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Abstract 

The similarity between striped patterns found in different systems moti
vates a comparison bdwe('1l a lI1od('! for the lamellar pattei'll of hlock copoly
mers ano a model for the OCillaI' dominance pattern in the primary visual 
cort.ex. 

I 
Introduction 

The main purpose of this paper is to compare two problems which are appar
ently different: the formation of the ocular dominance (OD) stripes in layer 
IVc of the primary visual cortex of mammals and the microphase separation 
of diblock copolymers. The link between these problems is the equilibrium 
pattern consisting of locally ordered stripes with Y and H type bifurcations. 
Actually there are several systems in nature that exhibit the same kind of 
pattern, for example: the zebra skin and our fingerprints, which are equilib
rium patterns, and the convection in a Rayleigh-Benard cell (Greenside & 
Coughran 1984), a nonequilibrium pattern formed by rolls of upward- and 
downward-moving regions of fluid. We hope that if the pattern can he ob
tained from a model which is free of details, it can be used to describe many 

different systems with the correct identification of parameters. We have cho
sen to analyze the block copolymer (BCP) and the visual cortex problems 
because these systems have been studied independently with the aid of com
puter simulations (Swindale 1980,1982, Swindale et a11987, Oono & Bahiana 
1988,1989, Bahiana & Oono 1990) . 

Light coming from objects are translated by the retina into nerve im
pulses which are carried over the optic nerve to the brain. The primary 
target of this nerve are the geniculate bodies. The optic nerve transmits 
signals from the right side of the visual field to the lateral geniculate body in 
the left hemisphere, and it transmits signals from the left side of the visual 
field to the right hemisphere. The lateral geniculate bodies then relay the 
signals to the occipital lobe on the same side of the brain, and specifically 
to the primary visual cortex, which does an initial analysis of the image and 
transmits selected information about it to other regions of the brain. By 
injecting a tracer in one of the eyes it is possible to map regions receiving in
put from one particular eye (Rubel & Wiesel 1977, Rubel et a11978, Gosh & 
Shatz 1992, Meissirel et a(1991). The visual pathways from the left and right 
eyes to the cortex are segregated within layer IVc of the visual cortex into 
a pattern of OD (Rubel & Wiesel 1977, Toot et a11988, Blakemore &, Price 
1987, Matsubara et al 19~5, Lowel &. Singer 1mJO). This pattcrtl consist::; 
of meandering stripes corresponding to left and right eye-dominant regions 
alternating with periodicity of 700-800 JlTn (Swindale 1980,1992), as can he 
seen in Fig. 1. It has been suggested (Callaway & Katz 1991) that the 
development of this orientation-specific circuitry may depend on temporal 
correlation of activity for regulation of axonal rearrangements. Experiments 
have demonstrated that synapses (Swindale 1980, Bakkum et a11991) affect 
the growth of other synapses through an interaction that varies in magnitude 
and signal within a distance of 600jlm. 

A diblock copolymer is a linear-chain molecule consisting of two sub
chains, a and b, grafted covalently to each other (Burke & Weiss 1973). 
Polystyrene-polybutadiene and polystyrene-polyisoprene arc the most fre
quent examples in the literature (for example, see Hashimoto et al1986 and 
Inoue et al 1969). The subchains a and b are made of different monomer 
units, A and B respectively. In polymer systems even a weak repulsion be
tween unlike monomers A and B induces a strong repulsion between a and 
b. As a result, the different subchains tend to segregate below some temper
ature Te , but, as they are chemically bonded, even a complete segregation 
of subchains a and b cannot lead to a macroscopic phase separation as in 
mixtures of two homopolymers. Only a local microphase separation occurs: 
microdomains rich in A or B are formed generating a striped pattern if stlb

2 



2 

chains have similar lengths (Shibayama et al1983) (see Fig. 2). 
The patterns in figures 1 and 2 are quite similar altough reflecting order 

at different length scales: stripes in the cortex pattern are hundreds of pm 
wide, while for BCP they are hundreds of Awide. As will be seen below, pat
terns generated by computer simulations in both cases are indistinguishble. 
We try to link these problems by comparing the models used for the simu
lations. The model proposed by Swindale for the formation of 00 stripes 
is reviewed in Section 2. In Section 3 we summarize the cell dynamical sys
tem (CDS) model for the BCP microphase separation. Section 4 shows a 
comparison between the two models. 

A model for the ocular dominance stripes 

Swinda]e (Swinda]e 1980) has proposed a model in which the effects that 
a synapse exerts on the growth of other synapses are not local, but extend 
over space, varying both in magnitude and sign. Synapses of one eye compete 
among themselves, so that a local excess of one eye type will encourage further 
local growth of synapses of that type, but will discourage the growth of similar 
synapses if they are more than 200/tm distant. The cortex is regarded as a 
two-dimensional sheet of tissue; nR(r') and ndr') are the densities of right 
and left eye synapses respectively at a position r on the cortical surface. the 
rate of growth at a point in the cortex is then written as a locally weighted 
sum of the surrounding nr(i) and nL(i). The interactions among syna.pses 
can be R-R, R-L, L-L and L-R, where R stands for right and L for left eye. 
The corresponding weights WRR and WLL are positive for short distances (0
200Jlm)and negative for larger ones (200-600pm), while WRL and WLR have 
the opposite behavior. The general form of these functions is: 

w(r) = Gl exp(-1,2jdd - G2 exp{-(r - h)2jd2 } (2.1) 

where r is the radial distance in units of IOOpm and GI , G2 , d l , d2 and hare 
constants. The rate of growth for, e.g., nR is given by: 

anR = sRf(nr ),� (2.2)at 
where the function! prevents nR and 1/ L from being negative and establish an 
upper limit, N, to their density in the cortex. A possible form for! is !(nR) = 
nR(N - nR)' Ff)' lllo"t cvIllputations it is assumed that the sum of the 
densities of left and right eyes is constant throughout the cortex: nR+nL = N 
everywhere. in this case the pattei'll formation can be described by a single 

"'. , 

variable c.p = nR - nL ranging from -N to N. From this incompressibility� 
condition the equations above are reduced to:� 

~~ =� (c.p * w + I<)(N - tp)(N + tp), (2.3) 

with W = WRR +wLd= -'WRL - WLR) and f{ = N * (WRR - WLL). If both 
eyes are equivalent, then f( = O. The symbol * stands for cOllvolution. The 
pattern obtained from equation (2.3) can be seen in Fig. :3. 

In the above pattern, both eyes compete equally producing bla.ck and 
white stripes with the same width. It is known from experience (Rube] et 
a11978, Callaway & Katz 1991) that if one of the eyes is closed or removed 
shortly after birth, that is, during the period of OD pattern formation, the 
final pattern will be altered. The stripe corresponding to the deprived eye 
will be narrower. The effect of monocular deprivation is mimicked by Swin
dale by choosing [( i- 0 in (2..3) after some period of time, while creating an 
anysotropy in order to induce the formation of stripes. With isotropic condi
tions, the pattern consists of circular islands corresponding to the deprived 
eye on a background corresponding to the predominant eye. 

3� Cell dynamical system model for block copoly
mers 

The cell dynamical system (CDS) provides a computationally efficient model 
for phase ordering processes. It was first proposed by Oono and Puri (Oono 
& Puri 1987,1988) to simulate the process of spinodal decomposition, which 
is briefly described below. 

Spinodal decomposition is the process by which an unstable phase under
goes phase separation (Gunton et aI1983). The phase separation dynamics 
of two species, A and B, can be described in terms of the time-depel~dent  

local number densities '!/JA(r, t) and '!/JB(r, t). If the system is incompress
ible '!/JA + '!/JB = 1 everywhere. In this case an order parameter is defined 
as '!/J(r, t) = '!/JA(r, t) - '!/JB(r, t). 'IjJ = 0 represents the homogeneous phase, 
if 'l/J(r, t) > 0« 0) there is a predominance of A(B). Below a certain tem
perature, Te , thermodynamic equilibrium corresponds to a coexistence of 
two phases, one rich in A (e.g. 'IjJ()(), the other poor in this species (e.g. 
'l/J(3). This equilibrium situation is given by the condition JlA = ItB where Jl 
is the chemical potential which defines the coexistence curve. The process 
of phase separation itself will depend on the illitiil! ~Iilbility  of the phases. 
States for which (8/t/81;') > O( < 0) are termed metastable (unstable) and 
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are nonequilibrium states. Unstable states will phase separate by spinodal 
deC'mnposition, while metastable states will phase separate by nucleation. 
In the spinodal decomposition process no activation energy is required for 
the system to begin to phase separate. In contrast to nucleation in which 
a localized droplet of finite size is required to initiate phase separation, the 
initial process is manifested as a finely dispersed precipitate which gradually 
coarsens forming an interconnected pattern. 

In the CDS model space and time are discrete, so that the order param
eter is written as t/J(t,n) where n refers to the center of cell n. The dynamics 
of each cell is described by: 

t/J(t + l,n) =F(t/J(t,n)). (3.4) 

The form of F depends on the kind of dynamics to be described. For spin
odal decomposition the map F has a flow with a single hyperbolic unstable 
fixed point (the unstable homogeneous phase)and two hyperbolic stable fixed 
points symmetrically located on each side of the unstable fixed point (the sta
ble phases). The exact form of F is not important for the late stage behavior, 
as was demonstrated in (Dono & Puri 1987). Here F(t/J) = Atanh(t/J(t,n)) 
has been chosen. Above the critical temperature A < 1, and below A > 1. 

The interaction with the other cells results in a driving force on the 
order parameter proportional to its difference from the average of the order 
parameter in the neighboring cells, resulting in a coupling of the form: 

1/) (t + 1, n) = F (1/' (t, n)) + D !((1/,( t, n))) - 'I/J (t, n)] , (3.5 ) 

where V is a positive constant proportional to the diffusion constant, and 
(( *)) is the isotropic spatial average. For a 2-dimensional square lattice, we 
choose: 

(( 'l/J( t, n))) ~ L( t/J in the nearest neighbor cells) + 
1 

12 2) t/J in the next nearest neighbor cells). (3.6) 

If the conservation of t/J( t, n) is enforced locally, we have: 

t/J(t + 1,n) = t/J(t,n) +I(t,n) - ((I(t,n))) (3.7) 

with 
I(t, n) == F(t/J(t, n)) +V [((t/J(t, n))) - t/J(t, n)]- t/J(t, n). (3.8) 

To construct a CDS model of BCP, the strategy was to find the minimum 
modification of the above CDS model for spinodal decomposition. In ordinary 

spinodal decomposition the domain size increases indefinitely. In contrast, 
the domain growth of Bep is limited by the covalent bond between subchains 
a and b. In other words, the state with 'Ij; = 0 becomes more stable than that 
with 'l/J =I 0 when there is no spatial gradient. The simplest way to take this 
into account is to modify (3.7) as follows (Dono & Shiwa 1987): 

1jJ(t + 1, n) = (1 - B)t/J(t, n) +I(n, t) - ((I(n, t))), (3.9) 

where B is a small positive number. In a large bulk cluster, 'l/J is spatially 
uniform, so that I and its local average ((I)) become identical. Hence, in 
the bulk phase (3.9) simply reads 1jJ(t+ l,n) = (l-B)'Ij;(t,n), which has the 
fixed point at t/J = O. 

For uneven BCP, the necessary minimal modification to (3.9) is to sta
bilize an appropriate local concentration compatible with the subchain size 
fraction. Let 1 be the ratio between the length of the shorter subchain and 
the total chain length. In this case we should stabilize t/J = 1 - 21 instead of 
t/J = 0, so that we obtain 

1/;(t + l,n) = t/J(t,n) - B (¢(t,n) - 1 +2f) +I(t,n) - ((I(t,n))). (3.10) 

The choice of parameters A, V and 8 must be such that initial fluctuations 
of t/J are amplified and we obtain a t/J =I 0 as the final state. Linearizing (3.10) 
about the t/J = 1 - 21 solution we get 

8(n, t+1) = (1-8)8(n, t)-A[A(I-tanh 2(1-21))8(n, t)-8(n, t)J-vA26(n, t) 
(3.11 ) 

where 8(n, t) = ¥)(t, n) - (1 - 2f) and A is the discrete Laplacian: Ae == 
((e)) -e. Applying a discrete Fouri('r transform to both sides of this equat.ion 
yields 

8(k, t + 1) _� 
8(k, t) 

1- 8- [A (1 - tanh2(1- 2f)) -1] E(kx,ky ) - DE(kx,ky )2(3.l2) 

where 
1 

E(kx, ky ) = 3(cos kx + cos ky + cos kx cos ky ) - 1. (3.13) 

Stability of the homogeneous solution is given by the condition Ib( k, t + 1)1 < 
18(k, t)l· For even HCr (f = 1/2) the condition for obtaining a lamellar 
pattern, that is, for the t/J = 0 solution being unstable is: 

8 < (A - 1)2 
(3.14)- 4V 

Here we fix V=0.5 and A = 1.3 so that 8 S; 0.045 generates a pattern. Fig. 
4 shows patterns obtained from (3.9) in this region of parameters. 

5 6 



4 

,� 

Discussion 

The similarity between patterns in figures 1 and 2 clearly shows that both 
systems should admit the same mathematical description. Swindale's model 
provides a continuous description with six parameters. The CDS model is 
discrete from the beginning, which is more adequate since the main purpose 
is to simulate the equilibrium pattern. A model based on a partial differential 
equation must be discretized in order to be numerically integrated and be
comes a , usually inefficient, discrete model which may even present a chaotic 
behavior. Also the CDS model requires two parameters less and, in practice, 
we keep V and A fixed and work only with Band f. The average stripe 
width scale as B-8 , () > 0 and the parameter B is found to be related to the 
polimerization index N as B '" N-'2(Oono & Bahiana 1988). We expect to 
find a similar relation for the visual cortex problem. We suggest the following 
mapping between the models: 

I visual cortex I BCP I 
nR(L) tPA(B) 

<p(r, t) tP(t,n) 
monocular deprivation uneven BCP 

The main difference between the models is that conservation of 'P is not 
imposed in Swindale's formulation. We believe that this fact is crucial for 
the monocular deprivation effect. In the CDS model, the pa.ttern responds 
to changes from even to uneven molecule (and vice-versa) at any time. This 
apparently does not happen in Swindale's model; the parameter f{ must be 
altered in the beginning of the simulation in order to change the relative 
stripe width. Nevertheless, we consider that the energy functionals for both 
models belong to the same universality class. 
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Figure Captions 

Figure 1 A reconstruction of the pattern of OD stripes in area 17 of a 
macaque. Regions receiving input from one eye are shaded black in the 
figure; the unshaded areas between the stripes receive their input from 
the other eye (Taken from Swindale (1980)). 

Figure 2 A block copolymer pattern obtained after precipitation and further 
evaporation of the solvent.The two polymer species in each copolymer 
molecule appear as dark and light stripes of 400A of width.(Taken from 
(Witten 1990)). 

Figure 3 The pattern obtained after 160 iterations of equation (2.3) with 
J( = 0, C1 = 0.3, C2 = 1.0, d1 = 5.0, d2 = 1.4 and h = 3.7. This choice 
of parameters corresponds to a symetric behaviour of right and left eyes. 
A point is displayed wherever the input from a given eye predominates 
over the other.The initial condition is a random distribution of inputs 
from both eyes. (Taken from (Swindale 1980)). 

Figure 4 The pattern obtained from equation (3.10) after 500 iterations. 
The initial condition is '1/-' uniformly distributed in the interval [-0.05,+0.05]. 
Here we use A = 1.3, 'D = 0.5 1=0.5 (which means equal chain lengths 
for both polymers in the Bep molecule), 8 = 0.02 and periodic bound
ary conditions. The points represent lattice sites in which 'IjJ > 0, that 
is, in which there is a predominance of A. This pattern should be 
compared with the one in Fig. 3. 

Figure 5 The pattern for an uneven molecule and isotropic conditions. The 
conditions in this simulation are the same as in figure 4, exept that here 
1 = 0.35. Instead of stripes we observe nearly circular island of the 
minority species in a matrix of the majority species. 

Figure 6 The pattern for an uneven molecule but in a anysotropic lattice. 
The simulation parameters are the same as in figure 5. The anysotropy 
forces the formation of stripes of different widths. 
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