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Abstract 

The doorway-expansion method is extended to Coupled Channels 
problems in low energy heavy ion collisions. As a test, it is applied to 
an exactly soluble model and the convergence problem is discussed. 

·Work supported in part by the NSF (U .S.A.) and CNPq (Brasil) through the cooper
ative Science Program, and U.S. Department of Energy (DOE) under contract DE-AC02
76ER03069. 

The method is then applied to heavy ion elastic scattering due to the 
optical potential and to a simple Coupled Channels problem. In both 
cases very good convergence is reached with 6 doorway states. The 
calculation with a single doorway is shown to be much better than the 
DWBA. 

1 Introduction 

The theoretical description of nuclear reactions presents numerical difficul
ties which become very serious when the reaction dynamics involves a large 
number of channels [1], [2]. If one wants to go beyond semiclassical [2], [3] or 
perturbative [2] approximations, it is necessary to look for efficient techniques 
to handle the coupled equations. 

The Doorway Expansion Method (DEM), developed for describing pion
nucleus interactions in the region dominated by the ~  resonance [4], has 
proven to be very useful as a powerful calculational procedure while it affords 
physical insight into the important many-body dynamics. Subsequently, this 
approach was extended and applied to the scattering from an optical poten
tial [5]. It was possible, from the obtained analytical results, to identify the 
physical parameters controlling the convergence of the doorway expansion. 
It was found that these parameters are simply related to the target geometry 
and to the interaction strength. 

In this paper we further extend the DEM to the more general case of 
coupled channels. This extension is tested in an exactly soluble model and 
the convergence of the expansion is studied. The method is then applied 
to a typical heavy ion reaction with strong absorption and strong coupling 
between the elastic and one inelastic channel. 

The paper is organized as follows. In section 2, a resume of the doorway 
state approach to optical potential scattering is presented and the generaliza
tion to coupled channels is developed, for both plane wave and distorted wave 
representations. The formalism is then tested in an application to an exactly 
soluble coupled channels problem, with a separable interaction. In section 3 
we consider more realistic coupled channels problems encountered in a typi
cal heavy ion collision. We choose the 160 + 28Si collision at Ecm = 55 MeV, 
populating the giant monopole mode in the 28Si target. Finally, in section 4 
we present a brief discussion and our concluding remarks. 
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2 The Doorway Expansion Method (DEM) 

2.1 Scattering from a short range potential 

Let us start with the scattering from a short range potential. In this case, 
the collision is described by the Hamiltonian 

H= Ho+U, (1) 

and the transition operator T satisfies the Lippmann-Schwinger equation 

T = U +U a<+) T . (2) 

Above, Ho = J( is the kinetic energy operator, U is a potential vanishing 
faster than I/r as ,. ~ 00, and G<+) is the free particle Green's function: 
c<+) = (E - Ho + i"t1

• Eq (2) takes a convenient form if one writes U as a 
product of two factors 

U =v·v. (3) 

In this case, it can be written 

T = v (1 - wt1 v , (4) 

where lV is the rescattering operator, defined as 

w = V G<+) v. (5) 

The choice of v and v depends on the scattering problem considered. In the 
present case, it is convenient to set v = v = UI/2. 

As shown in Reference [5], these equations lead to an efficient technique 
to derive approximations for the transition operator and the wave function. 
For this purpose, we define the entrance channel doorway state and its dual 
space counterpart 

IDCO) >= No v Ik > , IDCO) >= No vf Ik > , (6) 

where Ik > is the incident plane wave. The normalization constants No and 
No satisfy the relation 

No N; = 1/ < klUlk > (7) 
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To complete our description, we define the remaining elements of the 
orthonormal doorway basis; 

n-1 }ID<n) > = Nn WIDCn-l) > - ~ IDU) > < DU)IWIDcn-l) > 
{ 

3=0 

n-l }
ID<n) > = Nn wfID<n-l) > - ~ IDU) >< DU)lwfID(n-l) > . (8)

{ 

The product of the coefficients Nn and Nn is determined by the normalization 
condition 

< D(n) ID(n) >= 1 , (9) 

which implies that 

N;;l =< D<n)IWID(n-l) > ; N;;1 =< D<n)lwfIDCn-l) > (10) 

In terms of the doorway basis, the T-operator can be written 

T = L U I / 2 /D(n) > f(n,m) < D<m)1 U I / 2 , (11 ) 

where f<n,m) are the matrix elements 

- I 
r(n,m) =< IY")I -- IDCm) > (12)

1- W 

It is easy to show that the Lippmann-Schwinger equation for the wave 
function IWk+) > leads to the doorway basis expansion 

Iwt) >= [NoU J
/ 

2r 1 L fCn,O) IDCn) > (13) 

A very convenient property of this basis is that it makes the rescattering 
matrix tridiagonal, i.e., 

WCn,m) =< DCn)IWIDCm) >= 0, if In - ml > 1 . (14) 

This property has two important consequences. The first is that the matrix 
element fCO,D) , which corresponds to the diagonal element of the T-matrix, 
can be written as the continued fraction 
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f(O,O) == (NoN;) < kiT I k >= W(O,I)W(I,O) 

1 W(O,O) 
W(l,2)WC2,1) 

1 - WCI,I) - -----;-:,..."..,....
1 - W C2,2) ••• 

(15) 
The second consequence is that pn,m) can be generated from PO,O) through 
the recursion relation 

f(n,m) = [b'tun + w(n,n-I) f(n-I,m) + w(n,ntl) f(nt l,m)] /(1 - w(n,n») , (16) 

and an analogous relation with respect to the index m. These results were 
derived and applied to model problems in Reference [5]. 

2.2 Scattering by two potentials 

A very useful extension of the previous section is to the case of the scattering 
by a potential given as a sum of two terms 

U=V+~V.  (17) 

In this case, we include the potential V in the hamiltonian Ho, so that the 
Grecn's function G(t) contains effects of distortion by this potential. The 
transition operator can be put in the form 

T = To + ~T. (18) 

Above, To is the T-matrix associated to Ho and ~T  is a correction arising 
from ~  V. This correction can be written 

~T = (OH)t t OCt) , (19) 

in terms of the M~ller  wave operators associated to Ho, n<±), and a "reduced 
transition matrix" t, which satisfies the Lippmann-Schwinger equation 

t=~V + ~VG(+)t.  (20) 

The doorway expansion can also be applied to eq. (20). Writing 

~V  = v . ii, (21 ) 
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one can put the Lippmann-Schwinger equation in the form 

t = v (1 - Wr 1 ii. (22) 

The rescattering operator is given by eq. (5), but now GCt) is distorted by V. 
The matrix elements ~T(k'+-k)  are given by 

~T(k'+-k)  =< k'i ~T  Ik >=< X(-)(k') I t IX(t)(k) > , (23) 

where IXC±)(k) >= OC±) Ik > are incident waves distorted by the potential V. 
The entrance channel doorway states are then defined as 

ID(O) > == No ii OCt) Ik >= No ii IX<t)(k) >� 
ID(O) > == No vt OC-) Ik' >= No vt IX<-)(k') > (24)� 

This definition is analogous to that of the previous section, in the sense that 
ID(O) > (ID<O) » is generated by the action of ii (v t ) on the incident wave. 
The remaining states of the doorway basis are given by eq. (8). 

The doorway expansion for the transition operator becomes 

~T = L (OC-»)t v ID(n) > fCn,m) < DCm)1 ii O(t) , (25) 
nm 

and the matrix elements ~T(k'+-k)  are 

f(n,O) 
~T(k'+-k) = L < l-)(k') I v ID(n) > . N ' (26) 

n 0 

The expression of the wave function in terms of the distorted doorway 
basis has the same form as that of the previous section (eq. (13)). 

It is convenient to carry out partial waves expansions for the distorted 

waves and for the matrix elements ~T(k'+-k),  as 

A 

X(+)(k, r) 
1 411" '""" 'l iUI (k') v (A) v* (k (27)kr L.J z e Xl r I lm r . I lm(211" )3/2 lm 

) 

XH(k, r) 
1 

411" '""" i l e-iUI Xi(h) ~m(r)  . Yl:n(k) (28)
(211" )3/2 kr L.J

lm 

1 
~T(k'+-k)  ~Tl(k,  k') Yi:n(k) . ~m(k'). (29)

kk' L
lm 
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As we are dealing with elastic scattering, we can replace k' = k. 
If V is the point charge Coulomb interaction, as will be the case in our 

application to heavy ion elastic scattering (sect. (3.1)), Xl = Xl = Fl , i.e. 
the regular Coulomb wave function. 

To apply the DEM, we write ~  V in the product form of eq. (21), choosing 

v = 1; v=~V . (30) 

Setting No i-le- itTt , the i-projected entrance channel doorways can be 
written 

~O)(r) Xi(k, r)� 
~O)(,.) No vt x;(k,r). (31 )� 

With this choice, the radial wave function reduces to ~O)(r)  in the limit 
~  V -+ 0, so that the doorway expansion converges with a single doorway. 

The rescattering operator for the i-th partial wave can be written 

lVi = g~+) V , (32) 

where 9~+)  is the i-projected distorted Green's function with outgoing wave 
boundary condition. The remaining states of the doorway basis are given by 
eq. (8), in terms of Wi and the i-projected doorways of lower order. 

Using eq. (29), we get 

2itTt2 e
~Tl(k,  k) = -- L < Xl(k)1 v Id~n) > r~n.o).  (33) 

7r n 

The matrix-element r~O,O)  is given by the continued fraction of eq. (15), 
and r~n.o)  can be obtained by sucessively applying the recursion relation of 
eq. (16). However, in the present case one must use the operator Wi instead 
of W in these equations. 

To calculate the elastic cross section one uses the relation 

2itTtSN = 1 - i ( 
27r

11-) e- • ~T.  (k k) (34)l h2 k i, , 

and with Sf we obtain the scattering amplitude. 
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2.3 Coupled Channels 

In many cases of practical interest, the results of the previous section may 
be very useful. A typical situation is when the reaction dynamics requires a 
coupled channels treatment. In such situations, the total nuclear state can 
be written 

I \}Jk+) >= L I tP~+)(k») . Ia) , (35) 

where I ) represents states in the intrinsic or relative spaces which generate 
the total Hilbert space through direct products. 

It is convenient to split the total interaction U (eq. (17)) such that V is 
diagonal in channel-space. One can then write 

V = L Ia) Va (a I (36) 

Above, Va == Va,a = (a I V I a) is the optical potential in channel-a. One 
can next choose v diagonal in channel space (in our heavy ion applications 
we set v = 1), so that the channel coupling interaction becomes 

~V = E I a) vOl ,I3,vl3.13 (f3I, (37) 
a,13 

where Va .13 = (a I v I (3) and v{3,{3 = (f3 I v I (3) are operators acting in the 
r-space. 

For the definition of the doorway basis, one needs also the solutions of 
Schrodinger equation in the absence of the coupling ~V,  

I 4>k±) >= L IX(±)(ka ») . Ia) , (38) 

Above, X(+)(ka ) (X(-)(ka ») is the distorted wave in channel-a with outgoing 

(ingoing) boundary condition and ka = J211-(E - ca )/h
2 is the channel wave 

number, which depends on the excitation energy Ca' 

We can now define the entrance doorway state and its dual space coun
terpart as 

I D(O) > No v I X(+)(ko») • I0) 
I [yO) > No vt IX(-)(kd) • 11) . (39) 
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The projections of these states in each channel are 

I D~») No va,o I X(+)(ko») •bao 
- t I (-) k )I b~») N,o va,I X (d .� (40) 

While I D(O) > is fully contained in the elastic channel, I iJ(O) > has also 
components in the excited channels, due to the non-diagonal nature of ~  V. 

The generalization of the rescattering operator leads to 

W = E Ia) Wa,P (,8 I ,� (41 ) 
a,p 

with 

Wa,{3 = va,a . G~+) . va,p .� (42) 

Above, G~+) is the optical Green's function in channel-a and we used the fact 
that v is diagonal in channel space. 

The remaining states of the doorway basis can now be written in terms 
of their channel-projections as 

I D~'») = Nn {E Wa,{3 I D~n-I»)  - ~ < iJU ) I W I D(n-I) > I D~)}}  

p� )=0 

(43) 
and 

I D~n») = Nn {2: w1,{3 I b~n-l»)  - 'E < DU) I wt I D(n-l) > I b~»)}  . 
P� i=O 

(44) 
The contribution to the T-matrix arising from ~ V is given by 

~T(ka  ia..-kO ;0) < X(-)(k a ) I ta,o I X(+)(ko) > 
r(n,O)

E < X(-)(k a ) I Va,P I D~n)  > No (45) 
n,{3 
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The T-matrix for the excitation of channel-I, in terms of which the door
way I bO) > was defined (eq. (39)), is related to the corresponding OWBA 
matrix element in a simple way. Since ~TDWBA  is 

A'T'DWBA (-) I I (+) (N.-*N, )-1
LJ..I (k1 i1+-ko;0) =< X (kd VI,O X (ko) >= 0 0 , (46) 

we can write 

~T(kl  ;1..-koiO) = ~1(k~;~~ko;O)  • r(O,O) • (47) 

For applications of the OEM to low energy coupled channels problems, 
one frequently needs to carry out partial wave decompositions. This task is 
particularly simple for scalar couplings. In this case, ~V conserves orbital 
angular momentum and the partial wave projection is analogous to that of 
the previous section. The i-projected T-matrix elements can be written 

2� r(n,o)

~Tl«l'+-O)  = (-) ei(O'a,t+O'o,t) E < X;(ka ) I va,P I d~n) > ~ , (48) 
7r n 

where O'o,l is the Coulomb phase shift for the partial wave i in channel a. 

2.4� Study of an exactly soluble Coupled Channels 
model 

In this section we apply the doorway expansion formalism to a soluble Cou
pled Channels model. We consider a short ranged scalar interaction with a 
separable form, and study the s-wave T-matrix elements. In this case the 
channel expansion of U (eqs. (36) and (37)) leads to potentials 

Uo ,p(r,7-') =< rj a IU I ,8j r' >= Uo (7')' gop' up(r'}. (49) 

Above, ga{3 are the channel-coupling strengths and ua ( r) and u.o(r') are scalar 
functions of the relative (projectile-target) coordinate. 

The Coupled Channels scattering problems with the above interaction 
can be solved exactly (6]. It is easy to show that the inelastic transition 
amplitude can be written 

T(ka;o..-koiO) =< k a I U a > . < Uo I ko > . 10(E) , (50) 

10 
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where E is the collision encrgy and 10(E) is given by the equation 

L [60 ,8 - 90,8 0,8] . 1,8(E) = 900 (51 ) 
,8 

Above, the coefficient 0/3 is 

l dp pZ IU/3(p) 1 

(52)gp =< U,8 I (E - f{ +irlr IU,8 >= f (2111hZ) E,8 _ p2 +
2 

iTJ ' 

where Ep = E - cp is the collision energy in channel (j. 
In the present case it is convenient to split the total interaction so that 

V is diagonal and ~  V is purely off-diagonal in channel-space. Namely, 

Vo,,8 = 60 /3 Ua ,{3, (~V)o,f)  = (1 - Do (3) Uo,,8 . (53) 

It is convenient to write ~ V in the product form of eq (21) such that v is 
diagonal in channel space. This can be accomplished with 

V o ,/3(", ,") (1 - Dop) . 9af) . ua(r) . Z(r')� 

vo ,/3(r', ,") [,0/3 • Z(r) . u~(,/) , (54)� 

where Z is an arbitrary real function, normalized to unity. As will be clear 
below, the transition amplitudes do not depend on the particular choice of 
this function. 

Splitting the T-matrix into two terms, T = To +~T, as in eqs.(18) and 
(19), one trivially gets 

TO(koiO+-ko;O) = 600 ' < ko I Uo > . < Uo Iko > [1 900 g]. (55) 
- 900 0 

To get the second term one has do introduce the doorway basis. Following 
eq. (39) we write 

D~O)(r)  < Uo I ko >] .Z(r')
No . 800 • [ 1 - 900 go 

b~)(r) 	 < UI I k l > 910] . Z(r) . (56)No . (1 - Dar) . [ 1 - 911 gl 
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As in the previous section, the remaining states of the doorway basis are 
defined by eq. (8) and ~T(ko;o+-ko;O)  is given by eq. (45). However, the 
separable nature of the interaction leads to the analytical expression 

~T.  = [< ko I U o >].{~(1  _6 ) c(n) f(n,O)} . [< Uo Iko >]
(ko;o+-kojo) 1 9 LJ of),8 1 g'

- 9cm a n,,8� - 900 0 

(57) 
where c~n)  =< Z I D~n)  >. l,From the definitions of eq. (56) we see that 

C p(O) -- (}{30, C-(O){3 -< - D-{3(0) IZ >-- 1 - (}f)1 • (58)r.� r 

Theremaining coefficients C~·)  can be obtained from eq. (43). One gets, 

n-I}
c~n)  = Nn ~(1 - [,{3f)') g/3 . 9/3/3' • C~~-I) - ~ W(j,n-I) c~){ 

n-I}-(n) - N- >I< "'(1 r ) g 9 c-(n-I) '" w(n-I,j) C-(j)C/3 - " {�L.J - (}/3{3' /3" (3{J" /3' - L.J /3 (59) 
/3' j=O 

The matrix-dements of the H'scatterillg operator IlOW becomc 

ltv(n,m) = LC~n). C1m
) (1 - 60 (3) go' 9a/3 . (60) 

0,{3 

It is important to notice that neither the entrance doorways nor the quan
tities appearing in the recursion relation for the basis (eq. (59» depends on 
Z(r). Therefore, the transition matrix is independent of the particular choice 
of this function. 

To study the convergence of the DEM, we have evaluated the s-wave 
components of the above discussed T-matrix. In this schematic calculation, 
we choose units such that h = Tn = 1. For the functions uo(r'), we took 
Yamaguchi [6] form factors, which led to 

(61 ) 

where / and ~  are parameters and Ea = E - Co is the collision energy in 
channel-a. For the coupling strength, we took the expression 
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3.1 Elastic scattering by the optical potential 

We take V = ZpZte2/r and write ~V  as the sumg.P = exp [- ( a :� (62)Pr] . 
Thus, the parameter a measures the extent to which the strength of the 
coupling is distributed among distant channels. 

In table I we study the convergence of the DEM. The calculation of 
Tl=o(a<-O) has been performed for 8 channels, with N = 6, 7 and 8 door
way states. For a comparison, we also present the corresponding DWBA 
amplitudes (last column). We used the parameters: ~  = 0.1, I = 2.094, 
a = 2 and assumed an equally spaced spectrum given by €a = 0.1 a. The 
collision energy was E = 20 Q. As one can see, the convergence is very good, 
if the number of doorways, N, is large enough. One notices that the conver
gence of each excitation amplitude requires a different number of doorways. 
The relation between the channel label a and the minimal N for convergence 
is roughly N :::::: a. This rule is an immediate consequence of our choice for 
j)<O) , which is obtained through the action of the coupling interaction on 
the first excited channel. It is important to notice that, even with a few 
doorways, the DEM is much more accurate than the DWBA. Whereas in 
the previous study of the one-channel scattering problem [5] the parameters 
that decide upon the convergence proprieties of the doorway method were 
identified clearly, it has not proved to make such a clear identification here. 
The underlying reason is the multiplicity of parameters. Nevertheless, this 
model problem clearly has very strong channel coupling effects; indeed, the 
DWBA result is in serious disagreement with the exact results. Thus, the 
N :::::: a result is quite encouraging. In any case, the DEM is a constructive 
procedure which can be truncated when convergence is achieved. 

Application to heavy ion collisions 

In this section we apply the Doorway Expansion Method to low energy heavy 
ion collisions. Such collisions are influenced by the long ranged Coulomb in
teraction and by the short ranged potentials, arising from nuclear forces. One 
should split the interaction in two parts and use the results of section (2.2). 
As examples we study the elastic scattering due to the optical potential and 
a simple coupled channels problem. 
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~V= ~pt+~~. 	 (63) 

Above, Vopt is the optical potential and ~  Vc is a correction to the point 
charge Coulomb interaction, 

~~  = {� (Zp Zt e2/2Rc ) [3 - (7'/Re )2] - V; r < Re (64)
O·, r ~ Rc 

where Re is the Coulomb radius parameter. 
We now apply the DEM to the elastic scattering of 160 from 28Si, at the 

collision energy E == ECIlI = 55 MeV. For ~Pt  (eq. (63)), we use the E18 
strong absorption potential [7], which has the usual Saxon-Woods form with 
the parameters Vo = 10 MeV, 7'r = 1.35 fm, ar = 0.618 fm; Wo = 23.4 
MeV, 7'; = 1.23 fm and aj = 0.552 fm (the subscripts rand i stand for 
real the imaginary parts). The Coulomb radius parameter was taken as 
Rc = 1.2(A~/3 + A~/3)  fm. 

In fig. 1, we illustrate the behavior of the first two states of the doorway 
basis and their dual space counterparts, for the peripheral partial wave l = 
37. One firstly notices that, due to the choice of eq. (31), rft°) is real. One 
notices also that rftn 

) oscillates as 7' ~ 00, while the states of the dual space 
are confined. This is a consequence of the fact that they are obtained through 
the action of the short range potential v t . 

In fig. 2 we show the absolute value (fig. 2a) and the phase (fig. 2b) of 
the nuclear S-matrix, as functions of the angular momentum i. The solid 
line corresponds to the DEM calculation and the solid circles are the "exact 
results" of a standard optical model code. In fig. 3, the comparison if for the 
l = 37 wave function. We conclude that the DEM leads to very accurate 
wave functions and S-matrices. 

The convergence of the DEM calculation is studied in fig. 4. We plot 
the deviation ~Sl(n)  =1 (Sl(n) - Sl)/Sl I, where Sl(n) is the DEM result 
obtained with n doorways and Sl is "exact" nuclear S-matrix obtained with 
the optical model code. We see that the convergence is rapidly reached. With 
a few doorways it is accurate to within a few percent. 
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3.2� Coupled Channels problems in heavy ion colli
sions 

Is this section, we illustrate the use of the DEM in coupled channels problems, 
applying it to the excitation of monopole vibrations. In this case, the scalar 
nature of the coupling leads to conservation of orbital angular momentum. 
We consider the excitation of the 28Si target in the collision considered in 
the previous section. The total interaction U is the same strong absorption 
potential of the previous section, but now with an oscillating radius. The 
static target radius is modified as 

RT -+ Rr(x) = Rr [1 +x (bIRT )] , (65) 

Above, x is the dimensionless intrinsic coordinate, which is normalized with 
respect to the oscillator length b. 

With the target vibration, the optical potential radii become x-dependent, 
in the form 

Rr.i = 7·r.i [A~jJ + A~f3(1  + x (bl Rr ))] . (66) 

As before, the subscripts 7' and i stand for real and imaginary parts, re
spectively. The x-dependence of the optical potential leads to the coupling 
between the elastic and vibrational excited channels. For simplicity, we will 
restrict our calculation to two channels, corresponding to the ground state 
and to the excitation of a single phonon. Their intrinsic wave functions are 

1/2� 2/2 2 

(x I 0) = (ft1 ) e-x ; (x /1) = (~)1/2..;:;r x· e-x /2 . (67) 

The vibrating potential U is split into two terms, as in eq. (17): the 
distorting potential, diagonal in channel space, 

V(7') = U(7', X = 0) (68) 

and the channel coupling term 

~V(r, x) = U(r, x) - V(r) .� (69) 
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In the present case, it is convenient to write ~ V as in eq. (21) and choose 
ii = 1 and v = ~  V. 

The intrinsic energy of the one-phonon state, I 1), should be £1 = 17.2 
MeV, according to the systematics of the monopole vibration energies [8]. 
However, the corresponding reaction Q-value (Q = -£1) is too large and the 
energy mismatch between the distorted waves X±(kol and X±(k1 l leads to very 
weak excitation amplitudes. We then chose to use the smaller value Q = -5 
MeV. As one can see from eq. (66), the effect of the harmonic vibration on 
the optical potential grows with the oscillator length b. One can, therefore, 
use the parameter b as a measure of the channel coupling strength. 

In fig. 5 we show the elastic (5a) and inelastic (5b) S-matrices as functions 
of the angular momentum f. The collision is 160 + 28Si and the energy E = 
55 MeV, as in the previous section. The coupling parameter is b = 1.5 fm. 
The figures include results of DEM calculations with n = 1 (dashed-line) 
and n = 6 (solid lines), which gives convergence within a few percent. They 
include also results of a DWBA calculation. In the elastic case (fig. 5a), 
the three curves are similar. In the inelastic case (fig. 5b), however, the 
DWBA S-matrix differs appreciably from those of DEM calculations. We see 
also that the calculation with a single doorway is already quite close to the 
converging result. 

In fig. 6 we show the angular distributions for elastic (6a) and inelastic 
(6b) scattering. The details of the collision and the convention for the curves 
shown are the same as in fig. 5. In the case of elastic scattering, both the 
DWBA and the I-doorway OEM (DEM1) fall below the converging OEM 
calculation. However, the OEMI is closer to the DEM, in the sense that it 
does not show the pronounced oscillations of the OWBA results. In the case 
of inelastic scattering, the OWBA approximation is clearly much poorer then 
the OEM!. We see that the Doorway expansion method converges very fast 
and that even the calculation with a single doorway is quite accurate. 

In fig. 7, we study the dependence of the above discussion on the strength 
of the channel coupling. Again, the details of the collision and the convention 
for the curves shown are the same as in fig. 5. In figs. 7a and 7b, we show 
results for the absolute value and for the phase of the inelastic S-matrix. We 
see that one gets a good approximation with a single doorway, even for very 
strong coupling (b > 2.5 fm) where the DWBA S-matrix violates unitarity. 

Finally, in fig. 8, we show the relative deviation ~S(n)  = I(Sl(n)-Sl)1Sll, 
where Sl stands for the "exact" converging OEM value and Sl(n) for the 
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calculation with n doorways, as a function of n. At n = 0 , we plot the result 
of the DWBA calculation. We conclude that the convergence is attained very 
rapidly. Finally, we remark that we have compared our converged result to 
the results obtained with a standard couple channels calculation [9] and found 
agreement within a few percent. 

Conelusions 

The doorway expansion method (OEM) has been extended to coupled chan
nels problems and to typical situations in heavy ion collisions. The theory 
has been tested in an exactly soluble coupled channels problem and the con
vergence of the method investigated. It has been shown that very good 
convergence is obtained when the number of doorways reaches the number 
of coupled channels. 

E

An application of the method to a typical coupled channels problem com
monly encollntered in strongly absorptive heavy ion systems has been made. 
The example worked out in detail is the elastic scattering and the excitation 
of the giant monopole mode in 28Si as a target in the collision 160 + 28Si at 

Clll = 55 MeV. We have shown that the DEM converges very rapidly. With 
6 doorway states, the DEM inelastic cross section reaches the asymptotic 
value within a few percent and with a single doorway the approximation is 
already much better than the DWBA. 

One reason for the rapid convergence could be the strongly absorptive 
nature of the collision. However, we are unable to pin down a simple a 
convergence parameter. We expect it to be a combination of several factors: 
the ratio of the imaginary to the real parts of the optical potential, the 
degree of inelasticity (Q-value), the nature of the coupling potential and the 
choice of the entrance-channel doorway states. Clearly, such a convergence 
parameter will depend on the multiplicity of parameters characterizing non
trivial coupled channels problems. 
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Table Captions. 

•� Table I: The convergence of the OEM in an exactly soluble Coupled 
Channels problem. The table shows the real Ar and imaginary Ai parts 
of the transition amplitudes Tl=o(o-Ol, for the channels a = 0, 1, ...7. For 
each channel, the table shows also the exact and the DWBA values. 

Figure Captions. 

•� Fig. 1: The first two states of the doorway basis and their dual space 
counterparts in the collision 160 +28 Si at E = 55 MeV, for the partial 
wave f = 37. 

•� Fig. 2: Absolute values (a) and phases (b) of the nuclear S-matrix. 
The system and scattering conditions are the same as in fig. 1. The 
solid line represents the the OEM calculation and the solid circles are 
"exact results" of an optical model code. 

•� Fig. 3: Comparison between the "exact" (optical model code) and 
the DEM wave functions for the same collision as in the previous figures. 

•� Fig. 4: Study of the convergence of the DEM calculation. The 
collision is the same as in fig. 1. For details see the text. 

•� Fig. 5: Absolute values of the elastic (a) and inelastic (b) S-matrices 
obtained with the DEM and the DWBA. The results are plotted as 
functions of the angular momentum. For details see the text. 

•� Fig. 6: Elastic (a) and inelastic angular distributions obtained with 
the OEM and with the OWBA. For details see the text. 

•� Fig. 7: Comparison of the absolute values (a) and the phases (b) of 
the inelastic S-matrix as obtained with the DEM, DEMI and DWBA. 
The results are plotted as functions of the coupling strength. 

•� Fig. 8: Study of the convergence of the DEM. The inset shows the 
the deviation ~S(  n) in a smaller scale. At n = 0 we plot the deviation 
for the OWBA calculation. For further details see the text. 
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Channel/ 
amplitude 

Ar 

0 
Ai 

Ar 

Ai 

Ar 

2 
A 

Ar 

3 
Ai 

Ar 

4 
Ai 

Ar 

5 
A 

Ar 

6 
A 

Ar 

7 
Ai 

TABLE I 

Number of Doorways 
6 7 8 

-0.:3263 -0.3272 -0.3273 

0.3826 0.3827 0.3827 

-0.1043 -0.1043 -0.1043 

0.2809 0.2809 0.2809 

0.6:348x10-1 0.6414x10- 1 0.6422xlO-1 

0.8267x1O- 1 0.8257x10- 1 0.8253xlO-1 

0.3072xl0-1 0.5143x10-1 0.5137xlO-1 

-0.3029x10- 1 -0.2986x10- 1 -0.2968xl0-1 

-0.541Ox10-2 -0.6247xlO-2 -0.6043x10-2 

-0.2709xl0- 1 -0.2788xl0-1 -0.2818xlO-1 

-0.1404x10- 1 -0.1464xlO-1 -O.l511xlO-1 

O. 7992x 10-3 0.1O:34xl0-2 0.1264x10- 2 

-0.1733xl0- 2 -0.1142xl0-2 -0.7112xlO-3 

0.6149xl0-2 0.6780x10-2 0.6698xlO-2 

0.3469xl0-2 0.3656x10-2 0.3497xlO-2 

0.6924x10-3 0.2095xlO-3 0.2192xlO-3 

Exact DWBA 

-0.3272 -0.48 

0.3827 -0.50 

-0.1043 0.015 

0.2809 0.35 

0.6417x10-1 0.55x10- 2 

0.8259x10-1 0.16 

0.5141x10-1 0.89x10-3 

-0.2981xl0-1 OA2xlO-1 

-0.6191xlO- 2 0.96x10-7 

-0.2794xlO- 1 0.69xl0-2 

-0.1475x10- 1 -0.21xl0-4 

0.9830x10-3 0.68x10-3 

-0.1086x10-2 -0.29x10- S 

0.6873xl0-2 OAOxlO-4 

0.366lxlO-2 -0.19xl0-6 

O.l775x10-3 0.14xI0-S 
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