—ZF- yEET 22 93 —

i

0 11L0 00078

o

INSTITUTO DE  FISI

O
\

IF/UFRJ/92/03 ‘\\W
-

THE SPECTRUM OF AN ANISOTROPIC RING-SHAPED OSCILLATCR VIA
WIGNER-HE ISENBERG ALGEBRAIC TECHNIQUE
R. L. Rodrigues, A. N. Vaidya

and

Tl
av

J. Jayaraman

=9 I = B s:
- o o
b e
Vo JAN/92
'-’ ‘Ci::\ v

TTTTT = '
UNIVERSIDADE FEDERAL DO RIO DE JANERO! 5i | | ’ ] ! ‘
INSTITUTO DE FISICA S | -
Cx P 68528 SRR K
21944 - RI0O DE JANEIRO SEOL o L RS !é
BRASIL BT B oy =
g : oy g —
; o ,w-:,.?', 3 ; , f‘ ! - .,mi:_“mft‘ @)
ol b Ry
SR A A A




THE SPECTRUM OF AN ANISOTROPIC RING-SHAPED OSCILLATOR VIA

WIGNER-HEISENBERG ALGEBRAIC TECHNIQUE

R. L. Rodrigues (Departamento de Ciéncias Exatas e da Natureza,
UFPB, Cajazeiras-PB, 58.900)"
A. N. Vaidya (Instituto de Fisica-UFRJ, Rio de Janeiro, 21.945)

J. Jayaraman (Departamento de Fisica-UFPB, Jo&o Pessoa-PB, 58.000)

The Wigner-Heisenberg technique is applied to the potential
ar? + blrsing)™® + s(rcos®)™ + dr® sin’® + er-cos’® . The
spectral resolution is exactly obtained. The supersymmetric
quantum mechanics algebra is realized in terms of ladder operators

of the Wigner Hamiltonian system for this problem.

PACS Numbers: 03.65. Fd, 03.65 Ge and 11.30. Pb

(*) Present address: Instituto de Fisica, CCHMN, Universidade

Federal do Rio de Janeiro, 21.945-Rio de Janeiro-RJ, Brazll.

Recently, using an algebraic technique related to the S0(2,1)

group Boschi Filho and Vaidya (BFV) showed that the potential

V(r) = ar® + b{rsin®) % + s(cos®) ™2 + dr® sin’® + er-cos’® (1)

possesses S0(2,1) @ SO(2,1) dynamical symmetry [1], and calculated
the Green function, energy spectrum and the wave functions. This
potential has as particular cases the ring-shaped oscillator,
discussed by Quesne [2], and the double ring-shaped oscillator for
which the spectral resolution was obtained by Carpio-Bernido and
Bernido using the path integral technique [3] and the S0(2,1)
algebraic approach [4}.

We will show in this letter that Jayaraman and Rodrigues {(JR)
operator method [5] , which is based on general Wigner-Heisenberg
(WH) oscillator algebra [6-10], can be applied to provide an easy
spectral resolution of the potential (1). It is convenient to use
the circular cylindrical coordinates p , ¢ and z so that the
time-independent 3Schrédinger equation associated to the above

potential becomes

H ylz,p,p) = E ¥lz,p,9) , (2a)
H=H +H , (2b)
1 2
wiz,p,p) = . x(z) R(p) . (3)
n?  8° 1 ) h? .
H = - —+ —Mou 2" S - 1a) (4)
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defined which will be interpreted as annihilation and creation operators.
e
In equation (4) and (5) we have detin
From the algebra of Pauli matrices, 21 (i=1,2,3), and canonical
oMb ) commutation relations between coordinates and momenta, we obtain
1/
(6.a)
v = (‘V‘%* hz ) the following Wigner Hamiltonian
and ' 1 . ~ 1 . R
R=~~—[A,A]wh+—[A.A]wh (8.a)
1 1 1 2 2 2
2 + 2 +
1 8Mc 1/2
= — (14 ) . (6.b)
2
2 h
. and
i erator technique developed by Jayaraman
Following the op o B u=1/2) + K, (v - 1/2) 0
Rodrigues [5], we begin with the super-realized mutually adjoint =
tors 0 Jf“(u - 1/2) + RZ’(u - 1/2)
opera :
) (8.b)
1
+
A:=A'(p+——-)5/ le
1 1 2 /—_/_—‘
2Mhuw
1 where the Hamiltonians of the bosonic and fermionic sectors are
5 h respectively given by
! 7.
x{th——i—(1’2”){3—}4“12]' (7.a)
8z 2z
and K1-(“ - 1/2) = H1 ! (8.2)
1 1 Rz_(u - 1/2) = H2 ! {9.b)
: At(u+___)_=___,_/_——zlx
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Rz’(v ~ys2) = Kz—(v + 1/2)

The WH algebra ladd

given by

where

It easy to see tha

er relations for this supe

t the general quantum commu

A" and A" can be written in the form

(o] 2h e (S
From the annihilation ¢

A

G

(0)

(z,p)

ondition

0

(10.2)

(10.b)

r-realization are

(11)

(12)

tation relation for

(13)

(14.2)

v (0(’2.9)
(o)

¥ (z,p) = . (14.b)

we obtain the energy and eigenfunction of the ground state, viz,

' (z.p) = 1(0‘(2) R“”(pD: 12 pv,( .

0

M 2 2 1
x exp {- [ w 2" +w p ] (15)
2h 0

and

0) _ (0 o
€ =e e = (1 +p)h w + (1+v)h w, - (16)

This value of the ground-state energy is readily obtained with

the following form for the Wigner Hamiltonian:

1
R={A1 A1 + " [1+(1+2u)&]}hw1+

1+ (1+2v) ] } ho . (17)
L S

Once 4”0)(2.p) is determined, the whole set of eigenfunctions can
be built up by means of the two operators A", i=1,2 .

Now, we consider the complete resolution of the even quantum



eigenvalue problem associated with the Wigner Hamiltonian, which
has as bosonic sector which corresponds exataly to the anisotropic

shaped oscillator Hamiltonian. The eigenvalue equation

ring-
(2m_,2m_) (2m ,2m ) (2m ,2m )
x e VZg=e V2w 2 (z.p) (18)
can be solved to give
v Clz,p)
(2ml.2n ) (2m ) (A )(2-12) (19)
v (z,p) « (A1 ) o
and
(2m_,2m_) (0)
e V2 =c +2mho +2mho, . m = 0.1,2,... (20)

Substituting in (18) the creation operators given by (7.a,b), and

the ground-state wave function deduced before , we get

(21)

where

(m],m ) (nl) (mz) (u + 1/2)
") (z,p) = (z) R (p) « z x
()]s
x exp | - z L z P <
2h ™ h
sz 2 v sz 2
x exp [ - —=p ]l - [ P ] , (22)
' 2h 2 h

which are exactly the z and p dependent eigenfunction of the
anisotropic ring-shaped oscillator. From (3), (16) and (20) we

obtain the complete energy spectrum of this system, viz,

(ml,mz) (m ,m_ )

E =c_ 2oz {1+ u o+ 2ml)ul + (1 +v + 2m2)w2)h . (23)

Calling wBFV the normalized eigenfunction obtained in ref.[1] we

have the relation

BFY

We have applied the WH algebraic techniqué developed by JR
[S) for simpler spectral resolution of the anisotropic ring-shaped

oscillator. We have obtained the complete energy spectrum and



unormalized eigenfunctions, which are identical to those obtained
by BFV [1], up to multiplicative factor which is the normalization
constant. Since the Witten construction of supersymmetric quantum
mechanics (SUSYQM) formalism [11] one has seen several
applications of it as an operator technique for the spectral
resolution of non-relativistic quantum systems [12], and as well
as to a relativistic eigenvalue problem [13]. The factorization of
the Wigner Hamiltonian (17) provides us a formulation of
supersymmetry (SusY) for the anisotropic ring-shaped oscillator.
Here we will only present the realization of SUSYQM algebra by
corresponding generators in terms of ladder operators of the

Wigner system

. [ 1- L] A, (24.2)

and

Q = [1 + L] Al‘ (i=1,2) . (24.b)
2

From (12), (13), (17) and (24.ab) it is trivial to check that the

super-charges satisfy the following relations,

2
= s (25)
Hsusv Zl [ Qi—' Q“ ]+

2 _ 2 _ _
[ Q;t , Hsusv ]_- Q =Q =0, (i=1,2).
which constitute the SUSYQM algebra.
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