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T� Abstract 

We discuss nuclear reactions involving a large number of strongly 
coupled channels. In such cases, the coupled differential equations de­
scribing the collision dynamics become prohibitively complicated and 
one has to resort to approximate treatments. One of these treatments 
is the Alder and Winther's classical trajectory method, developed to 
study Coulomb excitation of collective states in heavy ion collisions 
at sub-barrier energies. In this talk I discuss the generalization of this 
method so as to include nuclear effects and its use in the description 
of other nuclear reactions. Special attention is payed to pair trans­
fer reactions in deformed nuclei and to the Coulomb dissociation of 
neutron-rich nuclei. 

Introduction 

As it is well known, nuclei are highly complicated quantum mechanical systems of 
many interacting particles and their dynamics cannot be determined exactly. It is 
necessary, therefore, to develop approximate nuclear models. Typically, these mod­
els take into account a set of degrees of freedom, generically represented bye, and 
the stationary states of the system, cpi(e), are determined through the solution of a 
Schodinger equation with a model hamiltonian h, 
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h <Pi(e) = £i 'Pi(O .� (1) 

To test the validity of the model, one has to compare its predictions with cor­
responding experimental results. This is usually done in nuclear reactions, where 
the cross section for observable quantities are related to final states populated in the 
collision. Neglecting intrinsic degrees of freedom of one of the collision partners, the 
hamiltonian of the projectile-target system has the general form 

H =� Hopt(r) + h + V(riO , (2) 

where Hopt(r) is the optical hamiltonian, which depends exclusively on the projectile­
target separation r, h is the intrinsic hamiltonian of eq. (1) and V(r;O is the coupling 
potential. Since the cross sections depend on the matrix elements < cp;jV(r; e)lcpj >, 
the comparison with experiment tests the validity of the model. 

However, to express the cross sections in terms of the matrix elements of the cou­
pling, it is necessary to solve the coupled Schrodinger equations in the multi-channel 
space. In principle, this problem can be handled by coupled-channels codes. However, 
when the number of relevant channels is large, such codes demand gigantic computer 
power. This is the case, for example, of collisions of very heavy projectiles with de­
formed target nuclei, where the strong coulomb field excites many rotational states. 
Under these circumstances, the use of standard coupled-channels codes becomes un­
practical and the collision dynamics should be treated within approximations. 

2� The classical trajectory approximation to the 
coupled-channels problem 

In heavy ion collisions at energies near or above the Coulomb barrier. the wavelength 
associated to the projectile-target separation is much smaller than the characteristic 
lengths of the potentials in the hamiltonian of eq. (2). It is. therefore, a reasonable 
approximation to treat r as a classical variable r(t). given at each instant by the tra­
jectory followed by the relative motiOlI. The intrinsic dynamics can then be handled 
as a quantum mechanics problem with a time dependent hamiltonian. This treat­
ment was first developed by Alder and Winther [1] to study Coulomb excitation of 
collective states in heavy ion collisions. 

The intrinsic wave function 1/'{e, t) satisfies the Schrodinger equatiolJ 

[Ii +� \I(r(t),e)J 1/;((,/) = i,,iN(E,.I) (;l)
()t 
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Expanding the wave function in a set of eigenstates of It, 

N 

t/J(~,  t) = L um(t) 'r'm(~) exp-it:mt/h , (4) 
m=O 

where N should be large enough as to guarantee convergence, and taking scalar 
product with each of orthonormal states < 'r'n I, we get the set of coupled equations 

N 

- ih an(t) = L < 'r'nlVl'r'm > ei(t:n-t:m)t/h am(t) n = 0 to N. (5) 
m=O 

It should be remarked that the amplitudes depend also on the impact parameter b 
specifying the classical trajectory followed by the system. For the sake of keeping the 
notation simple, we do not indicate this dependence explicitly. We write, therefore, 
an(t) instead of an ( b, t). Since the interaction V vanishes as t -+ ±oo, the amplitudes 
have as initial condition an(t -+ -00) = 6(n,O) and they tend to constant values as 
t -+ 00. Therefore, the excitation probabity of an intrinsic state 'r'n in a collision with 
impact parameter b is given as 

Pn(b) = lan(ooW . (6) 

The total cross section for excitation of the state 1/ can be approximated by the 
classical expression 

(Tn = 271" JPn(b) bdb. (7) 

The differential cross section can, similarly, be approximated as 

da( 0)) . 
dan (iJ) = Pn (bo) ( ~ Ruther ford (81

dD 

Above, bo is the impact parameter for a trajectory emerging with an angle O. 

The set of coupled equations in (5) is much simpler than the exact coupled­
channels equations, since they are of first order and involve a single variable. 

Applications 

As we mentioned in the previous section, Alder and Winther [\] used the classical 
trajectory method to stud~'  Coulomh excitation. In their works r( t) are Rutherford 
trajectories, 'r'7I are rotational or vibrational states and \I(r,~)  is the electromagnetic 
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Figure 1: The transfer of a nucleon pair from a spherical to a deformed nucleus. Along the collision 

the deformed nucleus acquires a nucleon pair and In units of angular momentum 

coupling. More recently, this method has been extended to study Coulomb-nuclear 
interference in the excitation of rotational states [2]. to the transfer of one [3] or two 
nucleons [4, 5, 6, 7, 8] and to the break-up of neutron-rich projectiles [9, 101. The 
method has also heen improved as to include distortions of the Rutherford trajectory 
arising from the nuclear field and to take into account absorption effects [21. In the 
next subsections we will discuss two of these applications, emphasizing the results of 
some very recent work. 

3.1 Diabolic pair transfer in rotating nuclei 

Let us consider the transfer of a nucleon paIr 1ll a suh-barrier energy collision of 
a spherical projectile with a deformed even-even target. as represented in figure 1. 
To keep the calculation simple. we restrict the study 1.0 head-on collisions. setting 
b = O. The practical consequence of this restriction is that the lheoretical predictions 
should \)(' compared to data at hackward angles. As the projectile approaches til(' 
target (figure Ia). the multipoles of the deformed Coulomb and nuclear fields ind un' 
rotations of the target and its angular momentum changes from the initial value 
I = 0 to a distribution over various I-values. At closer separations a neutroll pair 
is transfered from tllP spherical to the deformed collisioll partlle\', as indicatt·o ill 
figure III. 

The intrinsic states of the target can he writell I as li7i >= II", A" >. ill terms 
of the total angular momentum and the number of nucleons. These states can lw 

I For slmplicit.y. we omit. other quantum numbers ~mce  thPY do not. play an important rolf' in tltf' 
example under discussion 
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Figure 2: Schematic representation of a region on the plane W - A. The points giving rise to 

physical states are indicated by open circles. A diabolical point (solid circle) between the lines for 

A and A +2 and the lines for I and 1+2 is located at the point (WId' AAJ 

grouped into two sets. A set with An = Ao, the initial mass number of the target. 
which we will call A, and the set of transfer channels, with An = A +2. The matrix­
elements of till' semiclassical coupled (~quations  (,£I. (!i)) can Il(~  approximatl'd as 

< In' A + 21V1/m , A >~ F(t) . S(ln) . 6(In,lm) , (9) 

where 5(1,.) are the pair transfer matrix elements 

8(1,,) =< I", A +21 (atat)o II", A > (10) 

Above, (atat)o creates a neutron pair with spin 0 on the target. The time dependent 

factor has been discussed in details in reference [4] (see also ref. [8]). It contains tIlt' 
information of the tunnelling factor and of the classical trajector~'  followed hy til(' 
system. 

A very interesting effect can be predicted when one uses realistic microscopic 
descriptions, like the Cranked Hartree-Fock-Bogoliubov (CHFB), to obtain the target 
states. In this method, the many-body states are writen II", A" >= Iw(I,,). A(A,,) >. 
in terms of the Lagrange multipliers wand )., chosen as to guarantee that the target 
has average angular momentum I" and average particle number A". It is interesting 
to consider the states generated by different values of the Lagrange multipliers. If 
we represent w on the x-axis, ). on the y-axis and the energy of the states on the 
z-axis, the rotational energies form surfaces. The Yrast states correspond to the 
lowest surface. the Yrare are next and so on. For some special points on the w - ,\ 

plalH' two of such surfaces ma~'  touch. This situatiull has I)('('n studied 1,.\' s('veral 
authors [I L 12]. Teller [I~]  showed that at thesf' degeneracy poillts the two surfacf''' 
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Figure 3: The pair transfer matrix element. as a funct.ion of the angular momentum. In a) there 

is DO diabolical point involved and 8(1) changes smoothly with I. In b) a diabolical point at I d 

produces a si~n change. 

are connected as two sheets of a douhle cone: a diaoolo, and, to stress this couical 
geometry, Berry and Wilkinson [11] gave them the name of "diabolical points". 

OIH~  should have in mind. how(~ver,  thclt only a discrete set of poiuts 011 till' W -). 

plane leads to physical states. The points leading to a given eveu integer In-value 
describe a continuous line on this plane and the same happens with respect to a mass 
number An. The physical states are generated by the points where these lines (one 
for I and one for A) intersect. This situation is depicted in figure 2. for a few values 
of the mass number and the angular momentum. A pair transfer corresponds to a 
transition from some point on the line for a mass number A" to tllP line for All + ~. 

If the pair does not carry angular momentum. the transition keeps the system on the 
same angular momentum line. 

The pair-transfer matrix elements S(I" ) have heen investigated by J\ikalll (/ 
aI. [13] and these authors have shown that tlH'Y depend strongly on the position of 
diabolical points on the ..... - ). plaue. If (jill' considers tIlt' situatioll of figure 2, a 
transition from the line for mass number .4 - 2 to mass number A does 1Iot invulve~ 

a diabolical point while the transition from A to .4 + 2 does. As a consequence. the 
pair transfer matrix elements show a qualitatively different behavior in each case. III 
the former. they changf' smoothly with J as is sketched ill figun' :la. In the laUer. 
they chauge sign as the angular momclltulII goes through the value Jr/ associated tu 
the diabolic point, as indicated ill figure 3b. 

A sign change ill S( I) is expected to have important cOllsequellces on the spill 
distribution of the pair transfer cross sectioll. Qualitatiwl~·.  this call Iw undf'rstood 
from figurt, .1, when' twu possi\,le trallsfer Jlil1.hs. (/ alld II. kadill~ tu tltt' ScUI)(' Ii 11 it! 
spin If are represented. Itl a. the target undergoes Coulomh excitatioll until it reaellt's 
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Figure 4: Schematic representation of two paths leading to pair transfer to the same final angular 

momentum [f. In a the transfer occurs at an angular momentum below that of the diabolical point 

[d. In b it occurs above [d' The resulting amplitudes have opposite signs in each case. 

some angular momentum below I d, increases its mass by two units through the cap­
ture of a pair and then reaches the final angular momentum If through subsequent 
Coulomb excitation. In b, the system evolves in a similar way, with the difference that 
the pair transfer occurs at an angular momentum ahove I d • Since the pair transfer 
matrix elements have opposite signs in each case, one expects that the contributions 
from these paths interfere destructively, leading to suppression of the transfer cross 
section to high (above Id ) spins. This suppression is usually called diabolical pair 
transfer. 

A quantitative study of diabolical pair transfer has been carried out [4J (see 
also ref. [5]) in collisions of 208Pb with the deformed nuclei 158Dy and H;ODy. CHFB 
calculations indicate a diabolical point between the lines for A = 160 and A = 
162. at Id between 10 and 12. and no diabolical point between A = 15c and A = 

160. Therefore, one expects suppression of high spins in the pair transfer reaction 
208Pb +160 Dy ~206 Pb +162 Dy. The results are shown in figure 5. In a) the pair 
transfer is diabolical and in b) it is not. Indeed. one can observe suppression even at 
angular momenta as low as I = 6. 

The above discussion has been restricted to pair transfer between Yrast states. 
Dasso and Winther [6] has shown that the consideration of Yrare states may lead 
to drastic changes in the diabolical transfer signature of figure 5. For each spin I. 
these authors write the Yrast and the Yrare states as combinations of states of the g­
and s-bands and obtain the coefficients by diagonalization of the target hamiltonial1 
with a band mixing term v. This term is assumed to be very weak (v:::;: 0.0,,) - 0.10 
MeV) and I-independent. and the diabolical effect is introduced through the use of 
opposite signs for the initial and final nuclei. The Yrast states are very similar te, 

7 

10 < (b)' 

"~, 

(a) 
.p 

.0 • (1-''1 

p' 

$', p' 
'~":"'Y:'~-t)o .. -c.._'O. "0 1 .. ~-q~~:~~.-a'.  o· 'd 

\._e' 
~  ~ :s:s CD 0.1CD 0.1 .c.c oo '0_0\ /0"0 ~ ~ 

__ .,..........e� 

0.010.01 

PrOleClile:,::'Pb ;~~~~~~"e:,::;:;b
Target: Oy 

E...... 1100.0 MeV E..... = 1100.0 MeV 

0.001 I iii iii I Iii I I0.001 I I i I Iii i I I o 2 4 6 8 10 12 14 16 18 20 22 24o 2 4 6 8 10 12 14 16 18 20 22 24 

I/h l/h 

Figure 5: Spin distributions after pair transfer from 208Pb at E1ab = 1100 MeV (solid circles) 

In a) the target is 160Dy and in b) the target is 1580y. As a reference the spin distribution for 

Coulomb excitation is indicated by open squares, in each case. 

g-band states below level-crossing and to s-band states above level-crossing. Since 
neither the inelastic nor the transfer couplings leads to transitions from states of 
the g-band to states of the s-band (for a discussion of this point we refer to [8]), 
the population of yrast states with J > I d is always very weak, independently of 
the diabolical effect. Therefore, the experimental identification of diabolical transfer 
becomes much harder. 

Recently, the role of the band-mixing strength in the signature of diabolical 
transfer has been investigated [7]. Microscopic calculations [I4] indicate that the 
mixing strength can be considerably stronger than the values used in ref. [6] for some 
heavy rare earths midway between diabolical points. This would be the case of t7:lIIf. 
174Hf and 17t.iHf. for which the mixing strengths are in the range o.~  to 0.3 ~k\·. Tlw 
calculation of Sun ct al. [14] predicts a diabolical point near f = 14 betweeu A = 172 
and A = 174. A comparison between the spin distributions for stripping and the 
pick-up of a neutron pair in collisions of 174Hf with heavy projetiles would offer ideal 
conditions for the search for a signature of diabolical transfer. 

The results of such a calculation [7] for 206Pb projectiles at E
ClIl 

= 1000 Me\' 
appears in figure G. The pick-up reactioll (solid circles), leading to milL is diabolical 
while the stripping reaction (open circles), leading to 176Hf, is not. Figures 6a and 61> 
show. respectively. the spin distributions for pair transfer to Yrast and to Yrare states. 
We notice that in both cased there are pronounced differences between diabolical and 
non-diabolical transfer. 

One concludes that tIlt' weak band mixing uear diabolical poiuts may pose SI'­
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For details see the text. 

rious difficulties in the characterization of diabolical transfer. However, in some spe­
cial cases, there remain appreciable differences lwtween diabolical and non-diabolical 
transfers. 

3.2 Coulomb dissociation of II Li 

With the availability ofradiactive beams, the interest in neutron-rich nuclei. like 11 Li, 
has grown considerably. In 11 Li, a neutron pair is very weakly bound to a !lLi core 
(£B ~ 0.2 Mt'V) so that this pair forms a "halo". and its density spreads far beyond 
that expected for a normal 11 nucleon system. These characteristics lead to very 
large Coulomb dissociation cross sections in collisions with heavy targets. Therefore. 
the use of perturbative approaches to the reactioll dynamics may be inappropriatt· 
and the semiclassical-coupled channels treatment of sect. 2 presents itself as a natural 
candidate. Investigations along this line have been carried out in refs. [9, 10] and their 
main results are summarized below. 

A )) Li collision with it heavy target is n'presented in figun' .,. As OIW wallts 
to use the projectile frame. the target approaches the projectile from the right. The 
separation between the centers of mass is given at each instant by the classical tra­
jectory r(t). The relative coordinate between the neutron pair, treated as a cluster, 
and the 9Li core is represented by the vector x. The cluster is initially bound to the 
core but the interaction excites the system to a state in the continuum. The classical 
trajectory is approximated by a straight line with impact parameter b. 

(o) (b) 

-----------jU- -0 620-- / 

TIT

r/ .eM 

c;;v 

Figure 7: Representation ofthe 11 Li dissociation. T indicates the target, approaching the projNtile 

from the left. For details see the text. 

The intrinsic motion of the 9Li+"L.n system is described by the state 

11/)(t) >= <Lo(t) c-,£ot/h l'Po > + I~)c(t) > , (11) 

where 'Po(x} is the bound component 

'Po(x) ;::::; exp (-J"2/lt:O .T/Il) 
(l:! ) 

x 

with co = -£B. and Ilf\(t} > is the continuum component. which can bl> wrilen as 
a superposition of angular momentum projected frt'!' states IElm >. However. If ulle 

follows the procedure of sect. 2, one obtains an infinite set (and with a continuous 
label) of coupled differential equations. which cannot be solved. This difficulty call 
be avoided by the approximation of discretizinp; tilt' continuum [~I].  Olle replan>s till" 
basis of spherical waves by the finite set of wave packets 

~ >- -.rJI/I. jI'.(-} II I (J:qI'T )/,/I - ( ) t. E 11/ > ( E . 

The amplitudes fj(,s) have lwen discussed in details in ref. [9]. They ar£' ccnten'd 
at the energies Ej of a mesh covering the relevant range of fragment energies. their 
widths have the orclpr of the mesh spacing, and t.he~·  should satisfy the orthonormality 
relatiolls 

j r.k) rilE) tl: = /lll.)) (l·l) 

The continuum componellt li'e Cilll thell lw expalldl'd as 

Ill'c (I ) >= L (/)IH' (I) (-I<,t/I. iillH' (171 1 

jim 
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Figure 8: Energy (a) and longitudinal velocity (b) distributions in llLi dissociation. The solid 

and the dashed lines in (a) indicate the results of eg. (17) and of first order perturbation theory, 

respectively. The solid and dashed lines in (b) were obtained with eq. (19), using <~.a.  = 15 and 

130 keY, respectively. In both cases the data are from ref. [15] and the results are given in arbitrary 

units. 

TIll' coupling potential is tlw electromagnetic interaction 

V(x, t) = ZTe2 [ ZLi _ ZLi ] (16 ) 
J(y - b)2 + (z - vbeamt)2 Jb2 + vleam t2 ' 

which is treated within the dipole approximation. 

Since the tlLi+2n system is bound before the collision, the initial conditions for 

the coupled differential equations are all ( -00) = b(n, 0), where n stands for quantum 

numbers jim, specifying the states of the continuum set. The differential equations 

can be solwd and from the final wave function one can make predictions for observabl(-' 
quantities. 

In a very recent work, Ieki et ai. 1J5J measured the energy spectrum of the 
fragments produced in tllf' 11 Li break up, in its reference frame. They also measured 

the longitudinal component of the relative velocity (V9 L• - v. n ) distribution. As it 
will be discussed below, their data plays an important role in the investigation of thf' 
dominating dissociation Jl1f'chanism. 

The semiclassical coupled-channels approximation leads to thf' prediction of all 

energy spectrum 

P(Ej == ~;;- L lX' I < t:lmll'c > 1
2 bdli. (1 i I 

lUt m." 

The b-depend('IJ('(' of tilt' integrand is eontailled in thp codficipnts 11;11/1 which ddill(" 

tPe' according to eq. (15). The cut-off value bmill arises from nuclear absorption or 
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from the angular observation range of tilt' experiment \'0 which on(' wants to coIIJpan'� 
the theoretical distribution.� 

The longitudinal velocity distribution P(v lI ) is a little more complicated. One 
should initially obtain the amplitudes 

A(k,b) == A(kJ.'k ll ,b) =< kll/'c > (18) 

distinguishing the longitudinal (1.: 11 ) and the transverse (kJ.) components of k, and 

then integrate IA(k, bW over the transverse momentum and impact parameter, 

kmoz00 

P(v lI ) == P(hkll/Jl) = (21T) 21m ... bdb 1J. k1. d~·1.IA(k, bW . (19) 

Abovf'. tlw cut-off value kI"'x is rdatf'd \'0 thf' transversf' f'lwrgy as 

<;:nx = (h~'l,nx)'2  /2Jl. (20) 

This quantity might be associated to the experimental detection angle, but its deter­
mination would rcquin' knowledge of the full kinematics of t1w tlm'e body system. 
For this reason ~7a.  has been considered to b(~  a parameter in ref. [I OJ. 

Figure Sa and b (from ref. [10]) shows a comparison hf'twf'f'n theoretical prt'­

dictions and tlw data of Ieki ct ai. [I5J. In a the experimental energy spectrum is 
compared to the spectrum of eq. (17) In b the experimental longitudinal velocity 
distribution is compared to tlw predictions of eq. (19). Thf' theoretical f'IJergy dis­
tribution is in ('xcdcnt agn'clIlcllt with the dat,l. It is intpn'sling tu notin' th'lt this 
agreement depends Oil high ordf'r effects of the coupling. This is evident through til(' 

comparison with the theoretical prediction of first order pertmoation theory. appear­
ing in figure 8a as a dashed line. Neither it has thf' right slopp nor it giv(~s a [{'asonahlt· 
description of tilt' data near its maximulll. at low encrgies. The agreement I>('tw('ell 

the theoretical velocity distribution and tlw data is not as good as in the previous 

case. However. tilt' theory is consistent with the lIlain trends of tlw data. specially 

with respect to the shift of the centroid towards positive velocities. This agreemellt 
is noticeably l){'tter if Ollf' USf'S the transvers(-' energ.\· cut -off ::7a 

• = I:W kf'\' (solid 
line). 

TIll' shift to forward vellJcit.i,·s hilS grl',lt illipurtilll(,(' to til(' ddpfllli/lilt.ilJn "f 
the reaction IllPchanism in the dissociatioll of II Li. It indicates iI post-dissociation 

acceleration dff'cL suggesting that the dissociation occurs along t11f' collisiolJ. In that 

case. thf' Coulomh foref's acts on a low('r mass ('Li \ liming late stagps of til(' collision. 
producing a larg('r positive acceleratioll. This ff'Sldt is it strong t'videnCl' against tl)(· 
hyphot('sis tlla.t iI long-lived soft lIlodl' plays illI illlportalll rol,· ill till' I I Li dissociat.ioll 

and in favor of the direct mechanism adopted in refs. [9. 10]. 

I~ 



4 Conclusions 

We have discussed the problem of many coupled channels in nuclear reactions. The 
classical trajectory approximation of Alder and Winther (1) has been described and 
some applications have been considered. The diabolical pair transfer in rotating 
nuclei [4, 5,6,7,8) and the Coulomb dissociation of lILi [9,10] have been considered 
in detail. In the former, we have discussed the search for a diabolical effect signature 
in transfers to Yrast and to Yrare states. It has been argued that the consideration of 
Yrare states complicates the identification of the diabolical transfer [6], except for a 
few isolated cases [7] where the band mixing is strong [14J. In the latter, we described 
the approach of ref. [9) with the discretization of the continuum and discussed its 
application in the description of recent data of Ieki ct ai. [15]. It has been concluded 
that the success of the model and the shift of the longitudinal velocity distribution 
towards forward velocities indicates a direct process, rather than the excitation of a 
long-lived low lying soft mode. 

This talk is based on research done ill collaboration with C.A. Bertulani. S.Y. 
Chu, R. Donangelo, A.R. Farhan, M.W. Guidry. R.S. Nikalll, .1.0. Rasmussen, P. 
Ring, 1I. Schultz, Y. Sun and M.A. Stoyer. I ackllowledge partial fillilntial support 
from the Brazilian National Research Council (CI\'Pq) and the leTP (Triestre). 
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