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Abstract

-——————— The diffusion equations of hadrons in the atmosphere are integrated using the semigroup theory.
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The electromagnetic flux is derived from the hadronic fluxes using the approximation A of the
electromagnetic cascade theory.

The integral fluxes of these components can be numerically calculated considering the following
hypothesis:

a) The hadronic interaction mean free path has a power-law dependence on energy \;(E) =
XiE™® (i=n or ).

b) Mixed composition of the primary cosmic radiation. The heavy nuclei are included consid-
ering the superposition model.

c) The nucleon elasticity distribution f(7n) has the form
f(n) = (1 + B)(1 — n)P. Diffractive phenomena, are also included.

Hadron Diffusion Equation:
The diffusion of the nucleonic and mesonic component in the earth atmosphere can be written.

ON(t,E)  N(t,E) L N(t, E/n) dn
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with the boundary conditions
N(0,E) = G(E) (3)
and
M(0,E) =0 (4)

Where A(F) and A\,(F) are the interaction mean free path of nucleons and mesons in the
atmosphere. 7 is the elasticity coefficient of the nucleons in the atmosphere that is distribuited
according to f(7). The fum(x) and fmm(x) are respectively the spectra of the mesons produced
in the nucleon-air nuclei and in the meson-air nuclei interactions and x is the Feynman variable.

In order to solve the diffusion equations Eq.1 and Eq.2 we introduce the operators:

= (-1 [ Fn)dnd)1/NE) )

= (,/(;1 frm(2)dz6a)1/A(E) (6)

and



Bu = (-1 [ fun(2)dotm)1/Am(B) (7)

where

gF(z,E) = (1/n)F(z, E/n), for 72> Tmin > 0 (8)

Provided that A and B; (i=Nor M) are bounded, the solutions of the equations Eq.1 and Eq.2
are:

N(t, E) = e "4N(0, E) 9)

and
M(t,E) = / 'e~t-9Bn B N(z, E)dz (10)

2 Particular Case:

Taking the cosmic ray primary energy spectrum N(0, E) =
NoE~-0+1) and A(E) in the form A\ E~® and A, (E) = wnA(E), with w,, a constant that depends
on the type of mesons “m” the solutions (9) and (10) take the forms:

N ) = 3 SR G 1T - 67 (1)

with
15y = [ flanyridn (12)

and
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(31,2, )T, 8, (3,3 ) (13)
where

By, k) =TT (e7-o47)) 19

with
(gr-etetniny = [  frn (@) g (15)



3 Electromagnetic Component:
The ~-ray production spectrum is given by:

dE'
P(E,, 2) =2 f P (E, k= (16)
The differential electromagnetic flux is:
t [}
F(E,t) = fo dz fE dE, P,(E,, Z)(e,7)(Ey, E;t — Z) (17)

Where the expression (e,v)(E,, E;t — Z) is the electromagnetic component produced by an
incident photon of the primary energy E., (approximation A) (Nishimura, 1967).
The integral electromagnetic intensity is:

Furl2 B,t) = [ F(B,t)dE (18)

4 Diffractive-Type Processes:
The total inelastic cross-section is related as

Oin =0Np +0sp + 0pp ® ONp + OTsD

Where onp, 0sp and opp are the cross-sections for non, single and double diffractive processes,
respectively.

In the high energy region 1Tev < Elab < 1000Tev the ratio osp/0oi, is approximately 0.20
(Goulianos,1987).

The mean value of elasticity in a proton-air collision is

p—air ) —azr
<y >PTer= f,DW < ShE D a"‘“" < >hS
azn mn
The criterium for diffractive process that we used is based on Heisenberg Relation and it results
in the limitation on the mass of driffractive excitated system, M? < 0.1s (s is the squared C.M.
energy). At high energy, 1 — n ~ M?/s and the do/d(M?/s) ~ 1/(M?/s).

5 Discussions and Conclusions:

Figures 1 and 2 show the comparison of our solutions with the integral hadron and electro-
magnetic fluxes, respectively measured at Fuji (650 g/cm?).

We have solved the diffusion equations of cosmic-ray nucleons and mesons analytically using
the semi-group theory and taking into account the rising of the cross-section with the energy in the
general form. The solutions are written in the compact expressions (9) and (10). These solutions
take simplified forms when we assume a power law dependence on energy for the hadron-air
cross-sections and for the primary energy spectrum.

The hadron fluxes at mountain atmospheric depths decrease when we include in our calcula-
tions the rising of the cross-section and the decreasing of the average nucleon elasticity.

Through a comparison with the integral hadron and electromagnetic fluxes at mountain alti-
tudes, we have found that the values of a == (.06 and the average nucleon elasticity coefficient,
< 1 > = 0.37, give a good consistency although a change of distributions and/or parameters on
various elements largely affect the hadronic and electromagnetic fluxes.

The single diffractive contribution in the value of < 77 > is about 3% only. The calculated
hadronic flux with diffractive contribution is about 9.0% greater than the same flux calculated
without diffractive phenomena.
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Figure 1: Integral hadron spectrum at 650 g.cm™ (.fmm[m)- Figure 2: Integral energy of ¢l ic sh
TILDI{:IM lhealcultmdm.lesr <K>=0.5 and 650 gicrr2. The bive lmnpmnts\heulmﬂawdﬂuxfor
dashed line is the same flux for <K>=0.63. Buthﬂuxnmlor <K>=0.5 and the red linc is the same flux for <K>=0.63.
a=0.06. Both fluxes are calculated for a =0.06.
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