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Abstract

We obtain the exact result for the mass operator in the coordinate
representation, to the first order in «, for a spin-zero particle in the
presence of an external homogeneous electromagnetic field. We transform this
quantum electrodynamics problem to one in quantum mechanics, which is solved

using the proper time path integral formalism.

I - Introduction

The problem of charged particles interacting with external
electromagnetic fields is interesting not only from the academic point of
view but also from one of applications For the special configurations of a
homogeneous external field the problem is fairly simple to treat at the
level of classical mechanics and of nonrelativistic quantum mechanics. The
treatment of the problem by quantum electrodynamics is fairly complicated
since radiative corrections have to be taken into account.

As is well known the building blocks of QED are the Green functions and
the one-particle irreducible graphs such as, mass operator and vacuum
polarization. Many techriques have appeared in the literature seeking to
calculate these quantities exactly at the level of the QED with external
fields. In this context we must to cite the techniques of Schwinger [1],
Feynman [2], Baier et al [3], Dittrich/Reuter [4] and Batalin et al [5]. The
common point of these methods is the use of the proper-time method [6].

In the Schwinger technique the proper-time parameter plays the role of
"time", in the equations of motion, of a fictitious quantum system which are
then solved exactly. Later Schwinger generalized his technique to calculate
exactly the mass operator, to the first order in «, for a particle
interacting with an external homogeneous electromagnetic field [7].

On the other hand in the Feynman technique he guessed a form for the
path integral representation of the propagator of a particle interacting
with an external field, such that it satisfies an inhomogeneous Schrédinger
equation in "five dimensions” and is associated to the zero-order Green
function for QED by a Schwinger transformation. Essentially in both

formulations a problem of QED is transformed to a quantum mechanics one.



We intend in this work to broaden the Feynman technique by applying it
to the calculation of the mass operator, to the first order in «, for a
particle in the presence of an external homogeneous electromagnetic field.
Although the exact expression of the mass operator is known through other
approaches, the present technique to calculate the relevant Feynman graphs
has not been used before; besides it permits us to obtain a coordinate
representation for the quantity in question

The paper is organized as follows: in section Il we give a formulation
of the problem seeking to write the matrix element of the mass operator
between position eigenstates in a form that permits us to use the formalism
of path integrals; in section IIl we explain the formalism and find the
exact expression for the mass operator in coorainate representation; we
conclude the paper discussing the applicability of the method and its
difficulties. There is also an appendix where we calculate the mass operator
by using the Schwinger technique in the coordinate representation and we
reach the same result as that obtained by applying the path integral

technique.

IT - Formulation of the problem

Consider a spinless particle of mass m and charge e in an external

electromagnetic field A;. The propagator Go(x'.x") satisfies the equation
(n®-m*)c° = &% (x'-x"), (1)

where

n =18 - ed". 2)

Using a mixed representation one may write

Gox', x") = <x' | (n®-m®) Vx>, (3)

where the ket |x’> is the eigenvector of the operator x with eigenvalue x’.
Next if we consider the corrections due to the radiation field, one may
use the Furry picture and write the order « correction to the propagation

function in terms of the mass operator M where

4
M(x*,x") = <x’|ie® [ —di‘ (2r-k)M Lz L k) Ix's 4
(2n) k¥ (n-k)*-m? M
+ contact terms (4)
and one may write the modified Green function as
N 2 2 -1, “ros om
<x' 1 {(n"-m"-M) “{x"> = G(x',x"). (5)

The contact terms arise due to the fact that in Furry picture the vacuum
expectation value of the current is nonzero. The normalization conditions
for G(x’,x") require that the operator M and its first derivative with
respect to n° vanish in the null field situation for n2=m?

Next using the Schwinger representation

©

1 _iJ JREILIEY ds, (6)
0
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one can write

o0 oo
- —E————l—;——g— = I dle ds2 exp l[-sim2 + sl(n-k)2 + szkzl. (7)
kK (n-k)“-m"] 0 o

Making the transformation of variables

s =su, s=5_ +58 (8)
1 1 2
we get
) 1
1 -1m2us -1sH
e ds s| du e e . (9)
o l(n-k)%-m] o o
where
H = -uln-k)? - (1-wk® = ~(k-um)® - ul1-u)n®. (10)
Also
a'k
[ : f(k) = <y'=0{f(k)|y"=0>, (11)
(2n)

where |y'> is an eigenstate of the operator y conjugate to the momentum k

with

[y“.kv] = -i g“"‘ (12)

Thus the expression (4) becomes

o0 1

2
M(x’,x") = -ie” I ds s[ du e'™
0 o

-1sH

<,y =0l (2n-k)H e (2n-k) 1x",y"=0>. (13)
II1 - Calculation of the mass operator
Let
Iyt is> = e Ixt yts (14.a)
and
Ix",y":0> = |x",y"> (14.b)
then the transformation function
<Ly isix',yni0> = <x'Ly le T Mixt yts = <ot (15)
satisfies
(1a_ -1 <™ =0 for s=0 (16)



lim <e”'" = s(x’-x") 8(y'-y"). (17)

s-0

Since that we need <e "> for s20 we may impose the condition
<« =0 for s<0 (18)

and replace equations (16) and (17) by

My = i 8(s) 8(x'-x") Sly’ ~y"). (19)

(i - H) <e’

s
Since equation (19) has the form of a Schrddinger equation in “five
dimensions"”, with s playing the role of "time" we may use the usual

procedure and write the transformation function as a path integral.

s

<e 'S o Jﬂ)‘p 2*x D'k D'y exp —iJ ds' (p.x + k.3 + H)|, (20)
0

where a.b = a“b“ and the overdot denotes derivative with respect to s’
Equation (20) is correct is spite of the sign of H and is consistent
with the usual conventions since

o= p % - PR
p- P, ¥, = P-%.

It may be noted however that here the "Hamiltonian" H is a lorentz scalar

The integration over the momenta p and k can be done easily to get <e”'sh,

in the form

s

e = J *x D'y exp -EJ L ds'|,
o]

where

v (x+ 92 e e x o

L= x
4u 4(1-u)

In equation (13) we need to calculate
(2n-iM e7's" (2n-k) , = e "™ (2n(s) -k(sNH (2r(0)-k(0)) ,
where we introduced the operators
o(s) = e o(s) e'**.

It is easy to see that one may write

~1sH

', y' 12—k e (2n—k)“|x",y“> .

s

= 52 <x’,y'|exp(—i[ ds'HJ)lx“,y“>

89, (s) sMo) 0

J
where II" = H - J.(2n-k) and J(s') is an external classical current.

=3
can rewrite <exp(—i[ ds' H’> in the fornm

0

S
<x',y'!exp(—i[ ds’ HJ)IX",y“> = <x‘,y’;slx“,y“;0>J =

o]

(21)

(22)

(23)

(24)

(25)

Also we



= j;fx 1fy exp (-1HJ). (26)

where W is the action given by

(x+y-2)2 (27)

k=3
-2
, X - e _ J J 1
I ds * X'[ﬂ u ] TR TS

For the case of a constant electromagnetic field Fyv we choose the

potential AZ to be
£ =12 F (x-xM)7. (28)
[ uv

The integrations are trivial since we are dealing with a quadratic

Lagrangian. So the result can be written as

=N exp(-iuzl)< (29)

<L y'isix",y"i0>
where WJ|is to be evaluated for the classical trajectory and N is a suitable
<

normalization constant. To calculate NJl we need to solve the classical
c

equations of motion
d(x + y)/ds” = ] (30.a)

and
X + 2eu Fx = 2 J, (30.b)

subject to the boundary conditions

x(0) = x

L}
X

x(s)
(31)

]
<

y(0)

"
<

y(s)
In equations (30) and henceforth (when convenient) we use a matrix notation

o=
v [y

xH = (x)
u

B = (g)m,

where on the left hand side we have tensorial quantities and on the right
indicating

Henceforth the parenthesis

hand side we have matrix elements.
It may be noted that the matrix F has the property

matrices will be omitted.

(32)

Ft=—gFg_l.

where F' is the transpose of F.
One can solve equation (30.a), subject to equation (31 ) in the form

s

§<+)'/—J(s)=%Ax+Ay—JJ(S')ds‘, (33)
o
where Ax = x'-x" and Ay = y'-y".
Equation (30.b) gives
(34)

2 Ji(s') + (x(s) - 2J(s)).

x(s') + 2eu Flx(s') - x')

Integrating we get



S
ezaus’l’(x(s' Y-x") + Ax = ZJ eZQUFS. J(s’) ds® +

0

2euFs’
e -

Y T Seu T (x(s) - 2 J(s)).

Making s'=s we have

s

2euFs’ e2eul-‘s
eurs N 3 - * _
Ax = Zje J(s’) ds’ + 55— (x(s) - 2 J(s)).
o
Hence
. S
(x(s) - 2 J(s)) _ eF Ax - 2 JeZQUFs’J(S,) ds’
2u e2equ -1

0
Going back to equation (34) we get, using (35),

e X(s) - 2 J(s") _ x(s) - 2 J(s)
2u 2u

'
s

+ e FlAx + 2[ ezeuFS

J(s") ds"

To

Now, using equations (27), (33), (37) and (38) we get

J 1 t ekF t ekF 2eufs’ \ N
wc]——2—~AngAx 2Axg—A~Je J(S)da}

11

»

s t
-2 Je2°UFS'J(s') ds’ geF Ax +
o
(35) s t F s
+ 2{J e J(s") as’ g eT( {J 2 (s) ds' } +
0 o .
s t s' 2
+ 20| e® y(s") as’ geF. e® " J(s") as"} + (8x + Ay)
4(1-u)s
] o
(36)
s s 2
1 t ' y , ,
* i-ws {—2 (Ax + Ay) g” J(s') ds ] + U J(s’) ds ] } (39)
0 0
where A = 1 - ¢ 2°VFS
(37)
In order to calculate the expectation value which appears in equation
(13) we must, according to equations (25) and (29), to take the limit
y’'=y"=0 in the classical action. In this form we obtain
<,y =0] (2n-k)H 7' (2n-k)“|x".y"=0> =
8% N cxpL—iWJ } 5%’ sw o sw’
(38) - cl =N cl . cl cl
8J (s) 8Mo) P 8J (s) 83*(0)  aJ (s) a3M(0)
K y'=y"=0 H u
exp|-iW’ (40)
exp cl J=0 '

y'=y"=0

Looking at equation (39) we can see that only the second,third and

seventh terms will be contribute for the first order functional derivatives

12



which appear in (40). On the other hand, for the second order derivative,

we
need only of the fourth, fifth and eighth terms. So we obtain
J I
W
el = -|ax! g g~§—£ + ETT%GTE ax g . (41.a)
aJ”(s) Jj=0
y'=y"=0
J
W
. U Bx + sl ax (41.b)
slfo) |30,
y'=y"=0 n
and
Bszl 1
———,. = Tr [5yzgys* 2 © F cothleuFs) |, (41.c)
84 (s) EN I (oD ]

3
y’=y"=0

Substituting equations (41) in equation (40) and taking J=0 and

y'=y"=0 in the classical action (39) we get

<x’,y‘=0|(2n~k)“ e iHe (2n-k)“|x",y"=0> =

2
2eF 1 . 2 .
% 311-u)s Ax + i SEN 2i Trle F coth(euFs)]

. 2
exp{—A%—[Axt g e F coth(euFs) ax + Bx ]}

T-ws (42)
Now, it is necessary to determine the normalization constant. Since N
is independent of the classical source J, it can be determined as follow: In

equation (22) we make the transformation of variables.

£(s') = A(s”) (x(s’)-x")

(41)
n(s') = x(s') + y(s')

We restrict A(s’) by the conditions

1) Under the transformation considered the kinectic terms are form

invariant.

2 L2
X £ (44.a)
ii) The terms
-2 )
X, e x.‘qe' (44.b)
) .
after the transformation, do not result in cross terms in € and é.
It is easy to see that the above conditions imply that
Als') = e A(D) (45.a)
A0) g ALO) = g (45.b)
The quadratic terms in (45.b) have the form
el u t -1 2
- € g A (0) F” A(D) €. (46)

14



We impose that the above expression is of the form
1 t 2
- — a7
68 E (a7)

where 0° is diagonal. It can be shown that Lhe matrix A(0) exists. Thus the
terms which result of (44) after the transformation can be interpreted as a
Lagrangian of a harmonic oscillator of mass %;. and frequency matrix Q. The
remaining terms in the original Lagrangian result in a free-particle

Lagrangian with mass 2“‘1 These two results imply that

-u)

eufFs 172
N = Det| - ——— . (48)
sinh (eufs)

Substituting equations (48) and (42) in equation (13) the mass operator

M(x',x") becomes

'ez i 2 1 eutfs 12
M(x’,x") = - - sds| due "% Det -
224 sinh (euFs)
o 0 (1-u)"us

2
t 2eF 1 21 o
A g [T + m] Ax + SENEI 2i Tr[e F coth(equ)]

2
EXP{' T;—[AXt g e F coth(euFs) Ax + Ti%)_s]}‘ (49)

The contact terms mentioned previously can be found using the resulls

by Tsai [8].

First we write them as

15

2 2 2 2

c.t. =-m -CO (p° - m“), (50)
being
2 22
m?s. & J ds du et (aeu)%? - 21/s) (51)
) 2
(4n) s
and
2 (-_‘2 ds du -lsmzu2
S =~ S| — e
(4n) s
[- 1 su (1-u) (-(2-u)%° - 2i/s) + (2-u)?). (52)

In order to write the contact terms in coordinate representation we
need to take the expectation value of (50) between position eigenstates. In

this way we get

2

c.t. =~ mo2 S(x'-x") - an [Z i m2] S(x"-x"). (53)

X

IV - Conclusions

We derived the mass operator, to the first order in o and in the
coordinate representation, for a spinless particle in the presence of an
external homogeneous electromagnetic field. We have transformed a problem in

QED to one in quantum mechanics which then has been solved using the path

16



integral formulation that resemble the usual functional techniques of the Appendix:

Quantum Field Theories when one wants to derive the Feynman rules.

Here we are treating with scalar QED, but if we go to the spinorial QED Here we are going to use the formulation developed by Schwinger to
we find some difficulties since there is not a well established method to obtain the Green function for particles interacting external
work with particles of spin 1/2 in the path integral representation. This electromagnetic fields, to reobtain the mass operator coordinate
difficulty does not arise in the Schwinger technique, this can be verified representation.
in the reference [8]. In spite of this one could try to use the prescription To begin with it, let us write the equations of motion for the
given by Barut and Duru [10] in order to treat particles of spin 1/2 in the operators whose evolution is governed by equation (24).

path integral representation.

If the external field has a configuration that gives origin to a =i M H = -2 F“v (n - K7,
nonquadratic Lagrangian, then equation (29) is not true, and the problem is
difficult to solve. This problem also appears in the Schwinger technique M = 0,
because the equation of motion become very laborious to integrate, but the
"operator approach” by Baier et al overcome this difficulty, as for example H=2un- k)“.
on the case of a plane-wave electromagnetic field [11].

The present technique can also be applied to derive the exact =2 (k- umt
expression, in order « approximation, for the vacuum polarization operator

in the presence of an external homogeneous electromagnetic field. This Integrating equation (A.1) we obtain

calculation will be presented elsewhere

—2eu H ~ H
at(s) = [e 2eufs n(O)] + [[l - e 2equ] k(O)]

Substituting (A.3) in (A.1) and integrating we have
Acknowledgments: This work was supported by Conselho Nacional de
Desenvolvimento Cientifico e Tecnolégico (CNPq/Brasil) and Financiadora de nu(s, - nll(o) ~ le F (x(s) - x(O))]“

Estudos e Projetos (FINEP/Brasil).
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(A.

1)

.2)

.3)

.4)

.5)

.6)



(y(s) - yon" + (xts) - x(0)* = 2 (1-u) s k¥, (A.7)

and
F s
o) - o) = [?-,T (x(s) - x(O]] . (A.8)
Defining
) 1
M(x’,x";y" ,y") = ~ i &? J s dsJ du exp(—imzsuL
0 )
<x',y'l(2n -H exp(-iHs) (2n - k)ulx",y“>, {A.9)

and using equations (23) and (A.5)-(A.8) we get

00 1

M(x",x";y",y") = -i e? J s dsJ du exp(-imzsu)
0 o

-2eufs

- _ 2eFe (Ax + Ay)

.<x’,y’ lexp(~iHs) A Ax + 5 s (1-0) “.
1
2eF (Ax + Ay) -
A M s | YT (4.10)

where Ax = x(s) - x(0) and Ay = y(s) - y(0).
In order to make the product of quadrivectors which appears in above
equation is necessary to make the time-ordering the operators. For this we

use the follow commutation relations

18

vy
oy sy = 1 [A
[x (0),x (s)] = -i [e F] .

vy
[y“(o).y"(s]] = - [—QF] ,

[y“m).x"(s)]

[x“(o).y"(s)]

where D = A + 2 (1-u) e F s.

In this

form, after to reali

expectation values, we obtain

Mix', x";y",y")

Then,

w© 1

= - e° [ s dsJ du exp(-imasu) ax

(o} 0

e

ze the products

2ekF
A

and

(A.11)

(A.12)

(A.13)

(A.14)

calculate the

1

*3s (l-u)] ax +

Ay2

<x’,y’ lexp(-iHs)|x",y">.

We know that the amplitude <p—”m> obeys the equation

i g <exp(-iHs)> = <exp(-iHs) H>

as

using once more (A.7) and (A.8) we reach

QW

S

- In <exp(-iHs)> = u Ax [

20

.
18° (1-u)

)

(A.15)

(A.16)



S22 (axe ay)® (A.17)
s 4 s% (1-u)
In this form
" e F 172
<exp(-iHs)> = C s DetL§ﬁﬁﬂ3?ﬁ§7]

2
i - (Ax + Ay)
exp - g {Ax [e F coth(euPs)] Ax + o s (A.18)
Here we have introduced a factor eF in the determinant to reestablish the
correct limit when F 0. In this case

-1
<e 't

2 2
_ C -i Ax -1 Ay
P exp {4 (1-u) u s} eXp {4 (1-u) s}‘ (4.19)

Using equation (17) we get
c=(am™ (1-w* (A.20)

Now, if we want to reproduce the matrix element defined in equation (4)

we must to make Ay = O in (A.18). So,

] 1
2
M(x',x") = e J s dSJ du exp (-im°us)
4
(4nm)

0 0

(1-w* W? s

e Fus 2eF 1 2 i
Det [gzn“nta-m] {A" [‘T‘ vz u‘:ﬁ] e iTgs

21

+ 21 Tr [e F coth(e F u s)]}.

2
exp - % {Ax [e F coth(eFus)]Ax + TT:%§—§}’ (A.21)

which is the same 1result obtained via path integral technique.
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