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Abstract 

It is ShOlnl that the qwmti7.iJtion of the Chiral Schwingcr Model in thc Batalin­

VilkO\·i.<;ky framc\mrk can be carried out in an extended space of fields and antifields, 

where tJj(' master equation has a local solution. The ",ess-Zumino tenn is generated in 

this w;,y, avoiditl~  the lise of non local expressions. The nilpotcJH:.v of the new nRST 

charge is pronm cxplicitly. 

'" Bitnet address: IFT03001@UFR.l 

PACS: 11.3D,H. ILlS. 11.1D.E 

The Batalin-Vilkovisky(BV) l-agrangean BRST quantization(1) is a powerful method 

of quantization of field theories. It is very useful for the treatment of a wide range of the­

ories, including those gauge theories whose constraints do not close an algebra. However, 

when anomalous gauge theories are concerned, the pathological problems of this kind of 

theories emerge troubling the construction of a gauge independent generating functional. 

As was shown recently by Troost, van Nieuwenhuizen and Van Proeyen, the presence of 

anomalies corresponds to the non existence of local solutions to the master equation(2). 

This fact is the BRST reflect of those original perturbative calculations of Feynmann dia­

grams that gave rise to the so called anomalous Ward identities and, that from the current 

algebra point of view, appears as a failure of the chiral generators in closing an algebra in 

perturbation theory[3,4). 

The Chiral Schwinger model (CSM) is a two-dimensional theory that is very useful 

for understanding several features of anomalous models. Jackiw and Rajaraman[S) showed 

that a Wlitary and consistent effective theory can be constructed for this model, in spite 

of loosing the gauge invariance. On the other hand, following the idea of Faddeev and 

Shatashvili(6) of introducing additional degrees of freedom through the Wess-Zumino term, 

in reference [7] the Faddev-Popov procedure was applied to obtain a gauge independent 

vacuum functional. In reference [8J we showed that a gauge independent generating func­

tional for the CSM can be build up using the BV procedure. In this case a non local 

solution for the master equation was considered. Afterwards, the introduction of an auxil­

iary field (the so called Wess-Zumino field) makes it, possible to write out a local generating 

functional. The same procedure is worthless in the non-Abelian case, where one is not able 

to build a non local solution for the master equation. The naive application of the BV 

procedure to this model would not work, in the sense that the equation that defines the 

method, the so called master equation, has no solution. 

In the same spirit of the Faddeev-Shatashvili works, recently we proposed in reference 

[9J the introduction of extra degrees of freedom in the BV formalism. We showed that 

an enlargement of the ficld-antifield space of the Chiral QCD2 model makes possible the 

construction of local solutions for the master equation. There, by the introduction of a 

pair field-antifield associated to the gauge symmetry group we got a gauge independent 
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generating functional for Chiral QCD2 , obtaining the Wess-Zwnino-Witten action coupled 

to the gauge field as solution for the master equation at first order in h. More recently, a 

generalization of this procedure to treat in a generic way anomalous gauge theories with a 

closed, irreducible classical gauge algebra was proposed by Gomis and Paris11O). 

The aim of the present work is first to show that the quantization of the Chiral 

Schwinger Model(CSM) also can be held in an extended space where the master equation 

has a local solution. Then we will build up the BRST generator and prove, in the canonical 

quantization framework, that the inclusion of the new pair field-antifield associated to the 

gauge group leads to the nilpotency of this generator. 

Let us consider the classical action for the CSM: 

50 =Jd2x{-~F'H,FPIl+~Q> (1~""'5)  tJ1} (1) 

As usual, the quantum action W in the BV scheme must satisfy the master equation 

~(W,  W) = iht:J.W (3) 

Where the antibracket is defined as (X, Y) = ~~ - ~ * and the operator 

t:J. == -Itx- -!J.;: . W can be expanded in powers of h 

W = 5+ L hill-fi (4) 
i=l°O 

The standard zero order term corresponds to 50 plus the field-antifield terms, which 

become the gauge fixing terms when the antifields are restricted to the gauge surface 

(p- = ~:'  IJ1 being the gauge fermion. Thus, one gets 

5 = 50 +Jd2x{A;ap c + ilj;*t/'c - i~ tJ1*c} (5) 

3 

The master equation (3) at first order in h is 

(MI , S) = iilS (6) 

where cAS is the BRST Jacobian, thus bearing the anomalous properties of tbe path 

integral measure. So, the computation of t:J.5 requires the introduction of a regularization 

process, as is explained in detail in ref.12] where the Pauli-Villars scheme was used. We use 

here the computation of reference [8], where we used a point splitting scheme, obtaining 

t:J.5 = ~ Jd2 x C [(1 - a)Dw4/' - t/IIlO/,A II ] (7)
47r 

As already mentioned, the master equation (G l with the action (5 l will not admit local 

solutions. 

In order to remove this obstacle we propose to enlarge the field-antifield coufiguration 

space including besides the fields that are present at the classical level, also the field () 

associated to the Lie algebra of gauge group U(1) together with the correspondillg anti­

field (J*. The () field will become dynamical only at the quantum level. Since the classical 

action 50 is independent of 0, the model is invariant under arbitrary variations of B: 

(1 -+ (} + A (8) 

besides to the usual gauge symmetry of this model. Now, the generator of this extra 

symmetry lUust be included in the Hessian matrix of the extended action, solution of the 

master equation at the classical level. This is attained simply addiug to the action (5) the 

corresponding term: 

5 = So +Jd~J:{A~o/IC + iJj,'l!'c - i-;j; 1/"c + O· c} (9) 

Observe that now the action S depends on 0* through the inclusion of the term O' c, and 

this extra term playa fundamental role modifying the master equation (Gl. ill snell a way 

that one can construct a local solutions, depending also on the field 0 . 
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The modified ma.':;ter equation nt order h is 

(AI 5) = /{arM] a,s arM] a,s} = it15 (10)
1, aA11 aA* + ao ao* p 

It i~  worth remarking the inclusion of 0 field leaves f:::,.S = 65, as can easily be seen from 

(5). Now, in this framework, the master equation at first order in 1i admits local solutions. 

It i~  ensy to wrify thnt thc I1sunl \Vess-Zumino term for the Chiral Schwinger model: 

lUI = - 4~  Jd2x {(o ; 1) alJo apo +9 [(a - 1)opA/l + £'UIO/lAII]} (11) 

satisfy the master equation (10). The higher order contributions to the master equation 

(3) ,·"nish. so tlI(' ql1antum action is just 

W =5+rt1l11 (12) 

This result is the same as that of reference [GJ. Thus showing that it is possible to build up 

an action that leads t,o a gauge independent vacuum functional for the Chiral Schwinger 

Model. without making use of the Faddeev-Popov trick as in reference [71 or using non 

local expressions as in [3], 

LI't us \lOW stmIy the flbov£' proc£'<1ure from th£' canonical point of view. It is well 

knowlI tha t the prcscuce of anomalies breaks down the llilpotency of (J. \Ve will now 

invest ignte the operator Q2 to understand the effect of the enlargement in the configuration 

spflce of fields lind antifields. \Vhat w£' nre really going t.o calculate is the anticornmutator 

{q. QJ = 2(t· 

Both actions (;») cUld (12) represent, from the Hamiltonian point. of view. constrained 

systems. Their quantization can be obtained, when there is no operator ordering problem, 

calculatin1!: the Dirac (Inti )brackets for t.he classical theory. and then associating them with 

the (anti)commutators of the quantum fields as usual: {A, B} Dirac --+ -i!A, B]. There is a 

pair of constraints that. are specially important in our analysis of the effect of the inclusion 

of the e fidel in the canonical algebra: the primary constraint associated to the mo tum 

conjugat,£' to A" and the secondary constraint that. comes from the time evolution of the 

former. namely tlw Gauss law. 
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For action (5), where (J and (J* are not present, these constraints read: , 

no == Do::::: 0 

(13) 
, .- (1 - 1'5)n1 == D] + Zt/J1'0--- t/J ~ 0

2 

where the prime means a1 • The BRST transformations of the fields and antifields are can 

be obtained from the antibracket of the fields with the action (5): 

«5oA" = oP cp 

60 t/J = it/Jcp 

co";j; = -i";j;cp 

Coc = 0 

r A* - Oil F _ -::J. (1 - 1'5) .1. 
va p - "liP '1'1'" 2 'I' (14) 

60 t/J* = ~";j;Q5(1-1'5)P-it/J*cp  

-. 1 -* 
ct/J o = -2'(1- 1'5)t/Jp + it/J cp 

£JoC· = A;O,l p + t/J*tPP - tPtP*p 

Here p is the parameter of the transformation.� 

The Noether's current associated to these transformations is easily calculated:� 

II ­ (1- 1'5)
J" = -8 F,lIlC+tP"'YP--2- tPC (15) 

So, the generator Qo of transformations (l4) is thus 

J [ , - (�1 - 1'5) ]Qo = dx] - IT] c + tP"'Yo- -1/Jc (16)
2

The Dirac brackets are such that the first term in Qo will not contribute to {Qo, Qo}' 

6 



i. 

Thus 

J� Jd '{ [-( (1-')'s) -(') (1-')'s) '] '}�{Q Q}0' 0 = dXI xl c(x) t/J xho---t/J(X),t/J X ')'O--2-t/J(x) c(x ) Zo=%~
2

(17) 

SO, Q~ is essentially proportional to the commutator of the chiral current 

"Y.() (1 - 1s) .1,( )Jo 
s = .,., X ')'0--2--"" X 

'J'his current algebra requires a careful management at the quantum level, since it involves 

the product of operators at the same point . As it is well known, the calculation of this 

commutator generates the Schwinger term, transfonning the current algebra in a Kac­

Moody one. As in lJs , JS] the appearance of the Schwinger term means the breakdown of 

the gauge symmetry, the lost of the Q 0 nilpotency reflects the same fact. Following the 

standard calculations of the chiral current algebra [11], we obtain: 

{Qo,Qo} = i JdXIC(X)OIC(X) (18) 

Now, we will analyze in the same way what happens with the extended action (12). 

The addition of the Wess-Zumino term M}, obtained as solution of the h order master 

equation, comes mainly to modify the constraints (13), leaving 

- h 
no == Ilo + -(a-l)8 ~  0

411" 

(19) 

- , ,- (1 - 1s)
nl == III + Zt/J10 --2- V' - lIe ~  0 

lIe is the momentum conjugate to the field e. Observe that the zero component of the 

chiral current Jg is now related to lIe, and this will be of fundamental importance in the 

calculation of the new Q2. 

The introduction of the e·e term in the action S, equation (9), imply a non-trivial 

BRST transformation for the field 0: 

60 = cp (20) 
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also adding some extra terms to the BRST transformation of the a.lltifield~:  

hA; = 60 .'1; + ~[(1 - a)o,.e + f"VOvO]p
47r 

hc· = 60 c· +O·p� 

60· = .!:- {(I - a)o"o"O - [(1 - a)o"A" + ("vo"A v]} (21)� 
47r 

The transfonnations for the other fields remain as in (14). 

It is worth remarking that the BRST variation of the antifields arc proportional to 

the equations of motion thus from the canonical point of view they can be considered as 

being zero. So,the generator of these transformations is q = Qo + Q' with 

Q' = jdxdc(Il _ h(a -1)8')] (22)e 411" 

The canonical commutation relations for the model de~cribed  by the action (12) can 

be calculated by the Dirac's procedure. The nonvanishing commutator that will contribute 

to the anticommutator {Q', Q'} is: 

(23)[Ile(,l'),Il6(x')] = -io1b(J'} -:r~)  

This Schwinger like term stems from the relation of Ile with the chiral currcllt J(~.  coming 

to cancel the analogous contribution of Q~.  Thus: 

{Q',Q'} = -i j dJ:lc(.r)Dtc(J·) (24) 

Finally, since {Q', Qo} vanishcs, the BRST generator Q is nilpotent: 

., 1 
(~.JIQ-=2{Q,(J}=O 

Thus, the physical states of the theory are defined hy the cohomology class of tIle gencrator 

of BRST transformations 

v - (1 - 15) ,,( 1/ - 1) , (2G)(J = c( -0 FOil +1/'10--- ti' + Il IJ - --- 8 ) 
? 411" 
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Observe that since the physical state must be annihilated by this BUST operator, the new 

tenn added in order to restore the nilpotency impose the chiral constraint n9 = "(:;1) (JI, 

on the enlarged Hilbert space. 

Concluding. we saw that it is possible to generalize the Batalin- Vilkovisky La­

gmll~(,lIu  mdhod. illcludiu,[!; a n<,!d associated to the gattge group element. (the Wess­

Zumino fielll).Thus, a gauge independent formulation for an anomalous theory can be build 

up without using any non-local expressions. As can be easily realized, for non anomalous 

theories, this extension in the space of fields and antifields will not affect the theory, as 

the Wess-Zumino field would not become dynamical, since M) = 0 is a solution of the 

ma...ter equation ill t.his case. From the canonical point of view, it was shown that the 

BRST charge h as it's nilpotency rest.ored in the extended space. Also, a relevant fact is 

the preSf'llce of the chiral const.raint in the new BRST generator. This means that the 

physical sector of the extended Hilbert space includes only one chiral sector of the extra 

bosonic field. It's non gauge in\"ariance comes t.o compensate the anomalous behavior of 

the fermionie IlH'asure. 
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