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Abstract

Using the non-compact SO0(2,1) Lie algebra we obtained the kernels of
the conformally coupled, massive scalar field, in some classical background

gravitational fields. The method makes use of the Schwinger proper time

representation and Baker-Campbell-Hausdorff formulae.
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I. Introductio

In the last years there has been a growing interest in the study of
quantum systems described by Hamiltonians linear in the generators of some
non-compact Lie algebra, to which one could apply algebraic techniques to
obtain the energy spectrum and eigenfunctions. For these systems one could
choose a representation together with a complete set of states and a
convenient pseudo-rotation, or "tilting”, is performed on the Hamiltonian
through a non-compact generator of the group, so that the resulting
Hamiltonian is diagonal on the chosen states. This procedure gives the

spectrum and the eigenstates of the system [1].

An alternative approach is to write the Schwinger [2] representation
for the resolvent of the system and use a Baker-Campbell-Hausdorff (BCH)
formula to disentangle the exponential that involves the linear combination
of the generators of the Lie Algebra. This method has been applied to the
relativistic Coulomb problem , that has a SO(2,1) spectrum generating group
{1] ,by Mil’shtein and Strakhovenko [3] and to numerous problems of non
relativistic quantum mechanics by Boschi-Filho and Vaidya [41[5]. In the
case of relativistic systems, Boschi-Filho and Vaidya [6] utilized the
Perelomov S0(2,1) coherent states to study the Klein-Gordon Coulomb

problem.



In this paper we use the SO(2,1) spectrum gencrating Lie algebra and
BCH formulae to evaluate the kernels of the 3+1D conformally coupled scalar
field , propagating in some classical background gravitational fields. The

Schwinger representation in this case is |7] (h=c=1):

@

s ix-x") . (1)

G(x,x') = —i[ds expl-i(a + IR + md)s) R
IB 6 ﬁ

o]

Where g=detg““ , R is the Ricci scalar curvature and ALB is the

Laplace-Beltrami operator,
=15 (vg g"a ) (2)

The coupling to R is included here both to study the conformally
invariant equation (m=0), and because analogous terms appear in the
equations used to generate higher spin Green functions [7].

For some particular forms of g““ one cun find a convenient separation
of variables for the operator (ALB' éR + m2) and identify the generators of

the S0(2,1) group. In the next section we explain the algebraic method

by calculating G(x,x') for some cosmological buckgrounds.

I1.Some Examples

a)Radiation dominated universe

As our first example we consider the case described by the line
element

ds?': dtz - t(dxzédyz*dzz] (3)

With this choice we have a Robertson-Walker radiation dominated
spacetime , with spatially flat sections [8) and zero scalar curvature. To
solve this problem more easily we write (3) using the conformal time n=vZ2t

[3]:
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ds“= i (dn"-dx“-dy“-dz“) (4)
0=x9n<w
bue to the tranclotione!  invaciance in the spatial wector of (4) we

decompose G(x,x') as

k(- R

o . ] ( 3
Gle.x' ) = N P , -
d ke Gk(n.n ) (5)



and Gk(n.n') satisfies

o 202 48(n-n")
8%2+2a +xF+ L0 G n0' )= - — 5 (&)
n mm 4 b n

We see that the above equation resembles the radial wave equation of

P . e . oo
the harmonic oscilator ol non relativistic quantum mechanics, with zer

angular momentum

To proceed with our calculation we note that the above expression can

be written as

2 s 48(n-7n") (7
(T -2mT_1G (n,0") = - ————
1 3 k »
n
where
i v 2 (8)
I - [}
rx an * n (n
1 (9)
T3= - g n

(10)

satisfy the commutation relations of the S0(2,1) Lie algebra generators

(1]

(TI,T2]=-iT’ ' (T2.T3]=—1T3 . [Tl,T3]=-iT2 (11)

In terms of these operators the Schwinger representation (1) takes the

form

o©

= =
n

R 2 2 R
Gk(n,n') = —ijds élS(I)_zm Ta+ k®) s(n-n') (12)
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Our task now is to find the action of the exponential of this linear
combination of operators on the delta function. To do this we use the
following two BCH formulas , that can be obtained by use of a faithful

representation of SO(2,1) constructed with the Pauli matrices o, [4]):

U,—iﬂh -i03 ¢1+102
T1= D Tz= - r3= (13)
ovE 2 2v2

To obtain the BTH formulae we use the above representation in the

following equations

exp[-l(g‘T1+ gSTw‘s] = expl-iaT ) exp(—ibTE) exp(-ich) (14)

exp(-icT‘) exp(ij) = exp’~in’rwlexp(-1b112)exp(—1rlTl) (15)



Expanding both sides of the above formulac and identifying the

coefficients we have:

. -3
a=2§ tgl(€s) b=2l.nicos(€s)] o= E‘(g(is)
'

g=tg g s2)'"? (16)
173
- -1
a1=ip(1—lpc/2) ! bl=2Ln(1-ipc/2) .= cl1-ipcr/2)
We need also the action of exp[—iszl on arbitrary functions of 7 ,
which can be obtained by a simple Taylor expansion:

% -b
exp[—lezlf(n] =e 4 flne) (17)

Let us write the Laplace transform of 8(n-y’)

+§00 2 2 +io
o) 0,2

' 'y - 1 , .2 _ 1 . .
S(n-9') = zTinc'ue —én-ildlrne e 3
“ftw —‘Iaa

(18)

To find the action of exp[—ichl on 3(n-n') we use the above

representation and the result obtained from formulae (15) and (17)

2
exp(~icT ) exp(-4oT = L N e
p .} expl 401310 exp (T+1205) (1+120¢) (19)
with this result we have
+4i00 2 2
~icT 3 L |
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Expanding the exponential in 1 and integrating in o we get
< 2
e sun') =V Gyt e L) m'
Toemose = — > ~ 5 Y
”.2 dc ! ¢ J1/2 2c (21
where ,l“(zi i the typ | Bussel tunction [9].



Using equs. (14) and (17) we obtain the Green function as

“ —1?(n2+n'2)coth(ms)

2
2im J -isk e -
G (n,n")= ds e —_— I 5= r—,]
x sinh(ms) 1/2 2sinh(ms)

m
[

(22)

where Iv(z) is the modified type-1 Bessel function obtained by
analytic continuation of the ordinary Bessel function:

I (z)=(-1)" J (iz) (23)
v [

The above integral representation do agree with the one found by Peak
and Inomata [10] for the radial harmonic oscillator with 1=0 . A similar
calculation was done by Duru and Unal through path integrals [11}, but for
an extended manifold with -w<n<+w , that is why their result is somewhat

different of ours.

b) Bianchi type-I universes.

Let us imagine now that our flelds are propagating on the classical
background of linearly expanding Bianchi Type-1 universes [12}.The metrics

of these cosmological models are of the form

2 I D i
ds“= dt " t"dx - t dy - t dz (24)

where p] and p? are constant parameters equal to 1 or 0. The case p‘=p2=l is
the linearly expanding , spatially flat. Rcbertson-Walker universe. Both
this model as well the anisotropic model with p1=1, p2=0 have a curvature
singularity at t=0. The case p1=p2=0 corresponds to the degenerate Kasner
universe, that is flat and singularity free.

As in the previous model we have translational invariance in the
spatial sector. this means that we can decompose G(x.x') as in (5). The

function Gk(t,t') therefore satisfies:

2 1 i 2 1 F 1 2 2. 7 )
8 +(l+p+p ) 8 + -k "+ = k4 - k+m+ = |G(t,t")
t pl p2 t (t t2 x t2(:)1 y t2p2 z tz k
= PP s (-t (25)
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where 7y is a constant determined by p]and P, :

(P]Pz“Pl"Pz
yo= 12t 2

3

we can identify in (25) the generator T!

2 1 1 2 2 oz
at +(1*p]+p2) t 6‘ + Zz(kx wplky*pzkz*y)
For this generator we have
S PR TP 1 oa ol y?
T,=73 9.~ 3'2*p,*p,) ’ gt

In this case we proceed as in the previous example,

modified representation for the delta function:

We have chosen this representation in order Lo have

exponential, and p is a parameter chosen to make Tltp-_u.

but

1

(26)

(27)

(28)

with a

(29)

in

the

By the same steps of the previous example we obtain:

” 2 L tPee®
i L -(p_+p )/2 Tisu e4s 1tt’)
Gk[t,t, )= —2(“ ) 1z ds e z Iv(_ﬁ
0

_ 1 2,2 2 2 1/2
where 1= éilpl+p2) 4(kx *plky*pzkzw)]

(30)

2 2 2 B 2
and = m T+ (1 p‘)l\y +(1 pz)kz

The above results agree with previous calculations utilizing path

integrals [12] and the Schwinger-DeWitt proper time method [13].

The connection of the above Green functions with the Feynman

propagator must be discussed for each particular form of guu , a

convenient path of integration must be chosen in the complex s plane for

each cane. Forr a discussion of thiu kind see Buchbinder et al [7], where
some of the moacls treated in this paper are discussed.
12



III. Conclusion

In this paper we obtained the Green functions of the conformally
coupled scalar field , propagating in the classical background of some
model universes. The method utilized here, is an adaptation of Lie
algebraic techniques applied before to the relativistic Coulomb problem and

to many other problems of ordinary quantum mechanics.
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