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Abstract� 

We obtain the exact result for the mass operator in the coordinate 

representation. to the first order in 0:, for a spin-zer'o particle in the 

presence of an external homogeneous electromagnetic field. We transform this 

quantum electrodynamics problem to one in quantum mechanics, which is solved 

using the proper time path integral formalism. 

I - Introduction 

The problem of charged particles interacting with external 

electromagnetic fidds is interesting not only from the academic point of 

view but also from one of applications For the special configurations of a 

homogeneous external field the problem is fairly simple to treat at the 

level of classical mechanics and of nonrelativistic quantum mechanics. The 

treatment of the problem by quantum electrodynamics is fairly compl icated 

since radiative corrections have to be taken into account. 

As is well known the building blocks of QED are the Green functions and 

the one-particle irreducible graphs such as. mass operator and vacuum 

polarizat ion. Many techniques have appeared in the literature seeking to 

calculate these quantities exactly at the level of the QED with external 

fields. In this context we must to cite the techniques of Schwinger [1], 

Feynman [21. Baier et al [31. DittriCh/Reuter [41 and Batalin et al [51. The 

common point of these methods is the use of the proper-time method [61. 

In the Schwinger technique the proper-time parameter plays the role of 

"time". in the equations of motion, of a ficti t ious quantum system which are 

then solved exactly. Later Schwinger generalized his technique to calculate 

exactly the mass operator, to the first order in 0:, fOl' a particle 

interacting with an external homogeneous electromagnetic field [71. 

On the other hand in the Feynman technique he guessed a form for the 

path integral representation of the propagator of a particle interacting 

with an external field, such that it satisfies an inhomogeneous Schrodinger 

equation in "five dimensions" and is associated to the zero-order Green 

function for' QED by a Schwinger transformation. Essentially in both 

formulations a prohlem of QED is transformed to a quantum mechanics one. 
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We Intend In thIs work to broaden the Feynman technique by applying It 

to the calculat ion of the mass operator, to the first order in 0:, for a 

particle In the presence of an external homogeneous electromagnetic field. 

Although the exact expression of the mass operator is known thr'ough other 

approaches, the present technique to calculate the f'elevan! Fcynman graphs 

has not been used before; besides It permits us to obtain a coordinate 

representation for the quantIty in question. 

The paper is organized as follows: in section II we give a formulation 

of the problem seeking to wri te the matri x element of the mass operator 

between position eigenstates in a form that permi ts us to use the formal ism 

of path integrals; in section III we explain the formalism and find the 

exact expression for the mass operator in coorainate repr'esentation; we 

conclude the paper discussing the applicability of the method and its 

difficulties. There is also an appendix where we calculate the mass operator 

by using the Schwinger technique in the coordinate representation and we 

reach the same result as that obtained by applying the path integral 

technique, 

II - FormUlation of the problem 

Consider a spinless particle of mass 10 and charge e In an external 

eelectromagnetic field A . The propagator GO(x' ,x") satisfies the equation 
~  

(n2 _m 2 )GO 04( x' -x" l, (1 l 

where 
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e 
n i8 eA (2)

jJ. II /l 

Using a mixed representation one may write 

2GO(x' ,x" j <x'l(n2 -m j-l lx ">, (3) 

where the ket Ix'> is the eigenvector of the operator x with eigenvalue x'. 

Next if we consider the corrections due to the radiation field, one may 

use the Furry picture and wrl te the order 0: correct Ion to the propagat ion 

function in terms of the mass operator H where 

1 1H(x' ,x" j <x' I ie2 J~~~ (2rr-kj ll (rr-k22) (2rr-k) Ix">
(2n )4 k2 -m /l + 

+ contact terms (4) 

and one may write the modified Green function as 

<x'l(n
2 

-m2 -Hl- 1 Ix"> G(x' ,x" l. (5) 

The contact terms arise due to the fact that in Furry picture the vacuum 

expectat ion val ue of the current is nonzer·o. The normal izat ion condi t ions 

for G( x' . x") requi f'e that the operator M and I ts first derl vati ve with 

2 2 2respect to rr vanish in the null field situation for n =m . 

Next using the Schwinger representation 

'J
00 

1 (6)Is(D+I£:) d-I e 5,
D+lc 

o 
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Thus the expression (4) becomesone can wri te 

k
2 

[ (n-k1 2 -m 2 
) J 

OO JOO
ds ds 

1 2 
o 0 

2 
exp 1[-s m 

1 

2 
+ s (n-k)

1 

2 
+ s k l. 

2 
(7) H(x', x") • 2 

-Ie I 
OO 

odS 
II

s odU 
2-I m su 

e 

Making the transformation of variables <x',y'=OI(2rr-k)P e-
ISII 

(2rr-k) Ix",y"=O>. 
~!  

(13) 

S 
1 

su , s s 
1 

+ S 
2 

(8) 

we get III - Calculation of the mass operator 

n2 [ (n_k)2_m2) 

(Xl 

JodS 

1 

sIodU e-lm2us 
-1511 

e (9) 
Let 

lx', y' is> e 
lSII 

Ix' ,y'> (14. a) 

where 
and 

H -u(n-k)2 - (l-u)k2 -(k-un)2 - u(l-u)rr2 . (10 ) 
Ix",y";O> Ix", y"> (14. b) 

Also 
then the transformation function 

Id4k 4 f(k) 

(2n) 
<y'=Olf(k)ly"=O>, (11 ) <x' ,y' ;slx",y";O> <x' ,y'le-ISHlx",y"> < 

-lslI 
e > (15) 

where 

with 

Iy'> is an eigenstate of the 

[Y~I'  k v] 

operator 

-i gill" 

y conjugate to the momentum k 

( 12) 

satisfies 

(i8 s - H) 
-1511 

<e > o for s=O (16 ) 
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<e 
-IsH

> (21 )JV'x V'y exp [-{ L ds'j, 

<e
-lslI

lim > o(x'-x") o(y'-y"). ( 17) 
s~ 

where 

Since that we need <e- lsH> for s~O we may impose the condi t ion 

L x2 + (x + y)2 + e x.~. (22) 

<e -lslI 4U 4( 1-u)
> o for' 5<0 (18 ) 

In equatIon (13) we need to calculate
and replace equations (16) and (17) by 

e 
-IsH 

e 
-IsH(2n-k)11 (2n-k) (2n(s) -k(s))Jl (2n(O)-k(O)) • (23) 

<e
-IsH Jl 11(iB

s
- H) > 8(s) o(x'-x") o(y'-y"). ( 19) 

where we introduced the operators
Since equation (19) has the form of a Schrodlnger equation in "five 

dimensions" • with s playing the role of "time" we may use the usual 
e 

IsH0(5) e- 1SH 0(5) (24)
procedure and write the transformation function as a path integral. 

It is easy to see that one may write� 

<e
-IsH�

> JV'p V'x V'k V'y exp [-1 J:ds' (p. x • k. Y • Illj, (20) 

<x· ,y'/(27r-k)Jl e-
1sll 

(2rr-k) Ix",y">
11 

where a.b = a bl! and the overdot denotes derivative with respect to s11 
Equation (20) is correct is spite of the sign of II and Is consIstent _f/ <x', y' Iexp( -; rds'''' II x", y", I ' (25)

with the usual conventions since oj (s) oJI! (0) 0 J=O
II 

p x - -~ ~p.x o 0 p. x. where Il J = H  J. (2n-k) and J(s') is an external classical current. Also we 
s 

can rewrite <eXP(-iJ ds' H
J 
> in the form

It may be noted however that here the "Hami I tonian" H is a Lor'entz scalar'. o 

The integration over the momenta p and k can be done easIly to gel <e 
-IsH

> 

in the form 'x' ,y' lexp( -1rds' 11'11 x", y'" <x· ,y' ;5Ix",y";0>J 

o 
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JDIX 1Jly exp (-HI), (26) 

where WJ is the action given by 

+ 1 . ] (27)4( 1-u)~  (dS' [~: . x. [A" - +] . J2 
(x+y-J)2 . 

U 

For the case of a constant electromagnetic field Ff.ll' we choose the 

potential ~e  to be 
f.l 

~e  1/2 F (x_x")v. (28)
f.l f.l11 

The integrations are trivial since we are dealing with a quadratic 

Lagrangian. So the result can be written as 

<x' ,y';slx",y";O> N exp(-i~  l. (29)
cl 

where ~  is to be evaluated for the classical trajectory and N is a suitable 
c 1 

normalization constant. To calculate W
J we need to solve the classical 
cl 

equations of motion 

d(x + y)/ds' j (3D.a) 

and 

x + 2eu Fx 2 J, (3D.b) 

subject to the boundary conditions 

9 

xes) = x' x(O) = x" 

yes) = y' yeo) = y" (31) 

In equations (30) and henceforth (when convenient) we use a matrix notation 

ll FIlx (x) (F)
11 l' Ill' 

f.l11 g (g-l )f.l11gill' (g)f.l11 

where on the left hand side we have tensorial quantities and on the right 

hand side we have matrix elements. Henceforth the parenthesis indicating 

matrices will be omitted. It may be noted that the matrix F has the property 

Fl - g F g -I, (32) 

where F
l 

is the transpose of F. 

One can solve equation (30. a), subject to equation (31 ) in the form 

x + y - J(s) (33)~[OX  · Oy - I:JIS') dS']' 

where 6x = x' -x" and 6y = y' -y" . 

Equation (3D.b) gives 

xes') + 2t~U  Flx(s') - x') 2 J(s') + (x(s) - 2J(s». (34) 

Integrating we get 
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e2eUs'f(X(S' )-x') + f1x 2{ e ,,",.' J ( s·) ds' • 
S'2euFS' }l

2 oe J(s') ds' g e FAx +o 
{J 

+ 
e2eufs'_1 

2eu F 
(~(s) - 2 J(5»). (35) 

+ 2{Ie""h'J1S ') d51 _\F {(e"""'J(S') dS'} + 

Making 

Hence 

s'=s we 

f1x 

have 

J 

s 
2 e2eUfS' 

o 

J(s') ds' 
2eufs 

+ e 
2eu 

F- 1 (~(s) - 2 J(s». (36) 

+ 2{{e"""'JIS') dS.}lg eF.{{~"",.,, J(s") dS"} + (ll~,~  1l~)2  

o 0 

s s 2 

+ 4( l~U)S  {-2 lOx + Oy)' -[LJIS') dS'] + [LJIS') dS'] l 

+ 

(39) 

Going 

(x(s) - 2 J(s»
---2-u-- ~- [f1X - 2 JSe 2eufs' J (5') 

e2eufs -1 
o 

back to equation (34) we get, using (35), 

dS']' (37) 
where A == 1 - e -2euFs 

In order to calculate the expectation value which 

(13) we must, according to equations (25) and (29), 

y' ==y"=O in the classical act ion. In this form we obtain 

appear's in equation 

to take the limit 

2eurs' 
C x(S') - 2 

2u 
J(s') ~(s)  - 2 J(s) 

----
2u 

+ <x' ,y'=01(2n-k)11 e- ISII (2n-k) Ix",y"=O> 
11 

+ er[ox + 2J:e""""JIS") d5"] (38) 0' N ex{ Iy'JI- cl 

~(~)~JI1(~)  .1=0 == 
11 y'=y"~O 

{N. cl 

N I oj (5) oJI1 (O) 
11 

oY'cl 

+ oj (5) 
11 

oU'cl 

oJI1(O) 

} 

. 

Now, using equations (27), (33), (37) and (38) we get 

hl
J 

c J 

1 l 
,,- Ox g 

e F~ Ox - 2 
l 

Ox g 
e F~ 

{ 

s 2euFs' . 
Joe J(s 1 d5 } -

Looking at equation (39) we can see that only the second,third and 

.eXP[-i\.lJ] I .c I J=O 

y'=y"=o 

(40) 

seventh terms will be contribute for the first order functional derivatives 
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which appear in (40). On the other hand, for the second order derivative, we 

need only of the fourth, fifth and eighth terms. So we obtain 

oWJ 

e I� 2 e F 1 ] II 
--A- +� (41. a)-[AX' • 2(1-u)s lix g

oj (S) J=O 
/l y'=yll=O 

el 
oW 

J I _[2 ~ F 1 liX] (41. b)~x + 2( 1-u)s 
oJ/1(O) ~7~y"=o  

~t  

and 

02WJ 
e 1 

J=O Tr [ 2(:-U)S' 2 e F cothleUFS)]. (41. c) 
oj� (s) oJ/1(O)� 

/1 y'=y"=O� 

Substituting equations (41) in equation (40) and taking J=O and 

y'=y"=O in the classical action (39) we get 

-I Hs 
<x' ,y'=OI (Zrr-k),t e (Zrr-k)P1x",y"=O> 

t e +[2 F 1] 2liXN 
{ 

lix g -A-+ 2( 1-uJs (I-:)S • 21 Trle F cothleUFS))} 

exp{-+[.~xt  g e F coth(euFs) ~x  + (l~::s])' (42) 

Now, it is necessary to determine the normalization constant. Since N 

is independent of the classical source J, it can be determined as follow: In 

13 

equation (22) we make the transformation of variables. 

~(s'  ) Ms') (x(s' )-x") 

( 41) 

1)(s' ) x(s') + y(s') 

We restrict A(s') by the conditions 

i) Under the transformation considered the ki nectic terms are form 

invariant. 

• 2 
X e� (44.a) 

ii) The terms 

• 2 
X • e (44.b)+ e x. A ,
U 

after the transformation. do not result in cross terms in ~  and ~.  

It is easy to see that the above conditions imply that 

-euF'sMs' ) e MO) (45.a) 

MO)t g MO) g.� (45.b) 

The quadratic terms in (45.b) have the form 

2 
e u t 2E g A-I(O) r A(O) ~.	 (46)4 
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We impose that the above expression is of the form 

1 l
4U ~  g rl ~.  (47) 

wher'e 0 
2 Is diagonal. It can be shown that the matl'ix A(O) exists. Thus the 

terms which resul t of (44) after the tr'ansfor'mat ion can be i nter'pr'ctcd as a 

Lagrangian of a har'monic oscillator of mass :-. and frequency matrix O. The 
2u 

remaining terms in the original Lagrangian result in a free-particle 

Lagrangian with mass __1_ . These two results imply that 
2l1-ul 

N 4 2 .., Dc t [ _~_£:_s_.]  1/2 (48) 
(4n) 4 s u (l-u)" SInh (euF's) 

Substituting equations (48) and (42) in equation (13) the mass operator 

H(x' • Xli) becomes 

, 2
Ie e -I m2 s e u F' s ] 1/2

H(x·. x") Det -----
(4n)4 ( l_u)2u 2 4 [ sinh (euFs)I: S dsf: du 

s 

{.x' g [2 ~ 20:U)S]'.x • O=~)S  • 21 Tc[e F cathleUFS)]}F • 

2 
i [ l _ !:J.x ]}exp - ~-!:J.x g e F coth(euFs) !:J.x + fl-u1s . (49){ 

The contact. t.erms mentioned previously can be found using the results 

by Tsai [81. 

First. we writ.e them as 

15 

c. t. == - m 2 _ <2 (p2 _ m21. (50)o 0 

being 

Ie 2 ds du -Ism2 2 [(2 )2 2 2'/]m 2 = - -- -- e u - -u m - I S (51 ) 
u (4n)2 s 

and 

<2 = __ 2 I~~  e -Ism2e_ u2 

o (4n)2 s 

[- i s u (l-u) (_(2_u)2m2 - 2i/s1 + (2-u)2 j . (5?l 

In order to wri te the contact terms in coordinate represent at. ion we 

need to take the expectation value of (50) between position eigenst.ates. In 

thi s way we get 

c. t. m 2 ."-X - -- - m o(x."- o( x 1 <2~2 2] -x ). (53)
a 0.2 

X 

IV - Conclusions 

We derived the mass operator. to the first order in a and in the 

coordinate representation, for a splnless particle in the presence of an 

external homogeneous electromagnetic field. We have transformed a problem in 

QED to one in quantum mechanics which then has been solved using the path 
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integral formulation that resemble the usual functional techniques of the 

Quantum Field Theories when one wants to derive the Feynman rules. 

Here we are treating with scalar QED, but if we go to the spinorial QED 

we find some difficul ties since there is not a well establ ished method to 

work with particles of spin 1/2 in the path integral representation. This 

difficulty does not arise in the Schwinger technique, this can be verified 

in the reference [9J. In spite of this one could try to use the prescription 

given by Barut and Duru [10J in order to treat particles of spin 1/2 in the 

path integral representation. 

If the external field has a configur'ation that gives origin to a 

nonquadratic Lagrangian, then equation (29) is not true, and the problem is 

dlfficul t to solve. This problem also appears in the SchWinger technique 

because the equation of motion become very laborious to integrate, but the 

"operator approach" by Baier et al overcome this difficulty, as for example 

on the case of a plane-wave electromagnetic field [llJ. 

The present technique can also be applied to derive the exact 

expression, in order a approximation, for the vacuum polarization operator 

in the presence of an external homogeneous electromagnetic field. This 

calculation will be presented elsewhere 

Acknowledgments: This work was supported by Conselho Nacional de 

Desenvolvimento Cientifico e Tecnol6gico (CNPq/Brasi I) and Financiadora de 

Estudos e Projetos (FINEP/Brasil). 
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Appendix: 

Here we are going to use the formulation developed by Schwinger to 

obtain the Green function for particles interacting with external 

electromagnetic fields, to reobtain the mass operator in coordinate 

representation. 

To begin with it, let us write the equations of motion for the 

operators whose evolution is governed by equation (24). 

nl-l -i [nl-l, HJ - 2 e u FI-I (n - k)v, (A. I)v 

kl-l 0, (A.2) 

x1-1 2 u (n - k)I-I, (A.3) 

yl-l 2 (k - un)l-I. (A.4) 

Integr'ating equation (A.l) we obtain 

n'l(s) [e-2eUFS n(O)r + [(1 - e-2eUFS] k(O)r. (A.5) 

Substituting (A.3) in (A. I) and integrating we have 

nl-l(sJ nl-l (0 J - [e F (x ( 5) - x ( 0) ) J1-1. (A.S) 

Besides 
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I.� 
(y(s) - y(O»p + (x(s) - X(O»p 2 (l-u) s kP , (A.71 

[ 
II] [JII Il 

xIl (O),x (s) = -1 eAr ' (A. 11) 

and [yll(O),/I(S)] = -j [eDF]"Il, (A.12) 

[
F ]Pe"IJ(O) - kP(O) -X- (x(s) - x(D) (A.B) 

ll 
[yll(O),xl'(S)] = 1 [e\r , (A.13) 

Defi ni ng 

P[ x ( 0 ) , YI' ( s )] = i [/rrIl , (A.14) 

co 1� 

2 2�
M(x' ,x";y' ,y") - i e J s dSJ du exp(-im su). 

o 0 where D = A + 2 (I-u) e r s. 

In this form, after to real ize the products and calculate the 

<x' ,y'1(2" -kIP exp(-iHs) (2" - k) Ix",y">, (A.9) expectation values, we obtainP 

and using equations (23) and (A.5)-(A.B) we get 
. 2 JOO . 2 2 e F 1M(x' ,x";y' ,y") -I e s dSJ1du exp(-Im suI { I1x [ -A-- + ~fl-u) ] I1x + 

o o 
co 1� 

2 2�
M(x' ,x";y' ,y") -I e J s dSJ du exp(-lm su).� 

1�o 0 1 1) _1_] l1y + l1y2_}.
+~s  I1x [e F [-'r - A- + 2 s (l-u) 4 s2 (l-u)2 

2eu� 
.<x',Y'leXP(-iHS)[2 e F e- F"!; I1x + (l1x + AY1]�

A 2 s (I-u) . 
p .<x' ,y'lexp(-iHs)lx",y">. (A.15) 

~_~£  + ~I1X ~~2]Plx" y">AX (A.I0) ('.' -Ills>. AU. 2 s (I-u) ., , We know that the amplilude obeys the equation[
aas <exp(-iHs» <exp(-iHs) H>. (A.16)where I1x = xes) - x(O) and l1y = yes) - y(O). 

In order to make the pr'oducl of quadr'i vectors whkh arr:ear's in above 

Then, using on(~e  more (A.'/) and (A.B) we reachequation is necessary to make the time-ordering the operators. For this we 

use the follow commutation relations 

2 

a 
~i In <exp(-iHs» U I1x [~-~~)--] I1x + i Tr' [e ~ ~J 
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.' 

'\. 

+ 21 Ir [e F coth! e F u s) J}
2 i (Ax + Ay)2 (A. 17)� 

s 4 S2 (l-u)� 

(A.21)exp - i {fiX [e F coth(eFUS)]I1X + (l_~~2s}. 
In this form 

-2 (e F ] 1 /2 
which is the same J'esult obtained via path integral technique.

<expl-iHs» := C s Det sinhleFus) 

exp _ ~ {fiX [e F cothleUFS)] fix + (fix + fl
y )2}. (A.18)

(t -u) S 
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