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ABSTRACT
We review the classical BRST cohomology of constrained hamiltonian systems when
SEMINARIO DE MECANICA E GEOMETRIA - III the constraint sct is a co-isotropic submanifold of a finite dimensional symplectic manifold
CLASSICAL BRST COHOMOLOGY (M, w). We restrict our analysis to the case when the constraints arise from a Poisson action

of a Lie group G on M. In gauge theories the constraint set is the inverse image of the origin
in Lie(G)* under the momentum map : C = J7'(0). We extend the BRST formalism to
the case of a hamiltonian system with symmetry when C = J71(0O), where O is a generic

co-adjoint orbit in Lie(G)".

Sur la place, chacun passe

chacun vient, chacun va ;
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droles de gens que ces gens-1a ! [Bi 75]



Introduction

In this seminar we discuss some of the classical aspects of the so-called BRST approach
to constrained Hamiltonian systems. We restrict! our attention to the case in which the
constraint set C is a co-isotropic submanifold of a m-dimensional symplectic manifold (M,w)
arising from the Poisson action of a N-dimensional Lie group G on M.

In section 1., we review the construction due to Kazhdan, Kostant and Sternberg in
[KKS 78], of the reduced symplectic manifold (R,w=), when C is the inverse image under
the momentum map J of a co-adjoint orbit @ in G*, the dual of the Lie algebra G of G.

The physics on the reduced phase space is discussed in section 2..

When the hamiltonian is G-invariant, the reduction arises from the existence of N constants
of motion which are the components of the momentum map.

When there is a gauge invariance of the system, points belonging to the saume G-orbit are
physically indistinguishable and the functions on the reduced phase space are the physical
observables. In this case R is obtained as 7 ~!(0)/G, where 0 is the origin in G*.

These physical observables for gauge theories are described in section 4. in the language
of (co)homological algebra, following the work of Kostant and Sternberg [KS 87).
Cohomological aspects in constrained dynamics were noticed originally by Henneaux [H 85),
Mc Mullan [McM 87], Dubois-Violette [D-V 87|, Henneaux and Teitelboim [HT 88] and
Stasheff [S 88].

In section 4., following again [KS 87], the cohomology algebra of this description is
interpreted as the quotient of a subalgebra of a super-Poisson algebra by an ideal in this
subalgebra.

This super-Poisson algebra in turn is associated to a symplectic super-manifold, the
extended phase space, in section 5., following Loll [Lo 88] and Tuynman [T 89].

In section 6. we propose a similar cohomology description of the functions on the reduced

phase space in the case of a hamiltonian system with symmetry.

1 This in spite of the claim ([HT 88]) that the group structure should not be emphasized
to get a "full” understanding of the BRST symmetry
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In order not to extend too much the length of these notes we have not discussed the
approach to the BRST symmetry via the "vertical cohomology™ provided by the exterior
differentiation in the original phase space (M,w) along the gauge orbits.

Also not discussed is the casc when the constraint set C does not arise from a group action.
The program then is more ambitious and the construction (therefore) is less transparent.
Further information about these topics can be found in [D-V 87}, [HT 88|, [S 88], [FHST 89),
[FK 90], [FO'F 90] and [FO'F-K 91].

References which are essentially oriented to the quantisation problem, but which contain
a useful summary aud complementary information about the classical set-up are :

(T 89], [DET 90] , [DEGST 91] and [FO'F-K 91].

The Geometric approach to Mechanics can be found in various textbooks :

[Ar 76], [AbM 81], [GS 84} and [LM 86].



1. The KKS reduction

Let M be a m-dimensional symplectic manifold with its closed and nondegenerate
two-form w. The so-called musical maps w® : TM — T*M : v — w’(v) = ¢(v)w , and its
inverse w! = (w")™!, define the Hamiltonian vector fields as the image of the map Ham from
F(M), the space of C* functions to Vect(M), the space of vector fields :

Ham : F(M) - Vect(M): f = H(f) = w! o (df) or o(H(f))w = df.

The Poisson bracket on M is defined by :

{f,9} = w(H(f), H(9)) = — 1 (H(f))«(H(g))w = -+ (H(f))dy,
and Ham becomes a Lie algebra homomorphism from F (M), with {, } as bracket, to Vect(M)
with minus the ordinary Lie bracket of vector fields :

H({f,9}) = — [H(f), H(g)].

The kernel of this homomorphism is given by the constant functions on M which are the real
numbers R, considered as a commutative Lie subalgebra of F(Af).
There is thus an exact sequence of Lie algebra homomorphisms :

0 — R — F(M) — Ham(F(M)) — 0 .

Let @ be a symplectic action of a connected N-dimensional Lie group G on (M,w).
This mecans a group homomorphism from G to Dif f(M), the diffeomorphisms of M :

®:G—- Diff(M):9g— &; ,suchthat Pjw=w.

The generators of the group action are dcfined by the differential of ¢ at the neutral {v}
of G, which is a Lie algebra homomorphism from the Lie algebra G of the Lie group G
to the Lie algebra of Diff(M), i.c. Vect(M).

X =®&,,:T(G)>G = Vect(M) : i = X(ur}),

with X([#,9}) = — [X(i), X(9)]

These vector ficlds are locally Hamiltonian :

L(X(#))w = d(:(X(&@))w) =0.
If the generators are Hamiltonian, the action is called (almost) Hamiltonian and there exists
a linear map :

:G— F(M):d— ¥(ud) suchthat X(&)=Ham(¥(i)).
Furthermore : H({¥(d), ¥(9)}) = — [H(¥(@)), H(¥(D))] = H(¥([77]) -

The action is said to be a Poisson action ( in Arnold’s [Ar 76] terminology ), if this linear
map ¥ can be choosen as a Lie algebra homomorphism i.c. such that :
Y( (@ 9] ) = {¥(a), ¥(v)} .

The following commutative diagram of Lie algebra homomorphisms is then obtained :

0 — R —F (M) — Ham(F(M)) —0
v\ O1X
g

An equivalent definition is that an action is Poisson when there is an equivariant momentum
map J from the symplectic manifold M to the dual G* of the Lie algebra G :
J:M — G*:xz — J(z), such that ¥(ii,z) = (J(z) | @) ,
where (|} is the canonical pairing between G and G°.
The equivariance is relative to the ®-action of G on M and its coadjoint action K on G* :
K(g) J(z) = J(®(g, ).
The orbit of the point z € M is defined by : (G, r) = { ®(g,r)| g € G}, and its isotropy
group is the subgroup : G, = {g € G | ¥(g,z) =z} .
The action is called free if the isotropy group of cach point is trivial : G, = {v].
It is called a proper action if ®°:G x M — M x M : (g,z) — ($(g, 1), 1),
is a proper mapping, i.e. the inverse images of compact sets are compact.
When the action is proper, the orbits are closed submanifolds immersed in M.
If the action is assumed to be free, the sct of orbits A /G has a manifold structure such that
the canonical projection : 7 : M — M/G is a submersion.
Let O = {K(g)¢|g € G} be a coadjoint orbit of G in G*.
It is said to have a clean intersection? with the momentum map, when :
a) J~!(O) is a submanifold of M ,
b) T(J=1(0)) = I (Tua(©)) , V2 € J-1(0) .

2 This notion of clean intersection generalizes that of transversality.
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When this clean intersection hypothesis is fulfilled, Kazhdan, Kostuut and Sternberg,
in [KKS 78], showed that :

1) C = J~}(O) is a co-isotropic submanifold of M with canouical injection jo : C — M.

2) The distribution defined by the kernel of wc = jiw is integruble and the leaf of its
foliation, containing the point z € C, is the orbit under the action of the connected component
of the isotropy group G¢ = {9 € G | K(g)¢ = £} of the point G¢ = J(r) .

3) Moreover, if the foliation is fibrating, the space of leaves R = C'/ Ker{wc) is a manifold
such that the projection 7 : C — R is a submersion and it has a unique symplectic structure
given by the two-form wg defined by : m*wg = wc .
This theorem is essentially a rephrasing of the Marsden-Weinstein, [MW 74], reduction
procedure, the reduced phase-space R being diffeomorphic to the product of the co-adjoint
orbit O with the Marsden-Weinstein reduced symplectic manifold J~!(¢)/Ge, where ¢ is any
point of the co-adjoint orbit O .

The proof goes as follows :
The differential of the momentum map J: M — G* : z — £ = J(z), at z reads :

Jogz : TeM 5 TG* = G* : V= J, (V)
Evaluated at any @ € G, it yields :

(Jaa(V2) 1 8) =2(V)d( J(2) | &) = (V) d¥ (i, 2) = w; (X(&,2), V. ).

Since O, = T.®(G,z), the tangent space to the orbit at the point z, is spanned by the
generators {X(i,z), 4 € G}, and one has Ker J,|; = 0., the symplectic polar of O, .

A tangent vector V. of T, M at a point z € C is tangent to C if and only if there is a vector
n¢ € T¢O such that J,;(V.) = 5, but since the tangent space T¢O is generated by the
vectors k(@) £ = d!i K(exp(ti)) € j4=0 , € € G, it follows that :

V.€T.C=137 € G F J,.(V.) = k(D)

<= 3IveG F Vi €G, w.(X(#2),V:) = (k(B)|&) = (£]|[F,7]).

The generators X(¥) satisfy :

w(X(@),X(5) = { W@, ¥®)} = W@ = (JO|[3),

so that V., — X(7,z) belongs to O;', which is the kernel of J,|,.

The tangent space to C at x is thus obtained as : T.C = O, + O2 , henee
T.C* = 0 N0, andCis obviously co-isotropic : T,C*+ C T,C .
So Ker(we): = T:C N T.Ct = T.C* , and T,C/T,C*t is a symplectic vector space.
Now, T:C* is generated by those vectors X(7,z) of O, such that :

Vi € G :0= w,(X(@,2),X(5,2)) = (J(2) | [, 8]) = (K(@J(c)| &),
and k(7)J(z) = 0 meaning that & € G (), the Lie algebra of the isotropy group of J(r) .
Since [X(7;,z), X(0y, 2)] = —X([6),82],2) and @), 62 € Gy, == [7),7] € Gie) »
the distribution defined by T:C* is integrable and the leaf [c] through & point r of € is its
orbit under the action of the (connected component) of the isotropy group of J(r).
Points of C belonging to the same leaf, define an equivalence class in C.
When the set of equivalence classes, i.e. the quotient : R = C/Ker(we) is a manifold, the
projection : 7 : C' — R, is a submersion.
The tangent space to R at a leaf [z] is : TR =~ T.C/T.C+ | where [2] = n(r).
This isomorphism ¢ndowes R with a symplectic two-form wg, such that : 7*wg = Jow .
The momentum map also factorises (on C)as: Jo jo = Jg o 7,
where Jg : R — G*, is equivariant under the induced action of G on R.
It can be shown that there is an open dense set of M whose points cach have a neighbourhood
U where the dimension of the orbit is constant. This implies that J=1(0) N U is a submanifold
of M, where O is the coadjoint orbit in G* containing £ = J(x).
The dimensions of the various subspaces are given by :

dim(Ge) = f , dim(O) = N ~ f (even),

dim(G.) =i , dim(®(G,z1) = dim(0,) = N — i,

dim(JY(€)) = dim(O}) = m — (N - i),

dim(J7Y(0)) = dim(T.C) = m ~ (f - i),

dim(T,Ct) = f — 1,

dim(R) = m — 2(f —i) and

dim(J=1(€)/G¢) = m — (N — f) = 2f - i) (even).



The picture below illustrates the procedure :
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fig.1 The KKS construction

2. Physics on the reduced manifold

In the usual geometric formulation of Mechanics, the states of a dynamical system are
points of a symplectic * manifold, (M,w), the phase space of the system.
The C* functions on this manifold, F(Af), besides their role as physical observables, are
also the generators of infinitesimal transformations defined by the corresponding Hamiltonian
\ ¢ vector fields.
\O One distinguished function, h, called the Hamiltonian, defines the time coordinate by the

flow of its Hamiltonian vector field.

In general, any vector field V defines a one parameter (local) group of diffcomorphisms :

m:MoM:zoz=mn),
through the solution of the following Cauchy problem :

Find the curve 4(z) : TC R : t — «(z,t) such that :

2(2,0) = = and £(z,8) = V(2(,1).
When such a solution can be defined for all t € R, the vector ficld is said to be complete and
defines a flow . The Hamiltonian vector field H(h), is supposed to be complete so that there

is a dynamical flow : 5 : M — M : z — () = y(r,t) , with
L (z) = H ()
2 @) = Hn(o))

This flow is symplectic nfw = w and conserves h and H(h) :
neh = h, gyH(h) = H(R).

The time evolution of an observable f is defined by : f, = 57 f, and obeys :

d

Gfo= Uamy = uiirony.

3 For simplicity we restrict to autonomous systems. For the more general case of contact

structures or Poisson manifolds, we refer to [Al 91] and [MR 86].
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Let us consider first the reduction arising from a Poisson action ¢ of a group G on M
that conserves the Hamiltonian : ®;h = h. The Hamiltonian vector ficld (k) is then also
conserved under the pull-back of ® : ®; H(h) = H(h), and its flow comniutes with the
actionof G : o g = @4 0 1.

The functions ¥(%), are constants of motion : n; ¥(#) = ¥(u), which yields
d - o . ~
3 ire(@) = mi (@), m) = 0.

A regular value of J is a point £ of G* such that, Vz € J~!(§), the differential Jules 18
surjective. Thus J~!(¢) is a submanifold of M. It is invariant under the flow 7, .
In particular, if this fixed value is zero, the point 0 € G*, in itself, forins the trivial co-adjoint
orbit which the KKS reduction procedure can be applied to.
When £ is not zero, it generates a coadjoint orbit O in G*, with its canonical symplectic
two-form we, invariant under the coadjoint action of G and defined by :
wo (k(@)¢, k(9)) = — (€| [d,9)) -
The Hamiltonian vector field of a function f on O is given by : (Ho(f))(§) = —k(dfe)¢,
where the one-form on G* , dfe, is identified with an element of G.
The Poisson brackets are obtained as: {f,g},(§) = — (£ | [dfe,dye)) -
The coadjoint action of G on O is actually a Poisson action with momentum mapping :
Jo: 06" : £ - Jo(§) = —€.
Let us, following Guillemin and Sternberg [GS 84], consider the product manifold
M = M x O, with its symplectic two-form & = w @ wo . The group action on M :
‘i(g,(z,()) = (®(g,2), K(g){) , is Poisson with momentum mapping :
J:M -G %= (2,8) = J& =)+ Jo = J(z) - €.
In this setting the KKS construction is applied to the trivial coadjoint orbit in G* .

The inverse image of 0 € G* under J is the constraint set :

C=J70)={(z,6) e M| J=z)-¢=0} = [J{I"&)x¢},

§€EO

obviously diffeomorphic to C = J~}(0) .

The canonical injection js : C — M , defines the presymplectic two-form : Do = jrLo.

o

Its kernel defines a foliation whose leaves are the orbits,$(G, ), of the points # € C .
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Let O; denote the tangent space at £ to the orbit, then O; C ();L , and the orbits are
isotropic submanifolds in M. It follows that (T;:C* = 0;) C (T:C = O}), and C is
co-isotropic in M, just as C is in M. The set of G-orbits in € forms the reduced quotient
space, R = C'/I\'(.r(ub(;). When it is a manifold, image of the submersion # : ¢ — R, it is
symplectic with symplectic two-form & defined by : TTOR = Jiw.
This is the KKS version of the Marsden-Weinstein symplectic reduction.
Points of R are written as (] = #(%), 2 € C and the tangent space Tm‘fZ 15 described as
the quotient of T[;]C by Oz, where & = (r,€) is any point of the orbit [z].
Now, a vector V; b k(#)¢ of Tz M is tangent to C if and ouly if k() = J,,(V0), i.e. when
Vz is tangent to C und @ € G verifies the above equality.
A vector V) of T[,r]?é is represented at & by an equivalence class (15 - k(7)&) + 0; .
At another point #' = &(g,%) = (z',€') € [Z], the same vector Vi) will be represented by
(V& @ k(7)¢') + Oz , where Vo= @4, Ve and 0 = Ad(g)0.
The symplectic two-form &y is given by

L:Lk(‘flil, W) = 0a(Ve & k(&)E, W, & k(i)€) = w(V,, 1W,) - (J(a) | [0, @]) .
Its value at [£] is independent of the choosen point I of the orbit [#] and of the choosen
representatives in 1:C / O;.
The Hamiltonian & on M, invariant under the group action, defines an extended Hamiltonian
on M by i‘z(z,f) = h(c), invariant under the group action ¢ .
Its Hamiltonian vector field, H(h)(z, £) = H(k)(x) & 0, at the point & = (o, &) e C, lies in
T(J~Y(€))®0 C T:C. 1t generates a flow Ae(z,8) = (i), €), commuting with the group
action on M : Ci>g of = 1o &)g. This flow conserves not only J7(0) 1 5}, o Jéo = J& O ne,
but also separetely each submanifold J=}(£) x ¢ (£ fixed).
So it induces a flow 5, on R, such that pro® = o . This imples

BB OR = AN OR = UGS = Jpitw = jaw = i3y,
and, since 7 is surjective, it follows that §; &y = @i and the induced flow is symplectie.
The Hamiltonian &, being invariant under the group action, is constant on the leaves of the
foliation, so it defincs a reduced Hamiltonian by : iz,;, o =ho Jé s

which yiclds  #*dhg = jidh.
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Taking the inner product with a vector V; of Tié results in :
(75 V2)dhg([E]) = (GEO)(H(RE), Vi) =
= Wp (W.IIH(’I)(I) 1r‘|, ) .

2)(H(R)(E), V%)

This means that 7'r.|;7-t(71)(i) is the Hamiltonian vector field of h3 at [Z].
The derivation of # o j; = p; o & with respect to t yields : 7,z H(h)(Z) = It o(w(z))
and the reduced flow j, is the flow generated from the reduced Hamiltonian hﬁ.

This reduced Hamiltonian 71,-1 on (R,&3) defines thus a Cauchy problem of lower order whose
golution yields the flow 5, 4. It is then possible, in principle, to reconstruct the flow 7, .
Following Abraham and Marsden ([AbM 81]), this proceeds as follows.

Given the flow jy, solution of : 4 ([Zo]) = Hz(R7)(5e([£0])) , one aims to reconstruct
fi(Z0) = (m(z0),60) , solution of : 4 (&o) = H(h)(7(%0)) , where Zo = (zo,£o) is a given
point of # 7! ([Zo]) . Let 3(t) be the image of p1([Z0]) under an arbitrary section of # : ¢ - R,
ie w(3(t)) = pe([zo]) , and such that 5(0) = Zo.

One looks now for a group element g(t) such that g(o) = v and 7ji(Zo) = B (g(
The derivative with respect to t yields : ’H(h)(‘b(g,s)) = Qy‘l’(dt + X(#,3)

g(t),5(1)).
where X (i) is the generator of the group action on Mand @ = Ly-1y, i:{- €g.
Invariance of H(k) yiclds : ’fi(fa)(‘i(g,é)) = ‘i>g.|;’f{(l.l)(5), so that :

ds

H(R)(3) — = X(i,3).
This algebraic equation has a solution, since
s H(k H(h "- K = 0;
iy = Hr(hr(3) = 7 sH(WE) = H(R)(B) — — € Kerfy; = Os.

Having solved this algebraic problem, one is lefft with the differential equation :

do(t) _

ot 9wl With ¢(0) =

whose solution (quadrature) is formally given by the anti-t-ordered product :
'
g(t) = (rzp(/ 17(!')(&'))
0 _

4 This however is not always easier, neither preferable as [KKS 78] shows.
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Another relevant dynamical problem where the reduction procedure is essential, is the
Yang-Mills gauge theory ® of which a finite dimensional analogue is given below.
Let ¢ be a free and proper Lie group action of G on a configuration space ¢ and assume that,
by definition , points of @ belonging to the same G-orbit are physically indistinguishable.
The "real” configuration space is thus the space of orbits i.c. the quotient @, = Q/G and
the "real” phase space is T*Q,.. Points of @, can be described as equivalence classes of points
of @ corresponding to the equivalence relation : ¢’ =g ¢ if 3g € Gt ¢ = ¢(g9,9) -
With regularity conditions as above, Q, is a manifold and there is a canonical submersion :

0:Q—Q,:q—[q] =0(g) ,suchthat o o ¢(g) =
The differential of 0 is : 0, : TQ — TQ, : (g,75,) — (lgl,ouig¥,) , and Ker O.jq is the
tangent space at ¢ to the orbit ¢(G,q). This kernel has a constant dimension so that
Kero, = quQ (q , Ker a.lq) is a subvector bundle of TQ.
Let ¢TQg denote the lifted G-action in the tangent bundle, it defines an equivalence relation
in the tangent bundle TQ :

(v = @.50)) 2ra (v - (03)

iff 3g € GF {¢ = ¢(g9,9) and Uy — bgelgiq € Ker Ougr}

oriff 3g € G+ {(V' - ¢7'Qy V) € Kera. } .
The space of equivalence classes forms the tangent bundle : TQ, = TQ/ =4 .
The dual bundle T*Q, of TQ, is the symplectic manifold of interest.
Those elements P = (g, p;) € T*Q taking a constant value on the equivalence class
(¢, ¥y) + Kero,, , necessarily satisfy :

(P, V) =0ifV € Kero, ,or pg € (Ku‘a.h)u L6
The set (Kcr a.)u = quq (kfera,“)o is a subbundle of T*Q.
The action ¢, is lifted to an action @, on the cotangent bundie T°Q with its canonical

Liouville one-form 6, and symplectic two-form wy = —d6, .

5 See e.g. [M 80] for the gencral setting and [McM 87] for further developments more

directly related to this scminar.
8 The annihilator of a subspace E of the vector space F is the subspace (E)Y of the dual

space F'* consisting in those linear forms annihilating all vectors of E .
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Such a lifted action is always Poisson with momentum mapping given by :
(Ja,pe) 1) = (X(Tig,Py)) 0(a,Pg) = Py~ X(T,0)
where X (i) is a generator of the group action ¢ on Q, and X () is the corresponding generator
of the lifted group action ® on T*Q.
The subbundle (Ker 47.)0 is given by :
(Kera.)’ = {(a.py) | Py - X(d,q) =0, V@ € G} = J7(0)
The group action ¢ on T*Q leaves (KIer a.)o invariant and induces a group action on it.
The quotient of this group action is the phase space looked for.
It coincides with the KKS reduced symplectic manifold :
T*QR = (Kero.)’/G = J7}(0)/G = R.
For a dynamical system with a gauge freedom, the Physics is defined only on the reduced
manifold R = J7!(0)/G, i.e. the observables are the C* functions on R.
It may be that the description of the points of R in terms of local coordinates is cumbersome
and that is is easier to describe the functions on R as equivalence classes of functions on M.
Also in the case of the reduction for systems with symmetry, the classical motion is
restricted to J~(£) and the dynamics reduces to solve for a Hamiltonian flow on
J7N€)/Gg ~ J7'(0)/G = R.
The functions on R are the possible reduced Hamiltonians and can, in the same way as above,
be described by equivalence classes of functionson M = M x O.
In a certain sense, the gauge reduction can be considered as a particular case of a symmetry
reduction, namely when the orbit O is the trivial orbit so that M = M x {0} ~ M.
The physical content however is different.
Furthermore, in the case of a system with symmetry, it is expected that the reduction and the
quantisation are not commutable since there may be quantum tunneling betwecen constrained
submanifolds corresponding to different coadjoint orbits.
In the case of a gauge system the question of this commutability remains largely unsettled

(see e.g. [Lo 90],[Lo 91}).

13

In the sequel, we mainly concentrate on the gauge systems, leaving the case of the
reduction with symunetry to a separate paragraph.
To describe the set F(R) of C* functions on R = J7'(0)/G, one observes that those
functions on Af whose difference vanish on the constraint manifold, ¢ = J~'(0), actually
define a unique function on it.
Also the functions vanishing on C form an ideal in the ring F(M) of C* functions ou M.
Let {€a , @ = 1,2,...,N} be a basis of the Lie algebra G with dual basis of G* given by :
{e*, a = 1,2,..,N}
and structure constants defined by :
[€ar €3] = & fqy -
Define ¥,(x) = (J(x) ] €,), then equivariance implies :
{¥a,¥5} = ¥, f;ﬂ ’
so that the constraint manifold :
C = {r € M|¥,(2) =0, a =1,2,.., N},
is obviously co-isotropic in A (first class in Dirac’s terminology ).
The origin in G* is a regular point of the momentum map if and only if the exterior product
d¥, Ad¥; A ... AdPy
does not vanish when restricted to C.
In algebraic terms, one says that the elements {¥,,¥,, -, ¥n} of the ring F(M), form a
regular sequence.
This means that, if Z; is the ideal in F(M), generated by {¥(, ¥,, ..., ¥},
then, for k = 1,2,..., N :
¥, is not a zero divisor of the quotient ring F(AM)/T;_,
or, in other words, if f.¥; € T;_, then f € I,_,.

Let Iy be the ideal of functions vanishing on C, then one identifies :

F(C) = F(A)/Ix.

14



To define a function on the reduced manifold, the functions on € must be constant on the

leaves of the foliation.

These leaves are the G-orbits so that F(R) is identified with the set of G-invariant functions

onC:
{f € FON| {4, ¥a) € Tn, Va)

In

F(R) =

The reduced manifold itself is also given by a quotient :

_ {z € M|¥,(z)=0, Va}

R G

However the important difference between the two quotients is that the numerator in the
expression for F(R) is not given by a set of equations as in the expression for R.

Naturally {f,¥,} € Iy implies that {f,¥,]} is some linear combination of the ¥’s with
unspecified functions U8 : /par {f,¥,} = ¥4 UE,

The classical BRST approach aims to describe the observables also as a quotient of a

numerator which is a subalgebra of a super-Poisson algebra, given by equations, by

the equivalence relation defined by an ideal in this subalgebra.

This is achieved through the cohomological constructions in the next two sections.
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3. The cohomological description of the physical observables

3.a) Let K be a N-dimensional F(Af)-module, with basis {&},&,.....ex }, and
let K* be its dual with dual basis {e;, €,...,en} .
To the sequence of elements {¥,,¥,,..., ¥x} of the ring F(AM) one associates
=Y, ev, € K*.
The exterior algebra,

(AK = @ A*K),+,A

keZ

is a Z-graded algebra over the ring F(Af), with the usual conventions that:

A’K = F(M) and A*K = {0}, when k<O0,or k>N.
The Z-grading obviously induces a Z,-grading by dividing A & in even and odd elements.
It is graded commutative , i.e.

VY Xi € AKK and Y; € AR one has :

XiAYi = (DM YA X .
A graded derivation of grade g is a local, linear map D, : AKX — AL, such that each
homogeneous component A*K is sent in A¥+*9K, and a graded Leibniz rule holds :

Dy(Xx AYY) = (DgXi) AY: + (~1)%% X A (D,17) .
It can be shown that a graded derivation is completely defined by its action ou
A°K = F(M) and on A'K = K, which together generate all of AR.
The graded commutator of two graded derivations is defined as :

[Di, D] = Dy o Dy — (-1)9'92D, 0 D, .
It is also a graded derivation and its grade is (¢) + g2).
This commutator endowes Der(A K), the set of all graded derivations, with the structure of
a graded Lic algebra, satisfying the (graded) properties :

a) antisymmetry : [Dy, Dy] = —(-1)991 [D,,D,]

b) Jacobi identity : [Dy,[Dy, Ds]] = [[Dy,D:], Ds] + (-1)%197 [D, ,[Dy, D4]] .
The derivations of even grade form by themselves an ordinary Lie algebra, of which

Der®(A K), the set of derivations of zero grade, forms a Lic subalgebra.

16



The interior product of an element of A K with an element ¥ of K'* is the derivation of grade
minus one, defined by :
Vfe F(IM): «(¥)f=0
VX € K : (%)X = (¥|X).
The commutator of :(¥) with itself vanishes :
[1(®), (V)] = 24(¥)* = 0,
so that () defines a boundary operator on the complex A K.
The k-cycles form an F(M)-submodule of A¥K : Z;(K,1(¥)) = A*K N Keri(¥),
and the k-boundaries are defined by : By (K,2(¥)) = A*K N Tma(¥).
Obviously By (K,1(¥)) € Zi(K,1(¥)) and the k-th homology module 7 is the quotient :
He(K,(9)) = Zo(K,(¥)) / Be(K,o(¥) .
Using the algebraic formulation of the regularity condition on ¥, it is easy to show that for
all k different from zero, every k-cycle is a k-boundary and the homology is trivial :
Hi(K,(¥)) = {0}, Vk#0.
When k = 0, the cycles and boundaries are respectively given by :
Zy(K,(¥)) = F(M) and
By(K,3(¥)) = {(¥)X|X e K} ={) Yo X*|X* € F(M)} =1Iy.
The zero-th homology module is thus obtained as :
Ho(K, (%)) = F(M)/In = F(C).
3.b) So far the module K may be any N-dimensional free F(M)-module but, in order
to define a Lie algebra action on it, K is taken as the tensor product of the Lie algebra G
with the ring F(M): K = G @ F(M), so that
A*K = A*G @ F(M) and AK = AG ® F(M).
This F(M)-module carries a representation of G induced by the adjoint representation of G
in itself and by the action of the generators of the infinitesimal transformations on F(M) .
The representation is a Lie algebra homomorphism :

Dy : G — Der®(AK) : & = Dy() .

T This construction is known as the Koszul resolution of the ring F(AM) relative to the
sequence {¥), ..., ¥n} (see [K 50] and [DV 87]).
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The derivation Dy(i) is defined on f € F(AM) by :
Dy(a) f = {¥(u), f},
andon X = &, X® € K by:
Dy(@)(€a X°) = ad(@) &a X° + &, {¥(d), X"},
whith the adjoint representation of § in G given by : ad(i) v = [, 0] .
The graded commutator of this derivation Dy (i) with the boundary operator (¥ ) is a graded
derivation which vanishes obviously on F(AM) :
[ Dy(@), (¥)]f = 0.
On K it yields :

Il

Dy (i) (¥a X*) = (¥)([, @ X + & { (@), X°))
={ V@), Yo X} - ([, S X - ¥ { (@), X )
= ({ Y(a), Yo} - q/([.T,a.]))‘\'" = 0.

[ Do (@), ((¥) ] (€a X°)

It follows that these two derivations Dy(#) and (¥) commute on all A K so that
the representation Dy (&) induces a representation of G in the homology algebra.
In particular Ho (K, 1(¥)) = F(C) carries a representation of G .
In general, when there is a representation D of a Lie algebra G in a module V, one defines
the Chevalley cohomology of G with values in V" as follows.
The ¢-cochains are the alternate ¢-linear forms on G with values in V' :
Céner(G: V) = AG* @ V,
with the convention that C§, . (G, V) = 0, when € < O or ( > N aud Clla G V) = V7

The direct sum
D Cha(6.V) = NG QV
¢

has a coboundary operator, & : C&, .. (G, V) — C('.I:\ (G, V) ¢ = dc, detined by :

omut

+1
- - — - P r-:\ .
(6c)(dy,Way oy o) = z:(——l)”'l Diai)e(dy, ..., @ ooy tieys )
=1
t+1 omat omut
N it . . . . = .
+ L(“ l"({“n“,],ln,.”, W ... u, ....,u“l)
1<)

18



An alternative definition of this coboundary operator § on AG* @ V is :
6((—) ® a) =650Q@a+ (e AO)® D(E)a,
where &, is the derivation of grade + 1 on the graded algebra A G* over the real numbers,
defined by its action on R and on G* :
6,(1) =0 and 6, = —%f"ﬂ,, A Ae.
The square of § vanishes and one defines :
28, (G, V) = Keré 0 CE,. (G, V), the £-cocycles ,
B, (G, V) = Imé N C¢,..(G, V), the €-coboundaries.
The ¢-th cohomology module is :
Hoor(6,V) = 28,0 (6, V) / By (G V) -
In particular, the zero-th cohomology is obtained as :
22,6, V)={aeV|Vieg,D(@a=0}and
B, .. (G, V) = {0}, so that
H% (G, V) = 28,6, V),
and these are the elements of V annihilated by the Lie algebra G.

hev

They are invariant under the Lie group G, obtained by exponentiation of the Lie algebra.
Choosing Ho( K,1(¥)) as the F(M)-module with its induced representation of G, the physical
observables are obtained as :

f(R) = thev( g ’ HO(I‘"I(‘I’)) .

3.c) It is "natural” in homological algebra (see e.g. [BT 82]) to associate a bi-graded

complex to the above two, homological and cohomological, complexes :

L= @ L% ,where L% = A'G* © NG © F(AD).
k.t

A "horizontal” boundary operator is defined on each homogeneous term by :

O L4 LY, 0, 0U:Rf - 6, (VU ® f.
And a "vertical” coboundary operator :

6L LY o LY 0, 0URf — 6,0,0Ux @ f + (e*AO¢) G Dy(@) (Ux ® f) ,
with, as before :

D\ll(ga)(Uk ® f) = (ad(ga)Uk) ® f + Us ® {‘pa, f} .
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Since ¢(¥) cominutes with Dy(€a) , these operators also commute ;
+1 ¢ _ gt ¢
0 064 =684_,008%.

Reshuffling the direct sum, one writes

L=@Pr* ,with L"= P L.
A .t
(~imn

The difference (¢ — k) = h is called the ghost number and varies from - N to + N .
On each L, one defines the operator ® :

A = 6% + (-9,
whose image is in le“ @ LY_, C L%+
Taking the direct sum of these operators over all € and k such that the difference
€ — k = h remains fixed, defines an operator : A* : L* — LAt such that AR+ o AP = 0.
There is thus a (L, A) cohomology, with

Z"(L,A) = Ker A N L" | the h-cocycles,

B* (L,A) = ImA N L* , the h-coboundaries,
and the h-th cohomology module is :

H*(L,A) = B*(L,A)/ Z*(L,4).
An h-cocycle 7 is an element of L* such that A%y = 0, for example the sum
7=A+ B + C of fig.2 below, with 4 € L;!,, B € L% and C € LY}, such that :

(-1 A=0,65 4+ (-3 B=0,

6B + (-1)M 0} C = 0and 6}, C = 0.
An h-coboundary g is a cochain of L* such that 3 = A"~ 1o, witho € L,
for example 3 = A + B+ C ,ando = A' + B' + C' + D' such that :

(-2 A A =0, &34+ (=)' = 4,

8B+ (-1)084,C' =B , &, C+ (-1 oL D =C,

and 6§11, D' = 0.

8 For the cohomological considerations below, other linear combinations would also do the

job.



The figure below exhibits an h-cocycle and an h-cobouudary :
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fig.2 The bigraded complex L

Since 8 does not act on the first factor in the product A‘G* ® A*G ® F(M) , the k-cycles
and the k-boundaries, with £ fixed, are just tensor products :

Zi(A%G* ® K, 8) = A'G* ® Zi(K,(¥)) and

Bi(AG* ® K, 8) = NG @ Bi(K (V) .
In the quotient the factor A’G* cancels and the homology is :

Hy(A'G* ® K,8) = Hi(K,(¥)) .
When the sequence ¥, is regular, the homology is, as before, trivial for k > 0 :

Zi(AG* ® K,08) = Bi(N'G* ® K,0).
Fork = 0: zo(/\‘g‘ ® K, 3) = AG* ® F(M) and

By(A'G* ® K,0) = A'%G* @ In .
The canonical projection of the 0-cycles of Zo (K , 3(¥)), i.e. the functions of F(M), on their
cohomology class, i.e. the functions of F(C), defines the projections :

7 AGH @ F(M) = LY — A'G* ® Hy(K, (V) = C,.. (g,H(,(K,z(q’))) .
With this projection the bigraded comples L of fig.2 is extended to the left by the column of
Chevalley ¢-cochains, on which the coboundary 6¢ has been defined above.
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L

Since §¢ o w¢ = 7!*! o 8§ , the extended diagram :

) T T

oL M I O L e
T 61 T 610 I 61]
Cé,m — at — LY — o —— LY —
T i 1

is commutative also in the first two columns.
The exactness of the completed horizontal sequences of homomorphisms implics the following

proposition :

HML,A) = Hlyoo (9 Ho(B () i h 2 0
{0} , otherwise .

The proof, an "elementary exercise in diagram chasing”, will be sketched helow.

1 : To each cohomology class é of Héhw (Q,Hu((lx',z(‘ll))) , where h > 0, there
corresponds a cohomology class of H*(L,A).
Indeed, let ¢ be a representative Chevalley h-cocycle of ¢ | then 8% ¢ = 0 and, since 7% is
surjective, 3A € L% such that 7" A = ¢.
The commutativity of the extended diagram implics :

mht1(54(A4)) = o (xh(4)) = 0.
So 6% A is a boundary and 3B € L% such that

A+ (-1)at B =0.
If 6';'“ B = 0,then y = A + Bis a h-cocycle defining a cohomology class [7] € H*(L, A).
Even if 841! B # 0, there still holds :

B (SN(B)) = ST (GAI(B)) = — (1) o o)) = o,
so 6':,'“ B is a 1-cycle and, the homology being trivial, it is a 1-boundary .
There exists thus a chain C € L%*? such that

B 4 (—1)ht2eht e = 0.
Again, if 6';” C =0,acocycle 7y = 4 + B + C is obtained defining o cobomology class
[v'] of HYL,A).

W
1]



It 64*2C # 0, one proceeds as above and, after a finite number of steps, the sequence
{4, B,---, Z} will eventually reach the top of the diagram®, where h =N and 6(- . ) =0,
obtaining a cocycle v/'* = A + B 4+ --- + Z and a cohomology class [y/"].
It is left as an exercise for the reader to show that the various choices involved in constructing
the cocycle 7/*" define ultimately the same cohomology class of H*(L,A) .

2 : Conversely a cohomology class of H%(L, A) is represented by a h-cocycle :

Yy=A+B+C+--- with Ay=0.
f h>0onehas: A€ L%, Be L"l+l , ... and in particular :

A4 (-1)IghIB = 9.
So 6% A is a boundary and

B (xh(4) = 47 (84(4)) = 0,
Thus ¢ = 7*(A) is a cocycle of Z&, ., (g,Ho(K,l(‘I’))) , and defines a cohomology class ¢ .
Again we leave it to the reader to show that this cohomology class é does not depend on the
choices made. Furthermore, an h-cocycle that does not contain a component in L% has a
trivial cohomology class.
Finally, when h < 0, one hits the bottom of the diagram, where everything is again trivial
sothat H*L,A) = {0}

Applying the proposition when the ghost number h = 0, one obtains the set of physical
observables as the quotient :

{I e L°|AT =0}
{a(L)}

F(R) = HY(L,A) =

? This kind of proof apparently does not hold for co-dimensional groups, which appear in

gauge field theories, at least without further assumptions.
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4. The super Poisson structure

10

Following [KS 87|, the complex L will be identified with a super-Poisson!algebra, P,

with bracket { R } There are two distinguished elements in this algebra, the nilpotent

5 -
BRST charge, €2, and the ghost number, . These clements are such that the action of the
coboundary operator A on an element in L amounts to take the bracket of the corresponding
element in P with Q@ : AT & (, F}z , and the ghost number does what its name says :
{‘I’,F}E = hl ifandonlyif T' € L*.

This construction proceeds in several steps.

4.a) Let V be a vector space!! over the real number field R, endowed with a scalar
product : 3 : VxV = R : (a,b) - n(a,b) .
The Clifford algebra associated with this scalar product CI(V, ) can be defined as the quotient
of the tensor algebra T(V) = ROVSH(VRV)®: -, by the ideal I(5) gencrated by the
elements of the form :

(a®@b) & (b®a) & (-25(a,b)I) .
In other words CI(V, ) is the algebra over R, gencrated by a basis (e,;i = 1,2,--- M) of
V with the Clifford product, denoted e, obeying :

e;ee; + e;ee;, = 2y,; .
The Z-grading of T(V) reduces to a Z;-grading of the Clifford algebra since the defining
relations above involve only even elements.
The decomposition of CI(V,n)!? into even and odd elements is :

C(V,n) =Co +C1 : A = Ay + Ay,
where Ag is a sum of products of an even number of generators, and A is a sum of products of
an odd number of generators.
Since the Clifford product respects the grading, (CI(V,7), +,e), becomes an associative
super-algebra. The super-commutator of two homogeneous clements A and B | respectively
of grade a and b (€ Z; ), is defined as :

[A,B] = AeB — (-1)**BeA .

10 The terminology "super” stems from the Physics litterature and means Zy-graded.
11 Vectors of V are denoted by lower case boldface characters a, b,...
12 Elements of the Clifford algebra are denoted by upper case boldface characters A\B, ...
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With this super-commutator, CI(V,n) adquires the structure of a Lie super-algebra.
The super-commutator is obviously bilinear and, for homogeneous elements, it satisfies :
a) [A,B] = —(-1)**[B, A], super-antisymmetry ,
b) [A,[B,C]] = [[A,B],C] + (-1)**[B, [A, C]], super-Jacobi identity .
A Zfiltering is introduced in both Cy and C, by :
c* = {Ao € Co| Aq is a sum of products of at most 2k vectors of V }
c+1 = {A. € C;| A, is a sum of products of at most 2k+1 vectors of V } .

Clearly :
ccctc---cC*c---,
Co = UrC2* | () = U C¥*+1,

The super-commutator [A,B] of elements A € C™ and B € C" belongs to C™*"~2 since

c'cCc---cC*t ... and

the terms of the highest possible grade ( m + n ) cancel.
Taking the quotient of C™ by C™~2 yields an equivalence class'? of elements of C™ which
is determined by a sum of completely antisymmetrized products of vectors, since replacing
any product aeb by — b e a in the terms of highest degree amounts to add a term where
a e b is replaced by the scalar 27(a,b) and this is absorbed by C™~%. It is thus possible
to identify the quotient C™ /C™~2 with A™(V) and this is in fact an algebra identification,
since the Clifford product induces naturally a product in @,, C™/C™~2 which coincide with
the exterior product in AV = @,, A™(V) . The exterior algebra AV is Z-graded (hence
also Z,-graded) and the wedge product is super-commutative.
Furthermore, if A and B are representatives of A,, € A™(V) and B, € A"(B), then
the quotient of the super-commutator [A, B] by C™*"~* does not depend on the choosen
representatives and determines an element of C™+"~2 /Cn—4 = A™¥P2 ()
This defines the bracket of two homogeneous elements of AV :
{Am, Bu}s = (A, B)/Cm4m—0 .

This bracket is bilinearly extended to A V and yields a map :

AV x AV = AV : (4, B)— {4,B}s,

obeying the axioms of a super-Poison algebra, given below.

13 Elements of this quotient C™ /C™ 2 are denoted by Ap, , Bm, - - .
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For homogencous clements A, € A™(V)and B, € A"(V), one has :
a) {:i,,,, B"}s = —(=1)™" {ﬁ,.,.-i,,,}s . the super-antisymmetry .
) {Au, By A Ciyg = (A Bug A Co 4 (1) B, A {4, i)y,
{Awm, } is a derivation of grade (m - 2) on the Z-graded algebra AV
) {Am (B Celg}s = ({An Buto Gl + 0™ (B {Ai i)
the super-Jacobi identity .
Some rather easy calculations yield the following results, to be used below :
{1,B.}, = 0.
(0. Buly = (@) B
where 1® : 17— 1" is defined by : (*(a),b) = y(a,b) .
{anb, (i}, = (—1)‘(:(;,"@))61) Ab + an (z(l;"(b))('k) )
{anbAc, D(}S =
(z(n”(a))D,) AbAc + (-1)tan (1(!/'([))[)1) Ac + aAbAa (t(:,“(c))b,) .

4.b) Let us now consider a Lic algebra A with an invariant , non-degenerate scalar

product 5 . In particular A is a vector space as above and the non-degeneracy means that
7* is an isomorphism with inverse (1°)~1 = 35
Its Lie algebra structure is determined in a basis (e,) by the brackets
ferves] = ex /%,
The invariance of the scalar product is with respeet to the adjoint action of A on itself
n(ad(a)b, ¢) + n(b, ad(a)c) = 0 .
In terms of the structure constants defined above,this reads :
f’.‘, Nek + 1je fta =0,
There is a distinguished 3-form on the vector space A |, detined by :
w(a,b,c) = — n(fa,b],c),
In terms of the basis (€') of A*, dual to (e,) , oue has :
w = —ﬁj"[”l“kt‘ Ael A€k
The isomorphism 3§ extends naturally to an isomorphism A A* — A A, so there is also a

distinguished element of A® A namely Qy = yt(w).



The reciprocal basis (u') to (e;) is defined by :

n(u',e;) = 8 ,oru' = (n") e; and e; = n,; u'.
Using the vectors of this reciprocal basis, y reads :

Q = —%f*iju‘AujAek.
The exterior algebra (AA, +,A) is a vector space with an invariant scalar product,
so it has a super-Poisson structure as defined in 4.a) .
The Poisson bracket of g with the basis vectors are obtained as :

{Q.ee}g = —F ffymen Aw = 5 ff 0l Aey

{,ut}g =4 i AW,
The dual A* of the Lie algebra A can be identified with the left-invariant one-forms on the
corresponding Lie group , on which the exterior differential induces a map!*:

d: A" o5 N\(A%) : é - de = —1/2f 5, € A ek .
The isomorphism 7! induces then the linear map :

d': A AHA) e, o dle; = —1/2f7,, nijut Aul.
Let d! also denote the derivation of grade + 1 on A A such that d'1 = 0 and dle; as
above , then it coincides with the Poisson bracket {Qo, } gonall A A, since both are graded
derivations :

d'A = {0, A}, VA€ A.

4.c) Choose now for A the semi-direct sum of G* and G, where G* is considered as a
trivial Lie algebra and where G acts on G* by the co-adjoint representation :

ki G End(G") : @ — k(@) ,with (K(@E|9) = — (€|ad@) = — (€[7, )
A pair of dual bases (€,,a = 1,2,---,N) of G and (¢, 8 = 1,2,---,N) of G* , yields a
basis : (e;, ¢ = 1,2,---,2N) = (€ e") , and the fundamental brackets of A are :

[e,¢f] =0, [2,6)] = —& 13, [Ene®] = + & f5,, [6ne] = + & f7, .
The invariant scalar product n : A® A — R is defined so as to vanish on the
diagonal terms, G* ® G* and G ® G, and as the evaluation map on the off-diagonal terms,
G*®GandG ®G":

n(e®,€¥) = 0, n(e®,&) = 87, (€, ") = 61, n(€u, &) = 0.

M In purely algebraic terms this map is minus the dual of the Lie bracket [ , | seen as a

map /\2(A) — A
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It is obviously invariant under the adjoint action of A on itself.
The super-Poisson structure on A A is defined by the fundamental brackets :

(o) =0 {ena)g - o,

{enefly =62 . {Eni), = 0.
The reciprocal basis of (e", é};) is (é',, , c") and the distinguished clement of A3 (G* & g) is
computed as :

VW =-1/2f%,, ¢ ANe"Né,
The Poisson brackets of the basis vectors with Qg , which are also given by the action of the
derivation d!, are :

die, = {Qo,é‘,,}s = —fo € NE

dbi e {Qo,e"}s —1/2 fo,, e Ae*
Since A(G* & G) = Dex A(G") A AY(G), the action of Qg is determined by its action on
elements of the form :

O AU € AG*)AN(S):

{Q2,(00 A Up)} g = dYOr A Uk) = (d'O¢) A Ux + (~1) O, A (dPUL) .

On O, d" operates as the derivation of grade + 1 on A G*, determined as above.

It coincides with the operator §, introduced in 3.b).
On Ui € AXG it acts as :
d'Us = " A ad(E,)Us .
Summarizing :
d'(O,AUL) = {Q,0cAUs}g = (8.0) AUk + (¢* AO) A ad(é,) Uy .
On this particular Lie algebra A = G* @ G*, there is another distinguished clement of A A,
independent of the choosen pair of dual bases {f“, €, }, namely :
P =€¢"NéE, € G AG,
whose action on ©, A U is calculated as :

{®6,0¢ A U}y = (€—k)O¢ A Uy
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4.d) The super-Poisson algebra (/\(Q‘ @ g),+,/\,{ , }5) is now tensored with the
(ordinary) Poisson algebra (f(M), +,49{, }) yielding a super-Poisson algebra :
P = (NG ®9)) ® F(M),
with associative multiplication, x, defined by :
(Ao f) x (Bog) =(AAB)®(f9),
and Poisson superbracket, given by :
{hen).(Beg)} ={4.Bls0(f-9)+ (4ArB)e{fi}.
The BRST charge in P is :

Q ()o ®1+ e ® Qa

—1/2f7 " AP ANE BT+ OY,.

Itactson T'= (0, AUi)® f as:

{Q, r}z =((6,00) A Us) ® f + ((¢* A ©0) A ad(E)Ux) ® f .
+ (1) (B A s(*)Ui) ® (L4 f) + ((¢* A Or) A Ui) ® {¥,,f}

Upon identification of the exterior algebra A(G* ®G) = @D, AYG*) A A(G)  with

NG ®AG = D A‘(g‘) ® /\‘(g) , through the correspondence Q, ® Uy & O, A Uy,

the complex L is identified with P.

Furthermore, the Poisson bracket in P with Q, corresponds to the action of A in L.
ABOU®Sf) & {Q, (00 A UL) ® f}E .

A generic element of P is a sum of terms of the form :

1 -~
r = e Gy V() VPN E, sy,

where

-

e = et A A e and €., =€, A-AE, .
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The Poisson bracket of  with such a I is given by :

(o1},

where
Aayoary,” PH(2) =
Bm malﬂl"'ﬂu-l(z)

S R ST O I R
1 ay e -
+ (k_ 1)' i B(.,mu,”' J..l(_r) €M A €3,

1
- 2(5—_1)1 fpmuz gﬂ;‘amm“pl d‘(f) bf:l'
1 14 av e
+ ak—1) I e u e T ()
1 L TREy: 4y
+ E {\I’llngl‘z“'l'ul'gl # }(J‘) O:'::i:::

(-1 Vo) Gayoa 2 P (1)

Since (A)2 = 0, it is also expected that {Q, {Q , ‘}x}x = 0.

This is equivalent to {Q, 1) = 0, which can be verified from the expression above.
v

The ghost number operator is defined by :

=P 0l=("ACG)D1,

sothat,on ' = ((0, A Ux) © f), it acts as :

{(I’,F}E = (- k).

' is then said to have ghost number (¢ — k).

In particular, the BRST charge has ghost number 1 :

{(I)’Q}z: =4,

and the ghost number operator itself has vanishing ghost number :

{@,cp}x:o.
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The super-Poisson algebra P is Z-graded in the ghost number :

P=( P,

hez

where P? is the eigenspace of the ghost number operator.
The associative multiplication x  and the superbracket {*, *}E are both additive in
the ghost number i.e. the images of P" x P*2 bothlyin Phitha,
The BRST charge  provides a coboundary operator :
{Q’ *}): . Ph o, Pt
giving P the structure of a complex, with h-cocycles :
ZhNP) = {reph | {n,r}z = 0},
and h-coboundayies :
B"P) = {BeP | B ={a,r} r'eph-’}.
The h-cohomology is the quotient :
HYP) = ZMP)/BMP).
Since {¥,} is a regular sequence, the cohomology with negative ghost number is trivial :
HYP) =0 for h<0O.
The 0-cocycles form a Poisson subalgebra of P? :
FandI" € Z° implies I'xI' and {f, FI}E € 2°.
In turn the 0-coboundaries form a Poisson ideal in Z°(P) :
B € BYP)ie B = {Q, r_.} ,withT_; € P71 and To € Z2° imply
BxTy= {00 xTe} and {B,r} ={ {r.n} }
so that both belong to B(P).
This guarantees that the quotient of the Poisson algebra Z%(P) by its ideal B°P), i.e. the
cohomology H®(P), has the structure of a Poisson algebra .
This Poisson algebra is isomorphic to the Poisson algebra of functions on the reduced sym-

plectic manifold R :
F(R) = H'(P).
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5. The extended supersymplectic phase space

The elements of the super-Poisson algebra P = A(G® t.bg) & F(M) are identified with
the sections of the exterior bundle A E — M associated to the (trivial) vector bundle

E=(G"®¢) x M- M.

A sheaf, denoted also by P, of graded commutative algebras is defined over M by the
association to each open set U in M of the exterior algebra of local sections :

P:U- PU) =@, TU,NE),
with the obvious restriction maps.

A surjective map of sheaves from P to the sheaf F of smooth functions on Af is given by the
projection of each P(U) onto its component in L(U, A\’ E} ~ F(U).
Furthermore, a pair of dual bases (€a , €8) in G* @ G provides a sheaf isomomorphism :

dw : Pu — (ARY @ -

The pair GM = (M, P) of the manifold M and the corresponding shcaf P as above, is
called a Berezin-Kostant graded manifold (see e.g. [Be-L 75],(K 77],[Le 80]).

Although the graded manifolds defined in this way, arise naturally from the cousider-
ations of the preceding paragraphs, the supermanifold approach '3 sketched below, is more
familiar to physicists’ methods.

The basic ingredient is a Z, graded, unital, commutative algebra over the reals R :

A = Ay ® A,, whose elements are called supernumbers.

A pure supernumber is either even (u,v,--- € Ag) or odd (8,7, -- € 4;). Furthermore there
is an algebra homomorphism g : A — R, whose image is called the "hody™ of the supernum-
ber. The "soul” of the supernumber is what is left over after subtracting the "body”.

Locally, the points of the supermanifold, SA!, are given by m even coordinates and by
2N odd coordinates : (p") = (ul, - u™, 0", 8N, 7y, JTN)-

The set (z* = p(u')) forms a usual coordinate system for the underlying "body” manifold

of SM which is an ordinary manifold M.

15 A comprehensive introduction is given in de. Witt’s book [dW 84]. The relation between
various axiomatisation schemes, up to 1984, is discussed by Batchelor [Bat 84]. Recent results

were obtained by Rothstein [R 86] and by the Genova group [BarBH 88] and [BarBHP 92].
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As for any real manifold M of dimension m, dcfined by patching together open sets of R™,
a supermanifold SM of dimension (m,n) is defined by doing patchwork with open sets of
(Ao)™ x (A;)". The various approaches refered to in footnote 14 correspond to the various
topological and differential possibilities for doing this patchwork.
In the case of a Poisson group action, considered here, the supermanifold of interest can
be written as :  SM ~ Meyen X (G* @ Q):dd , where M,,., is the Ay-extension of the
manifold Al and where (g ® g')o“ is the odd part of the supervector space (G 3] g‘) of
dimension (2N, 0) with pure even basis (e, , €g).
The elements of P are now identified with F(SAM ), the (smooth) A-valued functions on SM.
Let ' € P be given by its value at a point z € M :

N

I(r) = ’kz: ﬁ Gar ™ P (Z) A A€ Neg, A Aey, .
k=0

The corresponding element of F(SM), abusing notation, is given by :
N
P(07) = 3 g Govea™ P ()% oo 0% s
k=0

The function g(u) is the Ag-extension of g(z) defined on My, with values in Ag. It is given

by a Taylor expansion in powers of the "soul”of u i.e. (v — z)withz = B(u) :

oo

1 9My(x) "
g(“):(r)%%:uﬁm U—I) ,

where a muti-index notation has been used :

()= (r.,--- ,r,n) yodrl=rn 4ot rm () =t rn! and

(u — ) = (! — YY) (™ = ™)
In general, a superfunction f € F(SM) is called pure if for all p € SM |, f(p)isa

pure supernumber, in which case one denotes the grade of f by | f | € 2,.
Supervectorfields on a supermanifold SM are defined as linear operators on Fi tS;M) :
X(f +9) =X(f) + X(9) and X(f.a) = X(f).a,

for fandg € F(SM),a € A,

obeying Leibniz rule :
X(f.9) = X(f).g + (-1 X(g).

for pure functions f and g.
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A supervectorficld is pure of grade | X | when

I X(H1=1X1f1]-
For pure vector ficlds and pure functions, the Leibniz rule reads :
X(f.9) = X(f)-g + (-1 £.X(g),
In local coordinates :

X(f) = XA(p) a% f(p)

and
ad
E = —
A(p) 0})1“

acting on the left (to the right), are natural basis vectors of the tangent space at p € SM.
The supercommutator of two supervectorfields is defined by :

(X, Y](f) = X(Y(H)) - (-HF MY (X(f) .

A supervectorfield acts on the right on superfunctions as :

(HX = (-HIIXIX(f)

and in local coordinates :
)d

_ F(p)d 4 .. )
(HX = pr X(p),

A

with
AX(p) = (_1)IXII-4I x4,

The natural basis vectors acting on the right are :
AE(p) = 2—
op* |
they are related to the natural left acting basis by :
AE(@) = (-D)ME, .

Covariant supervectorfields or super one-forms are lincar maps :

O SVect(SM) - F(S.M).
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In local coordinates, they are given by : Let /\k(S/M) denote the set of k-forms.

(e, X)(p) = 0.4(p) AX(p) The exterior product of superforms gives
or k
(x.0)w) = x40 400 NSt =3 A sw
with the structure of a Z, x Z, bi-graded algebra.
O(p) = E4(p) 46(p) = ©4 “E(p), The bi-grade of T € A*(SM) is then ([T [, k).
where A (pure) (super)derivation D of bigrade (| D [, g) on A(SM) is a local linear map :

E4(p) = “E(p) = dp*
k ktg
are the diferentials of the coordinate functions. D: /\ (SM) — /\ (SM)
For pure super one-forms :
(6.x) = -t (x, 0)00).
Modulo appropnate signs, the supertensor algebra is constructed as usual and we refer

to de Witt’s book ([dW 87]) for details.

The exterior product of k (pure) one-forms is defined by :

such that
D(O, + 0,;) = D(0,) + D(O,),
D(0.a) = D(O).a,
and obeying a super Leibniz rule :
D(0©, A ©2) = (D(6))) A ©; + (—1)IPlI®il+kis g A D(O,).
O A~ AOs = Z (_1)a(l’) (_l)v(l”) Opa) ® - & Opy » The commutator of two derivations
PES, [DIVD2] = D, D; — (-1)/P1lID:zl+919: p, D,
is a derivation of bi-grade (| Dy | + | D, |, ¢; + ¢2), obeying :
[D1, Dy = —(~1)iP1IPal+ 5092 [D, D],
[D1, [D2, Dy]] = [[Di, D.], Dy] + (—1)iP11IP2l+ 0102 [, | (D, D] .
. » ' A derivation is defined by its action on A°SM = F(S.M) and on ASu.
[=gn"0T  "EA-A"E, The main derivations on  A(SM) are :
1) The Lie derivative Lx of bi-grade (| X {, 0) defined by :
Lx(f) = X()
(£(0),Y) = X((0,Y)) - (-)°I¥l(e, [X,Y]).
2)The exterior derivative of bi-grade (0, +1) defined by :
df(p) = f(n)0/op* dp*,
d(dpt)) = 0.
3)The interior product 1x of bi-grade (| X |, —1) defined by :
wx(f) =0
x(0) = (X, 0).

where the sum goes over Sg, the permutation group of k clements, and where the parity of
the permutation P is o(P) and o(P’) that of P’,the restriction of P to the odd one-forms.

A k-form is given locally by its components :

where
Al = Tre, lirllia ] -
A k-form is pure if its value F(X, -+, Xx) for pure supervectorfields X;,--- X isa
pure superfunction.
For pure k-forms :

IT(Xs, - X)) | = I X | = = [Xe|=]T] .
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Their commutators are easily calculated as :

[ix.1v] = oy + (-1)XHYhyax =0,

[x, £y] = ix Ly = (-1)XI¥ILyax = x.v]
[x,d] = 1xd +dix = Lx,
[cx,iv] = Lxty — (~)XI¥y Lx = [xx] *

[Ex, Ly] = Lx Ly — (-1)XI¥ILy Lx = ‘C[x,v] )
[€x,d] = Lxd —dLx =0,

[d, zy] =diy — (-1)¥iyd = Ly,

[d,Cy] =dLy — Lyd =0,

[4,d) =dd +dd = 0.

A supersymplectic structure on a supermanifold SM is defined by an even, nondegenerate

and closed 2-form wg, locally given by (using de Witt’s conventions) :
1
wp = o (“D)NPlwyp(p) dp* A dp®,

where | 4 | denotes the grade of the coordinate p* : | A |= 0, 1 for even, odd pA.
The Hamiltonian supervector field corresponding to a function F € F(SM) is defined by :

Fo
{SH(F)wg = dF or, locally, by (SH(F))*(p) sws = 355"

where :—P‘;— is the left partial derivative of F' with respect to the coordinate p? and where

awp = (=) wap. ,
Since wy; is nondegenerate, the inverse B(w=!)C exists such that
awp Bw )€ = ,6€.

This yields the local coordinate expression :

(SHEY'(5) = 305 "™
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The Poisson superbracket of two functions is defined by :
{FL R} = —i(SHE) (SHR)) v

or, locally, by
o , _ I F
{Fn ) Fz}x(l’) == 3—;;" Mo 5‘)—; .

One obtains now an exact sequence of super Lie algebra homomorphisms
0 = AFSM) — SHan(SM) -+ 0

and

SH(({F.,F«I}L,) = ~ [SH(E), SH(F)] .
In the case of interest, the supersymplectic 2-form is given by :
1 .
wy(u,0,7) = au,,(u)du' Add — d6* Adr,,

where w;j(u) is the Ag-extension of the symplectic 2-form wy(4) on the body manifold Af.

The components of the Hamiltonian supervector fields are :

Fo Fo
"o, SHE)L =~

1 0
(SHF)' = 5=

) (SHE)” =

and the Poisson superbracket reads :

i RO, _,.,0F  F0OF F0oF
{Fl,fg}x(u,b',r) T 9l ) ow T Or, 06° t 26 dr,

The ghost number and the BRST charge are now functions on S :
¢(u,0,7) =01,

1
Qu,8,7) = — o[ w0189 e + 8" W (u).



Their corresponding Hamiltonian supervector fields are :

o 9 « 9
SH(®) = -4 0% + 7 7o
1 a 1 a v 6 3 v 5]
SH(N) = 6* X, (u) P + 5f w640 30% + (e 8 7x — Pa(u)) or.

where X, (1) and ¥ ,(u) are again the Ag-extensions of the corresponding functions on the
body manifold M. These functions (and their corresponding Hamiltonian supervector fields)
form a subalgebra with Poisson (Lie) superbrackets :

(0.9), =0,

(¢.9), =2,

{Q ’ q’}z =-Q,

{9, 2}, =0;
and

[sH(®), sH()]

[SH(®), SH()]

[sH(Q), SH(®)]

[sH(), SH(Q)]

0,
-SH(Q),
SH(Q) ,
0.

Let Ey (E)) denote the abstract even (odd) generator of the corresponding Lie superal-

gebra SL '® then the supercommutation relations are :

[Eo, Eo] =0,
[E(JaEl] =+E,
|E1, Eo] = -E1,
[E\,E] =0.

16 In general a Lie superalgebra has even and odd generators with superbrackets :
[E,, E"] = E. °Fg,, where the structure constants obey :
Fap = — (=11 ¢Fy, and
tFg Fy 4 (<D)letBI+Ied ep dp 4 (—1)lelUal+BD ep  dp
The (left) adjoint representation of the Lie superalgebra is given by : °(A,), = “Fus,
acting from the left on E} as : A,(Eb) =E, ‘Fa.
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The adjoint representation of SL is given by :

0 0 0 0
v-(@1) o om-(G)

These matrices obey the above supercommutation relations with the supercommmtator de-
fined by :

[Aa,As] = ALA, — (-D)IIBT AL A, .
This Lie superalgebra SL can be integrated to a Lie supergroup SL with elements a(s,a)

depending on one even (s) and one odd parameter (o) :

a(s,0) = exP((_Oa ‘j)) = (—alf(s) ex;())(s)) '

sinh(s/2)
s/2

where

fs) =

exp(s) -1 o
— = exp(s/2)

is a familiar function in Lie group theory.

The composition law in SL is obtained as : a(s',0')a(s,0) = a(s",0"), with

and
n _ 0 f(s') + exp(s')o f(s)
f(s' + )

It follows that :
a(s,9) = a(s,0)a(0, f(~s) ) = a(0, f(s)a) a(s,0).
The group action of SL on SM, denoted by : p — p(s,0) = a(s,0)p, is obtained from
the integral supercurves of the supervector ficlds SH(®) and SH(R?), which respectively are

the solutions of :
du'

a0
de°

—
ds
dr, +

= 47T,
ds “

and of :
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_ The h-cocyeles are now identified with the functions T' € F(S.M) such that :
du'
do
de-
do
dt,
do

The equations defining the integral supercurve of SH(®), of even type, read :

=6 xui(")
{Q, 1‘}E = - Ly (D) = 0,

% fo;w 9" 9

= 50,08 T — Wa(u). {‘I”r}g = ~Lsnw(l) = kT

This can be integrated to :

u'(s,0) = u' {a(5,0))"T = (Ber a(.s,a))—’I ' =exp(—-hs)T,
8(s,0) = exp(—s)6~
where Ber is the Berezinian or superdeterminant (see [dW 7] [Le 80]).
Ta(8,0) = exp(+5)7a

The h-coboundaries are of the form :

and those defining the odd type integral supercurve of SH(2) are :
Lsnem B,

u'(0,0) = u* + g @* X,,‘(u)
0°(0,0) = 6% + % o f*,, 0"6" where B can be choosen §11ch that Loy B = —(h - 1)D.

Ta(0,0) = Ta + 0 (f*0, 8" 7 — Walu)) In particular, the physical observables on the reduced phase space are given by the
SL-invariant functions of F(SM) modulo the 0-boundaries.

The SL-orbit of a point (u,8,7) is the (1,1)-dimensional supersubmanifold given by the
equations :
u'(s,0) = u' + o f(—3)6" X, (u)
1
#°(5,0) = exp(=9) (6% + 3 o f(=9) 1°,,6°¢")

rals,0) =exp(+s)(r.. o f(=s) (fFup 0" 7 — wa(u)))

As expected, the action of SL is trivial when projected on the body manifold.

By construction, it is a Poisson action with a super-momentum mapping given by :
ST :8M - SL* :p - SJ(p) = ST. °F,

where (“E) is the dual basis in SC* of (E,) and where
STo(p) = &(p) , ST1 = Ap).

It is equivariant : ST a(p(s,0)) = STs(p) *(A7'(s,0)), ,or:
®(p(s,0)) = ®(p) - Up)o f(s) and §p(s,a)) = exp(s)§Xp) .
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6. The cohomology description of the functions on the reduced phase space for

systems with symmetry

In section 2., it was shown how a hamiltonian system with symmetry can be reduced to
a lower dimensional problem due to the existence of constants of motion J(z) = £ .
The dynamical flow of the G-invariant hamiltonian h is confined to 7 ~!(¢) and the dynamics
is determined by the reduced hamiltonian h¢ on the Marsden-Weinstein reduced symplectic
manifold MW, = J'(€)/G¢ , where G is the little group of £.

The reduced hamiltonian h; and the reduced symplectic twoform w are defined by
mghe = g h and mfwe = w

where

me o JT1(€) » MWg is the canonical projection and

1 : J"({) — M is the canonical inclusion.
This reduced dynamical problem actually depends only on the coadjoint orbit O generated
by ¢ and not on the particular £ choosen on this orbit.
This follows from the KKS version of the Marsden-Weinstein construction, where the sym-
plectic manifold M is extended to M = M x O with symplectic two-form & = wy & wo ,
extended hamiltonian k given by projy h = h and momentum mapping J = Ju & Jo .

The reduced symplectic manifold is then
R = J710)/G
with symplectic two-form &5 and reduced hamiltonian iz,-z defined by

7oz =i'® and 7 hg = i'h,

where # and i are respectively the canonical projection and the inclusion.

The construction is shown in fig.3 below .
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J-Yo)y=J""(0) c*

=

\
/
/\M” = #(1.6) = #('.€)
,o
R \lu]” = #(y.€) = #(y',€)

fig.3 The KKS version of the Marsden-Weinstein construction.

The above picture should be compared with fig.1, which it is an extension of.

Typical points of 7 ~1(0) are (,€),(y,€), -+ wherez,y,--- € T~ €); £ € O.

The points z,y,--- € J ~Y(€) are projected on [r],[y],- - € MIW¢ by the projection mg.
These projections [z], [y], - - - are identified with the projections of z,y,--- € J~'(O) through
the projection = : J~1(0) —» R.

Now R is diffcomorphic to MW, x O and its points are projected on the gquotient of the
residual group action, projg : R — R/G :[z] — [z]? = proj;([z]) , such that

[z]? = [¢'], if ¢ and z' belong to the sume G-orbit in J~(Q). This quotient R/G is

identified with the reduced manifold R = J~Y0)/G and [7]* = 7(s,€).
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To solve for the hamiltonian flow of l.z.k on R, it might be useful to describe the functions

on R as cohomology classes in the same way that was done for the physical observables in

gauge theories.

This leads to introduce a super Poisson algebra structure on
P =\ ®6) ® F(M)
with Poisson superbracket given by :

{.&@f,i?@é} ={A,B};0f 3§+ ArBa{f g}y,
b

where the Poisson bracket on M is given locally by :

af(l',f) ij aﬁ(I,f) a 0;(1:,6) 3_71(2‘,6)
__'az'. w ](1,5) o) - iaf By aﬁﬂ 657

{ ') g}l“’(‘taf) = -
The BRST charge reads :
1 »
0= —if"ﬂ.’eﬂ AEVAE, + e (Pu(z) — &) -
The ghost number remains unchanged :

®=¢"ANE,.

The Poisson superbrackets with the basic elements of P are :

{Q' 1."} — Mw"(.c)
b3

9z’

{n$60 = d‘gl‘fv;‘o

)

1

Q,f"} = —=fF s AP
(e}, = =20
{Q,é’a} = —ft € ANE + Vo(z) — £a

L
{rb,z" = {@,5,,} =0

) })

o
9]

}
(o).
e}

z
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This super Poisson algebra is identified with the algebra of functions of the extended super-
symplectic supermanifold :

SM = Meew x (60 6°),,,
(A[gvcn x Otvcrl) X (g tb g.)mld .

with points given by
(m + (N - f)) even coordinates (u', vy (€ Ocpen)) and
2N odd coordinates (8%, 73)

The superbracket on F(SAL results from the supersymplectic twoform :
wy(u,v,0,7) = wp(u) + wolv) — d8* A dr, .

The BRST charge and the ghost number are :

Q

I

- %foﬂWOﬂg.l Ta t 6"(()”(1() - z’p)
V=647,

They obey the same relations as before :

o], e fo)
fraf, - for].

so that there is still a Q-cohomology on the Poisson algebra P, which is Z-graded Ly the

ghost number.
The set of h-cochuins is

Ph = {C € F(SM) | {wc} =hC}.
The h-cocycles are .
Z":{Zeﬁw{sz,z} = 0}
and the h-coboundaries are .

Bh={B€ﬁ"|B={Q,Cﬂ} ,C'Eﬁh}-
- ~ ): N
The h-comology is then H*(P) = Z* / B* and the functions on the reduced manifold R can

be identified with the zero cohomology :

F(R) = HY(P).
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This description is still far from satisfactory since the supersymplectic manifold
SM = Meyen X Oruen x (G & G°)

is not easy to deal with. It can however be considered as a subsupermanifold of the following

extended (m + 2N,2N)-dimensional supermanifold :
Me:l = Mcvcn X (g (&3] g.)evcn-f-odd .

The group G with its Poisson action on M can then also be extended to a supergroup G.,,;
acting on M,,q.

This kind of program was (partially) realized in the so-called bosonic version of the BRST

formalism ([DEGST 91]).

A more detailed examination of this extension is postponed to later work.
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