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Abstract

Using the noncompact SO0(2,1)~SU(1,1) Lie algebra we obtain the
Schwinger-DeWitt kernels of spin 1/2 fields propagating in the classical
background gravitational fields of the Bianchi type-1 models .The method
makes use of the Schwinger-DeWitt proper time representation and a

Baker-Campbel 1-Hausdorff formula.
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I. Introduction

In a previous paper [1] we evaluated the Schwinger-DeWitt kernels for
massive spin % fields propagating in some spatially flat Robertson-Walker
universes. The main feature of these models is that they are conformally
static, in another words in the m»0 limit the solutions can be conformally
mapped to the flat space ones. General homogeneus anisotropic models do not
share this property. The anisotropy should give rise to particle creation
which, as has been suggested by Zel’'dovich [2], might react back on its
source to reduce the effect - i.e. to isotropize the models. This could
account for the present high degree of isotropy of the universe.

For most of these models we only know perturbative results [3], but
for some particular cases there are exact solutions , mainly for the scalar
field. In the following we obtain some exact results for Dirac particles in
the background of Bianchi type I models .

The procedure explained below is a variant of the Schwinger-DeWitt
method , that makes use of the Schwinger representation [4] and the Lie
algebra of the S0(2,1)~SU(1,1) group [5]. This method has been applied to
the relativistic Coulomb problem by Mil’shtein and Strakhovenko [6] , to
numerous problems of non relativistic quantum mechanics by Boschi-Filho and
Vaidya [7] and recently by us to the scalar and spinor fields propagating
in cosmological backgrounds [8][1]. In the next section we set up the basic

machinery necessary for the study of fermionic fields in curved space-time.
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II. BASIC EQUATIONS Using this representation for g“” we have for the curved space Dirac
matrices:
The generally covariant propagator for a "free" massive spin % field

satisfies the equation [3] (h=c=1) x“(x)=V“(x) « (5)
[ LA

17" (x) 8, - r, 6o - nlstxx) = 2 st xex") (1)

We shall use the following representation for the ;a [9]):

where yu(x) are the curved space Dirac matrices that verify the

anticommutation rule

(2) o ! (6)

(M), 7 (xr=2g" (%) |

v

where g is the spacetime metric. The quantity F“ that appears in (1)

is the spinor affine connection given by [3]
where o are the Pauli matrices.

r = 5 (¥ (x0.0,(00 | (3)

where the semicolon denotes the vector covariant derivative.

To find an expression for the 3“(x) in terms of 1its flat space
counterparts 7“ ( hereafter the indices from the beginning of the Greek
alphabet transform by the local Lorentz group) let us write the metric g“"

using the Vierbein Vﬁ(x) [3] and the Minkowski metric ”aﬁ

[y _yH v of3
g (x)—Va(x)VB(x)n . (4)



II11. THE MODELS

Let us now imagine that our flields are propagating on the classical
background of linearly expanding Bianchi Type-1 universes [10]. The metrics

of these cosmological models are of the form

2p 2, 2
guU(L)= diag(1,-t -t L= t7) (7)

where P, and p, are constant parameters equal to 1 or 0. The case pl=p2=1
is the linearly expanding , spatially flat, Robertson-Walker universe that
has been studied in our previous paper [1]. Both this model as well the
anisotropic model with p1=1, p2=0 have a curvature singularity at t=0. The
case p‘=p2=0 corresponds to the degenerate Kasner universe, that is flat

and singularity free.

The above metrics can be described by the Vierbein V;j(t,):

The 7“(t) and T“(t) therefore read

o 1 P P -t
v =27 L ao =t A=t H, ) =t (9a)
p. -1 p_-1
_ _1 1 1 2 1
r=o, =< pt == = -
[ 2N To¥y rz 2 pzL [P ra 3 %% (sb)
Due to the translational invariance in the spatial sector , we can
write S(x,x') as
1 3 n_: (—) i
Sx,x') = —— | d%k e g (1) (10)
(2n)° k
Inserting (10) in (1) we have that Sk(t,t') verifies
-p -p -1 o
.l.o 11 22 . 3 7
i a - it k - - -— - ') =
¥, ¥k it 3k2 1tak3# 5T (p1* p* 1) mSk(t.t ) =
=(p_+p_+1)
t % s(t-tn)
(11)



In order to deal with a second order equation, let us write Sk(t.t )
we apply a kind of Foldy-Wouthuysen transformation (8] to (13). For the
as

operator that maps (15) to a diagonal form we take the Ansatz

-p -p -1 o ,
] 11 2 .2 _ . 3 T G (t,t")
Sk(t,t' )=lily ao_ it ¥ k1— it 7 l(2 it ¥ ka* 5t (p1¢ pzv 1) +m k(

7"& [¢] 77k
(12) e 2 = cos|k|e + 2 sin|k|e (18)
Substituting (12) in (11) we have With 8 a parameter to be determined by
a a
2 ko (. -y kO .
2 1 S D PR *]),1(¢p+1)‘+k2 RS o . a i 0 a, i o .
ao + (p‘+ Pt 1)E 80’ L2 2(1»’1 P, ‘Pt P, e ;2 37 ka e = ;2 2 3k cos 2|k|o + ;2 ¥ |k| sin 2]k|e
(17)
—(loplopzl
el g0y kv (1mp 00 4 (o kE e G L) =t s(1-t')
2
t @ To make the above expression diagonal we choose :
(13) o= —= (18)
alk|
where k is the vector
With this choice, the transformed Green function
k= pk, : k= pk, k=K (14) 7
. ko -7°k 0
C(t,t’)= e * G(t,t7)e ° (19)
k k
to get rid of the non-diagonal term of (13)
i o0 _a, (15)
;2 Tk



can be writen as

C:(t.t')u 0

Gk(t.t’) = (20)

0 G(t,t')n
k

and C:(&.t' ) verifies

2 1 1 1 1 2 2
ao + (p’+ p,* ”F 60* ;2 - i(p]+ Pt 1)+ E(p1+ P, 1%+ &k ° % i|k|

2 2 2 + S(1ep ep)
+ (1-p Ik + (1-pak% + m? Lchee,tr) = -t S(t-t")
1 2’ 3 K

(21)

Collecting the t dependent terms of the above differential equation in

+
the operators T; , equation (21) can be recast to a more compact form

~(1ep +p )

- +
+ (l—p!)kf + (1-p2)k§ L [ CSRRR I PP at-t)

b4
T
1

(22)

IV. EVALUATION OF THE KERNELS

+
We are now ready to evaluate G;(t,t') , to this end we use the

.
Schwinger-DeWitt proper time representation for G;(t.t') [3]

p -ith + (1-p )kz + (1-p )k2 + mzls -(1+p_+p_)
_II 1 171 2 "3 172

+
G;(x.x') = ds e S(t-t’) t

o

(23)

Boundary conditions must be imposed in the above expression, by
choosing a convenient path of integration in the complex s plane. This
problem is related to the definition of the vacuum state in curved
space-time [3], which is not unique. For spin % fields there are numerous
attempts in the literature to define the vacuum state, for some results see
[111{12).In this paper our intention is to evaluate the kernel of (23)

leaving the question of the s integration untouched.

Our task now is Lo find the action of the exponential in (23) on the

delta function. This can be done using the algebraic method [1}[7].
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First we note that along with the operators Expanding both sides of the above formula and identifying the
coefficients we have:

_ i 1 p
T, = E[Lal + 2(pl+ P, a)] (24)

a1=ip(l—ipc/2)_l b =2Ln(1-ipc/2) C1=c(l—ipc/2)_1 (29)
t (25)

the operators Tt verify the commutation relations of the S0(2,1)~SU(1,1)
1 We need also the action of exp[-ij2] on arbitrary functions of t ,

Lie algebra generators [5]. .
which can be obtuined by a simple Taylor expansion:

* * (T..T)=-iT (15,7 1=-iT (26) )
(T T,)=-1T0 20y gt -

3 P *p, *2)b

expl=ibT If(t) = e ¥ pe®?) (30)

To find the action of the exponential of this linear operator on the
For &(t-t’) we take the following represcntation :

delta function, we make use of the following BCH formula, that can be

obtained by use of a faithful representation of S0(2,1)~SU(1,1) constructed

with the Pauli matrices o [7}: +im L ‘i N
i E(t" L) ' i - gt"‘ «401‘3 i
S(t-t' )= Pre do e tPe P = é?rri')[ do e e tPy 1P
o -io -io o tio
+ » . -10 ~-fo
T;= : . sz - T'i: — 2
2v2 2 2v2 (31)
. . where p is a parameter chosen to make Tt tP=0.
To obtain the BCH formula we use the above representation in the
following equation
1 _
=g Ak - dp ) (32)

+ +
exp(—icT;) exp(pTa) = exp(—ialTa)exp(-ibl1“))exp(—ic1T1) (28)



]
+
To find the action of exp[-icT;] on &(t-t’) we use the above
representation and formulae (28) and (30):
2 p L 2)
—p-=(p +p_+
ot (1+2i0c) 2 ' % P (33)

+ -
. - P .9
exp( ich) exp( 40T3)t eXP{57{+3100]

with this result we have

+1 1
4 J1-p P 2 —p-—{p_+p_+2)
~icT oy b t - ot _ o2 . 2712
e 1 8(t-t7) = s [ do exp 5117210¢) Zt (1+2ioc)
-1
(34)
Expanding the exponential in t and integrating in o we get
-teT -Vt Fpynye i,2.,.2 Lt
e 1 8(t-t’) = ey t (f) expq - ZE({ +t° ") Ju+(>57 )
1 _ .
v,= 5 ¥ K] (35)

where Ju(z) is the type 1 Bessel function [13].

(23) and (35) we obtain the Ci's as :
k

1 ® . 2 2 2
L ) - - -
5P, P x{(lpl)kl*(lpz)k3+m]s

+
+ oy oo ety e
Gk(x,x ) > ds z x

Q

exp{- Eé(tzot'z) Iv i%é'

T ik| (36)

where lu(z) is the modified type 1 Bessel function obtained by

analytic continuation of the ordinary Bessel function:
N .
lp(z)=(—1) Ju(lz) (37)

Now ,using formulae (18) , (12) and (10) we regain S(x,x') in a form

useful for the calculation of effective actions, expectation values , etc.

The above result resembles the one found by Charach [10] in his paper
on scalar fields propagating in the Bianchi Type-1 models background, where
he utilized the Schwinger-DeWitt representation and path integral

techniques to obtain the scalar field kernels.
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V. CONCLUSIONS

Using a BCH formula and the SO(2,1)~SU(1,1) Lie algebra , avoiding the
need of solving differential equations, we evaluated the exact kernels of
the Schwinger-De Witt representation for Dirac particles in the background
of the Bianchi Type-I models. It may be noted that the addition theorem for
the Bessel functions [9] may be used to separate the s-integration in (38)
which can be done once a path of integration in the complex s-plane has
been specified. This allows also the deduction of normalized wave
functions. This procedure has been used in non-relativistic problems ,
where the i€ prescription works [5].

In our case it is not clear what boundary conditions should be used.
In any case since the subsequent steps do not really involve algebraic

techniques, we have not considered the question of s-integration
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