856 pHz. The sizes of the symbols have been scaled by the amplitude ratio
Ani/Ao determined by equation (68).

The model results for | = 0, 2 and 3 clearly reflect the behavior predicted by
equation (34). In particular, the points for / = 0 and 2 run parallel, with a small
separation &0 = 3.3 uHz resulting from the last term in that equation. For ! = 1,
equation (34) predicts an almost vertical series of points separated by roughly
Av/2 from those for | = 0. The model frequencies deviate from this. Comparison
with Figure 37(a) (where the location of this model is marked by a vertical
solid line) indicates that this behavior is associated with the avoided crossings,
which change the frequency separation and therefore shift the frequenciesrelative



Testing a solar model: the forward problem 79

10 the location expected from p-mode asymptotics. As discussed above, even
[ = 1 modes behaving partly like g modes still have sufficiently small normalized
inertia £y that their estimated amplitudes are close to those of the pure p modes.
("The figure shows a single exception: a mode at 730 uHz shifted almost to the
{ = 0 line, with somewhat reduced amplitude.) In contrast, since the g modes of
degree 2 and 3 are trapped quite efficiently in the deep interior. their estimated
amplitudes are so small ax to make the points virtually invisible in Figure 39.

Phe filled circles in Figure 39 show the frequencies observed by Kjeldsen ¢
al. (1995), again plotted with Av = 40.3 uliz, but with the reference frequency
:/é""’) = 846 pllz. We can immediately identily modes with degrees { = 0 and
2. and the small frequency separation found by Kjeldsen et al. (&0 = 3.1 £
0.3;Hz) is in excellent agreement with the model value. The remaining six
observed frequencies coincide quite well with { = 1 modes in the model and
display an irregularity similar to the model frequencies (although differing in
detail). This might indicate that the observations of 7 Bootis show evidence for
avoided crossings involving g modes. Note, however, that some of the observed
frequencies may arise from modes with { = 3.

The interpretation of the observations must clearly be regarded as prelimi-
nary, given the uncertainly in extracting individual frequencies in a single-site
power spectrum complicated by side lobes. In particular, the indications in the
echelle diagram of effects of g-mode trapping is clearly extremely tentative. On
the other hand, the close agreement between the observed and computed value
of the { = 0 — 2 frequency separation is suggestive. The difference of 10 uHz in
the reference frequency vy required to obtain agreement between the location of
the modes in IMigure 39 is clearly a concern; however, it should be noted that
this is of a similar magnitude to the differences observed in comparisons of solar
observed and computed frequencies and attributed to errors in the treatment of
the superficial layers. Similar effects might be expected for n Bootis (see also
(‘hristensen-Dalsgaard «f al. 1995¢).

6.2 Concluding remarks

The helioseismic investigations of the solar interior have undergone a dramatic
development since the initial determination of individual p-mode frequencies of
the Sun more than 15 years ago. Inverse analyses now let us determine density
and sound speed in most of the solar interior with a relative precision exceeding
1073, Remarkably, the results are quite close to normal solar models, provided
that gravitational settling and diffusion of helium are taken into account, al-
though significant differences remain. The frequencies have been shown to be
sensitive to fine details in the physics of the solar interior, particularly the ther-
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modynamic properties and the opacity, this was used early to indicate the need
for opacity increases, later confirmed. and is permitting tests of sophisticated
formulations of the equation of state against the Sun.

The study of solar oscillations is on the threshold of a new era, with the
deployment of the GONG project (e.g. Harvey et al. 1993; Leibacher et al. 1995)
and the instruments on the SOHO satellite, expected to be launched towards the
end of in 1995 (c.g. Scherver et al. 1995: Appourchaux ¢f al. 1995: Gabriel et
al. 1991). Together with the existing BISON aud IRIS networks (e.g. Elsworth
el al. 1995; Fossat 1995) these projects will provide a major expansion of the
helioseismic data. This should result in greatly improved information about
the structure of the solar core, of obvious importance to the understanding of
solar evolution and the neutrino problem, substantially better knowledge about
conditions at the base of the convection zone, constraining possible overshooting
and turbulent mixing in this region, and a much stronger basis for testing the
equation of state and determining the envelope helium abundance. Furthermore,
high-quality data on high-degree modes may improve our understanding of the
properties of the near-surface region, including the effects of convection on the
structure of the Sun and on the frequencies and excitation of the oscillations.

With the possible detection of modes in 7 Bootis, asteroseismology of solar-
like stars may now be in a position similar to helioseismology 15 years ago, with
a corresponding promise for the future development. The technique developed
by Kjeldsen et al. (1995) is being applied to other bright stars; an important
example where extensive observations have already been obtained is o Centauri.
Also, it is obvious that further observations of 7 Bootis are required, to confirm
and extend the initial results. Particularly important are multi-site observations,
to reduce the complications of the side lobes in the spectrum. Also, the theoret-
ical analysis in Section 6.1 indicates the substantial richness in the oscillations
of sub-giant stars of somewhat more than solar mass, compared with stars in
the phase of central hydrogen burning. Combined with their intrinsic brightness
this makes subgiants attractive targets for asteroseismic investigations.

The effects of the Earth’s atmosphere are likely to constrain ground-based
investigations of solar-like oscillations to bright stars, observed with large tele-
scopes. From space, however, the observations are limited essentially only by
photon noise; here broad-band intensity measurements will allow the study of
oscillations at solar amplitudes in fairly faint stars with modest-sized telescopes.
An initial experiment of this nature, the EVRIS project (Baglin 1991), is sched-
uled for launch in November 1996 on the Russian Mars probe MARS96. It will
use a 9 cm telescope to observe a limited number of rather bright stars dur-
ing the 300-day cruise phase of the probe. Two more ambitious projects are
currently under evaluation. The French COROT project (Catala et al. 1995)
is aimed at providing extensive observations of a modest number of stars, to
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obtain highly accurate measurements of frequencies and frequency splittings.
The STARS project, which is currently undergoing Phase A studies within ESA
with a view towards possible selection in 1996, will use an 80 cm telescope with
a CCD detector to make simultaneous observations of several stars (Fridlund
el al. 1995). An important goal is to study solar-like oscillations of stars in
open clusters: since stars in a cluster can be assumed to have approximately the
same age, distance and chemical composition, measured frequencies for stars in
a cluster provide far more stringent constraints on the internal structure of the
stars than do frequencies of a single star, where the basic parameters are often
rather uncertain.

Given the new helioseismic experiments, the continuing observations of “clas-
sical” pulsating stars and the growing potential for study of solar-like oscillations
in other stars there seems little doubt that helio- and asteroseismology will re-
main a very active and fertile field of research for years to come.
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