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Abstract

We show how the extension of the Faddeev-Jackiw sympletic quantization (includ-
ing true constraints) can be used to superspace. We first deal with supersymmetric free
field theory in the component language. After that, we consider the method aplied to
superfields, taken as canonical variables. We also use the formalism, directly in superfield

formulation, to the supersymmetric nonlinear sigma model.
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1. Introduction

The consistent treatment of constrained systems was given by Dirac a long time ago {1].
The Dirac method is a Hamiltonian formalism where the goal is to find out generalized
Poisson brackets (Dirac brackets) which are the bridge to quantum commutators (after
problems with ordering operators have been solved) [2].

In a more recent work, Faddeev and Jackiw (FJ) [3] have shown how to obtain the
Dirac brackets for some systems in a geometric approach, based on sympletic structures [4}.
This was achieved for systems which are constrained in the Dirac formalism but are not
in the geometric point of view. As examples we mention the Dirac spinors [5] and selfdual
fields in two space-time dimensions [3,6,7].

Unfortunatelly, a great part of the constrained systems is also constrained in the
geometric formalism (we shall call these constraints true constraints). For this kind of
system, direct use of the elegant method proposed by Faddeev and Jackiw cannot be
made. Of course, a natural way to circumvent this problem is to try to eliminate the
superfluous degrees of freedom by means of the true constraints and, after that, to use the
FJ approach. Incidentally we mention that this procedure was followed in a recent work
by Kulshreshtha and Miiller-Kirsten [8] to deal with FJ quantization in superspace.

In a recent couple of papers, one of us and a collaborator {9] have proposed a way of
consistently extending the FJ approach for systems where true constraints are involved [10].
The main results of these works are here summarized in Sec. 2.

The purposc of the present paper is to use the ideas introduced in the works of
reference [9] for superfields. First we deal with supersymmetric field theory in a two-
dimensional space-time for free fields. In Sec. 3 we work with component fields. This
is done to muster conidence toward the results that shall be obtained in Scc. 4, where
superfields are directly considered as canonical variables. We shall see that it is not possible
to consistently obtain the sympletic matrix in the superfield language. This is so because
the presence of Grassmannian variables makes the corresponding matrix singular. However,
as was pointed out in our work mentioned in ref. [10], the brackets can be consistently

obtained by just considering part of the inverse of the (singular) matrix. In Sec. 5 we
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directly in superfield language, the supersymmetric noulinear sigma model.  We leave
Sec. 6 for some concluding remarks. We also include an appendix with some details of the

calculations.

2. Sympletic formalism

Let us consider a dynarnical system evolving in a phase space and described by the
canonical set of variables {¢;, p;) (¢ =1,...,N) (). If these variables are not constrained,

they satisfy the fundamental Poisson brackets, namely

{qh ’1]} =0= {pi, P}} )
{ai. i) = 6. (2.1)

Considering that the brackets of some quantity, defined in the phase space, (g, p), with
anything satisfies the relation
o4 04

{A(q,p)w-}:a—m{qi,---}+%{p.,~-}, (2.2)

and using the fundamental brackets (2.1), one can write the usual Poisson bracket relation

involving two arbitrary quantities, say A(p,q) and B(p, q), as

94 aB 04 B
{A(g,p), B(p,g)} = M {4, a5} £ + £ {¢:- ps} an,
04 6B 04 aB

+ % {pi, flj} a—‘h + O—p, {r, 1’;} a

_0ion o108 o
a(li 0}’1 0])1 0(11

(*) In this section, for the sake of simplicity, we only deal with bosonic coordinates. The
extrapolation for fermionic ones and fields can be done in a straightforward way. as we are

going to see in the next sections.

just one set of 2N generalized coordinates which we denote by y* (« = 1,--+,2N), in

such a way that

v =q,
vV =pi. (2.4)

Now, the fundamental Poisson brackets simply read

{y*, P} = e*, (2.5)

where the antisymmetric tensor €*# is given by the matrix

)-(5 4). =

and I is the N x N identity matrix. The inverse of this matrix, (€q3), defines the sympletic
tensor [4] characteristic of this unconstrained system. It is easily seen that the Poisson
bracket involving two arbitrary quantities A(y), B(y) can be directly obtained in terms of

the tensor €®?. This is given by

_04 . 3y 9B
{A(y). B(y)} = W {ZI v Y }ayB’
04 9B
=0 = 27
© By ayB .

The advantage of this notation is that it permits us to directly write the general form

of the brackets in the case where constraints are involved. These are given by

v, v} = 1*°(). (2.8)

im @ oint to be emphasized is that the tensor is nonsingular. Its inverse
The ortant ttol ph d is that the t af lar. It S

is the sympletic tensor corresponding to the considered constrained system. We mention
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that the sympletic tensor can be used as a metric (sympletic metric) that raises and lowers
indices in the sympletic manifold.

As is well-known, the conventional way to reach the expression (2.8) for a constrained
system is to make use of the Dirac formalism [1,2], where constraints are classified as
primary, secondary, tertiary etc., or first and second-class. Also. coustraints can be weak
and strong.

The FJ formalism deals with first-order Lagrangians. It is opportune to mention that
this is not a serious restriction because all systems we known, described by quadratical
Lagrangians, can always be set in the first-order formulation. This is achieved by extending
the configuration space with the introduction of auxiliary fields. These are usually the
momenta, but this is not necessary [9,10].

Let us consider a system described by a first-order Lagrangian like

L =a4(y)y* - V(y), (29)

where y° is a set of 2N coordinates. y**" can be the momenta or other auxiliary quantities
{or may even not exist) in order to render the Lagrangian the first-order condition. From

the expression above, the Euler-Lagrange equation of motion reads

fas ¥’ =0V, (2.10)

where 9, = 9/0y" and

anZaaaﬁ_aﬁao~ (2.11)

If det ( fos) # 0. one can solve (2.10) for the velocities y°, i.c.

§° = feP a1, (2.12)

where £ is the inverse of fo3. This is the sympletic tensor reported earlier and, in fact,
one can show that f®2 are the Dirac bracket between the coordinates y<, y? [5.7].
An interesting and instructive point occurs when the quantity fo3 is singular. In

this case one cannot identify it as the sumpletic tensor and. consequently, the brackets

5

structure of the theory cannot be consistently defined. This means that the system, even
in the FJ approach, has constraints. One way to solve this problem is to follow the old and
standard Dirac formalism. However, this can also be achieved by working in a geometric
manner. In this case, we use the constraints to conveniently deform the singular tensor
quantity in order to obtain another tensor that may not be singular. If this occurs, this
new quantity can be identified as the sympletic tensor of the theory. Let us briefly review
the developments of the sympletic method when there are true constraints involved [9,10}

Let us denote the above mentioned singular quantity by fi‘;}, and let us suppose that
is has, say, M (A < 2N) zero modes v = 1,---, M. From equation (2.10), it is easy

to see that

9o,V =0. (2.13)

This may be a constraint. Let us suppose that this actually occurs (we shall discuss the
opposite case soon). Usually, constraints can be introduced in the potential part of the
Lagrangian by means of Lagrange multipliers. Here, in order to get a deformation in the
tensor f;(:,; we introduce them instead into the kinectic part. This is done by taking the
time-derivative of the constraint and also by using some Lagrange multiplier to introduce
them in the Lagrangian (*).

These Lagrange multipliers, which we denote by A, enlarge the configuration space

of the theory. This permit us to identify new vectors a,s,” and a(,,p as

all = o 4 A0 g QO

m m

aV=0. (2.14)

m

R (0) . . P .
where Q,,," are the constraints obtained from (2.13). In consequence, one can now introduce

the tensor quantities

(*) It is well-known that constraints satisfy the conststency condition of not evolving in
time, that is to say, if £ is a constraint we have that §2 is also a constraint. Another point

is that one could, instead. take the time derivative of the Lagrange multiplier.
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(1) (1)
fag = Duag - 9pall),
fh =00 al) = 0nal = -0 all),

) = O ) = 0,0l =0, (2.15)

mn

where 8,, = 8/0\". 1If det f' # 0, where f{!) is a matrix which also involves the
Lagrange multipliers, then we have succeeded in eliminating the constraints. If not, one
should repeat the procedure above as many timmes as necessary.

It may also occur that we arrive at a point where we still obtain a singular matrix
and the corresponding zero modes do not lead to any new constraint. This is the case,
for example, of gauge theories. At this point, if we want to define the sympletic tensor,
we have to introduce some gauge condition. For details, see reference [9]. In the case of
superfields taken as canonical variables, a new fact appears. We shall see that we find a
tensor that is singular (and there is no gauge freedom to be fixed). This occurs in virtue of
the Grassmannian degrees of freedom of the superspace formulation. This means that it is
not possible to consistently define de sympletic matrix in this case. However, we shall see
that it is possible to obtain part of the inverse and this is precisely the bracket structure

of the theory. Further details shall be reported in the examples.

3. N=1, D=2 supersymmetry

Let us consider the following supersymmetric Lagrangian density for frec massless

fields

L=~-D¢D?, (3.1)

o=

where ¢ is a real scalar superficld whose gencral form is (+)

(*) The convention and notation we use throughout this paper is [¥*.7"]4 = 29" 147" =

1
P14 s 0% = 't = — 1% =9 = 0,4 = (_01 (1]) 7= (? 0):75 =%

etc.

-]

®(z,0) = ¢(z) + iBy(z) + %50}7(.:). (3.2)

Here, ¢ is a real field; 8, 1 are Majorana spinors and F is an auxiliary field. The covariant

derivatives D, and D, are defined by

aJ -
= oo+ ilBr)a s (33)

In this section we shall work with component fields. Using (3.2) and (3.3), we obtain

from (3.1) that the Lagrangian density in components reads

1 1
L= —30,60" + 5 bPu + 5 F*. (34)

In order to use the sympletic formalism, we transform this Lagrangian to the first-order

notation. This is achieved by extending the configuration space as

1 1.. 1
5 0,60"¢ =5 ¢ — 545'45',
1 .1,
— = ;p2 + po — 3¢'¢ , (3.5)

where ¢' = 0y¢. Here, the auxiliary quantity p is the momentum conjugate to ¢. Intro-

ducing this result into (3.4}, we get

£ = op + %zlvd’ +V(e,p, ¥, F), (3.6)

where

D SR VUM 1,
i =§P +§¢¢—§W“/51,/"—§F~ (3.7)
The relative position of the velocities in (3.6) is due to the adopting of the left-derivative

convention for fermionic fields. The Lagrangian density (3.6) permits us to identify
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=,
af,o) = q,

aff} = %u

df’ =0. (3.8)

The nonvanishing elements of the matrix f(°) are

_bay(a') _ dag(x)
T 6é(x) Sp(z')y

fodiz,aty =~ Saglr’) _baple) _ s oy (3.9)

—§(r — '),

for (a2

The quantities above, considered to be at o = xy = t, are the natural extension of the
coordinate case that we have seen in Sec. 2. In the case of fyy, both signs are equal in
virtue of its fermionic nature and are negative in virtue of the left-derivative convention.

Thus the general form of the matrix (% is

o = §(x — 1'), (3.10)

oOC = O
(=]
ocCc oo

where the elements of rows and columns follow the order ¢, p, ¥, F.

This matrix is obviously singular. This means that the theory described by the La-
grangian (3.6) is constrained in the FJ formalism (there are true constraints). We shall
see that this constraint is related to the equation of motion of the auxiliary field. It is
opportune to mention that there are no constraints related to the fields 12, and p. as would
occur in the Dirac formalism.

From the matrix (3.10), one immediately obtains the following zero-mode

(3.11)

and a contraint may be obtained from

s I} ' _
/d.’tm /d.T I/(I ,f) —0, (3.12)

which is the generalization for fields of expression (2.13). Considering (3.7), we obtain the

well-known auxiliary field constraint of supersymmetric theories, namely

F=0. (3.13)

Following the procedure mentioned in Sec. 2, we now take the time derivative of this
constraint and introduce the result into the previous Lagrangian by means of a Lagrange

multiplier A. The result is

£ = dpt s+ FA- V. (3.14)

The Lagrangian (3.14) permits us to identify the quantities

ui)” =p,

o =0,

o =Ly,

u',,l) =,

u‘/\“ =0, (3.15)

and besides (3.9) we have the following nonvanishing element

o bap(a')  Sax(x)
It = = = R

=§x—1x"). (3.16)
The matrix £ then reads (the elements follow the order ¢, p, ¥, F, )

0 -1 0 0 0
1 0 0 0 0

fM=10 0 - 0 0 |éax-2"). (3.17)
0 0 0 0 -1
0 0 0 1 0
10



This matrix is not singular. This means that there are no more constraints. We can thus

identify f(!) as the sympletic matrix of the theory. Its inverse reads

0 10 0 0

. -1 00 0 0
M =10 0 : 0 0] éaz-2"), (3.18)

0 00 0 1

0 00 -1 0

and considering (2.8) we immediately identify the nonvanishing brackets

{#(x). d(a")} = 8(x — 1'),
{v(2), v(a")} = ié(a ~ 1),
{F(x), Aa")} = 6(x —2'). (3.19)

In terms of the original fields of the theory, we just have

{$(z), d(z")} = b(x —2'),
{#(2), v(a")} = ib(x - 2'). (3.20)

These are the same brackets which we would have obtained if the Dirac formalism had
been used. We mentiou that the bracket involving F and A is not a Dirac one (this would

be zero). It just appears to render the matrix ) the condition of nonsingularity.

4. Using superfields as coordinates

Let us now work in the superfield language by directly using the Lagrangian (3.1).
Considering the expressions of the covariant derivatives. we rewrite (3.1) as
S0P . 1000 . 0%

1, .. .
L= 50008 i85 &4 5= o0 —ifhs 59

In order to have a first-order Lagrangian, we linearize the first term of the equation above

¢ - ééeqﬂqﬂ. (4.1)

by setting

11

1 oo . 1
5009¢ — ee(m - §rm) . (4.2)

It is opportune to mention that here I is not the momentum conjugate to ®. The first-

order Lagrangian then reads

_ _0d\ .
0y _ — 16— -V
@ = (bom ’oae)q’ V(8,11), (4.3)
where
10909 . 99 1.
P l 0 [ FY . .
520 _09+'75_09¢ +209(<I><I> + 1) (4.4)
From the Lagrangian above one identifies
) _ & .~ 0P
ag’ =601 -6 2
af)) =0. (4.5)

The nonvanishing elements of the matrix f(® are directly calculated

) gr 4 (0) .

_;‘2(9,:5;9',.1") — 6“() (GwI ) _ 600 (611)’
586(6,7)  60(6.a")

=4168'§(r — '),

sa(0',2')  6ai(8,1)
(0) ] n 9 P 3

0 29 o = _

an(f. 301 = e T (@)

=—060'0' (x — z'). (4.6)

The matrix f% reads

41600 —660'¢'
9= o Sl —2'). (4.7)
496'¢' 0

This matrix is singular. It is easy to see that there are two zero-modes

12



vgo) = (000) s véﬂ) = (300) ’ (4.8)

where b is some constant spinor. To calculate the corresponding constraints, we proceed

I 0
as usual. Considering vg ) we have

8
2 209'V =
/d9906¢(x’0/d9l =0,
i 4.9
= o= 49

This in components is nothing more than the equation of motion for the auxiliary field.

0) .
The use of 1'(2 ' gives

s
29 16 S de V=
/da 6H(1,9)/d9 0,

— 0=0. (4.10)

As one observes, the second zero-mode does not lead to any constraint, it just gives an
identity.

The next step is to introduce the constraint (4.9) into the kinectic part of the La-
grangian (4.3). Here. we choose to take the time derivative of the Lagrange multiplier.

The new Lagrangian £ then reads

.-(?(I’) . o?

— —— A1 4.11
0%56) %" 2605 21 ! (4.11)

£V = (9o -
Now, besides (4.6) we also have
a2,y 6a(x,6)

§A(z,0)  6%(z'.0") "
= -4 8(z—1'). (4.12)

| ‘f\]‘;(z, 6:0'0) =

The matrix f( is

13

4106’ -806'0' 4
fO = | 668'¢ 0 0 é(z—2). (4-13)
-4 0 o

This matrix is again singular. The corresponding zero-mode is

0
o =1c6 |, (4.19)
0

where ¢ is another constant spinor. One can easily see that the use of this eigenvector in
the expression (2.13) just leads to the identity 0 = 0. No more constraints can be obtained
in this way. On the other hand, since this is not a gauge theory there are no constraints
arising by gauge-fixing.  This means that the sympletic tensor cannot be consistently
defined when we work in the superfield language. Incidentally we mention that this is not
a particular problem of the FJ formulation. In the case of the Dirac treatment we also have
problems when we try to obtain the inverse of the matrix formed by the Poisson brackets
of constraints. For details of the use of the Dirac formalism with superfields, see references
(11,12,13].

The way of circumventing this problem was given in [10}, and we briefly review it here.

We first mention that the inverse of f'!) would have to satisfy the relation

/[/lu‘..u' FO 02 ) FOT 0 0 = 60— 0") 6l — '), (4.15)

. ey ey .. -1,
The impossibility of obtaining f11" is because some terms of §2(6 — ") cannot be gen-
erated. What we have to do is to calculate a matrix, which we call f, in order to generate
the maximui possible number of terms of 6%(8 — 8"). To do this, we consider that the

matrix f has the folloxing general form

] 4 B C
f=|-B D EJ|. (4.16)
-¢C -E F

where Blr.6:0'.0") = B(a'.8':2.0) ete. We thus obtain the equations

14



/(F()’ (4i06' A + 600'6' B — 4C) = §2(6 — 8"),
/(129' (4i68' B + 606'¢' D — 4E) = 0,

/429' (4i66' C + 008’0’ E + 4F = 0,

/ d%6'666'¢' A =0,

/dzo' 606'6' B = 69,

/ £26' 3669 C = 0.

/M'A:().
/d“ﬁ'B:o,

/(129' C= —Eé"e", (4.17)
whose solution is easy to obtain and the matrix f reads
06 1 —1660'¢'
flx.0;2',0") = -1 0 0 S(x —a'). (4.18)

Lase'e' 0 0

This matrix permits us to identify the following nonvanishing brackets

{@(x,8), B(a',8")} = 166" 6(x — 2'),
{Q'(.T,H)‘ H(:v',ﬁ')} = §(x —1"),

{‘I’(.zgﬁ). ‘\(.1".9')} = —}199@'0’ Sa—a'y. (+.19)

If one writes these brackets in components one obrains the same results of the previous

section.

5. Supersymmetric nonlinear sigma-model

The main purpose of this section is to check the ideas presented before in a more
subtle system. Let us then consider the supersymmetric O(N) nonlinear o-model in 1 + 1

spacetime dimensions. The Lagrangian density for this theory reads

1. 1 i
L= —EDQ‘D<I>'+ 5;\(@'@' -1), (5.1)

where 1 = 1,-- -, N is the index related to the O(N) symmetry group.
In this section we shall directly work in the superfield language. Using the same

development to obtain (4.3), we get

) 5B .
~(0) _ 1 _ a7 1 2
c (aen i0 OB)CD V(®,11,A). (5.2)
Here, V is given by
., 109 0% o 00, Lo iy iy A i
V=3 55 g 0oy @+ 5 00(e"e +HH)—§(<I> ¢ -1).  (53)
From the Lagrangian (5.2) one identifies
. . ~ 1
a" = goTr ne%,
a(,;”' =0.
a"=0. (5.4)

The elements of the matrix f(°) are obtained as before and we have

4i00'6  —068'9'67 0
£ = | 608'6'6% 0 0| 8z —2'). (5.5)
0 0 0

This matrix has three zero-modes whicl are

c'96 0 0
w(90). o (we). wofo). o
0 0 1



The use of the eigenvector v}"" into (2.13) gives

/dW@f)% /d’H’V:O,

— /d’-’ﬂﬂ&(@i quw') =0,

2608
62‘1" _ 624): ;
= 5608 % (5655~ A')] = 0.
= ik A(0)®'(0) =0 (5.7)
0606 T '

The use of v,(zo" leads to the identity 0 = 0 and it is easily scen that vgo)' gives the

characteristic constraint of the nonlinear ¢-nodel theory, namely

P —1=0. (5.8)

Introducing both constraints (5.7) and (5.8) into the kinectic part of the Lagrangian (5.2)

we get

n ,-aq‘ - 3 azé'
(1) _ ' ' t 1 -
L4 = (HGH 160 26 +nd ) '+ ( 907 A(0)D (0)) -V, (5.9)

From the Lagrangian above we obtain

af,,”' =do1m —i(;ai—&—r;d)',

08
a(n”'=0<
af\”=0,
a’ =0,
a’.’q)x

(1) 1 -

=——-A(MD . .10
W= s — AMOP0) (5.10)

The matrix ), whose rows and columns are displaved in the order @, I1, 1, p. .\, is given

by

4100'6% —-066'0'6'7  —diE2(0—6') (4—00A)8T 0 \
860'9'51 0 0 0 0
fO = | @026 -8 0 0 0 0 | éz—2).
(—4 + 66A)% 0 0 0 6'0'd!
0 0 0 -08%’
(5.11)
The only zero-mode which may lead to a new constraint is
0
¢l
s = _gg | . (5.12)
0
0
Using this eigenvector in the equation (2.13) we get
(0)I(0)=0. (5.13)

We now incorporate this constraint into the kinectic part of the Lagrangian (5.9) by

means of a Lagrange multiplier (. The result is

£ :(9’0 I — i@ %I;: + ,,qy') o 4+ (% - A(O)‘P'(O)) P

+ @ OIT0)¢ — V. (5.14)

Identifying the new quantities a*?). we construct the matrix f*) (whose order of elements

is ¢, 11, 0, po AL Q)
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4i90' 5% —068'0'8'7 36O -6') (4—66M)6Y 0 BeIl’

666'0'5 0 0 0 0 869
[\ B (H —-#) 0 0 0 0 4}

f(2) =
(—4 4 09\ )69 0 0 0 ge'd 0
0 0 0 —06%7 0 0
—0'60' 11V —6'6' @’ 0 0 0 0
Sz - 2'). (5.15)

This matrix is again singular. However. one can verify that its zero-modes do not lead to
any new constraint. Following the same procedure of the previous section we also construct
a matrix f which gives the maximum number of the elements of §2(6 — ') (see appendix

for details). The clements of f permit us to identify the following nonvanishing brackets

(@'(x.6), BI('.0)}) = ‘[99 (8" — 34(0)8°(0))
1 %' , 09 o
5(090 S 10~ 066 a—b(()))}m ).

+
{#'(2,0), V(2" 6')} = [ (?)(6"—(I"((J)fl)’(()j)+9L<I>( )] Sz — '),
)= (

06
0 .
{(I)'(J'.ﬁ)‘ nia'. 6 060'8' 60% 00—1(9 88—~ H’)) PO b(xr — 2')
{@'(2,6), p(2'.6")} = 999 4’ ( 69— ‘I"(D)‘b}(ﬂ)) o —a'y,
o%' 00’

i I g =(—af J (0 !
{II'(2,6), TP (2", 6")} _.( O(0)IY(0) + 7 (0)T'(0) + i — 20 06 )5( 'y,
o) = , 0! L

{H(r(i),q fy) = (2 % + EOI(0)) 6 — '),

{Ca ). 1" 6} = — 06" D'(0) 8w — o).

{11(1 By, (a0} =41 68" o0 ~ 2').

{/\(1 8), nla', )} =4 —-u"),

{(16] nia' 9'} 600'8" 5(r — '),

{A(x,8), p'( 9')} =— 06D'(0)o(xr — ). (5.16)

19

In terms of the initial field ®*, we just have

{®'(2,60). &'12",0')} =i [99 (67 - 30)87(0)
l (")d‘n' ' a‘b "
+3 (090E¢'(U) 000’ = q)m))]o(f—z ),
0 {32, 0). D)) =00 (14 T) (69 - '(0)97(0)) §(z — 2'). (5.17)

Here also, if we write the brackets above in components we will obtain the usual brackets

of the supersymmetric nonlinear sigma-model theory.

6. Conclusion

we have used the extension of the Faddecv-Jackiw sympletic formalism to superspace.
First we have considered a supersymmetric field theory in a two dimensional space-time
for free fields, both in components and in superfield formulations. In this last case, we
have seen that it is not possible to define a sympletic matrix because the final matrix is
singular. We have shown that the brackets can be consistently obtained by just considering
part of the singular matrix. Finally, we have studied the supersymmetric nonlinear sigma-
model directly in superfield formulation and the results are also in agreement with those

in compouents. by using the Dirac formalism.
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Appendix

. . -1
Due to the presence of the fermionic variables 8y, it is not possible to obtain f?)

which would have to satisfy the relation



]d’a'd.r' fO(r.0:2'.0) fD 7' (2,0 2",0") = 6%(8 — 6")8(z — ') (A1)

As was done in Sec. 4, we consider instead of f®@'

maximum possible number of terms of §2(6 —

a matrix f in order to generate the

6"). We consider that f has the form

A% gk ) piv EIOF2
-B* G¢* H DP* oy R
. -ct -H* [ M N O
f = _ij _l)k “MJ P]k QJ R’ 5 (.42)
-E* -0 -N Q" s T
-F* -K* -0 -R* -T U

where rows and columns follow the same order of f(?). Introducing this matrix in the place

of f ™" and using the arguments given above we obtain the following sets of equations

/(129' (4199' A% 1 600'0'B* + 6%(0 — ') 3'(8)CF — (4 — 69A(0))D™

7 n'(O)E") = 6820 — 9") (4.3q)
/(ﬂe' (47'90'3" 060'6'G™ + 6%(9 — 8') &' (0)H* — (4 — BOA(0))[™

— 6 n'(O)y) =0 (4.3b)
fd‘-'e' (4;’99'(" —B00'0'H' — 620 —6') D (0) L — (4 — 66.A(0)) AL

7 1'['(0)(_)) = (4.3¢)
/dzé)’ (4:09’1)“‘ — 098'6' ' — §2(0 — §') B (B)M* + (4 — BA(0)) P

— 66 n'(U)g") = (A.3d)
/(Fe’ (4;99’5' — 0666 — o3 (8 — 0') D (BN + (4 — 86.10))Q"

- een'(mz) =0 (4.3¢)

/d”ﬂ' (4i09'F‘ —060'¢' K — 62(6 — 6') &'(8) O + (4 — BOA(0)) '

+ 9911"(0)U) =0

24 (w g A% g9 (U)F‘)
& e’(eaaa'u" 86 ®*(0)1 ) 66 6

d*¢' (606'9' C* — 68 d(

~—
Il

d*d' (606'0' E* — 66 &1(0)T

\\\.\.\.\

(6 00) =0

& ( 06'6' D™ — 60 &'(0)R*
( )
(

a4’ (666'¢' F' - 90@'(())[’):

@1(0) A*6.6")=0
®(0)B’*(6.68") =0
DI(B)CI(H.6") = 67(6—8")
®(6) DN(6.8") =0

(G EN(H.68")=0

DHO)YFIH.0")=0

006 (A0) A — @'(0)EY) ~4.-;"‘] -0

[ ]
/(1 o [H'H' (A0) B — d(0).%) ;w"‘] =0
/(1 o [H B LA0)C — DH0)Y) —4("] —0
/.1 o' H ' (A0) D — 2 (0)QF) - 4Dik] _ sikgrg"
/ W [H’H' (MO)E* — $'(0)S) — 4}:'] =0
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(4.3f)

(Ada)
(A.4b)
(A4c)
(A4d)
(A.de)

(A.4f)

(A.5a)
(A.50)
(A.5¢)
(A.5d)
(A.5e)
(4.5f)

(A.6a)
(A.6h)
(4.6¢)
(A.6d)

(A.6¢)



/d2e' [é'e’ (A(Q)F' - #'(0)T) - 4F'] =0

/d29' 64 ®1(0)D'* =0
/d?e' 86 (0) [’ =0
/d-’é)’ 80 31 (0)M’ =0
/(Fe‘ 86 47 (0)P*F = ¢
/d”f)’ 68 d7(0)Q’ = 69

/d?a' 69 B0’ =0

/d’e' B9 (- (04 + 2/(0)B) = 0
[ oo qwopt s w06t <o
/d“o' FE (IO + 2 (O)H) =0
/M' g0 (IV(0)D* + #(0)P*) =0
/d”ﬁ' #'6' (IV(0)E" +27(0)17) = 0

/11-‘9' 86" (~TI(0)F7 + $(0VKV) = §"8"

A carefull solution of these equations leads to the brackets (5.16).

(A.8a)
(A.8b)
(A.8¢)
(A.8d)
(A.8¢)

(A.8f)

M

10.

11.
. J. Barcelos-Neto, A. Das and W. Scherer. Phys. Rev. D34, 1108 (198G); ML.A.
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