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Abstract 

Using the non-compact 50(2,1) Lie algebra we obtained the kernels of 

the conformally coupled, massive scalar field, in some classical background 

gravitational fields. lbe method makes use of the Srhwinger proper time 

representation and Baker-Campbell-Hausdorff formulae. 
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I. Introduclio 

In the last years there has been a growing interest in the study of 

quantum systems describpd t,y Hamiltonians linear in t.he generators of some 

non-compact Lie algebr'a, to which one could apply algebraic techniques to 

obtain the enerry spectrum and eigenfunctions. For these systems one could 

choose a r'epr"esenlation '':1p,('f.her wi th a complete set of states l'lnd a 

convenient pseudo-rolation, or "tilting", is performed on the Hamiltonian 

through a non-compact gerwrator' of the group. so that the resul t ing 

Ilami ltonil'ln is diagonal on thp chosen st.ates. I"his pl'ocedure gives the 

spectrum and the eigenstates of the system [1 I. 

An alternative approach is to write the Schwinger (2] representation 

for the resolvent of the system and use a Baker-Campbell-Hausdorff (BCH) 

formula to disentangle the exponential that involves the linear combination 

of the generators of the Lie Algebra. This method has been applied to the 

relativistic Coulomb problem, that has a SO(2.1) spectrum generating group 

[1] ,by Hi I' shteln and Strakhovenko [3] and to numerous problems of non 

relativistic quantum mechanics by Boschi-Filho and Vaidya (4)[5]. In the 

case of relativistic systems, Boschi-Filho and Vaidya [6] utilized the 

Perelomov 50(2,1) coherent states to study the Klein-Gordon Coulomb 

problem. 
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In this paper we use the 50(2.1) spectrum generating Lie algebra and 

BCH formulae to evaluate the kernels of the 3+ 10 conformally coupled scalar 

field, propagating In some classical background gravitational fields. The 

Schwinger repr'esentatiull in tillS case is 17] 1!l'-'cc:lJ: 

Q) 

G(x. x' ) -i JdS exp[-i(lI + ~R 

LB 6 
+ m 2 )sl ~  v:g ,s4(X-X') (I) 

o 

Where g=detg/l R is the Ricci scalar' cUl'vature and tJ. is the 
ll LB 

Laplace-Beltrami operator, 

tJ. 
1 a [vCg g/l\Ja I (2) 

LB fl IJV:g 

The coupl ing to R is included here both to stUdy the conformally 

invariant equation (m=Ol, and oecause all,dogous lerms ,Jpl,ear in lhe 

equations used to generate higher spin Gl'cen functions [7] 

For some particular' forms of gill' one can find a l~onv,-,nlelll  sep'IC'at iU!1 

of variables for the operator (b. + ~R  + m2 
) and ident i fy the generators of 

LU 6 

the 50(2,1) gr'oup. III the ne:<t sect ion \.Je e:":ld,J!n the algebraic method 

by calculating G(x,x' ) ["ClI' ~,UlTle  cosmological l;"ckgl'olllldS. 

II. Some Examples 

a)Radiat ion dominated lJniv~l·se.  

As all[' f i r'st exampl (: \ole consider' the case descl'j bed by the lIne 

element 

ds
2= dl 2 

- t(dx2+dy2+dz2) (3) 

o :s t < OJ 

\-lith this choice Wi> have a Hobertson-\-Ialker' radiation dominated 

spacetime with spatially flat sections [81 and zero scalar curvature.To 

solve this pl'ohlem more easily we write (3) using the conformal time l)=v'2t 

[3] : 

2 
2 1) 2 2 2 2

ds = i (dij -dx -dy -dz ) (4) 

o 7J < 00 

[Jilt: t,) II,.; 1l"'IL.. lid lOII,,1 1!1\',ll'],1IICt: ill the spati,tl ~t.:ClOI'  of (4) we 

decompose C(x,x') as 

1 -3k i k' (x - ;t.) G ( • ) l;( ;', x' I , d . ~ k ~.1) (5)
(2nl 

J I 
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and Gk(~'~')  satisfies 

2 (6)8 2 -+ ~ (I + k 2 + m ",!2 ]G (1) 1)')- _ 40(1)-1)')� 
1) ~11 4 k'  1)' 2

[ 

We see that the above equat ion resemblp<~  the J'adial wave equal ion of 

\.Ii lh Z<"r'Oof non relativist if' quanlum r,,['chanic~;,harmonic asci lalf)J'the 

angular momentum 

r:allTo proceed wilh 0\11' calculation Wf' noll' Ih:Jt tho ab0ve expr'pssioJl 

be written as 

_ 4o(1I-l)'~ (7)
[T -2m2r IG (1),1)') ,2I 3 1) 

where 

(8)= a ' t 2 aT 1]1 11 11 

2 (D) 
T = - ! TI 

3 8 

The above operators, along with 

( 10) 

T = - !(1)~ +
2 2 q 

5 

satisfy the commutation relations of the SO(2, 1) Lie algebra generators 

(t] 

[T1,T 1=-iT I T , T 1=-11 , IT., T 1=-iT (11)
2 1 2 3 3 3 2 

In terms pf lhese operntors lhe Schwinger r€presenlation (1) takes the 

form 

-islT -2m
2
T -+ k

2
) o( 1)-l}' ) ( 12)

G (1), II' ) e 1 3 
k ,2-iJrlS 

11 
(l 

Our task now is to find the action of the exponential of this linear 

combination of operators on the delta function, To do this we use the 

following twel Bell formula? , that can be obtained by use of a faithful 

representation of 50(2,1) conslructed with the Pauli matrices VI (4): 

O' - i<' -iv IT +iv 
I ~T = T = ~ T = _1_ 2 

(13) 
1 2 3

~:/:; 2 212 

To obtain lhe n-:H for-muJ<le we use the above representation in the 

folloWing equations 

expl-i(gIT • g3 T ,1 5 ) €Xf'(-iaT) exp(-ibT ) exp(-icT ) (14) 
1 l ~  1 

exp(-icT ) exp(pT) exp/-ialT~lexp(-ibl1~)exp(-iclTl  ) ( 15) 
1 J 
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Expanding both sides of the above formulae and identlfying the� To find the actioll of' exp[-icT ] on 0(11-11') we usel� the above 

coefficients we have: representation and the result obtained from formulae (15) and (17) 

c= gla=2S: tg(t;s) b-=2Llll cos (I;S ) 1 . (tgll;s)� 
gl� 

exp( _. ic\ ) cxp( -40-T ) 0 exp __ ITT)� 
3 (1 + i20-c 2 rJ (1+i20"c) -3/2 (19){ 

~=(g  g 12)1/2 ( 16)� 
1 3� 

with this result we have� 
a =ip(1-ipC/2)-l b =2Ln(l-ipc/2) c = C(I-ipC/2)-l� 

1 1� 1 

+ 100 2 ,2
-ieT ~-ITT)J  exp [2(I+i20-c) 2 e 1 bll/-1/' ) 

We need also the action of exp[-ibT ) on arbitrary functions of 1j , 
2nr/I'I do- (20) 

2 ( 1+ i20-c) 3/2 

-100 
which can be obtained by a simple Taylor expansion: 

-~b  -b
exp[-ibT )f(1,) e 4 f(lIe)� ( 17)

2 

Expanding the exponential in 11 and integrating in 0- we get 

Let us wri te the Laplace tr'ansform of O(lI-lj' ) 

i, '). , 
. _ __ (1/+ ,/' 2) [ ,]L: 1 ~ I II . ~  __ ~ -VI ,-li:~ 4C J 1/1/ 

.2 4c (/)/1) e 1/2 - 2c (21 ) 
'I 

+ 100 2 2 + 10J 
o-(I/-n'� , 0- ,2� 

11� 
1 I ,2� 1 r ~ 2 -40-1O( 1I-1j') = --. do- 11 e = ._--:. dlJ' 11 e e 321fl� 21fl 

- 1 U) - I'" 
whd'(; .J/lL~'  J~,  the Iyr," I Bl::;s/~I t'unction 191. 

( 111 I 
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Using equs. (14) and (17) we obtain the Green function as 

-1~(n2+n·2)coth(ms)-isk2 
2im 

J 
4 i ' _e__ I [~ds eGt(n,n')= vlj7)' 1/2 2sinhlms)sinh(ms) 

o 

(22) 

where Ivlz) is the modified type-} Bessel fllnr:tion obtained by 

analytic continuation of the or'dinar'y Bessel function: 

r (z)=(-i)" J (iz) 
II I' 

12:l) 

The above Integral representat ion do agr'ee wi th the one found by Peak 

and Inomata [10J for the r'adial harmonic oscillator with 1=0 A si mi lar 

calculation was done by Dur'u and Una I through pat h integral s [1 I J, but for 

an extended manifold with -00(7)<+00 , that is why their' result is somewhat 

different of DlIl"S 

b) Bianchi type-! universes. 

Let us imagine now that our fields are propagating on the classical 

background of linearly expanding Bianchi Type-I universes [12). The metrics 

of these cosmological models are of the form 

2p 2p 

ds 2= dt:'" t~dx2- t I dy2_ t 2 dz 2 (24) 

o ~ t < 00 

where P and P;> ,we const.nnt. p;u·amet.ers equal to 1 or O. The case Pl=P2=1 is 
J 

the linearly cxranding <;pat ially flat. Robertson-lJalker universe. Both 

this model as well the anisotropic model with Pl=l, p =O have a curvature 
2 

singular! ty at t=O. The cac;e PI =P2=0 corr'esponds to the degenerate Kasner 

universe, that is flat and singularity free. 

As in the previous model we have translational invariance in the 

spatial sector'. this mean~;  that we can decompose Glx,x') as In (5). The 

function G (t,t') therefore satisfies: 
k 

2[a,' + ( I +P +P ) ! cl + ~ k 2 + _ k 2 k 2+ m + !]G (t,t') 
1 2 t t t 2 x t 2 P y t 2P z t 2 k1 2 

P-t- II 
+ t+ P2)olt-t') (25) 
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where 7 is a constant determined by P1and P 
2 By the sallie steps of the pr'evious example we obtai n: 

we can identify in 

}' 

(2~)  

(P1 P2 
+Pl iPZ) 

- ------
3 

the gem:ralo(' T 
1 

(26) 

. J -iS~2
Gkll,l'l= -~llt')-(PI·P;:I/2  ds e 

o 

-i
4s 

e 
s 

(t
2
+t,2) 

I (!.!..!:') 
II 2s 

a 2 
l 

+( l"'p +p ) 
I 2 

a 
l 

+ 
1 2 2 2 
- (k +p k +p k +3)
t<: x 1'1' 2 z 

(27) wher'c )'= 1 "2-lip +p )~-4(k  

2 12 x 
2 2 1 /2+p k +p k +rl)

1'1' 2z 

For this generator we have 

T =.. ~ ta - ~lz...p +p )
2 2 l 4 I 2 

T "' 
3 

_I 
8 (28) 

ami p~=  m 
2 

+(I_p lk 2 

1 Y 
+(1-p lk 2 

2 z 

(30) 

In 

modified 

this case we pr'oceed as in the pl'evious 

representation I~r  the delta function: 

example, but with a 
The above results agr'ee with previous calculations utilizing 

integrals [12] and the Schwingcr-ne~itt  proper time method 113], 

path 

o( t -t' ) 

+100 

2'~i Jd~ 

- 1 '" 

" 2 
e~(t~-t' ) tP t,l-p 

(29) 

The connection of the above Gr'een functions with the Feynman 

be chosen in the complex s plane for 

propagator' 

convenient 

mllst 

p:1l11 cd' 

be discussed for 

i nlt:gr'ut Ion must 

each particular form of 
g~1lJ  a 

each .:'L,l;. h,,· it disCllSSIOII oj' tLj~.  kind ~;t:e  BuchbindcI' et al 17], where 

some of tllc rt'<'.kl~;  ll'eated ill this p"pel' al'e discussed, 

~e  have chclseIl 

exponential, and p is 

this I'c:ld'esenlal ion 

a p:wumeter chosen tt) 

in lJI'J..,I' to 

mak" T If.-',--(). 
1 

Ilav" In the 

11 
12 



III. Conclusion 

In this paper' we obtained the Green functions of the conformally 

coupled scalar field propagating in the classical background of some 

model universes. The method utilized here, is an adaptation of Lie 

algebraic techniques applied before to the relativistic Coulomb problem and 

to many other' problems of ordinary quantum mechanics. 

Acknowledgement: This work is partially supported by CNPq (Conselho 

Nacional de Desenvolvimento Cientifico e Tecnol6gico) ,Brasi 1. 

References 

[1) - Barut, A.a.. "Dynamical Groups and Generalized Symmetries in Quantum 

Theory" , University of Canterbury, Christchurch, New Zealand, 1972. 

[2J - Schwinger, J., Phys. Hev. ~  (1951) 684 

(3) - Mil'shl.ein, A.1. & Str'akhovenko, V.M., Phys. l.ett. 90A (1982) 447. 

[4J - Boschi-Filhu ,J!. &. Vaidya, A.N .• Ann. of Phys. 212 (1991) 1. 

[5J - Boschi -Fi lho, H., Souza, M. and Vaidya. A. 11. . .J. /'hys A: MClth. Gen. ~1  

(1991) 4981. 

[6J - Boschi-rilho ,H. and Vaidya, A.N., J.Phys A: Math. Gen. 22 (1989) 3223. 

[7) - Birr'eI.N.D. & Davi,,~; .1'.C.W.,"Quantum Fields in Curved Space", 

Cambridge lIni versi ty Press, 1984. 

[8J Hawking, 5.\.1. & Ellis, G.F.R., "The Large Scale Structure of 

Space-Time" , Cambridge Univer'si ly Pr'ess, 1973. 

[9J - Gradshtein, I.S. & I<yzhik, I.M. ,"Table of Integrals, Series and 

Products", Academic Press, N.Y., 1965. 

(10) - Peak. D. and Inomat" ,A., J. Ma.th. Phys. lQ (19691 1422. 

[11] - Duru,I.H. and Unal,N., Phys. Rev. 0 34 (1986) 959. 

[12) - Charach,C. , Phys. Rev. 0 g§ (1982) 3367. 

[13J - Buchbinder' ,1.t., Klrillova ,E.N & Odintsov ,S.D. ,Class. Quantum 

Grav. 1 (1987) 711. 

13 14 




