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Abstract 

We obtain the exact result for the vacuum polarization 

In scalar electrodynamics. to the first order «. In the presence 

of an external homogeneous electromagnetic field using a new 

method. We reduce a problem of QED to one of quantum mechanics 

which is treated by using the path integral approach, 

In Quantum Electrodynamics (QED) the _trlx elelllents for 

physical processes are calculated pertubatively In teI'llS of the 

electron and photon propagators, When we are Interested In QED 

with external electromagnetic fields It is possible to calculate 

the modified propagators exactly for certain configurations of 

these fields. 

For the cases of homogeneous and plane wave fields the 

electron propagator was calculated by SChWinger [IJ and a slight 

modification of his results gives the spin zero propagator as 

well. If the exter-nal field Is a hOllogeneous magnetic field these 

propagators have a momentum representation. which was used by Tsal 

and Erber- [2J to calculate the lowest order vacuum polarization 

exactly. A similar procedure for the spin zero contribution Is 

possible, For the case of homogeneous electr-omagnetlc field Baler 

et al [3] used an operator technique to calculate the vacuum 

polarization tensor In scalar and splnor- QED. All of the 

calculations cited are based on the use of the pr-oper time method 

for the solution of the differential equation for charged particle 

propagator, 

A different approach to scalar QED was given by Feynman [4J 

who wrote the Klein-Gordon equation with external electromagnetic 

field as a Schrodinger equation in a "five dimensional space of 

space-time coordinates and a "time" paraJlleter which can be related 

to the proper time In Schwinger formulation, The physical states 

are a definite mass projection of the five dimensional states. 



Then, one can introduce the charged particle propagator which may 

be given as a proper time path integral representation. For 

external homogeneous field one can calculate the propagator very 

simply (5). 

Although not relevant for the calculations described above 

but relevant for this paper we mention the technique introduced by 

Schwinger (6) for the calculation of the mass operator of a 

spinless charged particle in an external homogeneous 

electromagnetic field. Replacing the integration of the photon 

momentum by an expectation val ue in "photon coordinate" states he 

related the mass operator to the matrix elements of proper time 

evolution operator. This led to an elegant calculation of the mass 

operator. On the other hand if the coordinate space matrix 

elements of the mass operator are considered we need the 

calculation of a propagator which may be given by a proper time 

path integral representation using the idea proposed by Feynman 

(4). Such a calculation is possible (7). 

In the present paper we consider the calculation. in order a, , 
of the vacuum polarization tensor in external homogeneous field 

for the scalar QED. Using the technique of SchWinger (6), 

mentioned above, we replace the electron loop momentum integration 

by an expectation value which allows us to relate the vacuum 

polarization operator to an amplitude which obeys the differential 

equation for a "nonre lati vistic propagator in a fi ve dimensional 

space". Usinr. a proper time path integral representation the 

amplitude can be calculated reducing the calculation of the vacuum 

polarization reduces to the evaluation of certain functional 

derivatives. The final result coincides with that of Baier et al 

[3]. 

This paper is organized as follows: In section II we 

formulate the problem and rewrite the vacuum polarization In the 

form of an expectation value. In section III we evaluate a related 

transformation function by the path integral technique. In section 

IV we calculate the vacuum polarization by making the functional 

derivatives of the amplitude evaluated in section III. Section V 

contains conclusions. 

II - Formulation of the problem 

When one is analyzing higher-order process in QED, one of the 

most important objects is the modification, to order a, of the 

photon propagator. In the scalar case this contribution. when the 

particle is interacting with an external electromagnetic field, is 

given by the vacuum polarization operator 

4 
nlll)(k) -ie2 Jd p (2n-k) 1 (2n-k), (1)
Ilv 2 2(271)4 7l -m 11 (n-k)2_m2 v 

where 

n = p - e,t(x). (2)
11 11 11 
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II 
,t (x) is the external vector potential which for a homogeneous 

electromagnetic field can be written in the form 

,«e lx ) 1/2 F (x-x")v, (3)
II IlV 

where I'llI' I:. the f1eld-str'ength tensor' and x" is a point of 

reference. 

\.Ihen a particle is interacting with an external 

electromagnetic field it is possible to demonstrate that the 

bubble graphs as that of the figure 1 will contribute to guarantee 

the gaug~  invariance condition 

kll n (k) o. (4)
Ilv 

This contribution is 

2 d4pnIb) (5)2ie gllV IIl V 2 212n)4 n -m 

So, the photon propagator is modified by 

rIO) D( 
1) VIO)lk) nllvlk) VIO)lk)

pT pT PIl VT' 

where VIOJ(k) is the photon propagator in the free-field case and
pT 

ITIlV(k) is the sum of equations (1) and (5)0 

In equation (1) the integral over the momenta can be 

substl tuted by the expectation value of the integrand between 

position eiEenstates 

Id4P4 flp) <x'=Olflp)lx"=O>, (6) 
(2n) 

since 

(2n)-4 e -Ipox<xIP> (7) 

..~...  ...r•••.,.......2-.""� 
fiO.\ 

Besides, we can express the propagators of the particle in a 

formal integral representations 

-i rds, exp [is, (.2_m2)] lBoa)2 2 n -m 
o 

-m (Bob)-) rdS2 eXP[)S2«·-kJ2 2J].
(n_k)2_m2 

o 

Moreover, using the commutation relation 

i e F (9)[nll,nV ] Ilv 

and the fact that F is constant, we can prove that
IlV 

exp(in2s ) n exp(-in2s) (eXP(2eFS1) n)ll ( 10)
1 11 1 

o 
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CXl 

Theil, substituting equations (10). (8) and (6) in equation (1) we 

get, 

JJ! a) (k ) ie 2 
JCXldS JCXldS exp[-im2 (s +5 »)<x'=01(2 exp(2eFs )n-k)

J.lV o 1 0 2 1 2 1 J.I 

.exp[ir?s )exp[Un-k)2s ) (2n-k) Ix"=O>. ( 11)
1 2 V 

S I nee n
2 does not commute with (rr-k) 2 we attempt to put the 

expression of the vacuum polarization in a convenient form. First 

we define the quantity 

H(a) exp[-i a HI 51) exp[-i a H s2) (12)
2 

where 

II - n 
2 (13.a)

1 

II - (n-k)2. (13. b)
2 

Thus we have 

8M 
lSI "I + 52 exp(-i a " 1 5 1) "2 exp(i a " 1 51») M(a). (14)8a 

On the at her' hand it can be shown that 

expl-I a "151) 112 exp[i alii 51) 

H +\(-ias)"C /n!, (15)
2 L 1" 

"=1 

where f 

C [H1'"2] = - [n2,2n.k] -2 k (-2 i e F) n 
1 

2 k (2 i e F) n; (16) 

C = 2 k (2i e F)" n. (t7) 

" 

Substituting equation (17) in (15) we get 

exp[-i a "1 51) H exp[i a "1 51)
2 

CXl " "" + 2 [ (-i a 5) k (2i e F) n /n!. (tB)
2 1� 

"=1� 

Going back to equation (14) we obtain 

aM = {s " + 5 H + 2 5 k [eXP(2 e a F s ) - 1] n} M(a) (19)aa 1.1 2 2 2 1 

which after integrating gives 

i In M(a) = (5 " + 5 ")a +
1 1 2 2 

exP( 2 e a F s 1) - 1 ] 
+ 2 52 k 2 e a F s - a n. (20)

[ 
1 

. l . . r. 



.<x'=OI [2 eXPI(I-V)eFsltr-k]~  eXP[-II H(s' )dS'] (2n:-k)11Ix"=0> (26) 
ruttIng n=1 and substItuting equatIons (13) in (20) we get 

where we used the commutation relationseXP(2 e F s ) -1]� 
-(s +s )n2 - S k2

+ 2 k s 2 F I 1[ (2l)�i [1n H(l) 1 2 2 2 e 9 1 

O.[k~, n ] [kfl'k (27) 
l1 v] 

Thus 

M(l) = exp( I 5 n 
2 

) expli 5 (n_k)2)
1 2 

III - A proper time path integral approach 

S " ] (l+v) 2 (22)exp - I ladS H(s) eXP[1 -2- k s]. 
[ 

In this section we calculate the matrix element 

\Jh"l"(' 

<x· ;slx";O>. (28)K(x' ,x") <x' I eXP[-1 rH{s') ds' ] I ~"'  

o 
H(s' ) - n - 2n.J(s').2 (23) 

which will be used later to calculate the vacuum polarization 

\Jlth 
tensor. 

It can be seen that the transformation function K(x', x") 
( l+vl (24)J(s' ) -Z-expl-(I-v) e r s') k. 

satisfies 

Ne;d u:; I t1r t 11" transformat ion of varIables 
(l a - H)K(x', x") i 5(s) 5(x'-x") for s~O,  (29) 

s 

( I-v) (l+v) (25)= 5 'J 
5 2 = s --2

( where 

equation (Ill can be rewritten as 
lim K(x' ,x") 5(x'-x") . (30) 
s O·

"rs r -.;;.. [()+v ) 2]Ill.)i ( k1 = I (' (\? do, -1 dv e exp I --2- k . 
I" Equation (29) is an inhomogeneous Schr5dInger eqution in "fIve 

"I. 



dimensions" wi th S playing the role of "time". In this form the Here we are using the matrix notation 

transformation function can be expressed in the path integral 

representation x 
fJ 

• (X)fJ rfJ., • (F),w 

(36) 

glllJ -1 )
glllJ (g)1l1J (g IlK(x·. x") (31) IJfD'X eXP[-{dS' US'I). 

which will also be used later on if convenient. 
where 

Integrating equation (34) we get 

Us' ) e ,(. ~  (32)[~  ; 2Jr + 
~(s')  + ? e r (x(s') - x') 2 J(s') + (x(s) - 2 J(s». (37) 

is the Lagrangian with the classical sources J(s') given by (24) 
Integrating once more we have 

wher"e k is a c-number now. 

Looking at the Lagrangian we can see that it Is a quadratic 

f
S' 2eF."2eFS e ' (x(s') - x') + dx 2 ds" e J(s") + one. So, the path Integral in (31) can be written as 
o 

K(x' ,x") N e xp [- I \oJcI ) • (33) 2eFs' e - 1 . 
+ 2 e r (x(s) - 2 J(s». (38) 

wher"e tJ I s a convenient normalizat Ion constant and \oJ is the 
cl Making s'=s in the above equation we have 

classical action which is found through the solution of the 

Euler"-I.~lfTal1r,e  equation of motion 

~(S)  - 2 J(s) SdS 2eFs 
e r [dX - 2 f " e " J(s" »). (39)2 2erse _ 1 

o 
x - 2 e r x 2 j, (34) 

Substitution of (38) and (39) in (37) leads us to 
subject to the boundary conditions 

e2eFs' [ x(s') ; 2 J(s') ] xes) - 2 J(s) +:ds) = x X(O) x" . (35) 
2 



'. 
• e r [.x - 2 J:~S" e,"",' J (s" 11 (40) - U:dS' e'·F., J(S'lf • (e,,··,·F. -11 k -

Thus, using the equation of motion (34) and the first - [(ds ' (e2oF.' J(s' )r [e""" '" '-I] kg� 
integrals in equations (39) and (40) the classical action is� 

given hy 
s 

t [e -(l+vlefs - 1] (l+v) I ds e 11+vlefs' k +' 
k g 2A 

o 
t eF t eF 2efs'

\.J 1/2 tJ.x A tJ.x - g J
s

ds' JIS')}g 2 l!x A e 
c 1 { 

a 
• (I ;V) k' • rds' eII••,.F.'(e-II','.F.' - 11 k 

}t o 
5 2eFs' 

- 2 
{
I"dS' e J (S' ) g F .X .e 

(l+v)s kt k + kt [cosh(ve F S) - cosh(e F S)] k (42)2 g g 2 e F sinh(e F 5) . 

2 F{fd-' '.F,· J( ')f ~ U:ds' JI s' )} · c: ., e s g A e • ., Now, we must determine the normalization constant N. For this 
0 

we can take the Lagrangian (32) without the source term J(s') 

since it does not contribute to N. 
2oFs 

(41)G {["dS' e"'" J(s' If. e F {I:~s" e " JIS")}. 
" 2 

La x + (x(s') - x") e F x. (43) 

where A= 1- e -2efs and the symbol t designates the transpose. 

It is easy to see that Making the transformation of variables 

-4

x(s') - x" Ms') y(s'), (44)
2• F ., J{S')} •"0' I.... " . z{fds' e'·F., J(s' Irg e.' {fdS ' e

a 0 

and imposing that the kinetic energy term stays invariant 

+,'. cs e s ge 5 e s, {f I' 'd,' J( 'If F {f~' ,.F.· J( "I} '2 "2 
X Y 

(l 0 



and that there are no crossed terms, we obtain 

At g A = g (45.a) 

til s' ) e -eFsACO). (45.b) 

So. we 0t,t ai rl the following transformed Lagrangian 

1 . t . 1 t 2LO 
~ Y g Y - ~ Y g Q y, (46) 

where the matrix 

n2 (ACO»-t (e f)2 ACO) (47) 

is diagonal. 

Thus we are left wi th a harmonic oscillator Lagrangian wi th 

mass 1/2 and frequency matrix n. In this form the normalization 

constant is Riven by 

e F 5 ] 1/2
N ---- det (48)sinh(e F s) •(4rr)4 s2 

where \.JC' have taken into account the four-dimensional nature of 

the oscillatur and the metric. 

IV - Calculation of the Vacuum Polarization 

The expectation value which appears in equation (26) 

<x' =0 I [2 expl (J-v )efs] • -k]" exp [-IrH dS'] (2.-k)" Ix"'O>, l46J 

o 

can be decomposed in the form 

-1 H s 
< 2 exp[(l-v) e F sln ~  e 2n >

[ ] v 

-IHs 
=[exp[(l-v) e f S]/1. 

~ 

<e 2n 
~ 

(s) 2rr 
v 

(0» [eXP[(1-V)eFS1]~~ 

52 
<x' IT eXP[-iJsdS' H(S')] IX">} ; (50.a){- aJ~(s)  afro) o x' =x"=o 

-I H s 
- < [ 2 exp[(l-v) e F sl n] /1. e k > [exP( (I-v) e F 51 ]/1.~ 

v 

k .{; /5 
<x· IT exp[-iJlXldS ' H(S')] IX">} (50.b) 

oJ~(s) ° x'=x"=o 
v' 

<k e -I H s 2n > k {i 0__ K(x' .X")} (50.c)
/1. v v 

~ 5J (O) x'=x"=O 

and 



01.' }<k e -I H S k > k c_l_ N exp -1 I.' (51.c)k k KlX',Xn)1 . (50.d) {Il I' ~  V x'=x"=O /l of (0 ) [cI) x' =)( "=0 

andwhere we have used a compact notation for the evolution operator 

and the eigenstates. 

<k e -I H S k > (51.d)SUbstituting equation (33) in equations (50) we have {N eXP[-i wcI)t,=X"=o'~ lJ k ll klJ 

< 2 exp(I-v) e F sl n ~  e
-IHs 

2 n >
[ ] v The functional derivatives can be evaluated as follows: 

2
0 oWc I e F=[exp [ (I-v) e F 5]"~ {- N exp[- i "01] },.~,"~o' I 0_ {2 [JSds' e2eFs' J(s' )] t g 

oJ(J(s) oJV(O) T
oJ(J(s) x'=x"=o <SJ(J(s) 

o 

02w oW OW]c I c I c I 

+ <SJ(J ( 5) <sf (0 ) .+,1 (I-v) , F 5 V H' 
J(J ( 5) oJ v 

(0) [(d5' e2.F~·JI5· J] • 2 [(d5' e2.F··J(s· { g eF. 

(51. a).N'XP[-I "" J},..,".o' 2F 2F F.u>s" e. ·"JIS")]} · m:d5' e ··JIs· >j'g e 
A2 . 

2eFs' F2F
c-< 2 cl:p[(I-v) e F sl nile

-IHs 
k > .[(dS aIS'-S)]}. - 2 {[(dS' e. ··JIs· >]'g e 

[ ] v T 

2efs'[el:p [ (I-v) e eF SIV{i o
N eXP[-i "dJ},..,,,.o k. [(d5' Ols' -s)]L - 2 [{ds' rds" [e>eF'''Jls')rg eF.oJ(J(s) 

(J { 01.' 
k ; (51. b)=[ex p[ (1-v) e F SJ]J1 OJ(J;:) N eXP[-i ",.J},..,".o 2ef'",' 2F F 2eFsv .e a(S' -s)]L · 2 {[(dS' e. .·J(s' >]'ge 

T e 

_ <10: ,.-1 II s 2 IT > k N eXP(-1 1,.1 ]}{i 0_
II l' J1 oJI'(O) cl x'=x"=o 

.Je. 



-<[2 [ell-vIers] n:] -I H s k >
e J)

p.
e F 2crs

- 2 [{dS' e""'Jls' If. e 2 [J:ds" [.>oF."J (s" IrT -

p
[J't -11-vlefs[1-e-11+Vler8 1] k Nex -IW 

[ A v c 1 x'::x"=O
- 2 k g e

kt g [1 - e-ll+VlerSJ} J.I.g e F.e2e ~ = 2 (52)
rs'J] { 

A ' 
~ 

(55.b) 

where we used equation (24) for J(5') and A=1_e2efs . 
- <k e -I H s 2 n > - 2k [kt [1 - e-(l+VlefS]

p. g A ] ./l v 
\,Ie C:ln. in a straightforward way, obtain 

(55.c)o\.lc I I - {2 k' • [1 - e"':'.,... ,} (53) . N exp [-i "01 J/.'='''=0 
oJI'(O) x'=x"=o 

I) 

lak:r.r. the functional derivative relative to JI)(O) of the� 
e -1 H S�<k k > N exp [- i \l ] I (55.d)11 v kp. kV cl

thir'd ('q'.I·,lily of equ;J.tion (52), we have 
x'=xll:o 

0 2 
\.1 (42) and (48) in equations (55) and

c I SUbstituting equations
(54)

oJ~(s)oJv(O) 

x'=x"=o 
-[~L 

these'in (26) we obtain finally 

SUbstituting equations (52-54) in (51) we get 
n1al - e 2 JS ds d t [ e F s J1/2 -I m2s J+l dv 

IlV (4rr)2 5 e sinh(eFs) e 2" 
o -1 

g e F ell-vleFs<[2 [cl}-v)eFs] TIL e -I H s 2 ltv> = {-I [4 A� ]J.lIJ+� 
(1 -[l+VICfS)]2i e F e (l-VICrs] [ t -(t-vlcFs -e 

A'-5 [2 A +4kge{ 
IlJ.lv

-(}-v)crs [1 - e-ll+Vlcrsl] (1 - e-ll+VICf&l] ]
e· 4[k' • [l

A k g A . 

/l v 
k l (1 -e -ll+Vlcrsl] _ 2 [k t -(I-v)d's (1 -e-ll+Vlcrs , ] k

A v
[ gAge 

J.Iv 

(55.a)
. N eXP[-i "oIJ 1"='''=0 

.10,
. .1"1. 



-<I+VleFS>] }t (l-e + k k .- 2 k kg A Il VJ.1 [ 
v .t~ ",W exp [-I k"kJI~., + 2~  ·.v exp[-I k"kJr·'+ 

v=-1 v=-1 

kt [coSh(VeFS) - COSh(eFS)] k}
C>T {- (56)g 2 e F sinh(eFs) . 

+ 1 

+ J dy [(IRk) (IRk) - (D..k) (D..k) - IR (kIRk)] eXP[-i k 1M k] + 
~ v Il v j.1v 

\.Jhich. after' some simple algebraic manipulations, can be r-ewrtlten -1 

in a more compact form 

+ Jdv [(!!..k) (IRk) - (IRk) (Lk) - L (kIRk>] eXP[-i k Mk]. (59) 
~  v j.1 v j.1V 

nl a I - e ds d t e F S -1 m s dy -1r r 
+1 

/II' (-111)2 s e [Sinh(eFS)]
In 

e 
2

2� 
o -1� 

where we ar-e using the equalityri;-:c Fs + 2i a:. las + (IRk) (IRk) - (ILk) (ILk) + 
/II' 5 ~w  Il v Il v 

aIM/By s/2 IR. 

+ (':..k) (8k) - (IRk) (ILk) } exp (57)[-i kIM k)'
II l' 11 v 

Looking at expressions (58) we can see that 

whcr'C 

.pv eXP[-1 kIMkJI"··' 2 gj.1v' 

v=-1 
sinh{veFs) cosh{eFs) - cosh(veFs)�
;;r;1I)( eFs) I!.. sinh(eFs)� (60) 

(58) 

cosh(veFs) - cosh(eFs) c eXP[-i kIMkJI"··' o. 
pvl'1 

2 e F sinh(eFs) v=-1 

lntc,!,~·,t  ing by parts, in variable Y, the fir-st two ter-ms of 
Fur-ther- the last ter-m of equation (59) is zer-o since the integrand 

the expr'e~sion  (57) \.Je obtain 
is an odd function of v. So, 

2 2 
5 [ ] 1/2n(a) - e ds d t e F s -1m s 

e 2 s ] 1/2 2 
[ s e sinh{eFsl TT( a) ds det [ . e F s e -1m sI"' 2 (4n) 2 

- e {.~ 8j.1V + o Illl S slnh(eFs)2 (4rr)2 J o 



.. . 
+1 of an external homogeneous electromagnetic field using proper time 

+ f dv [(Rk) (IRk) - (ILk) (ILk) - IR (kIRk)] eXP[-i k 1M k]} (61) 
~  v ~ v ~v path integration and functional differentiation. The final results 

-1 

agree with previous calculation as they should. 

The contribution of equation (5) for the polarization For spinor electrodynamics the method cannot be used since we 

operator is obtained by making v = -1 (or k 0) in expression (34). do not have a natural definition of path integral in the sense 

So. used here. Perhaps the formulation given by Barut and Duru [8) can 

be used to obtain analogous results in the spin 1/2 case. 

2 1/2 2·' [ 
F s]nib) 2i e ds det .e e-IDI S- g (62)

Ill' 2 slnh(eFs)('1rr)2 /11' sIo 

which cancels out the first term of equation (61). In this form we References 
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