
'tV<
 
FERM'LAf 

ICN-UNAM-94-08 
~PR "17· '\S~,5 

DIAS-STP-94-42 

HD-THEP-94-SO 

The Specific Heat of a Ferromagnetic Film 

F. Freire
 

Inst. ftir Theor. Phys., Universitat Heidelberg
 

Philosophenweg 16, 69120 Heidelberg, Germany
 

Denjoe O'Connor
 

DIAS, 10 "Burlington Road, Dublin 4, Ireland
 

C. R. Stephens
 

DIAS, 10 Burlington Road, Dublin 4, Ireland
 

and
 

Instituto de Ciencias Nucleares, UNAM,
 

Circuito Exterior, A. Postal 70-543, Mexico D.F. 04510~ t
 

Abstract: We analyze the specific heat for the OCN) vector model on ad-dimensional 

film geometry of thickness L using "environmentally friendly" renormalizatio~. We con

sider periodic, Dirichlet and antiperiodic boundary conditions, deriving expressions for the 

specific heat and an effective specific heat exponent, a e//. In the case of d = 3, for N = 1, 

by matching to the exact exponent of the two dimensional Ising model we capture the 

crossover for f-L -+ 00 between power law behaviour in the limit t -+ 00 and logarith

mic behaviour in the limit t· -+ 0 for fixed L, where eL is the correlation length in the 

transverse dimensions. 
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§ 1. Introduction 

Thermodynamic quantities generally depend on ~ny details of the system, and are there

fore functions of a large number of variables, however, in the critical regime this dependence 

drops to a smaller number. The resulting functions are referred to as scaling functions. 

Scaling functions generically describe a crossover, wherein the effective degrees. of freedom 

of a system can change dramatically as a function of scale. qalculating such scaling func

tions in critical phenomena is generally accepted to be much more difficult than calculating 

critical exponents. From a renormaliZation group (RG) point of 'fiew one can think of this 

as being due to the fact that to calculate a i critical exponent one only needs a local RG 

linearized around the fixed point of interest whereas, generally speaking, to' calculate a 

scaling function one needs a global, non-linear RG that is: capable of encompassing more 

than one fixed point. One of the chief difficulties in the latter is developing a "uniform" 

approximation scheme that can describe the crossover'between two fixed points perturba

tively. Conventional small parameters such as e and l/N might be adequate for certain 

crossovers but not others. 

Crossovers are induced ·by some asymmetry parameter which often can be fruitfully 

thought of as an "environmental" variabl~, stlc.h as temperature, system size, magnetic 

field etc. The formalism of "environment~llyfriendly" renormal~ation [1,2] offers a quite 

general approach to the solution of crossover problems and the calculation of scaling func- . 

tions. Given that the key idea behind the notion of a crossover is the qualitatively changing; 

natur~ of the effective degrees of freedom as a function of "scale" and "environment" it 

implements a renormalization which is capable of tracking the evolving effective degr~ of 

freedom in a. perturbatively controllable manner. However, it is based on reparametr~a

tion invariance, as in the original field theoretic RG, rather than Wilson/Kadanoff coarse 

graining. 
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The basic idea is that the relation of the bare couplings to the renorma1ized ones , which 
.' 

can be used to describe, parametrically, ,a physical system, can be thought of 88 a coordinate 

transformation in the space of these couplings. In thinking of the renormalized couplings 

as new "coordinates" the conventional field theoretic RG simply expresses the invariance 

of physical quantities under changes of coordinate system. This coordinate invariance is 

an exact invariance of field theory. When calculating a physical quantity perturbatively, 

in spite of the fact that physics doesn't depend on coordinates, the particular choice of 

coordinates can be quite crucial in obtaining a reliable approximation scheme. One can 

understand this clearly in the context of the crossover studied in this paper - dimensional 

crossover induced by finite size effects. 

Reverting for the moment to a coarse graining RG, if we thought of possible coarse 

grainings in a d dimensional ferromagnetic film of size L, one would find that block spins 

of size e<: L were d dimensional, whilst those of size e> L were d - 1 dimensional. 

Thus this coarse graining procedure reflects a crucial property of the "environment" of the 

system - that it is finite in one dimension. Block spinning is therefore an environmentally 

friendly form of renormalization. In the context of reparametrization, an environmentally 

friendly renormalization is one that yields a set of paramete~ that give a perturbatively 

reliable description of the crossover. In the finite size context a necessary condition for the 

reparametrization to be environmentally friendly is that it be L dependent. 

In previous papers environmentally friendly renormalization has been used to describe 

various physical quantities for particular crossovers of interest [3-5]. In this paper we 

consider dimensional crossover of the specific heat as it is one of the more readily accessible 

quantities from an experimental point of view. In the context of films and experimental 

tests of finite size scaling this was the first experimentally measured quantity [6]. 

From a theoretical point of view the case of a totally finite geometry has been success

fully investigated numerically [7] and analytically for both periodic boundary conditions 
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[8] and Dirichlet boundary conditiQns [9]. In the case of. film geometries some progress 

has been made [10] but no theoretical work has been ~ble to access the complete crossover 

other than for two dimensional films [11]. 

The format of the paper is as follows: in section 2 we analyze the connection between 

the specific heat and the vertex functions of a Landau-Ginzburg-Wilson effective Hamil

tonian. By choosing as mass parameter tB = A2 (Tire) we include all the non-analytic 

depend~nce of the specific heat in the vertex function r~,2). We then present a renormal

ization of the theory a;; a reparametrization through normalization ~onditions on certain 

renormalized vertex functions using afiducial correlation length as our RG scale. Section 

3 is devoted to perturbative calculations. In particular we calculate the specific heat and 

a specific heat effective exponent to one loop. In section 4, by matching to the known 

asymptotic exponents for a three dimensional Ising film, we access the crossover between 

power law behaviour at the three dimensional end and logarithmic behaviour at the two 

d"imensional.end. The results in sections 3 and 4 are illustrated in the figures. The paper 

ends with our conclusions. 

§ 2. Renormalization of the Specific Heat 

We consider an O(N) symmetric order parameter described by the "microscopic" Landau

Ginzburg-Wilson Hamiltonian 

(2.1) 

which describes a d dimensional film geometry of thickness L. The variable tB when taken 

to be homogeneous has analytic dependence on temperature T, and we choose its origin to 

be the critical temperature of the film. Hence mb is determined by the difference between 

the L dependent critical temperature and the mean field critical temperature, Le. the 

4
 



temperature at which the potential in (2.1) acquires a non-zero mjnjmum~ AB is assumed 

to be temperature independent. The subscript B refers to bare parameters 88 distinct from 

renormalized parameters which will be introduced below. We will restrict attention to the 

case when the film also exhibits a phase transition and consider 3 < d ~ 4 for N = 1, 

and 3 < d :s; 4 for N > 1. We will present results for periodic, antiperiodic and Dirichlet 

boundary conditions. Note that in the case of periodic boundary conditions our results for 

N = 1 could equally well be reinterpreted to describe the quantum to classical crossover .of 

an Ising model in a transverse magnetic field r, where now tB = r - r c(T) and L = niT 

[12]. However, in this paper we restrict our considerations to the film geometry. 

The partition function for the the model (2.1) is given by the path integral 

z -;- !1d!pB1e-H[tpBl-f.Ii'IJ. (2.2) 

The free energy density is F = - ~ In Z = Fb - f In ZLGW, where V is the volume and F b 

is the background free energy density obtained after coarse graining from the underlying 

microscopic degrees offreedom to those of the effective field theory description in terms 

of the LGW Hamiltonian (2.1), ZWW being the partition function of this Hamiltonian. 

Fb is assumed to be an analytic function of the thermodynamic variables. The internal 

energy density is 
8F

U=F-T
aT 

and the specific heat, by definition aulaT, is given by 

(2.3) 

The assumption in working with this LGW Hamiltonian is that the only one of its param

eters to retain a dependence on temperature is the mass parameter t B. Thus the internal 

energy density 

U = Ub- T
2JtflxatB(X) G(O,l) (2.4).

2V 8T 
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and the specific heat 

where 

Concentrating on T> Tc, where < <p > .0, and denoting 

. " 

r[tBl = -lnZLGW (2.7) 

we have that 

and (2.8) 

So for homogeneous tB we find 

u = Ub - T2a;:r~.1) (2.9) 

C = Cb - (:rT2a;:)r~,1) - T2(';:)2r~,2). (2.10) 

(O 1) (O 2) .
where r B' and r B' are to be evaluated at zero external momentum. 

If we wish to incorporate all of the non-analytic dependence of the "internal energy and 
\ 

the specific heat into r{O,l) and r(O,2) respectively, then a natural choice of the dependence 

of tB is 
(2.11) 

where A is a microscopic mass scale. In the vicinity of the critical temperature the results 

with this variable will be the same as those obtained with the linear measure A2 (TT;c) . 
With the choice (2.11) the internal e"nergy density becomes . 

U ....:. Ub - A2Tcr~,1) (2.12) 
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and the specific heat is given by 

. A2 
C - Cb r(O.2)

- -~ B . (2.13) 

For an O(N) model G~,2) is manifestly positive and either diverges or goes to zero at the 

critical temperature according to the value of N. Thus we anticipa.te that r~,2) should 

diverge to -00 or vanish at the critical temperature. Our problem is therefore to calculate 

r (O,2)
B . 

The correlation length in the transverse dimensions, f.L = m-1, we define via the 

second moment of the two point function, G(2). On Fourier transforming eL is o~tained 

from 

2 r~) (P, tB(m), AB, L) (2.14) 
m = (2)

8p2rB (P, tB(m), AB, L) r=o 
where p is the transverse momentum and tB(m) is that bare mass parameter which pro

duces the inverse correlation length m. The origin for the variable tB (m) is specified by 

requiring that 

(2.15) 

which insures that tB is proportional to T-Te(L) as the critical temperature is approached. 

Changing the mass parameter tB, by changing the temperature in (2.11), allows us to tune 

the correlation length. Note that the physical correlation length of the film geometry (2.14) 

depends on L and will be infinite at the film critical temperature Te{L). 

We will define renormalized parameters by 

and (2.16) 

a.nd renormalized vertex functions by 

r(N,M)(m,lt) = Z' (It)Z'(It)r}f,M){m) + c5NOc5MnA-(n) (It) n = 0,1,2 (2.17) 
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which is jUst a reparametrization of the o~nal theory, where It is"an arbitrary renormal

ization scale. 

Contrary to the renormalizationof other vertex f~Ctions, ~ r~) and r~), the vertex 

functions r~,n) (n = 0,1,2) have to be renormalized additively via 

r(O,n) = ~r~,n) + A(n) (2.18) 

rand r(O,I) determine the Gibbs free energy'density and the energy density of the LGW 
. '.\ 

Hamiltonian respectively * . 

Before discussing the renormalization of r(O,n) for n = 0,1,2 we will specify the Z's 

associated with the reparametrization (2.16) and (2.17) .. Here we will restrict o~selves 

to T > Tc(L). The caSe of-T < Tc(L) will be considered in conjunction with crossover 

amplitude ratios elsewhere. For T> Tc(L) the conditions which specify our Z's are· 

(2.19) 

(2,1)(p '() )Z-I- rB ,tBIt,>-B,L (2.20)cp2 - (2)
8r r B (P, tB (It) , >-B,L) r~O 

. r~) (0, tB{It), >-B, L)
Z). = --=----- (2.21)

>-B
 

where the relation between tB(It) and It is specified by
 

2 _ r~) (P, tB(It) , >-B, L) 
It (2) (2.22)-

,8p2rB (P, tB(It) , >-B, L) r=o 

and the origin of tB is fixed by (2.15). Note that the Z's are obtained from the vertex 

functions of the system specified at an arbitrary, fiducial, transverse correlation length It-I, 

as opposed to the correlation length of interest, m-1. Furthermore the conditio~ are all 

* For homogeneous tB, HB == °and T :> Tc we use the convention r = 'iT In ZLGW 
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L dependent. As bas been emphasized on previous occasions [1,2] such "environmentally 

friendly" conditions are essential in order to obtain a perturbatively controllable description 

of the finite size crossover. 

We define the Wilson functions as the logarithmic derivatives 

1 dZf(J
'Yf(J = -K.-- (2.23)

Zf(J dK. 

(2.24) 

1 dZ).
'Y). = -K.-. (2.25)

Z). dK. 

The Wilson functions 'Yf(J2, 'Yf(J and 'Y). are explicitly L dependent and interpolate between 

those of a d and d - 1 dimensional O(N) model in the limits K.L -+ 00, K. -+ 0 and 

K.L -+ 0, K. -+ 0 respectively. 

The invariance of the bare vertex functions, r<f,L), under the one parameter group 

of reparametrizations indexed by the arbitrary renormalization scale K. (they don't know 

which reference correlation length K.-1 will be picked to define the reparametrization) yields 

the RG equation 

(2.26) 

where n = 0,1,2. The equation is inhomogeneous for the three vertex functions r, r(O,l) 

and r(O,2), where the "source" term 

(2.27) 

is finite order by order in the loop expansion. 

The relationship between temperature and K. can be obtained by using 

r(2)(t) = fat r(2,l) (t')dt' (2.28) 
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and conditions (2.19-2.22) with the" ~efinitioDS of the WilsQn functions (2.23-2.25) to find 

tern, It) = 1t2 r ~'(2 - 'Y'P)eJ:(2-7¥,2)~. (2.29)
10 " 

We see that 
dt(m, It) )

K, dlt = "Y~t(m, K,). (2.30 

An important feature of the above is that the determination of r(2) by integrating r(2,1) 

allows us to bypass the need to determine mt pertlirbatively. 

In terms of the renormalized vertex functions, the conditions (2.19-2.22) are,equivalent 

to 

(2.31) 

r(2,1) (0, t(lt, It), A, L, It) = 1 (2.32) 

r(4) (0, t{lt, K,), A, L, K,) = A. (2.33) 

(2.34) 

We could have replaced (2.32) by the condition 

(2.35) 

This condition together with (2.34) determines a multiplicative renormalization oftB, and 

of cp2 insertions via a renormalization function Zt. The two renormalization functions Zt 

and Zv?- are different, the latte~ being determined by (2.32). The quantity "Yt = - ~l~~t is 

an analog of "Ytp2, however, the problem with implementing a condition such as (2.35) in 

perturbation theory is that the resulting Zt involves diagrams with massleSs propagators, 

some of which are strictly infinite even" after the introduction of an ultraviolet cutoff. 
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(2.36) 

One can also define what we term a. floating exponent, v/ = (2 - "Ye(2)-1. As near a fixed 

point "Yep and "Yl(J2 go·to constants we can see from (2.36) that "Yt ~ "Yl(J2, hence both the true 

effective exponent and the floating exponent interpolate between the same two asymptotic 

values. This may not be evident perturbatively~ One can think of the floating exponents 

evaluated in environmentally friendly RG improved perturbation theory as approximations 

to the true effective exponents [2]. Another way of thinking about them is from the point 

of view of a redefined temperature variable in the following way: if one defines t' = tl(t) 

and v/ = dJiipl = (2 - "Ye(2)-1 one finds that 

din! + 1 = (2 - 'Y.rl [fl.l d:r: (2 _ -y. )iE;;l '(2-"(,r). (2.37)
dIn t (2 - "Yep) Jo x ep 

Near a fixed point f -+ 1 hence t' ~ t. 

The solution of the RG equation (2.26) for the specific heat is 

r(O,2) (t(m, It), ~(It), L, It) =e2Jl 
rPs. 

:II "tp2 r(O,2) (t(m, pit), ~(Plt), L, K,p) 
(2.38)

1Pdx 2 r:ll9 _ -B(2)(x)e J1 w'Y.,,2. 
1 x 

Reparametrization invariance is now rMnifest in the fact tha.t the left hand side of (2.38) 

is independent of p,. the latter being just an arbitrary rescaling of It. 

We will now <;iiscuss some possible normalization conditions for r(0,2), thus specifying 

A(2) (It). One possible choice is the normalization condition 

(2.39) 

which is equivalent to 
-,,, (02)

A(2)(It) = -z~rB' (tB(It), ~B' L). (2.40) 
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The advantage of this condition is that all the "physics".,. in the sense of the effects of 

all. fluctuations, 'is now purely in the inhoinogeneous term. The normalization condition 

(2.39), however, is natural as the r(O,2) does indeed vanish. in the mean field regime, or at 

least goes to a constant which can be chosen to be zero. Neglecting the inhomogeneous 

term r(O,2) being zero is then an invariant statement with respect to RG transformations. 

A methodology which avoids some of the pitfalls of additive renormalization is to relate 

r(O,2) to the correlationfunction r(O,3), the advantage of this approach being that the latter 

is multiplicatively renormalizable in d < 6. We have the analog of (2.28) 

(2.41) 

Using the relation 

and the rela.tion between the correlation length and the temperature (2.29) one finds 

r(O,2)(t(m,lI:» = II:d-4 t: c: (2 - "Y'I')eh"(2-y.r4+d)~r(O,3)(x) . (2.43) 

where we have normalized r(O,2) to vanish in the mean field limit and 

-(03) r(0,3)r(2)3 
r ' (m)=-~ (2.44)

r{2,1)3md • 

It is not difficult to show that in fact this expression is exactly the same as ,~ha.t obtained 

from the additive renormalization prescription with the normalization condition (2.39) at 

t(oo, 00). 

§ 3. Perturbative calculations 

We begin this section by analysing the Pfunction for the coupling, as we will perturbatively 

expand all other functions in terms of the solution of this equation .. In terms of the floating 
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coupling h [1], chosen to be the l~ing term in the perturbative series for "Y~, one finds, 

for pt = {3(h, z), to one loop 

(j(h, z) = -e(z)h + h2. (3.1) 

The function e, in an obvious diagrammatic notation, is 

61t40
e(Z) = 0 - 2 , (3.2) 

depends on d and Z = pltL but is independent of N. We take the solution of (3.1) 

_ ra e(x)&e J6() 21 

h(z) = . J::r: d (3.3) 
h-1 - f% e- *0 e(1I)~ dx o %() z 

as our perturbation parameter. 

After solving the equation we specify the arbitrary scale p to be p = JL and relate 

it to temperature via. (2.29) whereupon Z becomes L/eL. In (3.3) the initial coupling is 

then taken to be at a "microscopic" scale It.· For d < 4 this microscopic scale can be 

sent to infinity and a universal floating coupling, the separatrix solution h(z) = -~ 

obtained [2]. Of ~ourse, if one is interested in corrections to scaling, as is usually the case 

in comparing with experimental data, then It should be left finite and fitted to the data. 

For periodic boundary conditions one finds 

(3.4) 

and the separatrix coupling 

00 4 2 2 CdiT)

E (1+ :;) 

h(z) = (5 - d) n=-oo ¥ . (3.5) 
00 4 2 2E (1+ :;) 

n=-oo 
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For d = 3 the results are particularly simple 

. % 
h(%) = 1+ -. (3.6)

sinh % 

e(z) = 1+ z~coth(~) (3.7) 
; smh%+% 

where, of course, we are now restricted to N = 1. 

We present here the corresponding results for Dirichlet and antiperiodic boundary 

conditions. For Dirichlet boundary conditions 

and for the separatrix coupling 

(3.9) 

For antiperiodic boundary conditions one finds 

. ~ 1r2n(n+ 1) (1 1r2n(n+ 1»)¥
LJ· 2 + 2 

n=~oo % % 
e(%) = 5 - d - (7 -d) . s!=l (3.10) 

~ (1+ 1r2n(n+l») 2 
. LJ %2 
n=-oo 

and finally the separatrix· coupling 

(3.11) 
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For d = 3 the results are once a_aiD very simple. For the Dirichlet case 

311'2 .' 2 (£- tanhll) 
e(y) = 1 + ~ + 2(1 +;) ~ 1/anh (3.12) 

1/ . 1/ (1 + II - 2~) 

where 'II = (z2 - 1I'2)i.· Even though 'II(i) has a branch point h(z) is a.nalytic in z. The 

separatrix coupling is . 

2 (1 + ~ _ 2tanh,,) 
h('II) = (1 + !-.) iiiil12j II (3.13)

'112 (1 _ tanh1l) 
11 

The corresponding results for antiperiodic boundary conditions are 

e(1/) = 1 + '311'2 _ (1/2 + 11'2) tanh(1//2) (3.14)-:yr (sinh 1/ - 1/) 

and 

11'2 . 1/
h('II) = (1 + '3)(1 - inh ). (3.15)

'II s 1/
 

The Wilson function 'Ytp2 is given by
 

(N+2) 
(3.16)'YvJl(h, z) = (N + 8) h 

whilst 'Ytp = 0 to one loop. Two loop Pade resummed ~ressions for the Wilson functions 

and the floating coupling, for the case of periodic boundary conditions, can be found in 

[2,5]. Substituting any of the above floating couplings into (3.16) yields 'Ytp2 for the three 

different types of boundary condition. As mentioned corrections to scaling can easily be 

included. For example for d = 3 and periodic boundary conditions 

. h-1 _ zsinh(;)2 1 sinhZO + zo 2coth(') sinhz (3.17)
(z) - sinhz + z (h(zo) zosinh(')2 - ZO ) + sinhz + z· 

• I 

'fuming now to r(O,2), up to two loop order and once again in an obvious diagrammatic 

notation (note that we have made the diagrams dimensionless by pulling out an overall 

scale) r(O,2) is given byB . 

r~.2)= _ ~ (p,,)d-4 [0 _ >'B"d-4 (N : 2) 0 2] (3.18) 
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the two loop graph with "tadpole". bavbtg been absorbed into the one loop propagator 

by the replacement of tB with pit using.(2.22). Implementing the normalization condition 

(2.39) one finds that 

B(2) = ~2Nlt20In.p (3.19) 

where the.~ubscript denotes that the diagram is evaluated at the normalization point. Thus 

we see that the one a.nd two loop expressions for B(2) in terms ~f renormalized quantities 

.are identical. Explicitly to one loop for periodic boundary conditions one finds 

(3.20) 

The r(O,2) is thus found by substituting (3.19) and (3.16) into (2.38) to obtain 

N r(¥)ltd- 4 
r(O,2) (t A L ,It), , 

2LIt . (21r)¥ 
(3.21)

2

l p dx. d-5 Eex> . 41r2n 2 r:t: (~) h!bL4-7 
-x (1 + 2 2 2)""e J 1 + 11 

1 x L It Xn=-ex> 

where the arbitr~ scale p, as before, is associated directly with the inverse correlation 

length. Thus we calculate the specific heat and other physical quantities directly in terms 

of the .finite size correlation length. Equation (2.29). relating ~L to Land t provides a 

parametric representation of physical quantities in terms of t. 

In the limit p -+ 0 only the n = O.term in the sum is important and one finds 

r(O,2) -+ N(N + 8) r(~)ltd-4 d-5+2(5-d)(f$I) (3.22)
2(4 - N)LIt (21r)¥ p + . 

In the same limit one finds p -+ (;b)1I~-1, 114- 1 .= (2 - (%$i) (5 ~ d)-lbeing the ~ - 1 

dimensional correlation length exponent. Hence 

r(O.2) --+ _ N(N +8). r(~)/l;d-4( t )-Od-I (3.23) 
. 2(4-'N)LIt (21r)¥ ~ 

. 16 



· S':'d-2(5-d) R . ..' 
where QcI-l = 2- ~ (5-d) 18 the d - 1 dlIDeJ1Slonal specific heat exponent. Similarly, 

in the limit L",p --+ 00, P --+ 0 the sum can be converted to an integral and one finds that 

r(O,2) --+ NeN + 8) r(¥)",d-4 d-4+2(4:'d) (~tl) 
(3.24)2(4 - N) {21r)d/2 P 

and p --+ (~)lIci where l/d is the d dimensional correlation length exponent. In the bulk 

limit 

r(O,2) -+ N(N + 8) r(¥)/Cd-4 (..!.. )-O:d (3.25) 
2(4 - N) (21r)d/2 ",2 

4-d-2(4-d) Z+J 
where Qd = 2- ~ (4-d) is the. d dimensional specific heat exponent. Thus we see 

that the specific heat crosses over precisely between the expected d and d - 1 dimensional 

asymptotic forms. 

Note that the amplitude of r(O,2) in the above expressions appears to diverge at N = 4 

this is an artifact of the one loop approximation. What actually happens is that for d 

between two and four there is some value of N for which Q(N, d) = 0, at this value of N 

and d we expect the specific heat to have a logarithmic dependence on t. For lY = 1 t~is 

occurs at d = 2, however, at one loop the value appears to be independent of d and occurs 

at N = 4, which is the relevant value for d = 4. 

A plot of the specific heat as a function of correlation length is shown in Fig~ 1 for a 

three dimensional Ising film with periodic boundary conditions. The effective specific heat 

exponent defined as 
dlnO 

(3.26)Qell = - dInt 

is plotted in Fig. 2 for the same model. Note that in this approximation the asymptotic 

two dimensional value of Qett is 0.5 as opposed to the exact value of zero, obtained from 

the solution of the two dimensional Ising model. This is a weakness of the perturbative 

a.pproach which effects the specific heat exponent in a particularly acute manner. In the 

next section by matching to the known asymptotic exponents of the model we investigate 
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the more realistic behaviour. In the case of a four dimensio~ O(N) film, in the limit· 

t -+ 00, {L -+ 00, one finds that 

. 4-N 

r(O,2) -+ _ N (N + 8) I! In t 17l+I (3.27)
161r2 4 - N . ~ ~ 

in accordance with known results. Fig.'s 3 and 4 show plots'ofthe specific heat and o.e/I.for 

the four dimensional Ising film. Note t~e presence in the figures of logarithmic tails at the 

four dimensional end as descx:ibed by (3.27). Fig.' 5 shows a comparison of o.e// for a three 
. . 

dimensional Ising film .with Dirichlet and antiperiodic boundary conditions. Additionally 

the result for the.Gaussian mOdel is ploted in Fig. 6 with per.iodic boundary conditions. 

§ 4. Crossover to Logarithmic Behaviour in a Three Dimensional Ising Film. 

In this section we will consider the' crossover between three and two dimensions for an 

Ising model in a way that is capable of access~ng the logarithmic behaviour characteristic 
" . 

of the two dimensional specific heat. For the two dimensional Ising mod~l 0. = 2 -lid = O. 

The consequent logarithmic behaviour of the ~pecific heat is thus due to' acompetJtion 

between 11 and d. For d. 2 the correlation length exponent 11 -:-: 1, hence a = O. Now for a 

three dimensional Ising film with periodic boundary conditions, at one loop the crossover 

is governed by the floating coupling h = 1 + sinh ~. This implies a crossover for 11eJI 

between 1/6 and 1/3. By far the biggest error involved in evaluathlgcrossover functions 

is associated with the values of the asymptotic exponents themselves. With this in mind 

one is inclined to try. to match the scaling function to the asymptotic eXponents. This can 
, . 

very simply be done in the case at hand br :writing h'= A+ sl~hz w~ere now. the Constants 
- . 

A and B will be determined by demanding,that as z -+ 0, lIell -+ i and that as L'~ 00, 

z -+ 0 one finds lIel I -+ 0.630. The values 1 and 0.630 are the exact two dimensional and 

three dimensional 6-loop Borel resu~med [13] exponents resp~ively. Thus one finds that 

A ="1.238 and B = 1.762. 
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In Fig. 7 we plot o.ell as a f~ction of In z by substituting our ansatz for h into 

(3.21). Note the logarithmic tail as the two dimensional critical region is approached. 

More interestingly, there is a pronounced bump in the curve which is absent in the one

loop approximation. This arises due to a competition between the effects of lI
ell 

and the 

effective dimensionality dell [2J. The bump remains even if one uses a completely different 

interpolating function such as h = A+ 1l{.~, though its amplitude and width vary somewhat. 

In Fig. 8 we plot analogous results for ·the case of Dirichlet and antiperiodic boundary 

conditions. Once again the bump is clearly present. In the case of Dirichlet conditions 

however there is also a dip before the bump is reached. Based on previous experience of the 

behaviour of effective exponents with Dirichlet boundary conditions [2] this is not totally 

.'	 unexpected. In Fig.'s 9 and 10 we have used instead of the universal floating coupling 

the coupling (3.17). There is now a double crossover; firstly between mean field theory 

and the three dimensional asymptotic exponent and then to the asymptotic behaviour of 

the two dimensional exponent. In Fig.' 9 we plot the result for the case where we do not 

match to the exact two dimensional exponent and in Fig. 10 the result with matching. 

The asymptotic three dimensional regime would most probably be much narrower than 

that shown. This can be very easily modeled by adjusting the initial condition for the RG 

flow. In the case at hand, we have, for the sake of clarity, and to emphasize the double, 

crossover, left it large. It is clear from the figure how the effective exponent would be 

modified as the well developed three dimensional universal regime is narrowed. 

§ 5. Conclusions 

In this paper, using environmentally friendly renormalization, we,have treated the finite 

size crossover of the specific heat of an O(N) model in a d-dimensional film geometry. For 

N> 1 we considered 3 < d ~ 4, and for N = 1, 3 ~ d ~ 4. We derived expressions for the 

specific heat and an effective critical exponent 0.811 that were completely regular across 
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the entire crossover, the expansion parameter for the pertlU"bative series being the floating 

coupliIig h. We considered periodic, Dirichlet and antiperiodic boundary conditions. 

For the crossover from three to. two ~imensions of an Ising film we saw that one loop 

answers in the asymptotic two dimensional regime were quite poor. ~ ~ known, generally 

speaking, perturbation theory becomes more unreliable as one goes to lower dimensions. 

For the specific heat the problem is particularly acute as the one loop effective specific heat 

exponent was seen to be monotonically increasing whereas, as we know from the solution' ~ 

of the exact two-dimensional Ising model, the two dimensional specific heat exponent 

is strictly less than the three dimensional one. Hence we could say that the one loop 

approximation is failing to capture a qualitative. feature of the crossover in this case.. 

To circumvent this prC?blem, and in the k~owl~dge that the dominant source of error in 

calculating' scaling functions is the uncertainty in the asymptotic' critical exponents, we 

took. a more pragmatic line by making an ansatz for the floating coupling constant' so as 

to be able to asymptotically match the "known" two and three dimensional correlation 

length exponents. By so doing we were able to access in a very simple way the crossover 

between power l8.w and logarithmi~ behaviour iIi the asymptotic regime, finding that the 

resultant crossover curve had a very interesting bump. We also analyzed the crossOver to 

mean field theory thereby accessing a double croSsover governed by three different fixed 

points. Our global, environmentally friendly RG captUred all of these fixed po.ints in one 

uniform approximation scheme. 

The crossover between three and two dimensions for N > 1, and in particular for 

N = 2, are' potential problems that could be analyzed ~ing the techniques of this paper. 

The latter being a problem,of longstanding in~erest for ~riments w~tli liquid helium 

confined to a film geometry [6,14]. We hope to return to these issues in the future. 
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Fig.l Logarithmic plot of the specific heat C against ~
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Fig.2 The effective specific heat exponent Oeff defined in (3.26)
 
for a three dimensional layered Ising model
 

with; periodic boundary conditions.
 



In C 

5 £=100, It = 1 

4 
X=ln(!t) 

h(e2S
) = 0.1 

3 

2 

1 

0 

-30 -20 -10 0 10 X 

Fig.3 Logarithmic plot of the specific heat C against ~
 

for a four dimensional layered Ising model
 

with periodic boundary conditions.
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Fig.4 The effective specific heat exponent Qeff defined in (3.26)
 
for a four dimensional layered Ising model
 

with periodic boundary conditions.
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Fig.5 The effective specific heat exponent aeff defined in (3.26)
 

for a three dimensional layered Ising model with both
 
Dirichlet and antiperiodic boundary conditions.
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Fig.6 The effect~ye specific heat exponent aeff defined in (3.26)
 
for a three dimensional layered Gaussian model
 

with periodic boundary conditions.
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Fig.7 The effective specific heat exponent Oeff defined in (3.26) for a 

three dimensional layered Ising model when h(z) is fitted to the 

exact two dimensional and three dimensional 6-loop Borel resummed 
values of 1/ with periodic bound'ary conditions. 
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Fig.8 The effective specific heat exponent Oeff defined in (3.26) for a 
three dimensional layered Ising model when h(z) is fitted to the 

exact two dimensional and three dimensional 6-loop Borel resummed 
values of 1/ with Dirichlet and antiperiodic boundary conditions., 



Oeft' r--------r------r-----'"-r-------,-------, 

0.5 L=100, " = 1 

X=ln (¥:) 

h(e28
) = 0.9 

0.4 

0.3 

0.2 

-10 o 10 20 30 x 

Fig.9 The effective specific heat exponent Oeft' defined in (3.26) for a 
three dimensional layered Ising model with periodic boundary 

conditions. The non-universal part of h(z) is kept. 

Oeft'. .....-----r-----~---~----r__-----, 

0.5 
L=100, " = 1 

X=ln (~) 

0.4 h(e28
) =0.9 

0.3 

0.2 

-10 o 10 20 30 x 

Fig.10 The effective specific heat exponent Oeft' defined in (3.26) for a� 

three dimensional layered Ising model where h(z) is fitted to the� 
exact two dimensional and three dimensional 6-loop Borel resummed� 

values of v with periodic boundary conditions.� 
The non-universal part of h(z) is kept.� 




