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Abstract 

Using the noncompact SO(2, 1)-SU(l, 1) Lie algebra we obtain the 

Schwinger-DeWitt kernels of spin 1/2 fields propagating in the classical 

background gravitational fields of" the Bianchi type-l models .1h(' method 

makes use of the Schwi nger'-De\oli \t pl'oper" ti me represent <It i on and a 

Baker-Campbell-Hausdorff for·mula. 
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I. Introduction 

In a previous paper [1) we evaluated the Schwinger-DeWitt kernels for 

massive spin ~  fields propagating in some spatially flat Robertson-Walker 
2 

universes. The main featul'e of these models is that they are conformally 

static, in another words in the m~ 1 imi t the sol utlons can be conformally 

mapped to the flat space ones. General homogeneus anisotropic models do not 

share this pr·operty. The anisotropy should give rise to particle creation 

which, as has been suggested hy 7.el'dovich [2], might react back on its 

source to reduce the effect - i.e. to isotropize the models. This could 

account for the present high degree of isotropy of the universe. 

For most of these models we only know perturbative results (3), but 

for some particular cases there ar"e exact solutions, mainly for the scalar 

field. In the follOWing we obtain some exact results for Dirac particles in 

the background of Bianchi type I models 

The procedure explained below is a variant of the Schwinger-DeWitt 

method, that makes use of the Schwinger representation [41 and the Lie 

algebra of the SO(Z.l)-SU(l.ll gr'oup lSI. This method has been applied to 

the relativistic Coulomb problem by Mil'shtein and Strakhovenko [6] . to 

numerous problems of non relativistic quantum mechanics by Boschi-Filho and 

Vaidya (7) and recently by us to the scalar and spinor fields propagating 

in cosmological backgrounds [8] [11. In the next section we set up the basic 

machinery necessary fOI' the study of fermionlc fields in curved space-time. 
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II. BASIC EQUATIONS Using this representation for g~V  we have for the curved space Dirac 

matrices: 

The generally covariant propagator for a "fr'ee" massive spin field 

satisfies the equation [3) (h=c=l) ~~(x)=lj(xha  

a (5) 

04(X-X') (1)[11~(X)[a~  - r~(x)J - m]SIX.x. J 
Fg 

We shall use the following representation for the r" [9]: 

where r~(x)  are the curved space Dirac matrices that verify the 

antlcommutation rule 

o _ 

(2) r =r0- 0 _ 0 (6)[ 

00 

1'=-1,=[ :, :'J{r~(x).rv(x)}=2g~V(x)  . 

where g~V  is the spacetime metric. The quantity r that appears in (1) 
~  

Is the spinor affine connection given by (3) 

where ~  are the Pauli matrices. 
I 

1 vr (x) - (r (x)" (x) J (3) 
~  8 v i~ 

where the semicolon denotes the vector' covariant derivat ive. 

To find an expression for the ~~(x)  in terms ~f  its flat space 

counterparts rex ( hereafter the indices fl'om the beginning of the Greek 

alphabet transform by the local Lorentz group) let us write the metric g~"  

using the Vierbein V~(x)  (3) and the Minkowski melr'ie 1/"(3 

" 

g~V (X)=V~( X)V~(  x hla 
(3. (4 ) 
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III. THE MODELS The r~(t)  and r (tl therefore read 
~  

- P I I -P 2 -I 32 2 3rO(t) "1 ° )ICt) t "1 r ( t 1 t 1 1 (t) t 1 (9a) 

Let us now imagIne that our fields are propagating on the classIcal 

background of lInearly expanding Bianchi Type-I universes [10J. The metr!cs 

of these cosmological models are of the form P -I p -I 
f = 0 • f = r - 1 t 2t I 1 

O I PI 1 0 "1 1 2- 2 P2 '10 '1 2 f = 2 1 1 (9b)
3 0 3 

2p 21' 

g It)= d i ag I 1• - t 1 - t 2 - t 2 ) (7)� 
J.lIJ� 

Due to the translational invariance In the spatial sector, we can 

write S(x,x') as 

O~t<oo 

~ ~ ~ 

where PI and P2 are constant parameters equal to 1 or O. The case PI=P2=1 1 3 -I k. 1)( -x')sex. x· ) e Sk (t, t' ) (IO) 
C2rr)3 

Jd k 
Is the linearly expanding, spatIally flat, Robertson-Yalker universe that 

has been studied in our previous paper [1 J. Both this model as well the 

anisotropic model with P =l, P2=O have a curvature singularity at t=O. The 
I 

Inserting (10) in (1) we have that Sklt,t') verIfies 
case Pl=P2=O cOYTesponds to thp uef(ellPJ'ate KaSllPY' univcy'sP. tlmt is flal 

and sIngularity free. 

-P -I' 2 -I ° ]]
I "/0 - it I 1\ - it 2 1 k - it r 3k + 2!- I p + p + 1 1 - m SIt, t' )

[ [ o I 2 3 t 12k� 

The above metrics can be described by th~  YicJ'bcin yOlt):� 
~  

-(p +p +1) 

p p t 1 2 !Slt-t') 
O l 2 3 

V y t I v t 2 v (8 ) 
o I ;; 3 

(11) 
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In order to deal wi th a second order equat 10n, let us wri te 51< (t. t' ) 

as we apply a kind of foldy-Youlhuysen transformation (9) to (13). for the 

operator that maps (15) to a diagonal form we take the Ansatz 

1 -P2 2 -1 3 1° ]]
0 -PI +mG(t,t');rk-it ;rk-il;rk+ 

2t 
(p+p+l) 

I<S(t,t')=ila-lt 
2 3 12

k [ [ 0 1 

;r'''p.;..a rak
(12) e cos/fela + a sin/l\:la (16)

111:1 

SUbstituting (12) in (11) we have 
With a a parameter' to be determined by 

1 1 2 l"k 0
+ pz+ 1)+ 4(P + Pz+ 1) + • 2 ] o " ] -raj( U

2 t 0 1 e{ a~ + (p
1

+ p + 1 ) ! a + ~ 2 [-
2(P

1 " [~, ) r 1(" e " 
t 2 rO r"1(

a 
cos 2jkjU + ~ 1°/1\:/ sin 2111:1 0

t 2 

(17 )� 

-11+p +p)� 

+ -
i 

'1
0 

'1" I\: + (l-p ) k2 
+ (1 -p )k 2+ m2] G (t, t . ) -t 12 0 (t_t')� 

t 2 " 1 1 Z 3 k� 

To make the above expression diagonal we choose� 

( 13) n
8= (18)

41 k l 

where I\: is the vector 

Yith this choice, the transformed Green function 

f,; ::: k1\:1== P k 
1 

fez= p/
2 ( 14)1 J 3� 

r"l\: 0�
G (t t' -) "I{ 0

Cklt.t')= e " k • J e .. (19 ) 

to get rid of the non-diagonal term of (13) 

~ 1
0 

l"k ( 15)�
Z�

t " 
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I V. EVALUATI ON OF THE KERNELS 
can be wri ten as 

c:(t,t')O _ 0 ] + to thIs end we use theWe are now ready to evaluate G~(t,t')G (t, t' ) (20)� 
k o G (t, t' ) 0� 

k Schwinger-De~itt  proper time representation for G±(t,t') (3J
k 

+ 
and G:tt, t') verifies 

2 2
-iIT± + ll-p )k2

+ (l-p )k + m 1s -(hp +p ) 
+ ell I 2 3 o{t-t') t t 2

C:(x, x' ) -i JdS 
o 

82 + (p + p + I)! a + .!. [- .!.{ p + p + 1) + ! r r + p + 1) 2 + k 2 ± ilk I ] (23) 
o I 2 t 0 t2 2 I? 4 I 2

{ 

be imposed in the above expression, byBoundary conditions must-11.1'·1') 
2 -t 12 o(t_t')(l-p )k (l-p )k 

2 
+ m2 } G:' t. t' I integration in the complex s plane. This1 I 2 3 choosing a convenient path of 

problem is related to the definition of the vacuum state in curved 

(;>1 ) which is not uniquc. For spin ~  fields there are numerousspace-ti me 13 J • 2 

attempts in the liter-ature to define the vacuum state, for some results see
Collecting the t dependent ter'ms of tile above differ'cntial equation in 

+ [1111121.1n this paper our' intention is to evaluate the kernel of (23)
the operators T~  . equation (21) can be r'ecast to a more compact form 

leaving the question of the s integration untouched. 

Our task now is to find the action of the exponential in (23) on the 

- I I." .1' ) 
delta function. This can be rlorw using the algebr'aic method (tIP].+ 2 2 ,,] + -I J 2 CI( t -t' )r + (l-p)k + (l-p)k + m' crt,t')� 

[� J 1 1 2 3 k 

(22 ) 

to q 



First we note that along with the operators Expanding both sides of the above formula and identifying the 

coefficients we have: 

T = - ~ [l a +!( p + p
2 

+ 2)] (24)
2 2 l 2 1 

a =ip( l-ipc/2)-1 b =2Ln( l-ipc/2) C =c(I-ipc/Z)-1 ( 29)
1 1 1

T=-!t 2 (25)
3 8 

+ 
verify the commutation relations of the 50(2,1)-5U(I.1)

the operators T~ 

\ole need also the action of expl-ibT
2 

] Oil arbitrary functions of t • 

Lie algebra generators (5). 
which can be obtained by a simple Taylor expansion: 

+ +
[ T~ , T2) =- iT~ lT , T J=-iT [T:! T )::::-iT (26)

2 3 3 l' 3 2 -~(p .p, ·2lb -b/2)
expl-ibT~If(l) e 4 I.! f( te (30) 

To find the action of the exponential of this linear operator on the� 

Foc' <5( t-t') we take the followi fig c'epc'csenta( ion;� 
that can be

delta function, we make use of the follOWing BCH formula, 

obtained by use of a fai thful representation of 50(2,1 I-SUI I, 1) constructed 

wIth the Pauli matrices u (7): 
• I <Xl • I <Xl1 

~((2_t' 2) 

) = 2hJ dlJ e 2 
1 J -~t' 2 -4lJT 

<5 ( t - t ' tP t ' 1- P 2liT dlJ e 2 e 3 t Pt,l-p 

u -iu -ilJ 0- +ilJ 

T±= _1__2 T :::: ~ T = _1_ ~ (27) 
- 100 - I 00 

2 2 :l 2/2
1 212 

(31 ) 

in the where p is a parameter chosen to make T± tP=O. 
the Bel-! formula we use the above represent at ion 1To obtain 

following equation 

P 2
1

j IAI - ~(Pl + IJ;,) (32) 

+ +�
exp(-icT~) exp(pT

3 
) exp(-iaIT3)exP(-jLlr~)exPI-iCIT;) (28 )� 
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\� 
+ 

+ (23) and (35) we obtain the C-'s as 
on ,'S( l-t . ) WI' use t llf' aboveTo find the action of exp[-lcT;J k 

representation and formulae (28) and (30): 

1 2 2 
-(p +p ) -i[(}-p 1k 2 + (}_p )k + m )5 

(tt,)2 l 2 ell 2 3 
G±(X, x') x-2 ds 

exp(-icT±) exp(-4~T  )tP 2(1+210-c) (1+210-c1 2 I 2 t 
exp{~2  } . -p_:(p +p P (33) 

J 5+2) k 

1 3 o 

exp{- 4~ll2'l'2l}  }v± [i~']25 

with this result we have 

II ±= -
} 

+ 
- ilk I (36)

2 
+ \ (]) 

+ t,l-P t P exp _=.~2 ~  ,2} • I-P-;;/I' +1' +2)�
-IcT~ olt-V) 2 ( 1+2 I o-c ) 2t ( 1+2 1 o-c ) ~ I 2�e --~ fctu { where I I z) is the modified type Besse I funct ion obtained by

v 
-I (]) 

analytic continuation of the ordinary Bessel function: 

(34) 

I (z)=(-i1 v 
J (iz) (37)

v IJ 

Expanding the exponential in t and Integrat ing in 0- we get 

Now ,using formulae (19) . (12) and (to) we regain Slx,x') in a form 

useful for the calculation of effective actions, expectatIon values, etc . 

+ 1 • :(1' +1' +21 {. } •(-iJ II :t+ (~) 2 1 2 exp _ .---2.(t 2 +t,2) J (-~~) e -IcT~ a( l-t' ) t 4c lJ ± 2c2C The above ['esul t resembles the one found by Charach [toJ In his paper 

on scalar fields propagating in the Bianchi Type-I models background, where 

he utilized the Schwinger-De~itt  representation and path Integral 
v±= 2

1 
+ i IA! (35) 

techniques to obtain the scalar field kernels. 

where Jv(zl is the type I Bessel funelion [13J. 

14 
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•� 

V.CONCLUSIONS 

Using a BCH formula and the 50(2, I)-SU(I, 1) Lie algebra, avoiding the 

need of solving differential equations, we evaluated the exact kernels of 

the Schwinger-De Witt representation fur Dirac particles in the background 

of the Bianchi Type-I models. It may be noted that the addi tion theorem for 

the Bessel functions [9) may be used to separate the s-inlegration in (36) 

which can be done once a path of integration in the complex s-plane has 

been specified. This allows also the deduction of normal ized wave 

functions. This procedure has been used in non-relativistic problems 

where the ie prescription works [5]. 

In our case it is not clear what boundar':,' cunditions should be used. 

In any case since the subsequent steps do not really invol ve algebraic 

techniques, we have not considered the question of s-integralion. 

Acknowledgement: This work is partially supported by CNPq (Conselho 

Nacional de Desenvolvimento Cientifico e Tecnologico) ,BI~asi  1. 
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