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Abstract
We obtain the exact result for the vacuum polarization
in scalar electrodynamics, to the first order «, in the presence
of an external homogeneous electromagnetic field using a new
method. We reduce a problem of QED to one of quantum mechanics

which is treated by using the path integral approach.

I - Introdu

In Quantum Electrod&namics (QED) the matrix elements for
physical processes are calculated pertubatively in terms of the
electron and photon propagators. When we are interested in QED
with external electromagnetic fields it is possible to calculate
the modified propagators exactly for certain configurations of
these flelds.

For the cases of homogeneous and plane wave fields the
electron propagator was calculated by Schwinger [1] and a slight
modification of his results gives the spin zero propagator as
well. If the external field is a homogeneous magnetic field these
propagators have a momentum representation, which was used by Tsai
and Erber [2] to calculate the lowest order vacuum polarization
exactly. A similar procedure for the spin zero contribution is
possible. For the case of homogeneous electromagnetic field Baler
et al [3] used an operator technique to calculate the vacuum
polarization tensor in scalar and spinor QED. All of the
calculations cited are based on the use of the proper time method
for the solution of the differential equation for charged particle
propagator.

A different approach to scalar QED was given by Feynman [4]
who wrote the Klein-Gordon equation with external electromagnetic
field as a Schrddinger equation in a "five dimensional space of
space-time coordinates and a "time" parameter which can be related
to the proper time in Schwinger formulation. The physical states

are a definite mass projection of the five dimensional states



Then, one can introduce the charged particle propagator which may
be given as a proper time path integral representation. For
external homogeneous fleld one can calculate the propagator very
simply [5].

Although not relevant for the calculations described above
but relevant for this paper we mention the technique introduced by
Schwinger [6] for the calculation of the mass operator of a
spinless charged particle in an external homogeneous
electromagnetic field. Replacing the Integration of the photon
momentum by an expectation value in "photon coordinate" states he
related the mass operator to the matrix elements of proper time
evolution operator. This led to an elegant calculation of the mass
operator. On the other hand if the coordinate space matrix
elements of the mass operator are considered we need the
calculation of a propagator which may be given by a proper time
path integral representation using the idea proposed by Feynman
{4). Such a calculation is possible [7].

In the present paper we consider the calculation, in order «,
of the vacuum polarization tensor in external homogeneous ;ield
for the scalar QED. Using the technique of Schwinger [6],
ment foned above, we replace the electron loop momentum integration
by an expectation value which allows us to relate the vacuum
polarization operator to an amplitude which obeys the differential
equation for a "nonrelativistic propagator in a five dimensional
space”. Using a proper time path integral representation the

amplitude can be calculated reducing the calculation of the vacuum

polarization reduces to the evaluation of certain functional
derivatives. The final result coincides with that of Baler et al
[3].

This paper 1is organized as follows: In section II we
formulate the problem and rewrite the vacuum polarization in the
form of an expectation value. In section III we evaluate a related
transformation function by the path integral technique. In section
IV we calculate the vacuum polarization by making the functional
derivatives of the amplitude evaluated in section III. Section V

contains conclusions.

II - Formulation of the problem

When one is analyzing higher-order process in QED, one of the
most important objects is the modification, to order a, of the
photon propagator. In the scalar case this contribution, when the
particle is interacting with an external electromagnetic field, is

given by the vacuum polarization operator

[y 2 2

L}
' (k) = -1e? Id—p‘ ' oen), —1  2rk) ., (1)
(2n)" n°-m (n-k)3-n? v

where

n =p - eA;(x). (2)



A;[x) is the external vector potential which for a homogeneous

electromagnetic field can be written in the form
£(x) = 122F  (xx")", (3)
3 214

where F““ fs the field-strength tensor and x" is a point of
reference.

When a  particle is interacting with an external
electromagnetic field it is possible to demonstrate that the
bubble graphs as that of the figure 1 will contribute to guarantee

the gauge invariance condition

Mo =o. (a)
(1]
This contribution is
(b) 2 d4 1
mo = 2ie’g E > {5)
H W jem!t a-m

So, the photon propagator is modified by

O 'Y o %00 o) 22w,
pt pT pu vt
where ﬁ;:’(k) is the photon propagator in the free-field case and
nup(k) is the sum of equations (1) and (5).
In equation (1) the Iintegral over the momenta can be

substituted by the expectation value of the Iintegrand between

position eigenstates

4
j d B £(p) = <x'=01£(p)Ix"=0>, (6)
(2n)

since

-ip.x

«x|p> = (2m) ™ e (7

fig.!

Besides, we can express the propagators of the particle in a

formal integral representations

-]

1 2_2
i i J dsl exp[isx(n m )] (8.a)
n°-m
o
00
_—__15__5 = -1 J ds2 exp[isz([n—k)z—mzl]. (8.b)
(n-k)“-m

Moreover, using the commutation relation
["u’"u] =1ie Fuv (9)
and the fact that F“U is constant, we can prove that

2 2
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Then, substituting equatlons (10), (8) and (6) in equation (1) we

get,
0 ]
(a) _ 2 .2 - -
Huv (k) = te Ldleds2 expl-im (sl+52)]<x 0|12 exp(Zerl)n k]“
,exp[inzs’]exp(i(n-k)252] (2n—k)v|x"=0>. (11)

Since n° does not commute with (m-k)® we attempt to put the
expression of the vacuum polarization in a convenient form. First

we define the quantity

M(a) = expl-1 a Hl sll expl-1 a H2 52] (12)
where
Ho= - n° (13.a)
2

H2 = - (n-k)". (13.b)

Thus we have
L [s H + s_exp{-1 aH s ) H exp(i aH s )] Ma) (14)
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On the other hand it can be shown that

expl-1 a H s,) i expll a B S’] =

= "z‘f(" as)"C /nt, (15)
n=1
where
c, = [Hl,Hz] = - [n2.2n.k] =-2k(21eF)n-=
=2k(21eF)mn (16)
C =2k (21 eF)"m an

Substituting equation (17) in (15) we get
expl-1 a H sl] H, expli a H 51] =

-]
= H +2Z (-1tas)"k (21 e F)" x /nt. (18)
n

Going back to equation (14) we obtain

i — = {s] ”1 + s, H2 + 2 s, k [exp(z eal sl) = 1] n} M(a) (19)

which after integrating gives

i In M(a) = (s1 Hl +s, Hz)a +

exp(2 e a F 51) -1

+ 2 s, k e a T s - al m. (20)
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Putting a=1 and substituting equations (13) in (20) we get

exp(2 e F s') -1

2 2
1 1In M(1) = -(51‘52)" - S2 k“ + 2 k Sz[—zTrs——] n (21)

1

Thus
2 2
M(1) = expli s, n } expli s, (n-k)°) =
S
= exp [— i [ds’ H(s')] exp[i “;” K s]. (22)
0
where
H(s') = - o° - 2n.J(s"), (23)
with
R (1+v) .
J(s') = - 2-4Aexp(-(l—v) e Fs'] k. (24)
Next using the transformation of variables
o (1-v) _ _ (1+v)
S e s, =5 —5 (25)
equation (11) can be rewritten as
© +1
\ P 43 (1+v) 2
™ (k) =1 e S 4s dv ¢ T exp [l —r k’].
pe o 2 o 2

.<x'=0|[2 exp[(l—v)er]n—k]u exp[-lf H(s')ds'](Zn-k)le"=0> (26)

where we used the commutation relations

fon = Bn] -0

III - A proper time path integral approach

In this section we calculate the matrix element

s

K(x’,x") = <x’| exp[viJ H(s') ds']l;"> = <x’";s|x";0>,

0

27)

(28)

which will be used later to calculate the vacuum polarization

tensor.

It can be seen that the transformation function

satisfies

(i as - H)K(x',x") = 1 8(s) 8(x"~x") for s20,

where

lim’ K(x',x") = 8(x'-x").
s 0

K(x',x")

(29)

(30)

Equation (29) is an inhomogeneous Schrddinger eqution in “five



dimensions” with s playing the role of “time". In this form the Here we are using the matrix notation
transformation function can be expressed in the path integral

u
representation X = (x)“ F"v = (F)‘w

(38)

s - wo_ o -1
K(x',x") = Jﬁ’x exp[—iJ ds’ L(s’)]. (31) 8y = (&), g (&),
o

which will also be used later on if convenient.

where
Integrating equation (34) we get

. 2
L(s') = [";k”] ve dix (32) ) .
x(s') + 2 e F (x(s’) - x') =2 J(s') + (x(s) - 2 J(s)). (37)

is the Lagrangian with the classical sources J(s') given by (24)
Integrating once more we have

where k is a c-number now.

Looking at the Lagrangian we can see that it is a quadratic s
2eFs’ 2eFs”
e (x(s') - x') + Ax = 2 | ds" "
one. So, the path integral in (31) can be written as ) * J s J(s") +
o
K(x",x"} =N exp[—i UI], (33) e2Fs’_ .
c + —757;?7—'(X(S) - 2 J(s)). (38)

where N is a convenient normalization constant and W is the
et Making s'=s in the above equation we have

classical action which s found through the solution of the

Euler-lasrange equation of motion

. S
x(s) ; 2 J(s) __ekF ax - 2 | ds" eZer" Js" |, (39)
e2e Fs_ 1

x-2eF x=21J, (33) °

Substitution of (38) and (339} in (37) leads us to
subject to the boundary conditions

x(s') - 2 J(s")

“(s) = x° . «(0) = x*. (35) ezprs'[ . ] - x(s) -2 J(s) ,

2




+eF [Ax -2 st" e2ers" J(s")}. (40)
(o]

Thus, using the equation of motion (34) and the first
integrals in equations (39) and (40) the classical action is

given by

S
W“ = 1/2 Axt g ?TF Ax - 2 Axt g # {J ds’ ezers' J(s’ )} -

(o]

o t s
+ 2 {[ ds' 2 J(s‘)} g e—AE {J ds' e2™s J(s')} +

0 0
- t s’
+ 2 {( ds® &' J(S')} geF {[ ds" =" J(s")}. (41)
T o]
where A= 1- e'ZEFS and the symbol t designates the transpose.
It iz easy to see that
S t s
wl = ?{J ds' e J(s) g e_A_F {J ds' e=F% J(s’)} +
N x'=x"z0
o o

o°

". t
+ 2 U ds’ et J(s')} gekF {J ds" ezeFS" J(s")} =
O

0

s 2eFs’ ¢ [e(hv)er -1]
= - st’ees J(s’) g—A—k—
0

S
s t ,
- U ds’ [eZer J(s')] g [e(“”ers -1} k =

o

s

- 1] (1+v) ,  _(1+v)eFs’
X 5 J‘ds e k +

. [e-(lov)er
= k g

]

S

L Hv) e g st. Q(1PVIeFs’ [ —(levieFs’ 0 )

2
0

(1+v)s

! K gk+ktg [cosh(v e F s) - cosh(e F s)]

2 e F sinh(e F s)

k. (42)

Now, we must determine the normalization constant N. For this
we can take the Lagrangian (32) without the source term J(s')
since it does not contribute to N.

<2
o] X 1

- o (x(s') - x") e F x. (43)

Making the transformation of variables

x(s') - x" = A(s’) y(s'), (44)

and imposing that the kinetic energy term stays invariant




and that there are no crossed terms, we obtain

Agh=g (45.a)
As') = e “FA0). (45.b)

So, we ottain the following transformed Lagrangian

I T o1 v 2
L'=—2v gy Yy en vy, (46)

where the matrix

2 = (Ao (e B2 AO) (a7)
is diagonal.

Thus we are left with a harmonic oscillator Lagrangian with

mass 1/2 and frequency matrix Q. In this form the normalization

constant is given by

. 172
: 2 {sin:(z ; s)] ! (48)
(4n) " s

where we have taken into account the four-dimensional nature of

the oscillator and the metric.

IV - Calculation of the Vacuum Polarization

The expectation value which appears in equation (26)

<x'=0|[2 expl(1-v)eFs] n _k]# exp[—iJ H ds'] (2n—k)le“=0>, (46)
0

can be decomposed in the form

<[2 expl(1-v) e F s]n]“ et an > =

o o
=[exp[(l-v) e F s]u <e 'te 21(0_(5) 2nv(0)> = [exp[(l-v)er)]“ .

2 S
A~ -s <x'|T exp —iJ ds’ H(s')|Ix"> ; (S0.a)
53%(s) 8JY(0) 0 X’ =x"=0

o
- <[2 expl(1-v) e F s] n]u et s k> = [eXP((l‘V) eF Sl]u .

o0
i 8 > <x'|T exp —iJ ds’ H(s’)|Ix"> kv; (50.b)
8J7 (s) 0 x"=x"=0

K(x’,x") (50.¢)

and



W
- s 1
& e MS s =k Kk Kix,x™) ) (50.d) =k <l N exp[—i W ] (51.¢)
v [T s I 25 1 .

37 (0) ns0

where we have used a compact notation for the evolution operator and

and the eigenstates.

-1 H
Substituting equation (33) in equations (50) we have <k“ e N kv> = k‘1 kv {N exp[—i Ucl]} R (51.d)
x*=x"=0
-1 ;i s
<[2 expl(1-v) e F s] "]u e 2m> = The functional derivatives can be evaluated as follows:
o 62 sW s S at F
=[exp[(l-v) e F S]H - m N exp[— i wcl] L = ;.l - - 2 ds’ eZer J(s") g SX_ )
J (s x'=x"=0 8J (s)Ix’=x"=0 &8J (s) J ]
2
p. 8% sW_ o 8W s t
=[‘::'1;I(l“-’) e F s]“ i — < > + — Uc . . oeFsr ., ( . 2eFst .,
J7(s) 8J°(0) 8J (s) 8J7(0) ds’ e J(s')| + 2 ds’ e J(s’)| gecF.
0 0 E
N exp[—i W 1]} ; (51.a) s’ r s t
c " R
x'=x"=0 . “ ds" e%°F® J(s")]} =2 { st' e (s )J 8 gA—F :
0 o
S s t
. ’ . , Y F
_<[2 expl(1-v) e F s) n]“ e” M k> = U ds” > &(s —s)]} -2 {“ ds’ e J(s )} g E},\_ .
0 o 0
o 5 s ) s s’ N
- [e}:p[“ﬂ") eF S]]u S N exp{-i wc)] k. = Al as® e*™ s(s-s) -2 ds' | ds" [e2er J(s")] gekF.
L 8J  (s) x’=x"=0
0 o o

[ ((1-v) e F 1]0 e, N [u] K (51.b) g t
=|expl(i-v) e F s exp|-i ; . - ,
Ko 1s0%(s) Ulpraxr=o ¥ eZers 6(5'—3)}} =2 {H ds' > (s’ )] g % e
[

.40 .



S

o2Fs _ o U ds" [eZer

(4]

e F

t
f 2efFs’ ’
ds' e J(s )] 8 X

y

0

- 14v)er]

‘geF'e2er'} - {2 klg[l'eA ,
o

_<[2 [e17V)eFs) "] et Hs k> =
" t m
J(s“)] .

t —(1-vieFs [1 - e '¥*V)eFe)
=-21]lk ge A ku N exp[~i wd]
x'=x"=0
(52) #
(55.b)

s 2¢Fs N (1 - e-(lbv)er]
where we uscd equation (24) for J(s’) and A=l-e . - <k e—‘ Hs 2n>=-2k k' g A
H v u
We can, in a straightforward way, obtain
3W -(1+v)eFs -N exP[—i W 1] (85.¢)
cl v (1 -e ] ¢ rox =0
m =-12k s x (53) x'=x
8J (0)
x’=x"=0 v
Takirp the functional derivative relative to JD(O) of the -1 Hs
<k e k>=k k Nexpl-iVW (55.d)
It v nov 20 8 (R

we have

__l4gekF
= —
o ov

third cqu:lity of equation (52),

&%

cl

s%(s)83 )| | .

x

Substituting equations (42) and (48) in equations (55) and

(s4) .
these” in (26) we obtain finally

2 ° 1/2 > (!
Substituting equations (52-54) in (51) we get nle) - e ds det[ eFs sws | dv
uy (am)? s inh(eFs) 2
0 -1
(1-v)eFs
([2[0(1-\1)0!75] n] -xn52"u>_ -4 [AgeFe ] .
M w _2i fee FeMEL Lk stwers (1-eTTTVTR)
17 s X g A
uv m
¢ —(1-vieFs {1 - e-(l#v)er] N (1 - e—(lﬁv)er]
+ 4|k g e Tviers A k g Y .
I v _~(1+v)eFs o _ -(1+v)eFs
[kzg(le/\ ) _Zkzgerlv)ers(leA ) kp—
v M

T

(55.a)

. 20-



N (1_8-(1¢v)er)
-2k, kg =g skt
v

fasokal

Lot cosh(veFs) - cosh(eFs)
{‘ tkoe { 2 e F sinh(efs) ] k}' (58)

which, after some simple algebraic manipulations, can be rewritten

in a more compact form

+1

2 1/2
ta) - e ds e Fs —kmzs dv
n = — det | ——7——+ e - .
e 2 s sinh(eFs) 2
(4n) o .

SioL g, 20, _
{ PR fis e Soat fos e (RK)(RK) - (LK) (LK)

+ (k) (Rk) - (Rk) (Lk) } exp [—i k M k], (57)
It v [ v

vhere

=10hnt _ cosh(eFs) - cosh(veFs)
sinh(eFs) ' sinh(eFs)

(58)

coshl(veFs) - cosh(eFs)
2 e F sinh(eFs)

M=

Interrating by parts, in variable v, the first two terms of

the expression (57) we obtain

2 g 172 2
(a) - e ds eFs -im’s
W 2 =< et |STohers) € )
" 2 (4n)

0

v=+1 v=+1

2 L exp[—i kMk]
S MY

v=-1

{gi R exp[—i kMk]
s v

v=-1

+1
+ dv [(Rk) (Rk) - (Lk) (Lk) - R (kRk)] exp[—i k M k] +
m v m v u

-1
+1

d

-1

dv [(lk)“(Rk)u - (Rk)“(lk)v - luv(kmk)] exp[—i kM k]. (59)

where we are using the equality

aM/av = s/2 R.

Looking at expressions (58) we can see that

v=+¢1
Ruu exp[—l kMk] =2 g“U.
v=-1
(60)
v=+1
n -3 =
L exp[ i kMk] 0.
v=-1

Further the last term of equation (53) is zero since the integrand

is an odd function of v. So,

S
2 1/2 2
(a) - e ds eFs -im's 4i
u : J s det[sinh(er)] € : {—5 & *

Mo (qm)?
o]



+1

+ J dv [(Rk) (Rk) - (Lk) (Lk) - R (kRk)] exp[*i k M k]} (81)
u v H v (1
-1

The contribution of equation (5) for the polarization

operator is obtained by making v = -1 (or k 0) in expression (34).
So,
2 * 12 2
(b) 21 e ds e Fs -im's
noo= g — det[————————] e ) (62)
u (am)® Y J o2 sinh(eFs)

0

which cancels out the first term of equation (61). In this form we

get the follow expression for the vacuum polarization operator

s

2 172 2
- e ds e Fs -im's
wo 2 ~ %t \Sinn(ers) € ’
! 2 (4n)

1
.J dwv [(Fk\”(Rk)v - (lk)“(lk)v - R”V(kﬁk)} exp[—i k M k]. (63)

-1

The renormalization of n“v(k) can be done by the standard

methods as in the paper by Baier et al [3].

V - Conclusions

In this paper we have calculated the order a contribution to

the vacuum polarization in scalar electrodynamics in the presence

.23

of an external homogeneous electromagnetic field using proper time
path integration and functional differentiation. The final results
agree with previous calculation as they should.

For spinor electrodynamics the method cannot be used since we
do not have a natural definition of path integral in the sense
used here. Perhaps the formulation given by Barut and Duru [8] can

be used to obtain analogous results in the spin 1/2 case.
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