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Eu century, Lie’s theory has been developed in both

Tbroughm t
mathematical and physical literatures with respect to the simplest con-
ceivable unit, say I = Diag.(1,1,...,1), and the simplest conceivable
product AB — BA, where AB is the trivial associative product. In
a pioneering memoir written at Harvard University in 1978, Ruggero
Maria Santilli identified, apparently for the first time, a generalized
formulation of Lie’s theory constructed with respect to the most gen-
eral possible unit /, in which case the Lie product assumes less trivial
forms, such as A « B — B « A where A + B is still associative but of
the more general type A+ B = AgB, where g is fixed, sufficiently
smooth and nonsingular, and [ = g=!. The generalized theory was
called the “Lie-isotopic theory” for certain historical reasons reviewed
in the text. The original proposal of 1978 contains the development
of the Lie-isotopic theory to a rather remarkable extent, including a
generalization of: the theory of universal enveloping associative alge-
bras (Poincaré-Birkhof-Witt Theorem, etc.); Lie’s celebrated First,
Second and Third Theorems; Lie’s transformation groups; and Lie's
symmetries. The memoir concluded with the conjecture of a conceiv-
able generalization of Galilei’s Relativity in classical mechanics for ex-
tended particles moving within resistive media (which are not only
Galilei-noninvariant, but also generally nonhamiltonian). This origi-
nal proposal was subjected to a systematic study in subsequent years
by Santilli as well as a number of independent authors, not only for the
original classical profile, but also for conceivable operator counterpart,
as well as for relativistic, gravitational and gauge extensions.

This review is a guide through a considerable and disparate liter-
ature, devoted to: the identification of the state of the mathematical
studies on the Lie-isotopic generalization of conventional formulations
of Lie’s theory; their applications, primarily, to classical mechanics;
and an outline of the proposed fundamental tests. Except for minor
referrals, the studies on conceivable operator realizations are deferred
to a possible separate paper.

We begin with a review of the algebraic notion of isotopy and its
application to associative and Lie algebras. We then pass to the no-
tion of analytic isotopy in classical mechanics, that realized via the
Birkhoffian generalization of Hamiltonian mechanics. We also indicate
the notion of operator isotopy on Hilbert spaces, that realized via the
badronic generalization of quantum mechanics, as well as the methods
of “hadronization,” that is, the mapping of Birkhoffian into hadronic
mechanics. The notion of isotopy in symplectic geometry concludes
our introductory part. - ToE A .

The second part is devoted to a de&d@r@ﬁdﬁaﬁth’uné&Bmt—

ical studies on the Lie-isotopic formulations of: enveloping associative
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algebras; Lie’s Theorems; Lie algebras; Lie groups; and the application
of the generalized theory to space-time symmetries. The second part
ends with a fundamental theorem by Santilli on the reconstruction of
the exact nature of space-time symmetries at the Lle-lsotoplc level,

when broken at the conventional level.

The third part is devoted to the applications of the Lie- isotopic
theory. We begin with a review of Santilli’s isotopic generalization of
the group of rotations and some of its propemes such as: the capability
by the rotational symmetry to remain exact at the Lie-isotopic level
when conventionally broken, say, for spheres undergoing deformations,
or for any physical condition implying a topolo;y—preaemng alteration
of the Euclidean metric. We then pass to the review of Santilli’s Lie-
isotopic generalization of Galilei’s Relativity for systems of extended-
deformable particles which are nonhamiltonian (but Birkhoffian) be-
cause of motion within a resistive medium. We review the property
that, again, under certain topological restrictions, the Galilei symme-
try remains exact at the Lie-isotopic level when broken by nonhamilto-
nian forces. A number of intriguing implications and open problems are
also considered. We then pass to the review of Santilli’s Lie- isotopic
generalization of Einstein’s Special Relativity and related properties,
such as: the capability of incorporating all available studies on Lorents
“noninvariance” (universality), e.g., the several phenomenological cal-
culations predicting deviations from Einstein’s behavior on the mean
life of unstable hadrons at different speeds; the capability of recon-
structing the Lorentz symmetry as isotopically exact for all the above
models (in which it is conventionally broken); the capability to repre-
sent a disparate variety of physical conditions outside the capability
of the conventional relativity, such as deformation of charged distribu-
tions, motion of electromagnetic waves in fluids, motion of electrons
in metals, propagation of causal signals within dense hadronic mat-
ter, etc.; the generalization of the various laws of the conventional
relumty with intriguing implications and apparent preliminary con-
firmations; and a number of other aspects. The third section then
passes to a review of the construction by Gasperini and Santilli of a
Lie-isotopic generalization of Einstein’s gravitation which is, locally,
Lorentz-isotopic and Galilei-isotopic, as well as capable of resolving at
least some of the numerous problematic aspects of the conventional
theory available in the literature. The need for the conduction of cer-
tain basic tests on fundamental space-time symmetries (that have been
regrettably ignored for decades) completes the third section.

In the Appendices we review a variety of topics that complement
the main text, such as: Lie-isotopic generalization of gauge theories;
computation of the maximal speed of causal signals within hadronic
matter; Lie-isotopic field equations; and other aspects.
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The situation emerging from this review is essentially as follows.
From a mathematical viewpoint, there is little doubt that the Lie-
isotopic theory is mathematically consistent and does provide a gen-
uine covering of the conventional formulation of Lie’s theory. The
understanding is that the studies are at the beginning and so much
remains to be done. From the viewpoint of theoretical physics, the
classical formulations of the Lie- isotopic theory have clear applications
in Newtonian mechanics, particularly for the physical systems of our
everyday life, that is, with nonhamiltonian forces, for which the con-
ventional formulations are simply inapplicable. In regard to relativistic
settings, the isotopic theories are admittedly tentative, conjectural and
in need of direct tests, although we are aware of no experimental or
other information on the novel physical conditions considered capable
of disproving the predictions of the new theory. As a matter of fact,
all indirect phenomenological evidence currently available appears to
favor the Lie-isotopic symmetries over the conventional ones, in 2 way,
after all, predictable from the necessary compatibility with established
Newtonian applications. As a result of all the above, a thrilling pos-
sibility of a new scientific edifice emerges from Santilli’s pioneering
studies, with predictable implications at each and every level of con-
temporary physics, most of which are still unexplored as of now. But,
by far, the most important implications of Santilli’s studies are from
an experimental viewpoint. In fact, the studies focus the attention

~ on considerably overdue, fundamental experiments which have been

submitted in the technical literature for decades, but largely ignored
until now. We are referring to experiments such as the measure of the
behavior of the mean life of unstable hadrons at different speeds, or to
the measure of the expected deformation of the charge distributions of
hadrons under sufficiently intense external fields, and others. All these
experiments, in their currently available preliminary form, show clear
deviations from the Einsteinian predictions, in favor of the prediction
of Santilli’s relativities and their exact, isotopic, Lorents symmetry.
This situation leaves the ultimate foundations of contemporary physics
in a state of “suspended animation” which will evidently persist until
the experiments are finally done, and the issue of conventional versus
isotopic space-time symmetries resolved one way or the other.

This work will achieve one of its most important objectives if it
succeeds in stimulating experimentalists to finally conduct these much
overdue, fundamental tests.
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1 INTRODUCTION
1.1 A Brief Survey of the Literature

Despite rather vast mathematical and physical studies, the formulation of
Lie’s theory has been essentially restricted until recently to that via the
familiar Lie product [4, B] = AB — BA, where AB is the simplest possible
associative product, e.g., that of matrices. The unit of the theory is then
the trivial element, e.g., I = diag(1,1,...,1).,

An inspection of the physical literature confirms this condition, which
has its origin with the construction of quantum mechanics via the enveloping
associative algebra of operators A, B, ..., their simplest possible product AB,
and Heisenberg’s time evolution ihA AH — HA. An inspection of the
mathematical literature confirms the same condition which has its origin,
this.time, in the representation theory of enveloplng associative algebras
also realized via the product AB.

In a pioneering memoir of 1978 (written while at the Lyman Laboratory
of Physics of Harvard University), Ruggero Maria Santilli [1] identified, ap-
parently for the first time, a generalized formulation of Lie’s theory which
he called Lie- isotopic theory for certain historical reasons reviewed later on.
The central idea is that of building the theory around the most general pos-
sible unit, say I = (I;;), where the elements I;; have an arbitrary functional
or operator dependence subject only to certain topological restrictions. This
demanded, of course, a generalization of the enveloping algebra, from the
form with trivial product AB, into a covering form with product of the type
A% B = ATB, where [ = T~1. The Lie product then takes the more general
form A* B-B+A. ,

Santilli was the first to realize the nontriviality of the theory and to
develop it to a considerable extent already in the original proposal [1]. In
fact, in this first memoir one can see several theorems generalizing enveloping
associative algebras, the celebrated Lie’s first, second and third theorems,
and the conventional notion of Lie group, into forms compatible with the
most general possible unit /. Under the condition that the old unit I is
contained as a particular case of the generalized unit 1, Santilli’s theory
becomes a covering of the conventional one, in the sense of being formulated
on structurally more general foundations, while admitting the conventional
formulation as a trivial particular case.

Remarkably, the Lie-isotopic theory was proposed by Santilli as a par-
ticular case of a structurally yet more general theory based on the so-called

Lie-admissible algebras, which will not be reviewed in this paper. Neverthe-
less, the point is important for this review because some of the subsequent
advances made by Santilli and others on the Lie-isotopic theory can be
identified only as a particular case of the more general Lie- admissible for-
mulations. Perhaps this is the reason why the Lie- isotopic theory has not
received until now the attention it deserves in both physical and mathemat-
ical literatures.

The subsequent memoir also of 1978 [2] and paper [3] were primarily de-
voted to Lie-admissible algebras, although containing advances important
also for the simpler Lie-isotopic theory such as the foundation of a con-
ceivable operator realization of the algebras, including the generalization of
Heisenberg’s equations of the type iiA = A+ B — B » A. Santilli completed
the year 1978 with the release of the two monographs [63, 64] we shall en-
counter later on our review. In 1979 we see the appearance of the first review
[4] [again for the Lie-admissible approach] followed by paper [5] on the ini-
tiation of the representation theory of the generalized algebras on suitable
bimodular vector spaces. Paper [6] presents an intriguing application to
gauge theories. '

Paper [7] studies the difficulties of conventional quantization, and sug-
gests their reinspection under a broader algebraic structure. Paper [8] stud-
ies the expected existence of a conceivable generalization of quantum me-
chanical laws for the interior of hadrons, with particular reference to Heisen-
berg’s uncertainty principle. Paper [9] enters deeper into conceivable phys-
ical implications for particle physics, this time for the notion of particle
under external strong interactions realized with nonlocal and nonhamilto-
nian terms due to mutual wave overlappings. _

In 1982 we see the appearance of paper [10] which consists of a review of
the physical implications of the generalized Lie structures for nonpotential
nonhamiltonian interactions in Newtonian, statistical and particle mechan-
ics. Paper [11] studies the conceivable generalization of Heisenberg'’s and
Schrodinger’s equations that are expected from the broader realizations of
Lie's theory. Paper [12] presents another courageous analysis, the possibil-
ity that causal signals can propagate within dense hadronic matter at speed

higher than ¢,, the speed of light in vacuum. At the end of 1982 we also

see the appearance of monographs [20,21] on the classical realizations of his
algebraic theories, the so- called Birkhoffian [20] and Birkhoffian admissible
[21] mechanics. In these monographs one can see Santilli’s extended presen-
tations of the conceivable generalizations of Lie-isotopic and Lie- admissible
type, respectively, of the classical Galilean relativity for extended particles
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with action-at-a-distance, potential forces, as well as contact, nonpotential
and nonhamiltonian forces due to motion within a resistive medium.

In 1983 we see the appearance of three central contributions. Paper [13]
presents a model on the reversibility of strong interactions for center-of-mass
conditions, with irreversible dynamics for each individual constituent when
considering the rest of the system as external. Paper [14] is, in our opin-
jon, the most important paper under consideration here after refs. [1,2]. It
presents the foundations of a conceivable Lie-isotopic covering of Einstein
special relativity for generalizations of the Minkowski metric caused by mo-
tion of extended particles within physical media. The paper also provides the
explicit method for the construction of an infinite class of covering trans-
formations from the original Lorentz ones and the given generalized met-
ric. Paper [15] provides a generalization of Wigner’s theorem on quantum
mechanical symmetries within the broader Lie-isotopic setting representing
nonpotential nonhamilionian forces caused by mutual wave-overlappings of
particles. This paper also signals the achievement of mathematical maturity
of the generalized operator formulation, with-the clear understanding that
its physical validity is still basically open at this writing.

In 1984 we see the appearance of another important contribution [16].
In the preceding paper [14] Santilli shows that, under certain topological
restrictions, the continuous part of the Lorentz symmetry can be proved
to be exact at the abstract, Lie- isotopic level when generally considered
as Ybroken” at the simplistic level of the product AB — BA. Paper [16]
complements these results, this time, for the discrete part of the Lorentz
symmetry. In fact, the paper indicates how parity may well be an exact
symmetry under weak interactions, provided the theory is realized within the
context of the covering Lie-isotopic approach, because all P-breaking terms
can be incorporated in the generalized unit I [as well as in other degrees
of freedom]. The exact character of the P-[as well as other] symmetries
then follows from the property that Lie algebras leave invariant their unit
element.

In 1985 we see additional contributions by Santilli in the field. The year
started with the inspiring review [17] (an invited contribution to the Calcutta

_conference). We then see the appearance of final papers [18,19] specifically
devoted to Lie-isotopic symmetries. These papers (which had been written
prior to paper [14] and presented at a meeting of 1983) essentially provide a
rigorous mathematical formulation of the process according to which a given
Lie symmetry, when broken at the simpler level AB — BA, can be “recon-
structed” as exact at the higher Lie-isotopic level A+ B —~ B+ A. The papers
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also identify the means of constructing the (generally infinite family of) cov-
ering, exact, Lie-isotopic transformations via the sole knowledge of the old
transformations and of the new metric. Papers [18,19] then apply the theory
to a case of truly central physical relevance: the breaking of the rotational
symmetry, say, for the deformation of a spherical charge distribution under
external fields, and the recovering of the exact rotational symmetry for the
deformed distribution at the covering Lie-isotopic level.

Additional relevant contributions by Santilli alone are: ref. [58] where he
completes the construction of his special relativity initiated in paper [14]; ref.
[153] where he constructs the isotopic field theory and applies it to available
experimental data on the apparent deformation of the charge distribution
of hadrons; and others. Additional joint contributions by Santilli and other
researchers will be indicated later on.

A number of physicists have studied Santilli’s proposal of 1978.

R. Mignani [22] made seminal contributions in the operator realization
of Lie-isotopic theories, such as: the independent identification of the Lie-
isotopic generalization of Schrédinger’s equation; the proposal to construct
a nonpotential scattering theory; and the proof of the exact character of the
Lie- isotopic SU(3) symmetry when broken at the simpler level AB — BA.

M. Gasperini [23] made other equally seminal contributions, such as: the
computation following hypothesis [12], that, within the context of contempo-
rary gauge theories, the speed of causal signals within hadronic matter could
indeed exceed ¢,; the foundations of a possible Lie-isotopic generalization of
gauge theories; and the foundations of a possible Lie-isotopic generalization
of Einstein gravitation for the interior problem.

A team headed by A. Jannussis made numerous contributions [24] in
both classical and operator realizations of Santilli’s algebras. M. Nishioka
[25] also made several contributions in the field, such as the expected gen-
eralization of the delta function. A. J. Kalnay [26] succeeded in quantizing
Nambu’s mechanics for triplets. The algebra emerging at the operator level
is exactly that of Santilli’s type [27]. (This aspect, which we regrettably can-
not review in this paper, opens the possibility of a true quark confinement
with an identically null probability of tunnel effects into free states, be-

sides an infinite potential barrier, as indicated by Santilli in an unpublished

contribution to a meeting of 1984 [27].)

Animalu [28] conducted several, additional, independent research, such
as the study of possible contributions to conventional quark theories of the
generalized setting offered by hadronic mechanics, and others.

A. Tellez Arenas, J. Fronteau and R. M. Santilli [29] studied the statis-
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tical profile of a generalized class of physical systems characterized by-the
Lie-isotopic algebras, the so-called closed variationally nonself-adjoint sys-
tems (these are systems submitted in memoir [2] which verify conventional
total conservation laws, but the internal forces are of nonloca.l nonhamilto-
nian type).

The (mathematician) H. C. Myung and R. M. Saatilli [30,31) achieved a
consistent mathematical formulation of the operator realization of the Lie-
isotopic algebras. These studies were then further extended via the addition
of a suitable form of Hilbert spaces [31] and reached their final form in
ref. [32] by Mignani Myung and Santilli, which is here considered the best
available presentation on operator versions of Lie-isotopies.

Additional contribuiions were made by A. K. Aringazin [33] such as: the
application of Lie-isotopic Lorentz transformations to describe an anomalous
energy dependence of some fundamental parameters of the K° - system;
the proof that Pauli’s exclusion principle is valid for the center of mass
of a composite system under a Lie-isotopic operator mechanics, in a way
compatible with possible departures from the same principle for each indi-
vidual constituent (a similar occurrence for Heisenberg’s principle had been
established in ref. [32]); the capability of the Lorentz-isotopic symmetry to
include as particular cases all available research on Lorentz noninvariance;
and others.

The interested reader can identnfy a number of further ‘contributions by
various additional authors in the bibliographies of the above quoted papers.

The contributions by pure mathematicians specifically devoted to the
Lie-isotopic formulation of Lie's theory (or their universal enveloping asso-
ciative algebras) are grossly lacking at this time, to our best knowledge. In
fact, as we shall see later on, the sole mathematical paper of which we are
aware is ref. [34] by H. C. Myung on the isotensorial product of isorepre-
sentations. Another mathematical paper connected with this review is that

- by E. B. Lin {41), devoted to the problem of “hadronization” (i.e., symplec-
tic mapping of Birkhoffian into hadronic mechanics). The authors of this
review are aware of several mathematical papérs by mathematicians specifi-
cally devoted to the more general Lie- admissible algebras (see bibliography

.[37]) and, as such, they will be quoted and reviewed in a separate review
of Santilli’s Lie- admissible formulation of classical and operator mechanics.
Nevertheless, these mathematical works are of difficult specialization to the
Lie-isotopic context. It is hoped that this review will stimulate contribu-
tions by pure mathematicians, specifically, on Lie-isotopic algebras so as to
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be readily available for physical applications.

1.2 The Notion of Algebraic Isotopy

As limpidly expressed in Santilli’s writings, physical theories are a manifesta-
tion of an articulated body of formulations of algebraic, analytic, geometrical
and other character. A generalized notion in any one of these formulations,
to be consistent, must admit corresponding, compatible generalizations in
the remaining branches of the theory. This is the case of the central notion
of this review, that of isotopy (ref. [1), §2.13, pp. 287 and fI.).

Let U be an (associative or nonassociative) algebra with (abstract) el-
ements a,b,c,... and (abstract) product ab over a field F with elements
a,f,v,... (hereinafter assumed to have characteristic zero). The product
ab, by assumption, verifies the basic axioms of U. For instance, if U is as- -
sociative, ab verifies the associative law; if U is commutative, it verifies the
commutative law; if U is a Lie algebra, it verifies the Lie algebras axioms;
etc.

DEFINITION 1.1 (Algebraic Isotopy): An isotopic mapping
(also called image or lifting) of an algebra U with product ab is
any mapping U — U of U into an algebra U which is the same
vector space as U (i.c., the elements of U and U coincide), but
is equipped with a new product a « b which s such to verify the
original azioms of U.

Note that [20] the Greek for “isotopic” is “t’' 0 0§ T o’ ¥ 0 " which means
“same configuration,” precisely along the concept of the above definition.

The central property of the notion of algebraic isotopy is therefore that -
of preserving the character of the original algebra. Thus, if U is associative,
a necessary condition for U to be an isotope of U is that the new product
a + b also verifies the associative law, and we shall write:

U:(abc=a(bc) > U:(asb)sc=ax(bsc) (1.1)

Similarly, if U is a Lie algebra, a necessary cohdition for U to be one of

"its possible isotopes is that U is also Lie, and we shall write

ab+ba=0 ~. fasbtbra=0
U'{(ab)c+(bc)a+(ca)b=0’ {(atb)tc+(btc)ta+(c#a)tlzl=2()).

12



A similar situation occurs for other algebras, such as Jordan algebras, alter-

native algebras, etc.
Santilli identified three types of associative 1sotopy, each one with an
attached Lie algebra isotopy. The first is the trivial one (ref. [1], p. 287)

U:(ab)c:a(bc)—»f/:atb=aab;aeF;a#0a.ndﬁxed (1.3)

evidently given by the multiplication of the old pfoduct ab by a constant
(that remains fixed for all multiplications of the new algebra). The attached
Lie algebra is then given by the trivial mapping

[a,b]y = ab — ba — [a,b]p = afa,b]y. (14)
The second realization of associative isotopy, which plays a central role
throughout Santilli’s analysis, is given by (ref. [1], p. 352)
U : (ab)e = a(bc) = U : a s b % aTh, T € U, invertible and fixed. (1.5)
" It is simple (but instructive) to verify that indeed
(axb)*xc=(aTd)Tc= aT(ch) =as*(bsc). (1.6)
Thus, U is an isotope of U,
U:(ab)e=a(bc)— U:(asb)src=as(bsc) (1.7)

Evidently, isotope (1.5) is not trivial. Equally non trivial is the attached
Lie algebra isotopy

'[a,b]u=ab-ba—o[a,b]o=atb—bta=aTb—bTa. (1.8)

Since the element T does not necessarily commute with the generic elements
a,b,..., of the algebra, the nontriviality of mapping (1.7) follows. The inter-
ested reader is encouraged to verify that, if [a, by if Lie, [a,}]; is also Lie,
i.e., it verifies the laws .
[ﬂ b]a 4+ [b a]o =0
lla, 8¢, clg + [[b, clp,aly + [[e,alp,blp = 0. (1.9)
Isotopnea (1.5) and (1.8) were assumed by Santilli at the basis of his formu-
lation of Lie algebra isotopy, and we shall do the same in this paper. In fact,
the isotopic element T is sufficient to represent a generalized metric. Iso-
topies (1.5) and (1.8) are then amply sufficient to illustrate the mathematical
and physical nontriviality of the generalized theory.
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One additional algebraic isotopy was identified by Santilli [9). It is given
by '
U:(ab)e=a(bc) = U:a+b=WaWbW,

W € U, idenpotent(W? = W), and fixed. (1.10)

It is again an instructive exercise for the interested reader to verify that
the above product a * b is still associative. The attached anticommutative
product then remains Lie, ie., the mapping

[a,bly = ab—ba — [a,b]; =a+b-bsa=WaWbW — WbWaW (1.11)

constitutes another example of Lie algebra isotopy.

The reader may be interested in knowing that no investigation on iso-
topies (1.10) and (1.11) has been conducted until now, to our best knowl-
edge, in both mathematical and physical literatures. All available studies
are referred to isotopies (1.5) and (1.8).

Also, a private communication by Santilli indicates that, according to
preliminary research, isotopies (1.3), (1.5) and (1.10) are expected to exhaust
all possible associative isotopies, but no rigorous study has been conducted
on this problem until now.

The classification of all possible associative (and therefore Lie) isotopies
is evidently important because different isotopies are expected to character-
ize different physical theories.

As one can see, the notion of algebraic isotopy essentially represents a
sort of “degree of freedom of the product” for given algebra axioms. As San-
tilli recalls [1), the notion is rather old, and actually dates back to the early
stages of the set theory [35]. In fact, the notion apparently originates within
the context of Latin squares (two Latin squares were called “isotopically re-
lated” if they could be made to coincide via permutations). Appropriately,
Santilli quotes Bruck statement [35] to the effect that the notion is “so nat-
ural to creep in unnoticed.” And in fact, the notion had not been applied
to Lie algebras until Santilli’s proposal [1] (even though some application to
other nonassociative algebras, e.g., the Jordan algebras, can be identified in

the specialized mathematical literature [36,37]).

1.3 The Notion of Analytic Isotopy in its Classical and Op-
erator Realizations

Let us pass now to the analytic counterpart of the concept of isotopy. It was
introduced, also for the first time to our best knowledge, in memoir [1] and
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developed in detail in monograph [20]. By following Santilli, let us write
the conventional Hamilton’s equations (those without external terms) in the
unified notation

oH
a“—w“"o =0 =1,2,3,. 20

a=(r*,m),k=1,2,..,n;H = H(t,a) (1.12)
with Poisson brackets between functions A and B in phase space (7, /)

def 8A wOB _ OA 0B 888_A_
el v =0 Ops Ok Opy

and canonical commutation rules characterizing the fundamental Lie tensor

(I DA B Y _ ¢ o
((lp.,rl)up.,p,n)“"’ )

( Onxn Inxn ) .
“inXxn Onxn

The canonical action principle can be written

[A,B) ¥ (1.13)

([du,ﬂ"])
(1.14)

¢
SA(L,7) =6 ]m (RS — H)dt =

= (p, 6)! (1.15)
yielding Hamilton’s equations in their covariant form

o _
dar ~
where w,, is the covariant (symplectlc) counterpa.rt of w*” with explicit local
realization in phase space

Wy — 0, (1.16)

Ry 0R°
Ba* 8a" !

(w‘w) = (Omm - Inxn) = (wap)-l_

I!IX'IO!IX”

w“y =

(1.17)
Finally, the Hamilton-Jacobi equations can be written in the unified form

9A
ﬁ'l-H 0
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i\
da»
where the second set of equations can be explicitly written in the familiar
form
0A _
el
04
+—=0
Ope
showing the lack of dependence of the canonical action functional in the
linear momentum (a property with important implications for'quantization).

= R,; (1.18)

- (1.19)

DEFINITION 1.2 [1], [20] (Classical-analytic Isotopy): An
isotopic mapping (or image or lifting) of Hamilton’s equations is
given by any generalized form of the equations which preserves:
a) the derivability from a (first- order) variational principle; b)
the Lie character of the underlying brackets; and c) the ezistence
of a generalized, but consistent, Hamilton-Jacobi theory.

The generalization of Hamiltonian mechanics originating from the above
definition was called by Santilli Birhkhoffian mechanics for certain historical
reasons (see ref. [1], p. 259 for the first appearance of these terms, and
monograph [20] for a comprehensive presentation).

Under the above definition, principle (1.15) is generalized into the most
general possible Pfaffian variational principle (here restricted to the semi-
autonomous case for simplicity)

. t
GA(t,a) = 6 /“[R,.(a)é" ~ H(t,a)ldt = 0

R =R(a)= R(F,p) # R° (1.20)

with fundamental equations given by Birkhoff ’s equations in their covariant

form .
uu( ) av - aH(t a) 0’” =1,2,..,2n;
81!., OR,
Q‘w - aa“ aay ’ (1-21)
with contravariant version
—Q™(q )8H(t ,a) -0
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0R, OR,. _
aff _ v _ #y—-1 aﬁ.
7= da*  Oa¥ |
The algebraic brackets of the theory are given by the so-called generalized

Poisson brackets

(1.22)

[A;B] % %Q‘”’(a)g% (1.23)
with fundamental Birkhoffian brackets
[a*;a"]) = 2*¥(a) (1.24)

which do verify the Lie a]gei)ra axioms (see the analytic, algebraic and geo-
metrical proofs of ref. [20])

[A;B] +[B;A] =0
[[4;B];C] + [[B;C}:A] + [[C;A]:B] = 0. (1.25)

Finally, Eqs. (1.18) are lifted into the Birkhoffian form of the Hamilton-
Jacobi equations ' :

94
ey +H=0
g;i“ =R, (1.26)

Note that, unlike Eqs. (1.18), the generalized action functional does depe.nd,
in general, on the linear momentum, thus resulting in nontrivial generaliza-
tions of Eqs. (1.19b) (for simpler versions see below). .

In summary, the notion of analytic isotopy gives rise, not to one partic-
ular algorithm, but to an entire new mechanics generalizing each a.nd. every
aspect of the conventional Hamiltonian mechanics. It is ho?ed that, in .tl}x’s
way, the reader begins to see the rather intriguing implications of Santilli’s
research. | . .

Of course, the algebraic isotopy is a particular case of Definition 1.2, this
time in its classical realizations in the local codrdinates a = (F, 7)

0A ,, 0B ... _0A . 0B
[A, B] = Ww“ -6? had [A,B] = -a;‘:ﬂ” (a)aay. (1.27)

This proves the compatibility of the notion of isotopy at the algebraic and

analytic levels (see the next section for the geometrical aspect). . .
From the above property we also see another seminal result achieved in

memoir [1], that Birkhoffian mechanics is a realization in classical mechanics
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of the Lie-isotopic algebras. The reader interested in acquiring an expertise
in Lie-isotopy is therefore urged to study monograph [20]. This point must
be stressed here because this review can only serve as a guide to the existing
literature.

Unlike the conventional Hamiltonian mechanics, the Birkhoffian mechan-
ics is directly universal, in the sense of being able to represent all possible
systems of the class admitted (essentially nonself-adjoint/nonhamiltonian
systems verifying certain topological restrictions) in the frame of the exper-
imenter. This property has nontrivial implications (particularly for quan-
tization) because the mathematical algorithms of the theory can now be
assured to have a direct physical significance, e.g.;; “ ¥ " represents the
actual local coordinates of the experimenter; “ 5" represents the physical
linear momentum mf; “FA 5" therefore represents the angular momentum;
“H™ represents the actual physical energy T + V; etc. (see ref. [20], §4.5).
By comparison, the algorithm “p” in Hamiltonian mechanics coincides with
the physical linear momentum m# only in very special cases; nevertheless,
upon quantization, its operator image is rather universally assumed to be
the physical linear momentum (with consequential results of equivocal char-
acter).

Let us also recall that each formulation of Birkhoffian mechanics can be
constructed via noncanonical transformations of the corresponding Hamilto-
nian counterpart. In fact, Hamilton’s equations do not preserve their form
under noncanical transformations, as well known. What has been identified
by Santilli (ref. [20], §5.3) is that, under noncanonical transformations, all
essential properties persist (derivability from a first-order principle; verifi-
cation of Lie algebras axioms; existence of a Hamilton-Jacobi theory; etc.).

As a further aspect, the function H of Birkhoff’s Eqs. (1.21) does not
represent, in general, the total physical energy T + V (although, as men-
tioned earlier, a representation of any given system always exists under the
restriction H = T 4+ V). In order to avoid confusions, Santilli introduced
the name Birkhoffian for this function. The term Hamiltonian within the
context of Birkhoff’s equations is used only wlien the function represents the
total energy. In the following, whenever referring to this function, we shall

_use the Hamiltoriian H to denote specifically the restriction to the physical

total physical energy T + V (which is not necessarily conserved), and the
Birkhoffian B to stress its departures from the total physical energy H.

As a final point, the classical Birkhoffian realization of the Lie-isotopic
theory is fully established on physical grounds. Birkhoff [38] introduced his
equations for a better study of the stability of the planetary orbits, although
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his use of Eqs. (1.21) was restricted to conservative systems. Santilli [1]
rediscovered these equations (after some 51 years) and proved not only their
applicability to a much larger class of Newtonian systems, but also their
direct universality. For numerous physical applications along these latter
lines, we refer the reader to the examples of Ref. [20], as well as to the
quoted literature. : -

The restriction of this review only to classical realizations of the Lie-
isotopy would however be a gross disservice to the reader, because, as well
known, the abstract formulation of Lie’s theory is directly interpretable via
operator realizations. -

This renders unavoidable a brief review of the operator realization. In the
following we shall review the apparent generalization of quantum mechanics
which emerges from these studies, with the clear understanding that, unlike
its classical counterpart, the physical validity of the generalized operator
formalism is not established as of this writing.

Let H be a Hilbert space (hereinafter assumed to be finite-dimensional)
with elements |a), |b), ... and norm over the field C of complex numbers

| M: (cib) =ceC. (1.28)

Let £ be an enveloping associative algebra of operators A, B,... on H
with trivial associative product AB and unit I = diag(1,1,...,1),

€:IA = Al = A, AVE. (1.29)

The Lie algebra L attached to § is then characterized by the familiar
product : ;
L:|A,B); = AB - BA (1.30)

which provides the structure of the first fundamental equation of quantum
mechanics, Heisenberg’s equation

iA=[AH)¢=AH-HA K= L (1.31)

Let the homomorphism § x H{ — X be characterized by the (right)
.modular action of, say, an operator H € { on an element |a) € H according
to the familiar eigenvalue equation

Hla) = cla),c € C. (1.32)
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This provides the structure of the second fundamental equation of qﬁantum

mechanics, the familiar Schrédinger’s equation
i21a) = Hla)

5% = (1.33)

with corresponding well known additional aspects (such as unitary transfor-
mation theory, various physical laws, etc.).

DEFINITION 1.3 [¢], (20], 0], [$2] (Operator-analytic Iso-
topy): An isotopic mapping (or image or lifting) of Heisenberg’s
and Schrédinger’s equations is given by compatible generalized
Jorms that preserve: a) the eristence of an underlying Hilbert
space; b) the Lie character of the brackets of the time evolution;
and c) the linearity of the operations on the Hilbert space; such
as transpose, hermiticity, unitarity, etc.

A realization of the above operator isotopy was identified by Santilli in

1978 [1], [2] apparently for the first time. Let £ be an isotope of ¢ with
product ‘

£:A+BY ATB, (1.34)
where T is a generic, Hermitian, invertible and fixed, but otherwise arbitrary
operator. The lifting AB — A+ B evidently implies the underlying mapping

of the unit, from the original trivial unit of ¢,I = diag(1,1,...,1), into the
nontrivial operator unit I = 7!, called isounit, according to the rule
E:TeA=Asi=A AVE (1.35)

The antisyinmetric algebra L attached to the isotope £ is evidently a Lie-
isotopic algebra with now familiar form
L:[A,Bl;=A+B-B+A. (1.36)

The above generalized structures allowed Santilli to propose the following

'Lie-isotopic generalization of Heisenberg’s equation (ref. [2], p. 752)

iA=[AH);=AsH-H+A=ATH - HTA,T = T*. (1.37)

The remaining realization of Definition 1.3 was accomplished in subse-
quent years. First, Santilli [5] pointed out the need for a full bimodular
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(left and right) generalization of the conventional (uni)modular represen-
tation theory. These studies lead to the proposal in 1982 by Myung and
Santilli [30] of the following generalization of Schrédinger’s representation
(other attempts, see ref. [11), produced generalized equations not manifestly
compatible with isotopy (1.37)).

The analysis was conducted by providing, apparently for the first time,
a comprehensive isotopic generalization of conventional operations on a
Hilbert space which, along Definition 1.3, were compatible with the iso-
Heisenberg’s equations.

In order to preserve linearity, the following isotopic generalization of the
field C (called isofield) results to be'needed (see ref. [30], pp. 1307-1309)

é:{éjé:v&f;cec;fef}. (1.38)

The elements éof € are then called isonumbers. R
Note that C is still a field. Also, the sum in C is the conventional one,
although the multiplication is isotopic, according to the rule

Gaéy=aclié,é&el. (1.39)

The achievement of compatibility with the iso-Heisenberg’s equations
requires the lifting of the conventional modular/eigenvalue action on 7 into
the isomodular/isoeigenvalue form

ExH—H:Hsla) & HT|a) = é +|a) = cla). (1.40)

Note that the “numbers” of the theory, i.e., the last numbers in the above
identities, remain the conventional ones as in Eqs. (1.32).

With these preliminaries, Myung and Santilli presented a generalization
of all familiar operations on a conventional Hilbert space (see below for
generalization of the Hilbert space itself) (loc. cit. §II, pp. 1281-1315).

. Evidently, we can review here only some of the most relevant operations.
Let H be a conventional Hilbert space with elements |a), |b),... and norm
(1.28). A linear operator H € £ on M is called isohermitean iff it verifies the
identity :

A ¥ gt =g (1.41)

The eigenvalues of isohermitean operators results to be isoreal, i.e., the num-
ber at the end of equalities (1.40) is real as in the conventional case.
A linear operator U € £ on H is isounitary when it verifies the rule

(al + U o U +b) = (a]t), (1.42)
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which holds iff _ :
| vtsU=v+Ut = fut = p-i, (1.43)
Along similar lines, the following generalized properties hold, where con-

ventional symbols denote conventional operations and symbols with a su-
perscript “hat” denote generalized operations

TrA = (TrA)f;
Tr(A+B)=THB + A)
detA = det(AT)]
det(A + B) = (detA) + (det B)
detA-1 = (deta)-1. (1.44)

After these preliminary results, Myung and Santilli proposed the follow-
ing isotopic lifting of Schrédinger’s equation (also called iso-Schradinger’s
equation) (ref. [30], p. 1332) ' '

.'%m = H +]a) % HTYa). (1.45)
The equivalence with Eq. (1.37) was proved in loc. cit §3.7. It should be
indicated here that Eq.(1.45) was jointly but independently proposed by
Mignani (ref. [39], p. 1128), although without the isotopic generalization of
linear operations on Hilbert spaces worked out by Myung and Santilli (also,
Mignani presented his generalized equations for the broader Lie-admissible
level in which the T operator is nonhermitean, thus resulting in different,
nonequivalent, left and right isomodular actions. See in this respect also
paper [31] by Myung and Santilli).

The above results essentially established the mathematical consistency
of the generalized operator theory, under the isotopic generalization of the
enveloping associative algebra £, the attached Lie-isotopic algebra L, and

the underlying isofield €, while keeping the conventional Hilbert space

unchanged.
The above operator realization of Definition 1.3 shall be symbolically
referred to hereon with the isotopies : '

E—'{Tp
C—-Cr,T=Tt
H—-H, .

(1.46)
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where evidently the last mapping is the identity isotopy. We should stress
that generalized formulations (1.46) are fully consistent on mathematical
grounds, even though based on a conventional Hilbert space (see below for
physical aspects). Also, we should stress that the Lie character of the for-
mulation is centrally dependent on the (conventional) hermiticity of H on
H. In fact, in case T is not Hermitean we have the following pair of iso-

Schrodinger’s equations

i24a) = H +|o) = HT}a)

(@lT* H = (ofs = (ol
T#T. (147)

The generalized form of Heisenberg’s equations corresponding to the above
equations is then given by

iA=(A,H)* ARH - HSA
R=T+4S§=T (1.48)

which is precisely the yet broader Lie-admissible generalization of Heisen-
berg’s equation proposed by Santilli (ref. [2], p. 746).

In summary, operator isotopy (1.46) is centered on the isotopic element T
as one additional operator, besides the Hamiltonian, for the characterization
of the time evolution laws (1.37) and (1.45), thus broadening substantially
the arena of physical applicability of the theory.

Further studies revealed that the new “degree of freedom” characterized
by T is still partial, and that an additional degree of freedom exists in the
structure of the Hilbert space, with a corresponding further broadening of
the representational capabilities of the theory (see §3).

In fact, subsequent studies by Mignani, Myung and Santilli [32] iden-
tified the following isotopic generalization of the Hilbert space itself (called
isohilbert space), Hg as the linear vector space with elements |a), |b),... and
the isoinner product

Ha : (a]b) % (alGIb)f = e € € (1.49)

where the new operator G is hermitean and positive definite, but otherwise
arbitrary. It represents an additional “hidden” degree of freedom of the

theory besides that provided by the isotopic element T'.
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hermiticity

.. It is easy to check that the inner product (1.48) of the isohilbert space
Hg obeys all conditions.which are used to define an abstract Hilbert épace.
So the isohilbert space 7g may be thought of as an extended realization of
.the conventional Hilbert space # of quantum mechanics, with G being an
integration measure. The two spaces are isometric to each other.

It is instructive also to verify that the following generalized Schwarz
inequality holds |(a]b)| < ||a||c||b]|g, Where we have denoted the isonorm of
a a8 ||| = (a]a)/?.

Generalization.(l.48) demands a further enlargement of linear opera-
tions. For instance, the condition of isohermiticity now becomes

B} =T-'\GH*TG' = A. (1.50)

The above results are intriguing. In fact, one can see that JorT =G

the generalization notion of isohermiticity coincides with the conventional

BY = T-'TH+TT' = B+, (151)

‘In turn, this has the direct consequence that the observables of quantum me-

chanics (Hamiltonian, linear and angular momenta, etc.) remain observable
under a general isotopy of enveloping associative algebras, fields and Hilbert
spaces characterized by the same isotopic element T = G.

In summary, the most general known isotopic formulation of operator
algebras is characterized by the following liftings '

f-'fg',
C—Cr,T=TH,
H—-MHg,G=G*,G>0,

where, in general, T # G. In the following we shall however oféen refer to
formulations (1.52) under the specialization T' = G, owing to their capability
to preserve the operation of Hermiticity of quantum mechanics (as well as

(1.52)

-other operations, see ref. [32]).

The above rudimentary review is sufficient for our purpose here: to show
the mathematical consistency of the generalization of quantum mechanics

characterized by isotopes (1.46) and (1.52). In turn, this implies the ex-

istence of a consistent operator realization of Santilli’s Lie-isotopic theory.
Still, in turn, this property results invaluable for the study of the theory
because, as mentioned earlier, isotopes (1.46) or (1.52) provide the most
direct possible interpretation of the generalized Lie theory. '
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A few words on the physical profile are in order here. The generalization
of quantum mechanics characterized by isotopies (1.46) a.m! (1.52) was ca.lled
by Santilli hadronic mechanics (ref. [2], p.756) to emph:.xslze .the restriction
of the intended applicability of the theory only to the interior of hadrons,
or to the interior of strong interactions at large. . .

The physical foundations of the proposal are the expem.n?ntal evidence
of the existence, under strong interactions, of necessary conditions ?f mutual
overlapping of the wavepackets of particles (which are generally ignorable
under electromagnetic interactions as in the atomic structure). In turn,
these interactions are known at the classical level to be:

e a) of contact type, in the sense of zero range, i.e., not being repre-
sentable via action-at-a-distance interactions;

¢ b) of nonlocal type, in the sense of occurring througho'l.xt a volume,
and not being reducible to a finite number of isolated points; and

¢ c) of nonhamiltonian type, in the sense of being, not onl)t of nonpo-
tential type, but actually of being beyond the representational capa-
bilities of a Hamiltonian in the frame of the observer (see mon?graph
[20] for the violation of the integrability conditions for the existence

of a Hamiltonian).

The same properties are evidently expected to remain for particle wavepack-

ets (see Fig. 1).
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FIGURE 1. A reproduction of the slide presented by Santilli during his
invited talk at the Conference on Differential Geometric Methods in Math.
ematical Physics held in Clausthal, West Germany, in 1980. The slide was
intended to illustrate, for the distinguished geometers and theoreticians at-
tending the conference, the incontrovertible experimental evidence on the
nonlocal nature of the strong interactions as pointed out by the founding
fathers of the theory. In fact, all hadrons are not point-like, but have a
charge distribution of the order of 1F (= 10=%3¢m) which coincides with
the range of the strong interactions. Also, all known (massive) particles
have a wavepacket which, again, is of the order of 1F Thus, a necessary
condition to activate the strong interactions is that the particles enter into
a state of mutual penetration of their charge distribution and wavepackets.
This characterizes interactions which cannot be reduced to a finite number
of isolated points, because they occur throughout the volume of mutual pen-
etration/overlapping. Also, the interactions are of contact nature, that is,
the nonlocality cannot be represented via a potential of integral type be-
cause the integrability conditions for the existence of a Hamiltonian are vi-
olated without, of course, precluding the existence of conventional potential
terms. By keeping in mind that all geometries conventionally used nowadays
in theoretical physics are of strictly locn.l/dilfcrenti;l nature, the slide was
intended to stimulate the study of more general, nonlocal (e.g., integrodiffer-
ential) geometries for a more adequate representation of the interior strong
problem. The Lie-isotopic theory and its various applications reviewed in
this work are intended precisely as a first step toward a quantitative rep-
resentation of the nonlocal/nonhamiltonian character of interior dynamical
problems, in which the conventional, potential, local interactions are repre-
sented by conventional Hamiltonians, and the nonlocal, integrodifferential,
and nonhamiltonian interactions are represented via the generalized unit of
the theory. The symbol of overlapping spheres was subsequently assumed by
Santilli as the logo of The Institute Jor Basic Research, at its inauguration
ceremony the following August 1981. . :

As stressed earlier, hadronic mechanics is not physically established as of
this writing because a large number of theoretical and experimental studies
remain to be done. Nevertheless, hadronic mechanics may be applied also
to account for a number of conventional applications, such as: quark con-
finement, hadronization processes and other cases where the perturbative
techniques of QCD are known to fail to achieve a consistent description.

An apparent reason for the current resiliency toward hadronic mechanics
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is due to the inevitable existence of certain generalizations of basic quan-
tum mechanics laws, such as: Heisenberg's uncertainty principle; Pauli’s
exclusion principle; the very notion of “particle”; etc.

The reader should however be aware that, as stressed in the literature,
these deviations from conventional quantum mechanical laws are ezpected
only in the interior of hadrons, or in the interior of systems of strongly
interacting particles, while conventional quantum mechanical laws are re-
covered in full for the center-of-mass motion.

For instance, Mignani, Myung and Santilli [32] proved the validity of
the conventional uncertainty relations for the center-of-mass motion of a
composite system characterized by hadronic mechanics, in a way fully com-
patible with generalized uncertainty relations for each individual constituent.
A similar situation has been proved by Santilli [13] for the time reversal, or
by Arigazin {33] for Pauli’s principle.

These results are important because they establish the fact that es-
sentially no valid ezperimental evidence ezists at this time for disproving
- hadronic mechanics, for the simple reason that all available direct tests for
strong interactions are essentially center-of-mass tests. To put it differently,
in order to establish experimentally the validity or invalidity of hadronic me-
chanics, we have to repeat the historical process that lead to the establishing
of quantum mechanics. The historical experimental measures conducted for
charged particles under ezternal electromagnetic interactions, must be re-
peated, this time, for hadrons under ezternal strong interaction. No direct
experimental study along the latter lines evidently exists as of this writing.

In the final analysis, readers-with an open mind to potentially fundamen-
tal advances should notice the evident plausibility of the occurrence: conven-
tional quantum mechanical laws for the center-of-mass motion of hadrons,
and generalized hadronic laws for their internal structure.

The physical foundations for this plausibility is provided by another
seminal contribution by Santilli, the notion of closed essentially nonself-
adjoint systems, introduced in 1978 jointly with his algebraic and classi-
cal/operational studies [1], [2]. In a few simple words, it is generally be-
lieved that the stability of a system is provided by the stability of the orbits
of each individual constituent. This is essentially the case of the stability of
the solar system as well as of the atomic structure.

Santilli pointed out the existence in Nature of a class of more general
systems which verify all total conventional conservation laws for their center-
of-mass motion, but the internal equations of motions are nonhamiltonian.

(See Fig. 2.)
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These broader systems are essentially provided by composite systems
with each individual constituent in unstable conditions due to excha;nges
of energy, linear momentum and other physical quantities with the rest of
the systems. The point is that these nonconservations are merely inter-
na.ll ex(:lhanges under total conserved quantities, the system being, after all,
isolated.

fxrerton
2RO %
Eaact $0(3)
nd T
symmetries

FIGURE 2. A reproduction of Figure 1, page 1208 of ref. [11], depicti;lg
a dychotomy of central relevance for the studies under review: the compati-
bility of the conventional symmetries and physical laws for the center-of-mass
motion of celestial bodies (such as Jupiter), with manifest deviations from
the same symmetries and physical laws in the interior dynamics. In fact,
on one side, we have clear evidence on the stability of Jupiter’s orbit in
the Solar system with consequential manifest validity of the rotational sym-
metry for the exterior dynamics; on the other side, we have equally clear
evidence for the existence in the interior motion of vortices with continu-
ously varying angular mom'entum, with conueqnehti;l internal violation of
the rotational symmetry. Similarly, we have a manifestly reversible center-
of- mass trajectory, as compared to a manifestly irreversible interior ‘dynm-
ics. A similar situation occurs for all other aspects at all levels of study,
as we shall see, including the relativistic and the gravitational level. The
dychotomy reviewed here was quantitatively interpreted by Santilli via the
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notion of closed- isolated systems with nonhamiltonian internal forces (see
later on). The above dychotomy also provides the conceptual foundations
of the fundamental experiments proposed later on in §3.5.18 regarding clear
phenomenological predictions of apparent violation of Einstein’s Special Rel-
ativity in the interior of (unstable) hadrons in flight, while the relativity is
preserved for center-of- mass motions of the same hadrons, say, when moving
in a particle accelerator. '

The mathematical consistency of these broader systems at the classical
‘and the operator level was also shown in the original proposals [1,2].

At the classical level, closed nonhamiltonian systems are characterized
by the Birkhoffian equations (ref. [2], p. 624; see also monograph [20], pp.

234-237) N .
myfy = FEA(R) + FNSA@, )7, ...,

O d
H=2(T+V)=0,

= . d LI -
Pt = E(kakpk) =0,
' 1

. d . -
Mlot = E"(E'kAPIc)=09
. k

. d -

Glot = E(Zm,ﬁ - i) =0, (1.53)
o k

where the symbols “SA” (“NSA") indicate verification (violation) of the

integrability conditions for the existence of a potential, those of variational

self-adjointness.
An intriguing point is that the conventional total conservation laws are

not necessarily subsidiary constraints to the equations of motion. In fact,
Eqs. (1.52b)-(1.52e) are verified when

(1.54)

which consist of seven conditions on 3n unknown quantities, the components
of the nonhamiltonian forces FNSA, Infinite varieties of unconstrained so-
lutions therefore.exist for n 2 3. The case n = 2 has been proved to be
consistent, even though with very special features (e.g., only circular orbits
are possible). The case n = 1 is impossible for the evident reason that an
isolate particle cannot be under nonhamiltonian external forces (see Fig. 3).
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FIGURE 3. A reproduction of Figure 5.1, page 529 of ref. [21), pre-
senting a schematic view of the notion of “closed non-self- adjoint systems”
originally proposed in ref. [1], [2] and then investigated at several levels
of study by a number of authors (see §1.1). Conventionally, closed-isolated
systems are represented by assuming that total, conserved, quantities (such
as energy H, angular momentum M, etc.) are the generators of space-time
symmetries (translations, rotations, etc.). The assumption of the simplest
conceivable Lie product AB — BA then requires the Hamiltonian H to rep-
resent all acting internal forces. Additional technical arguments restrict all
internal forces to be action-at-a-distance potential/Hamiltonian. Santilli’s
proposal is to assume the same total, conserved physical quantities H, M,
etc., as the generators of isotopically lifted space- time symmetries, in which
the product is less trivial, eg, A+B—Bes A= ATB - BTA. This yields
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an additional element T, besides the Hamiltonian H, to represent internal
forces that are beyond the representational capability of the Hamiltonian
(Fig. 1). This results into the covering notion of closed nonhamiltonian
systems which are at the foundation of the studies of Lie-isotopy at all lev-
els: Newtonian, relativistic, gravitational, statistical, etc. Remarkably, the
space-time symmetries are not broken under the presence of internal non-
hamiltonian forces, but merely realized in a structurally more general, but
isomorphic way. This important finding was only empirically known in the
early stages of the Lie- isotopic theory, and subsequently formalized in ref.
(18] (see later on Theotem 2.9). The implications of these results are far
reaching at all levels of study. To begin, Santilli has disproved statements
such as *breaking of the Lorents symmetry” or “Lorents moninvariance,”
which are technically correct only when specifically referred to the “simplest
possible realization of the Lie product AB — BA." In fact, Theorem 2.9
allows the reconstruction of the same symmetry as exact at the Lie-isotopic
level when broken at the conventional level. Furthermore, the notion under
consideration and its underlying Lic-isotopic methods, allow the possibility
of constructing genuine covering of contemporary relativities, as we shall see
in §3, with far reaching implications in classical as well as particle mechanics.
All the above considerations refer to the “exterior problem,” here intended
as the description of the systems from the exterior with the emphasis on
total conservation laws, along the line of monographs [63], [20]. A comple-
mentary aspect is the “interior problem® intended as the study of only one
constituent of the system when all other constituents are considered as exter-
nal. The emphasis is now shifted to the maximal possible nonconservation
of the physical quantities of each constituent (of course in a way compatible
with total conservation laws), as the best way to maximize internal dynam-
ical conditions. This complementary approach is along the Lie-admissible
line of study of monographs [64], [21] which is not reviewed here.

Notice that the observability of physical quantities persists because, as re-
called earlier, one can select isotopes (1.52) with T = G, under which a total
Hamiltonian H which is conventionally hermitian in quantum mechanics,
remains hermitian in hadronic mechanics. Also, its eigenvalues remain real
(although different!) [32].

This confirms the point touched earlier, that the center-of- mass motion
of a composite system obeying hadronic mechanics, when inspected from the
outside, verifies conventional physical laws. Nevertheless, the system admits
in its interior a generalized integrodifferential unit f for which conventional
physical laws are inapplicable, in favor of suitable covering laws.

In Santilli's words, the solar system is a closed Hamiltonian system
whereby total stability is provided by the stability of each orbit. The plan-
ets, however, possess structures considerably more complex than that. For
instance, Jupiter is an example of a closed nonhamiltonian system because,
when assumed as isolated from the rest of the solar system, it verifies to-
tal conservation laws; yet its internal structure is highly nonconservative,
nonhamiltonian (and irreversible). _

In the transition to the particle setting, the atomic structure is analyti-
cally equivalent to that of the solar system because, again, total stability is
provided by the stability of each orbit. Santilli’s view is that the hadronic

-structure is equivalent to that of Jupiter [2], in the sense that each isolated

hadron evidently verifies total conservation laws; nevertheless, the internal
orbits are expected to be highly nonconservative due to the deep mutual
overlapping of the wave packets of the constituents. (See Fig. 4.)

The operator image of systems (1.53) was also identified by Santilli in his
second memoirs of 1978. In fact, the operator H in his Eqs. (1.37) represents
the total physical energy of the system and it is evidently conserved because

_of the Lie character of the underlying algebra. We can therefore write the
following operator version of systems (1.53)

il =[HHg=H+H-H+H=0

[Piot, H); = U\ZconH]g = [Grot, H]; = 0. (1.55)
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FIGURE 4. A reproduction of Figure 9.1, page 1945 of ref. [32), signal-
ing the achievement of mathematical maturity in the operator formulation
of cloped nonhamiltonian systems on Hilbert spaces. Ref. [32] established
the operator counterpart of the dychotomy of Figs. 2, 3, that is, the validity
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of conventional quantum mechanical laws for the center-of-mass motion of
the state, in a way compatible with structurally more general laws for the
interior dynamics. The analysis was presented for the case of Heisenberg’s
uncertainty p}inciple, with guidelines for the expected extension to all other
physical laws and principals of quantum mechanics. In fact, Aringazin (see
later on ref. [130]) has recently proved the same occurrence for Pauli’s exclu-
sion principle. These operators results are merely indicated for the purpose
of informing the reader on the existence of mathematically consistent opera-
tor counterparts of the classical models reviewed in this work, with the hope
of reviewing them in detail in a future paper.

To summarize our viewpoint, the classical analytical realization of San-
tilli’s isotopies (Birkhoffian mechanics [20]) is nowadays established on both
mathematical and physical grounds. The corresponding operator counter-
part (hadronic mechanics [32]) is clearly consistent on pure mathematical
grounds, but far from being established on physical grounds, although no
experimental evidence can be moved against the generalized mechanics at
this moment. In the final analysis, the central physical notion of the theory
(that of closed nonhamiltonian system) is manifestly plausible for the repre-
sentation of hadrons, as we shall see better in the final part of this analysis,
and, more technically, in a possible subsequent review.

We now briefly review the process of naive hadronization, i.e., the sim-
plest possible mapping of Birkhoffian into hadronic mechanics. This aspect
is important for our analysis because it throws a deeper light in the notion
of isounit of the Lie-isotopic theory (besides indicating how diversified the
studies of compatibility and consistency have been conducted until now).

The conventional naive quantization, i.e., the mapping of classical Hamil-
tonian into quantum mechanics, can be characterized by the mapping of the
action functional A into a constant unit, Planck’s unit & = 1, time —ilog ¥,

ie.,
A— —illogy (1.56)
which under Hamilton-Jacobi Eqgs. (1.18) assume the form
0A 10,
_E- = H - t;a#’ = Hom
oA _ . .1 o
—"-’. = p -—p —'7’6‘41 = POP (1.57)
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thus becoming Schrédinger’s equations
.0
"a_‘"/" =H '/’9

- iVy = pyp. (1.58)

An.ima.lu and Santilli [40] pointed out that mapping (1.56) is expected

to b? insufficient, for Pfaffian action principles, because of its inability to

provide a representation of the contact/nonlocal/aonhamiltonian forces of

the broadgr systems considered. The authors proposed instead, as naive rule

of hati_mntz?tion, the mapping of the Pfaffian action functional A into the

.opemtor unit of the theory, the isounit of hadronic mechanics | , time—ilog ¢,
ie.,

A — —illogy. (1.59)

For our needs we now consider the following particularized Pfaffian action
. t .
A= /‘ [Mi(F, fpis* - H(t, 7, 7)dt
{J

det(M}) #£ 0 (1.60)

with Hamilton-Jacobi equations (which are still of genuine generalized na-
ture, yet of the simpler form)

dA
=t
94 ;
o* = kPiy
94 _, - 1
55, = . (161)
The application of mapping (1.59) to Eqgs. (1.61) then yields the forms [40]
94 _ . . of 219
a1 = — il5)logy + 'IEE = HeP
A _ . ol m .
a_i"k = —:(V;I)logq/) - tIEngb = M,:i)f’ (1.62)
which can be rewritten
i) 0l 1
iV = [H - .E‘Jhgw] t¢dé' Hf 4y
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— iV = [MiF; + i(egf)-;—)logql;] s & MBSy (1.63)
yielding precisely the isoschrddinger’s Eqs. (1.45), plus corresponding equa-
tions for the linear momentum.

A mathematically rigorous formulation of hadronization was achieved
by (the mathematician) E. B. Lin [41] via the methods of symplectic quan-
~ tization. Recall that the Birkhoffian mechanics can be constructed via
noncanonical transformations of Hamiltonian mechanics (and remains form-
invariant under these general transformations). Along parallel lines, hadronic
mechanics can be constructed via nonunitary transformations of quantum
mechanics (and also remains form-invariant under the most general possible
transformations) [4]. Lin essentially shows that the lifting of conventional,
symplectic quantization techniques (e.g., prequantization) characterized by
noncanonical (nonunitary) transformations provides precisely the desired
hadronization, as expected.

This completes the objective of this section, tn show that the classical
and operator realizations of the notion of analytic isotopy, not only are in-
dividually consistent, but admit a consistent mapping of the former into the
latter, the entire process constituting a true generalization of conventional
theories. ,

A few comments are now in order. Evidently, the assumption of the sim-
pler Pfaffian form (1.60) has the objective of rendering the generalized action
functional independent of the linear momentum. This, in turn, allows the
construction of an operator image in which the wavefunction has the familiar
functional dependence (¢, ) without a dependence on the momentum.

A personal communication by Santilli confirms the rather vast capa-
bilities of action (1.60) to represent nonhamiltonian interactions, once the
several degrees of freedom of Birkhoffian mechanics are taken into considera-
tion (ref. [20], pp. 54-67). Nevertheless, Santilli stresses the fact that, unlike
the case for general action (1.20), the direct universality of the reduced form
(1.60) has not been proved as of today. In case action (1.60) does not re-
sult to be directly universal, the construction of a “wave mechanics” with
“wavefunction” dependent also in the momentum, ¥(t, 7, p), is inevitable.

Second, hadronization (1.62) indicates the intrinsic nonlinearity of hadronic .

mechanics, where the nonlinearity is referred also to the dependence of the
equations of motion in the wavefunctions. As a matter of fact, the iso-
Schrédinger’s equation in its original formulation by Santilli, that in term of
the Birkhoffian operator B, is the most general nonlinear equation of motion
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in operator form know until now. We shall write it in the explicit form

.0 . .

'E'/’ =B = B(tv a,9, ¢+9 '")D(" a, 9y, ¢+s ---)¢- (1-64)
All known equations, nonlinear in the wavefunctions as well as in other
quantities, are evidently a particular case of the above equation.

We are referring here to the direct universality of hadronic mechanics,
i.e., the capability of representing all conceivable nonlinear equations verify-
ing certain topological restrictions (universality) in the frame of the observer
(direct universality). This is merely the operator counterpart of the classical
direct universality of Birkhoffian mechanics [20). A

The proof of this important property is quite easy. Recall that the univer-
sality of Birkhoff’s equations ultimately results from the form-invariance of
the theory under the most general possible (roncanonical) transformations.
The direct universality of the iso-Heisenberg’s or the iso-Schrodinger’s equa-
tions then follows from their form-invariance under the most general possible
(evidently nonunitary) transformations.

As an example, it is an instructive exercise for the interested reader to
show that certain nonlinear wave equations currently under investigation
by Weinberg [42] and others (to explore a possible nonlinearity of quantum
mechanics) of the type

i) i

in¥= WH(W:*,...) (1.65)
are in fact a particular case of hadronic mechanics, i.e., they can always be
rewritten into an equivalent isomodular form (1.64).

But there is more. The direct universality of the theory, combined with
its isotopic structure, have rather profound epistemological impiications for
the very notion of nonlinearity.

This is another central aspect of the Lie-isotopic theory we shall consider
in more detail later on, when reviewing the isotransformation theory (§2).
At this point we can limit ourselves to the remark that the isotopic element
D of Eq. (1.64) is arbitrary. As a result, all nonlinear terms, whether in the
wavefunctions or in the other quantities, can be incorporated in the isotopic
element, in which case the (nonlinear) Birkhoffian operator B is replaced by
a linear Hamiltonian H, and we shall write

.0
tad: = B(t,a,t,b.vlf"...)D(t,a,t/),¢',...)¢
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= H(t,a)T(t,a,¥,¢",..)¢
= Haey. (1.66)

The implications of the above results are rather deep. They essentially
establish that, not only we have a direct universality for all possible non-
linear theories, but in addition any possible nonlinear theory can always be
rewrillen in an equivalent isolinear form.

It is regrettable that the authors of studies [42] do not appear to be
aware of the Lie-isotopic theory, because the intrinsic isolinear structure of
Weinberg’s equation (1.64) may evidently void most of their argumentations.

This is the technical reason why Santilli (private communication) does
not consider nonlinearity a structure characterizing feature. Instead, he con-
siders structurally fundamental the nonlocality and nonhamiltonian charac-
ter caused by the deep mutual overlapping of the wave packets of strongly
interacting particles.

Regrettably, we cannot enter into a detailed analysis of the implication

- of the isotransformation theory for Weinberg’s work because this is substan-

tially outside the scope of this review. Nevertheless, the above occurrence
is important to point out the rather deep implications of the Lie-isotopic
theory for a virtually endless varlety of frameworks in classical, operator
and other branches of physics.

Next, we want to point out a fundamental feature of hadronization
(1.59), according to which the isotopic lifting of quantum mechanics is es-
sentially centered on the replacement of Planck’s constant unit h = 1 with
the operator isounit |

M=1) - i(t.a,9,¥,..). . (1.67)

In turn this provides another illustration of the intriguing physical implica-
tions of the Lie-isotopic theory in general, and of Sa.ntnlh’s notion of gener-
alized unit [1,2], in particular,

The epistemological implications of concept (1.67) are self-evident. They
are essentially centered on the expectation that the quantum of energy,
while so effective for the area of its original conception (discrete energy
states of the individual electrons of the atomic structure), is expected to
be insufficient for the representatlon of the nonlocal and nonhamiltonian
conditions of wavepackets in deep mutual immersion.

This is one of the reasons why Santilli carefully avoids the use of the
terms “quantization” or “quantum mechanics” when referring to the opera-
tor mechanics characterized by the Lie-isotopic theory.
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‘We now close these analytic comments with the indication of the fact
that the Birkhoffian and hadronic mechanics constilule genuine coverings of
their original counterparts, the Hamiltonian and quantum mechanics, in the
sense that:

1. the generalized theories are conceived for physical conditions intrin-
sically more general than those of the original theories (essentially
nonhamiltonian interactions);

2. the generalized theories are constructed with mathematical methods
essentially more general than those of conventional theories (Lie-isotopic
methods); and

3. the generalized theories are capable of approximating the conventional
ones as close as desired, e.g., for

Quworinh (1.68)

and they recover the conventional theories identically when all the
nonhamiltonian interactions are null, e.g., for

Q=wori=h. (1.69)

1.4 The Notion of Geometrical Isotopy

We now briefly touch upon another notion of isotopy, this time at the geo-
metrical level. ‘

Let M be an n-dimensional C*-manifold with local coordinates ry, k =
1,2,...,n, and let T*M be its cotangent bundle with local coordinates a*,
p=12,..,2n, a = (r,p). The familiar canonical one-form on T*M can
then be written '

0, = prdr* = R;(a)da" (1.70)

where one recognizes the same R° as that of Egs. (1.15).

The fundamental symplectic two-form on T*M can then be written

6 = db, = dpy A dr* = -;-w,,.,da“ A da” (1.71)

‘where wyy i8 the covariant tensor of Eqs. (1.17).

Form (1.71) is nowhere degenerate and “closed” (in the geometrical sense
that df; = 0. The space T*M, when equipped with the form 82, becomes
a symplectic manifold in the local canonical coordinates a = (r,p). All the
several aspects of the symplectic geometry then follow (see, e.g., ref. [43]).
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DEFINITION 1.4 [20] (Geometric Isotopy): An isotopic map-
ping (or image or lifting) of a symplectic manifold with funda-
mental two-form (1.71) is any mapping that preserves the sym-
plectic character of the two-form, i.e., its cloae'ad and nowhere
degenerate character, but remains otherwise arbitrary.

Evidently, Birkhoff’s equations characterize, not only a Lie- algebr.a iso—
topy (in their contravariant form), but also a corresponding symplectic iso-

topy (in their covariant form).
p)in( fact, the canonical one form (1.70) is replaced by the Pfaffian one-form

6, = R,(a)da". (1.72)
The associates two form

6y = %Q,,,(a)da“ A da” (1.73)
where the tensor £,,, is given by Eqgs. '(1.21b), is also closed ax.xd nondegen-
erate [20]. As such, the Birkhoffian two- form (1.73). characterizes the most
general possible symplectic two- form in local coordinates. . .
The direct universality of the symplectic geometry in classical fnecha.mcs
then follows from that of Birkhoff's equations. This is another important
result of monograph [20}. .
The implications of the above geometrical aspects are far teaclm!g.
Recall that, at the abstract, coordinate-free level, all sym.pletftxc two-
forms coincide. The differentiations merely emerge in local reahza'hons, the
canonical two-form being the simplest conceivable one, while the Birkhoffian
orm being the most general possible one. .
tvm.l-gxau:tly thi same results occur at the analytic level. In fac!:, Hamil-
tonian and Birkhoffian mechanics coincide at the abstract, coordmate~fr.ee:'
level [20). As a matter of fact, the latter has been cc'matr.ucted by Sa.umlh
precisely under the condition of coinciding with Hamiltonian mechanics at
" the abstract coordinate-free level. .
We can therefore expect a similar occurrefice at the algebraic level 'too.
In fact, the Lie-isotopic theory has been proposed and constructed precisely
in such a way to coincide with the conventional formulation at the abstract
' coordinate-free level. The differences merely occur in local charts: the con-
ventional formulation of Lie’s theory is the simplest conceivable one, ulti-
mately equivalent to the canonical, a.na.lytic-geometrica! counterpart.‘ Sax.l-
tilli's Lie-isotopic realization is the most general possnb'le form, which is
ultimately equivalent to the Birkhoffian analytic-geometrical counterpart.
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This final unity of vision is, in turn, fundamental for understanding
Santilli's capability of reconstructing at the higher Lie-isotopic level, ex-
act space-time symmetries (e.g., the rotational, Galilean and Lorentz sym-
metries) when conventionally broken within the context of their simplest
possible realizations. The review of this occurrence is, after all, a central
objective of this presentation. '

1.5 Final Introductory Remarks

A few final remarks appear to be recommendable to prevent possible mis-
representations of this review.

Recall that all simple Lie algebras (over a field of characteristic zero)
have been classified by Cartan a long time ago and are today well known.
Thus, the reader should not expect new simple algebras from the Lie-isotopic -
lifting of the conventional Lie's theory. '

Rather than looking for new algebras (or groups), the scope of the Lie-
isotopic theory is that of identifying new, structurally more general realiza-
tions of known algebras (or groups).

As we shall see, the Lie-isotopic theory permits in fact the identification
of a generally infinite family of physically different transformations which
are all representations of the same simple, abstract, algebra.

Also, readers may tend to expect that all conventional methods currently
available for Lie algebras (such as the representation theory) are directly
applicable to any Lie theory, thus including the Lie-isotopic one.

This second, rather natural expectation can be readily disproved by not-
ing that a compact Lie algebra (or group) can be turned into a noncompact
form under isotopic lifting, evidently depending on the topology of the as-
sumed isounit f. Available methods, such as the representation theory for
compact algebras (groups), are known not to be directly applicable for non-
compact structures. A reinspection of the representation theory is then in
order. .

Rather than having preconceived assumptions, the reader is encouraged
to enter into the study of Lie-isotopic algebras with an open mind, and the
expectation that all the various methodological aspects worked out for Lie’s

" theory must be reinspected and eventually reformulated for the covering

Lie-isotopic theory. _

Our final introductory remark is that Santilli’s Lie-isotopic theory, de-
spite its beauty, is far from being the ultimate Lie theory, as stressed by
the author himself. This point is illustrated quite vividly by the classical

40



L]

Hamiltonian mechanics, because the conventional Poisson brackets have the
structure [1) '

L:[A,Bly = 0A OB OB 0A 4t

3 opp 51'_‘81) = (A,B) - (B, A) = Lie
U:(A,B)= -‘?433 Nonassociative Lie-admissible (1.74)

namely, the Lie algebra L of the Poisson brackets is the anticommutative
algebra attached to a nonassociative algebra U evidently because

U:(4,B),C)#(4(B,C).  (119)

In particular the algebra U results to be a nonassociative Lie-admissible
algebra precisely because (as per definition of these algebras) its attached
algebra [A, B]y is Lie. The same result evidently persists at the Birkhoffian
level (ref. [20], p. 152).

By comparison, the algebraic structure of the conventional Heisenberg's
brackets is given by

L:[A,B), = AB- BA= Lie
€:AB = Associative Lie-admissible (1.76)

namely, the Lie algebra L of conventional quantum mechanics is the anti-
commutative algebra attached to an associative algebra £ which, as such, is
also Lie-admissible.

The physical and mathematical implications of the above findings are
predictably deep. On physical grounds, we have to expect problematic as-
pects in the quantization of conventional Hamiltonian mechanics, for the
evident reason that a mapping of a nonassociative envelope U into an asso-
ciative form ¢ simply cannot be formulated in a consistent way (see ref. [4]
for a study of this aspect). This problematic aspect.can be readily avoided
in hadronic mechanics because Santilli’s Lie-isotopic brackets can always be

formulated according to the structure [2]

L:[A,Bly=ATB-BTA= (A B) — (B, A) = Lie - isotopic

U: (A,B) = ARB — BSA = Nonassociative Lie-admissible
T=R+S . (1.77)
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namely, a Lie-isotopic algebra, owing to its nontriviality, can always be re-
formulated as the antisymmetric algebra attached to a nonassociative Lie-
admissible algebra. Consistency of algebraic structures with the classical
counterpart (1.74) is then regained.

On mathematical grounds, the above findings establish the fact that the
most general possible formulation of Lie’s theory is that via nonassociative
envelopes, along the conceptual lines so clearly expressed by the Poisson
bracket, Eq. (1.74).

This is the reason why Santilli provided his primary efforts for the formu-

. 1ation of the theory at the nonassociative Lie-admissible level, and presented.

his Lie-isotopic studies only as a simpler particularization. It is remarkable
that these so fundamental structures, so clearly embedded in the structure
of the conventional Poisson brackets, had escaped attention in the mathe-
matical and physical literatures until the appearance in 1978 of ref. [1,2,3].

This review is restricted to associative Lie-admissible formulations, al-
though in their most general known form. The covering nonassociative Lie-
admissible formulations shall be ignored hereon, and deferred to a possible
future review.
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2 THE MATHEMATICAL FOUNDATIONS OF
THE THEORY

2.1 Central Role of the Universal Enveloping Algebra

Let us begin by recalling the central role for Lie’s theory of the universal
enveloping algebra. This role is somewhat de- emphasized in the contempo-
rary physical literature, but not in the mathematical one. We shall closely
follow in this review the presentation of monograph [20], pp. 148-154.

The terms “Lie’s theory” are referred today to an articulated body of
sophisticated mathematical tools encompassing several disciplines. Whether
in functional analysis or in the theory of linear operators, the stmcture. of
the contemporary formulation of Lie’s theory can be reduced to the following

three parts:

Universal enveloping
/ associative algebras of \
Lie . - Lie
algebras G ] groups G

FIGURE 5. The strﬁctn;e of the conventional formulation of Lie’s the-
ory with the emphasis o; its central mathematical structure, the universal
enveloping associative algebra. The Lie-isotopic theory follows exactly the
same lines, beginning with the generalization of the envelope and then fol-
lowing with the consequential genenliutiqn of all remaining aspects of the

theory.

As duly emphasized in the mathematical literature (see, for instance,

Jacobson [44], Dixmier [45], and others), a truly funda.ment.:al part of !.ie.’s
theory is the enveloping algebra . In fact, the algebra £ provides a..symblotlc
characterization of both the Lie algebras and the Lie groups. This is due to
the fact that the basis of £ (which is constructed via the Poincaré- Birkho.ﬂ'-
Witt Theorem, to be reviewed in the next section) is given by an infinite
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number of suitable polynomial powers of the generators X; of G such as
§:1eF X XiX;(i )i XiXiXa(6 < 5 < k);... (2.1)

where the products X; Xj, etc., are associative. It then follows that the Lie
algebra G

G :[X;, X;] = X X; - X; X; = C} Xy, _ (2.2)
is (homomorphic to) the attached algebras {= of §. The Lie group G of G
is then the infinite power series :

k 0o ) .
G:er =14 %x,. +SEXX o (23)

which, evidently, can be properly defined and treated only in the enveloping
algebra (note that all terms from X;X; on are outside the Lie algebra).
One can then see why fundamental aspects of Lie algebras (such as the
representation theory) are treated by mathematicians within the context of
its enveloping algebra. :

On physical grounds, the role of the enveloping algebra is equally cru-
cial. For instance, a frequent physical problem is the computation of the
magnitude of physical quantities such as the angular momentum operator
M?, While the components M; of M are elements of the Lie algebra SO(3),
the quantity M? is outside SO(3) and can only be defined in the (center
of) the enveloping algebra §(SO(3)). Thus, while the Lie algebra SO(3) es-
sentially characterizes the components of the angular momentum and their
commutation rules, the envelope §(SO(3)) characterizes: 1) the components
M;; 2) their commutations relations via the attached rule §~ = SO(3); 3)
the magnitude of the angular momentum M?; 4) the exponentiation to the
Lie group of rotations; 5) the representation theory, etc. Also:enveloping
algebras play a central role in quantization at large and, specifically, in the
quantization of Lie algebra and Lie groups. In short, we can state that a
truly primitive part of the contemporary formulation of Lie’s theory is its
universal enveloping associative algebra.

Once the mathematical and physical origins of this occurrence are un-

. derstood in full, one can easily see how any consistent generalization of the

enveloping associative algebra ultimately provides a generalization of the
conventional formulation of Lie's theory.

The physical motivations for this study have been pointed out in §1,
and are provided by the fact that Lie algebras characterize the fundamental
equations of physical theories, their time evolution. Any generalization of
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Lie’s theory then inevitably implies the achievement of broader physical
capabilities. , o

The mathematical motivations of the study are equally evident. In the
mathematical tradition, the efforts are devoted to the formulation of the-
.ories in their most general possible form. This is typically the case for
mathematical formulations such as'the symplectic geometry [43], which has
indeed achieved its broadest possible formulation. It is a truism to say that
a similar situation within the context of Lie's theory was not in existence
prior to Santilli’s studies of 1978, owing to the rather general referral of the
enveloping algebra, not only to its associative form, but actually to such
form in its simplest possible formulation. :

In the next section we shall review Santilli’s studies toward a broader for-
mulation of Lie’s theory, beginning with the isotopic lifting of its enveloping
algebra (with the understanding that the still broader nonassociative en-
velopes [1] will not be considered.) The reader should be aware that we
shall follow Santilli’s original presentation as close as possible.

2.2 Isotopic Lifting of the Universal Enveloping Associative
Algebra [1], [20]

In this section we shall first review the definition of universal enveloping
associative algebra and the methods for the construction of its basis ac-
cording to the Poincaré-Birkhoff-Witt theorem [44]. We shall then present
their isotopic liftings, that is, generalizations which preserve the associative
character of the product. By keeping in mind the primitive character of
the enveloping algebra in Lie’s theory, the generalization presented in this
section renders inevitable a corresponding reinspection of Lie algebras and
of Lie groups.

DEFINITION 2.1: The universal enveloping associative al-
gebra of a Lie algebra G is the set (€, 7) where £ is an associative
algebra and r a homomorphism of G into the attached algebra
&~ of £ satisfying the following properties. If €' is another asso-
ciative algebra and ' a homomorphism of G into ¢, a unique.
homomorphism v of £ into &' ezists such that v’ = r1v; i.e., the
Jollowing diagram (2.4) is commutative.

Whenever an algebra £ belongs to the content of the definition above, we
shall write {(G). All Lie algebras are assumed, for simplicity, to be finite-
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dimensional. Also, all algebras and fields are assumed to have characteﬁgtic
zero, and the basis of all Lie algebras is ordered. :

-
N\ A

= (24)

The construction of the enveloping algebra £(G) is conducted as follows.
Consider the algebra G as a (linear) vector space with basis given by the
(ordered set of) generators X, i=1,2,...,m. The tensorial product G ® G
is the ordinary Kronecker (or direct) product of G with itself as a w:rctor
space. Such a tensorial product constitutes an algebra because it sa.tlsﬁes
the distributive and scalar laws. Also, the algebra is associative because
the Kronecker product is associative. A general form of associative, temr
algebra which can be constructed on G as vector space is given by

F=Fl10GOGRGOGRGRGH..., (2.5)

where F is the base field and @ denotes the direct sum. Let R be the ideal
generated by all elements of the form .

[Xinxli] -(X:i®X; - X; ® X) (2.6)
where [X;, X;] is the product of G. Then, the universal enveloping algebra
£(G) of G is given (or, equivalently, can be defined) by the quotient

£(G) = F/R. (2.7)

It is possible to prove that the algebra (2.7) satisfies all the conditions of

Definition 2.1 (see, for instance, Jacobson [44]). . o
Of utmost importance for mathematical and physical considerations 18

the identification of the basis of £(G). The quantities
M, =X, ®X;,®...0Xj, (2.8)

are called standard (nonstandard) monomials of order s depending on whether

the ordering
' 1<z <i, - (29)
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is verified (not verified). It is possible to prove that every element of §(G)
can be reduced to a linear combination of standard monomials and (cosets
of) 1. This yields the following fundamental theorem on enveloping associa-

tive algebras.

Theorem 2.1(Poincaré-Birkhoff-Witt Theorem [{]): The cosets of 1 and
the standard monomials form a basis of the universal enveloping associative
algebra §(G) of a Lie algebra G.

The associative envelope £(G), as presented, is still abstract in the sense
that the product of £(G) is the tensorial product X;® X j, while the product
used in physical (e.g., quantum mechanical) applications is the conventional
associative product X;X;. Consider then the algebra

AG)=Fl19 AV oA g...

AW =X, X,y .. . Xi,, i1 Sia <. S (2.10)

It is possible to prove that {(G) is homomorphic to A(G), in line with
Definition 2.1. Thus, the algebra A(G) can be assumed as the universal
enveloping associative algebra of G with basis

17xl"xl'|Xi’)X.'|Xi’X|'a, esey
i) S da, 8 Sz o3, (2.11)

and arbitrary elements

xhxk .. . xk (2.12)

where the X s are the generators of G. Notice that A(G) is infinite-dimensional.

The center of A(G) is the set of all polynomials P(X) verifying the property
[P(X),Xi]a =0, (2.13)

for all elements X; € G. Most important elements of the center are the so-
_called Casimir invariants of G. For additional study, we refer the interested
reader to the mathematical literature on the topic [44],[45]. We move now
to the identification of the desired associative- isotopic generalization

DEFINITION 2.2 [1], [20]: The isotopically mapped univer-
sal enveloping associative algebra of a Lie algebra G is the set
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((&,7),(&,3,7)) where (1) (€,7) is the universal enveloping asso-
ciative algebra as per Definition 2.1; (2) i is an isotopic mapping
of G,iG = G; (3) € is an associative algebra generally noniso-
morphic to £; and (§) # is a homomorphism of G into £~ such
that the following properties are verified. If £ is still another as-
sociative algebra and #' a homomorphism of Gintof', a unique
homomorphism 4 of € into € ezists such that # = 4+, and two
unique isotopies i and i' ezist for which i€ = € and V&' = €, i.e.,
the following diagram is commutative. '

(2.14)

Whenever an algebra £ verifies the conditions of the definition above,
we write £(G). Again, for simplicity, we assume that all Lie algebras are
finite-dimensional, all algebras and fields have characteristic zero, and all
Lie algebra bases are ordered.

We are now in a position to elaborate on the insufficiency of Definition
2.1, and the need of Definition 2.2. We shall indicate first the mathematical
aspect and then point out the physical profile.

The main idea of Definition 2.1 is, beginning with the basis of a Lie
algebra G, to construct an enveloping algebra £(G) such that [{(G)]” = G. .
The more general idea of Definition 2.2 is, beginning also with the basis

‘of a Lie algebra G, to construct an enveloping algebra §(G) such that the

attached algebra [£(G)]~ is not, in general, isomorphic to G but rather is

- isomorphic to an isotope G of G, and we write [48]

G =G #G. (2.15)

The la.qk of unique association of a given basis with the envelope then ensures
freedom in the realization of the associative product. Equivalently, we can
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say that within the context of Definition 2.1, a given basis essentially yields

a single unique enveloping algebra and thus a single unique attached Lie

algebra. On the contrary, within the context of Definition 2.2, a given basis

yields all possible enveloping algebras and thus all possible Lie algebras of
the same dimension, as we shall see. Still equivalently, we can say that, as is

conventional in the contemporary formulation of Lie's theory, nonisomorphic

Lie algebras are expressed via the use of different generators and the same

Lie product. On the contrary, within the context of the isotopic formulation

of Lie’s theory, nonisomorphic Lie algebras can be obtained via the use of
the same basis and different Lie products. We can therefore state that all

possible enveloping associative algebras can indeed be introduced according

to Definition 2.1, which is therefore suitable for the Cartan classification of
Lie algebras. Definition 2.2 is more general inasmuch as, besides permitting
the introduction of all possible enveloping algebras, it also permits us to.
construct nonisomorphic algebras via the same basis, by therefore rendering
necessary the use of the most general possible realizations of the associative
product. -

On physical grounds, these mathematical mechanisms are at the founda-
tion of the Lie-isotopic generalization of Hamilton’s and Heisenberg's equa-
tions for closed nonself-adjoint interactions (§1.3).

As familiar, the definition of physical quantities is independent of whether
or not the systems possess nonpotential interactions. When these interac-
tions are admitted by the theory, they are represented via an alteration of
the Lie algebra product. As a result, when the Hamiltonian description of
a closed self- adjoint system

(2.16)

9A , 0F
Ji(a)f—-[A,Em]= Ea_;w” OG‘:"

is generalized into a Birkhoffian form (1.22) to represent the additional pres-
ence of internal, contact, nonpotential, interactions, i.e.,

A(a) = [AiEu] = 5 0 (a) 0, (2.17)

-the basis of the original Lie algebra remains unchanged, together with the

underlying carrier space (R X T*M) and the field, and only the realization
of the Lie algebra product (that is, the realization of the envelope) is per-
mitted to change. As a result, the original Lie algebra G with basis X;,(a)
over T*M equipped with conventional Poisson brackets is mapped into the
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isotope G, which preserves the original basis X;(a) in the same local coor-
dinates of T*M, although it is now equipped with the generalized Poisson
brackets, i.e.,

G : [Xi, X;] = (X, X;) = (X, Xi) > G : [XiyX;) = (Xi3X;) — (X[3X:).
(2.18
In the transition to the case of Heisenberg’s equation, the situation iz
essentially the same and actually turns out to be more directly compatible
with Definition 2.2. In fact, for consistency of the theory with its classical
image, during the generalization of Heisenberg's equation (now expressed
for operators), ‘

iA(a) =[A,H]) = AH - HA, (2.19)
into the Lie-isotopic form (1.37), i.e., '
iA(a) = [A;H) = ATH - HTA, (2:20)

the nonpotential forces due to charge overlapping are expressed via the Lie-
isotopic generalization of the product

G :[X;, X;] = XiX; - X;Xi » G : [Xi;X;] = XiTX; - X;TX;. (2.21)

Mechanism (2.21) is clearly along Definition 2.2 rather than 2.1.

The alternative approach would be that of preserving the original sim-
plest possible product and changing the basis in order to reach direct com-
patibility with Definition 2.1. However, this approach has a number of prob-
lematic aspects. First of all, it is centered on the loss of the direct physical
meaning of the generators (e.g., the physical linear momentum in one di-
mension, p = mf, is replaced by abstract objects of the type p = aexpfrr).
Secondly, the approach does not permit the achievement of the direct univer-
sality, as recalled by the preceding section. The removal of the unnecessary
restrictions on the realization of the enveloping algebras is clearly preferable,
both mathematically and physically. _

Owing to the relevance of mechanisms (2.18) and (2.21) for this review,

. it is important to give an explicit example. To stress the fact that the ideas

are not necessarily restricted to nonpotential interactions, we review one of

.the first examples of isotopy identified by Santilli, that for the harmonic

oscillator in a three-dimensional Euclidean space [1}, [20].
- The nonisomorphic groups SO(3) and SO(2.1) are isotopic symmetries
of the corresponding Hamiltonians

1 1
H(a) = 302 + 7} + 7)) + 5(=" + v + ),

50




a=(r,p)m=k=1,

A(a) = %(pl -p,+p)+ %(z’ -y +2%) (2.22)
that is, they are symmetries leading to the same conservation laws of the
components My, b = z,y, 2, of the angular momentum via the use of Noether’s
theorem. Let us review the case again and reinterpret it in light of Defini-
tions 2.1 and 2.2

The Hamiltonian realization of the symmetry SO(3) of H(a) is based on
the Lie algebra of conserved quantities

SO(3) : [Mz, M,] = M,,[My, My] = M,,[M,,M,] =M, (2.23)
which is defined in terms of the conventional Poisson brackets
[Mh Mcl = (Mh Mc) - (Mc’ Mb)
+41 0
= OMy i OMe i) - 1 2.24
(MlnMc)— or' 6; ap,.'(é:)" 0 .+ 1 . ( . )

In the transition to the equivalent Hamiltonian H(a), the conserved
quantities M clearly remain conserved, but the SO(3) symmetry is bro-
ken and is replaced by the nonisomorphic symmetry SO(2.1). The problem
now is the construction of a realization of the SO(2.1) algebra (the Lorentz
algebra in (24 1)-dimensions) whose generators are those of the nonisomor-
phic SO(3) algebra (the rotational algebra in three-dimensions). This can
clearly be achieved if und only if one alters the Lie algebra product. An
explicit realization has been identified by Santilli (1], [6] and is given by the

commutation rules
S0(2.1): [M,‘,M,] = M.,[M,;M,] = =M;,[M;M;] = M,, (2.25)

which are now expressed in terms of the generalized Poisson (Birkhoffian)
brackets : .
[Mi;Mc] = (Mb;Mc) - (MCle)
' +41 0
aMb '8Mc :
" = —a‘—,(a}) = -1 . 2.26
(MMM:) I Qa; 8}1,' !(aj) ( 0 +1 ) ( )

Note that the insistence in the preservation of the same realization of the
Lie algebra product, in this case, would prohibit the representation of the
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conservation of the angular momentum via a symmetry of the Hamiltonian
H(a). : :

The example considered therefore establishes that one given basis (the
components of the angular momentum M = r x p,p = mf) can define a
hierarchy of enveloping algebras and attached Lie algebras, depending on
the selected realizations of the products, which is fully in line with diagram
(2.4) and Definition 2.2. The example actually establishes not only the in-
sufficiency of Definition 2.1 but also that of Definition 2.2 itself. In fact, the
algebras (M, M.) and (M,;M.) are nonassociative, therefore demanding a
further generalization of Definition 2.1 for nonassociative enveloping alge-
bras, even though the existence of a realization within the context of the
Lie-isotopic generalization is expected to exist (§1.5).

Stated in different terms, the above example by Santilli establishes the

~ generalization of the conventional definition of the envelope of the Lie alge-

bra of the group of rotations as per diagram (2.4).
=L -
\
[ S0(3) (2.27)

into the Lie-isotopic form as per diagram (2.14)

Gt 7
N
] 1
. 8$0(2.1)
of- L, -

N

M (2.28)

which is expected for operator-type realizations (2.21).
Note that by no means does diagram (2.28) exhaust all possible isotopies
of the group of rotations. See §3.2 for details. A 4
With a clear understanding of the new capabilities (as well as limita-
tions) of the Lie-isotopic generalization, we pass now to the review of the
generalization of Theorem 2.1 achieved by Santilli (loc. cit.).
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The construction of an isotope §(G) can be conducted as follows. Per-

form an isotopic mapping of the tensorial product X; ® X; of {(G),

| Xi®X; = X;+ X; (2.19)

that is, any invertible modification of the product ® via elements of £(G),

of the base manifold, and of the field, which preserves the distributive and

scalar laws (to qualify as an algebra), as well as the assocnatnvnty of the
product (to qualify as an isotopy), i.e.,

(Xi* X;) o X = Xi ¢ (X * X2). (2.39)
The product of two elements X; + X; and X, * X, is then given by
(Xi* X;)* (X, ¢ X,)=Xi* X; 4 X, ¢ X,,

and no ordering ambiguity arises because of the preservation of the associa-
tive character of the original product.
The isotope of the associative tensorial algebra F can then be written

(2:38)

F=F10GOGH+GDG+G+Ga.... (2.33)
Let R be the ideal of F generated by
[XiX;) - (Xi » X; — X + X3), (2.3%)

where [X;X;] is the product in' G. An isotopically mapped universal en-
veloping associative algebra f(G) of a Lie algebra G can then be written

{@a) = #/R. (2.35)

Structure (2.34) is, by construction, the universal enveloping associative
algebra of G realized via an isotopic mapping G — iG.

The remalmng aspects of the theory of f(G) are essentially given by an
isotopic mapping of the corresponding steps for {(G) outlined above.

The quantities

M, = Xi, * X 0.2 X;,, (2.3@

are called isotopically mapped standard (nonstandard) monomials depending
on whether the following ordering condition

1 < iz <...51, (2.39)
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,(342? is verified (not verified). In the reduction of an arbitrary element of (G)

X"‘tX-'" .0 Xk, (2.39)

to standard monomials, a new feature arises, due to the fact that the emerg-
ing combinations of these latter monomials may occur via functions on the
base manifold. This, in turn, occurs because the isotopy ® — + can be
realized via functions of this type. We call these combinations F*- linear,
to differentiate them from the F-linear combinations for the conventional
case, that is, combinations only via elements of the field. As we shall see in
the next section, these F-linear combinations have a precise interpretation
within the context of the isotopic Lie's theory. Despite this generalization,
the construction of the basis of §(G) parallels that for £€(G), because §(G)
is a conventional envelope for G. The (inverse) isotopy then simply reduces
G to G.

Theorem 2.2(ref. [1], p. 353 and ref. [20], p. 161; Isotopic Gen-
eralization of the Poincaré-Birkhoff-Witt Theorem): The cosets of 1 and
the standard isotopically mapped monomials Jorm a basis of the isotopically
mapped universal enveloping associative algebra f(G) of a Lie algebra G.

The basis is thus given by
L X, X, * Xip, Xiy * Xy # X,
i < i) < iy <. : (238

The distinction between the tensorial realization and that used in practical
applications is now lost. Indeed the mapping X; ® X; = XiX; can be
considered, in the final analysis, a particular form of isotopy.

The explicit form of the basis depends on the assumed type of isotopy
® — +. In turn, this depends on the realization of the basis X; of G,
whether via matrices, quantum mechanical operators, classical functions on
phase space, etc.

Suppose that the X's are realized via matrices. Then an isotopy is
provided by Eq. (2 21). Let T be a polynomial on the X’s (not necessarily
on the center of £(G).) Then the explicit form of basis (2.38) is given by

1, X;, X, TX;,, X;,TX;,TX,,,...

i1 < ia,i1 < iz < i3, T = fixed and invertible. (239)
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Needless to say, the isotopy X;X; — X;T X is only one example of possi-
ble associativity-preserving modifications of the product. Other associative
isotopies are given by Eqs. (1.4) and (1.10).

A comment on the quantity 1 of Theorem 2.2 is in order here. As an-
ticipated in §1, the element 1 € F is no longer the unit element of the
enveloping algebra under an isotopic mapping of the pmducf. In fact, for
isotopic envelope (2.39) the unit element (when it exists) is given by

i=1"1 (2.4D)

because only this quantity verifies the (left and right) rules ieX;=X;el=
X;. Nevertheless, Theorem 2.2 has been formulated for the eleme?t 1of
€. This is to preserve the general rule of isotopy according to which the
basis of the original algebra is preserved, including its unit elemer!t. Tlfe
new mathematical (and physical) structure is represented via an isotopic
alteration of the product. A reformulation of Theorem 2.2 in terms of the
_unit 1 is, of course, expected to exist, but its study has not been. d?ne
until now. For additional studies (within the context of the Lie-admissible
generalization of Theorem 2.2) we refer the reader to Myung and Santilli
[30}, where the unit 1 is called the weak unit of the algebra. (See.also §1.4.)
An important mathematical aspect reviewed in this section is 'that th'e
knowledge of a given set of generators does not uniquely chamcfeme a Lie
algebra because of the freedom in the selection of the enveloping algebr'a
(product). The physical aspect treated is that the knowledge of a Hamil-
tonian does not uniquely characterize the physical system because such a

characterization also depends on the explicit form of the brackets of the

time evolution. As we shall see, the implications are rather intriguing. For
instance, the assumption of a Hermitian Hamiltonian H contrary to popular
belief, does not ensure that the time evolution is unitary and thus does not
guarantee that i is observable unless one specifically identifies the assumed
realization of the envelope, i.e., of the assigned Lie product in Heisenberg's

time evolution.

2.3 Isotopic Lifting of Lie's First, Second, and Third Theo-
rems [1], [20]

As is well-known, an effective historical, and technical way of presenting

Lie groups and Lie algebras is according to their original derivation by So-

phus Lie [46] via his celebrated First, Second, and Third Th('eorerfns. In th?s
gection we shall first present these theorems, review Santilli’s Lie isotopic
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generalization, and then show its compatibity with the isotopic generaliza-
tion of the enveloping algebra of the preceding section. More specifically, the
objective is to show that the notion of connected Lie transformation group
admits a generalization such that, when reduced in the neighborhood of the
identity, admits Lie algebras with the most general possible realization of
the product.

The emerging isotopic generalization of Lie’s theory (that is, of the en-
veloping algebra, the Lie algebras, and the Lie groups) was used for the
construction of the isotopic generalization of Galilei’s relativity for closed
non-self-adjoint systems [1], [20] with corresponding relativistic and grav- -
itational extensions [14], [58]. Since the theory also admits operator-type
realizations, its abstract formulation is expected to permit the joint treat-
ment of closed, classical and quantum mechanical, nonpotential interactions,
in much of the same way as the conventional abstract formulation of Lie's
theory permits a joint treatment of closed classical and quantum mechanical
interactions of potential- Hamiltonian type. Santilli’s ultimate objective is
to lay the foundations for achieving, in due time, a generalization of the
contemporary notion of interactions, with corresponding generalization of
relativities and physical laws.

DEFINITION 2.3: Let M be a Hausdorff, second-countable,
analytic, N-dimensional manifold with local coordinates a*,u =
1,2,..,N (e.g., T*M or Rx T*M). The set of transformations
on M depending on r-independent parameters 6',i = 1,2,...,r..

a - da' = f(a;0) = {f*(a*;¢")} (2.48)
is called a Lie transformation group [{6] when the following con-
ditions are verified. '

1. All functions f* are analytic in their variables.
2. For any given two transformations

a’ = f(a;0),d" = f(d";6'), (2.43)
a set of paramelers ezists
6" = ¢'(0,0') (2.43)

characterized by analytic functions g* called group compo-
sition laws, such that
(2.4?)

a" = f(a;8").
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3. Transformations (2.41) recover the identity transformation
at the null value of the parameters, i.e.,

a = f(a;0). (249

{. Corresponding to each transformation (2.41), there is a
unique inverse transformation

a= f(a';07"), (248)

and thus the transformations are regular.

5. The combination of any transformation (2.41) with its in-
verse yields the identity transformation,

The number r of mdependent parameters is called the dimension of the
Lie group.

A central property of Lie transformation groups is that they are con-
nected; that is, they can be continuously connected to the identity. The
primary idea of Lie’s theorems is that, under the conditions indicated, the
groups can be studied via their infinitesimal transformations, because a fi-
nite transformation can be recovered via infinite successions of infinitesimal
transformations.

Santilli [1] first reviewed these ideas by followmg as closely as possi-
ble their original derivation [46], as we shall do in the following. Consider
transformations (2.41) with their identity

a’ = f(a;0),a = f(a;0), ‘ (2.48)
and perform the infinitesimal variations
a' = a + da = f(a;0 + d8);a + a = f(a;é0), (249

where d@ and §0 represent two independent variations of the parameters.

We can then write 8/(a;6)
a,
da = 29 d0

- ga= (2188, 66, (249) -

The transformation 6 4 df can be interpreted as the product of transforma-

tions relative to @ and 64, i.e.,
¢ +dof = '(0,60), (2.5p
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for which ‘
6 + do° = 4'(6,0) + (a" ( “))a- 80 +.. (2.52)
Thus we can write ] . ,
do* = u;(0)6¢’,
o' (8, a :
= (20 wa(w Nemo. (2.52)

The formula above represents a relation between df and 68 which can also
be written

867 = M (0)do* Mpk = pkMi =6, (2:53)
By putting 8 (a;0
uj(a) = (—5-— aS: ))a_o. (2.58)

and by using Eq. (2.53), Eq. (2.49) can be written
da* = ull(a)X*(0)de’. (2.56)

In this way we reach Lie’s first theorem.

Theorem 2.3 When transformations (2.41) form a connected, m-dimensional,

Lie group, then
da* k
357 = H@X), (2.58)

where the functions u; are analytic.

Let A(a) be an (analytic) function of the a variables. The infinitesimal
Lie transformation a — a + da induces a variation of A(a) which can be
written

94 by 0
dA=22ul60 = otz A

56* X, A. (2.59)

The m-independent quantities

Xe = Xalo) = (o) = (2L0, O (o)
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are called the infinitesimal generators of the transformations (or of the
group). For our later needs, we refer to the X's defined by Eqs. (2.58)

as the standard generators. . -
We are now interested in the (necessary and sufficient) conditions for

transformations (2.41) to constitute a Lie group. By using the converse of
" the Poincaré lemma, they can be writtep

82 alp

8%a™® _ 2.6
90067 — 56306 (259)
that is :
8u” k 04\‘ — 61‘“ k "?_A_,'_ 26
FoN +vige = g N ke (269
Thus .
0% _ o §Oup _ 0 _ g 00" Buj Oa”
":(ﬁ% ~ 905 A '# - N5 =N par OF da¥ 00
Oul Ou}
= f\;ufkf—o-a—v - 4\?“{);# (2.61.)
Therefore
ot - out
u,va':% ~ wy gt = Chut, (2.62)
where ok 8'\5

(2.63)

The m3 quantities C,!‘J- are independent from 0. This can be seen by
differentiating Eq. (2.62) with respect to 0. After some simple calculations,
one then sees that

E = (==t - —2).
Cij = W "‘;( 80: 907

ack
o =

ij k0= 1,2,0ym. (2.63)

In this ' way we reach Lie’s second theorem.

.Theorem 2.4 If X;,i=1,2,...,m, are the generators of an m-dimensional
Lie group, they satisfy the closure relations

(X, X,k = XiX; — X; X; = Ck Xy (2.66)

where the quantities C,!‘J- are called structure constants.
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The symbol £ in Eq. (2.65) denotes an associative algebra with a con-
ventional, associative product of operators X;X;. At closer inspection, this
algebra emerges as being the universal enveloping associative algebra of the
Lie algebra.

The fundamental Lie’s rule (2.65) can be explicitly written

9 d

a
[Xi, Xjle = (U 5, Uy 5 )e = Chin s (268)
where the product [X;, X;]4 is Lie; that is, it satisfies the identities
[Xi, Xjle + [Xj, Xile = 0,
[[X:, Xjle, Xile + (X, Xile, Xile + [[ Xy Xile, Xj]e = 0. (2.69)

By substituting into these expressions the explicit form of the Lie product
in terms of the structure constants, Lie’s third theorem is reached.

Theorem 2.5 The structure constants of a Lie group in standard realization
obey the relations
ck+ck=0,

CiCu+ C,’-‘,Ci.- + C,’:-C;,- =0. (2.69

Theorems 2.3, 2.4, and 2.5 essentially provide the correspondence be-
tween a given (connected) Lie group G and its Lie algebra G. In particular,
they allow the characterization of a Lie group in the neighborhood of the
identity via the structure constants. We have here tacitly implied that dif-
ferent Lie groups may exist all admitting the same Lie algebra, that is, the
same structure constants. However, among all Lie groups with the same Lie
algebra only one is simply connected, called the universal covering group.

The inverse transition from a Lie algebra to a corresponding Lie group
can be characterized via the inverses of Lie’s first, second, and third theo-
rems. We suggest the interested reader to study the specialized literature on
this topic, such as Gilmore [47) and quoted references. We here outline one
of the simplest approaches, known as the ezponential mapping [20]. Write
Egs. (2.56) in the form

da*

25 = W@ (0) = X (0)Xi(a)a",

249)
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and introduce the one-dimensional parametrization

¢* = ra*,a" = a(8(7)) = a"(r). (2.79)
Then we write
a"¥(r) = T¥(r)a",a” = [a"™(7)}r=0- (273
To compute the elements T}(7), consider the equations
da¥ _ %E =af\l ny
dr ~ 00 dr a Ak(o)x"(“)a (0)’
d v ‘
E_-T,‘,‘(r)a = a*AL(0)X,(a)T%(8)a"™(0). (2.73)

However, the a”¥(0) are arbitrary initial values. Thus the solutions of the
total differential equations

LT8(r) = @ }(O)X, (a(NTH()

(278)
with initial conditions
TH0) = 8, TH()hmo = A NOX GO (279

can be written
o0

T2(r) = 3 =10 Xa(a(O)6LT" (278)

\ n=0
yielding the exponential mapping

a* = e‘.x*lea“.

(2.76)

If,instead of the variables of the base manifold, we have a function of the
same variables, the procedure above also applies, and we can write

A(a') = " X4 [ A(a). (2.79)

. In particular, the infinitesimal (standard) generators can be recovered via
the rule
(2.79)

Notice that the standard realization (2.76) of the group of transformations
(2.41) is manifestly connected. The verification of the conditions to qualify

y
Xe = [ggre" " lelo=o.
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as a Lie group is simple. Here we restrict ourselves to recalling that the
product of two elements of group (2.76)

eX.eX‘ - ex”

(2%9)
is characterized by the so-called Baker-Campbell- Hausdorff formula:

X, = Xa+ Xp+ 31Xas Xale + 51(Xo = Xah Xas Xglele + - (280)

It is significant for our review to recall that a Lie algebra does not neces-
sarily admit a corresponding Lie group. For specific examples of Lie algebras
of this type, the reader may consult, for instance, Hurst [48]. In essence, the
applicability of the exponential mapping in general, or the “integration” of
a Lie algebra to a Lie group must satisfy certain (convergence) conditions
of the underlying infinite series, known as integrability conditions. We also
refer the reader in this respect to the specialized literature in the subject
and, in particular, to Nelson [49).

We pass now to the review of Santilli’s Lie-isotopic generalization of Lie's
theorems. The prior review of the main objective may be useful here. Lie's
crucial result is fundamental rule (2.65). This rule essentially characterizes
Lie algebras via the conventional associative product X;X; of vector fields
Xi = u}(a)d/a" on a manifold M. Santilli’s main objective is to generalize
Definition 2.3 and Lie’s theorems in such a way as to characterize a Lie
algebra via the most general possible associative product X; # X; of vector
fields on a manifold.

Of utmost importance is the condition that the base manifold M with
local coordinates a”, the parameters 8;, and the generators X; of the conven-
tional formulation of Lie’s theorems are not changed in their isotopic gen-
eralization. This is due to physical requirements for the description under
consideration. As we recalled earlier, the local coordinates of M custom-
arily have a direct physical meaning such as the coordinates of the frame
of the experimental setup; the parameters carry a direct physical mean-
ing as measurable quantities such as time, angle, etc., and the generators
directly represent physical quantities such as energy, angular momentum,
etc. When the conventional description of self-adjoint interactions via The-
orems 2.3, 2.4, and 2.5 is broadened to permit the additional presence of the
nonself-adjoint interactions, the frame of the experimental observer must be
preserved; measurable quantities such as time and angles must be preserved;
and physical quantities such as energy and angular momentum must also be’
preserved unaltered.
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These objectives were achieved by Santilli as follows.

DEFINITION 2.4 (vef. [1], pp. 329-368. See also ref. [20], |
pp. 169-173): Let ’

G:a" - a” = ['(a;0) (2.8%)

be an r-dimensional Lie transformation group G as per Def-
inition 2.3. A Lie isotopic image or, simply an isotope G of G
is a set of transformations characterizable .m'a a regular (N x N)
matriz of analytic functions (g}(a; 9)) acting on (2.81)

G :a¥ - 8 = gi(a:0)f"(,0) = f*(ai0)
det(g}) # 0,00lo=0 = & (2.83)

which verify the following properties. (a) The transforma-
tionsd = f (a; ) constitute a Lie tmna.f?rmatwn group, by therg
fore verifying conditions 1-5 of Definition 2.3. (b) The group y
is realized via the same base manifold, the same pamn.netera an
the same generators of G. (c) When reduced in the neaghborh;zg
of the identity transformation, the group G can be characters
by a Lie algebra isotope G of G.

Condition (c) is introduced to avoid non-Lie, Lie-admissable algebras in th.e
neighborhood of the identity transformations [1]. As a matter of fact: |’t
is precisely this possibility that permits the further generah;ation of Lie'’s

theory of Lie-admissible type. . '
eoSl‘i):u:e the group of transformations f*(a;0) is a conventional, connected

ion, i i ighborhood of the
i by assumption, it can be studied ifn the neigh ' .
:;:nfi:;u:s i: the conventi:)nal case. The repetition of the analysis of f(a;0)

then yields the expressions

da* = &(a)M(0)d0" -

(0) = | et (e 0)F (@)l

In order to realize the isotopy, we then introduce the following reformulation
in terms of the quantities of G for given g}(a) functions :
(2.8)

i(a) = gi(a)u (a), det(gi) £0.
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(2.83)

Note that the other possibility i} = g¥u}, even though conceivable (and
actually more in line with Eq. (2.83)), is excluded here because it would im-
ply the redefinition of the generators X = u}(8/8a*) — X} = gtu}(d/da*)
which is contrary to the notion of isotoy. The analyticity of the transfor-
mations then implies the following Santilli's generalization of Lie's First
Theorem.

Theorem 2.8 [1), [20]: If transformations (2.82) characterize an isotopic
image G’ of the Lie group G of transformations (2.81), then analytic func-
tions g} (a) exist such that :

da» .

9% = gi (a)u}(a)X}, detg # 0

and the uj(a) functions are analytic.

(248)

This theorem, though analytically trivial, has nontrivial implications.
Indeed, it implies a modification of the structure of the group in the neigh-
borhood of the identity, i.e.,

G:d" a4+ 0ut(a)» G:d"~a" + 0‘9{ (a)uj(a),

(2.88)

which is precisely the desired situation. We must now identify the integrabil-
ity conditions under which such a behavior is still Lie in algebraic character,
when expressed in terms of the generators and parameters of the original
group. Under-these conditions, we say that the quantities g;: of Eqs.(2.85)

or (2.86) are isotopic functions with respect to G.
The group G is Lie and thus admits the standard realization worked out

earlier, 5 ) ,
e
u}’wuf - u}-’wuﬁ.‘ = C"’;u:'éﬁ’
ot _ o

Cli = Wimy(5gr — 5a2)
[Xi, Xjle = XiXj - X; Xi = CEXy,

Xy = u:(a)é—i;' (2.89)

The group G is also Lie and thus can be realized in the standard form
0 .y . 0 /]

ar O op w0 an_ o @
Y 80"“- Jav 7 G “kaa‘,)

64



-4

st arng 0N BN
Ch = BiB3(Gg: — B )

(X, Xj)e = X X; - X;X; = C’.!;-Xk,
. Lij
X = ﬁ:w. 4 (2.89)

However, as indicated earlier, this realization generally implies a change of
the generators in the transition from G to G
i PR [ij _
G:X’,=u:0—a;—'G:X§=ﬁrmv . (2.20)

( iti i To achieve the
and. as such, does not verify the conditions for isotopy. 0 ac
objt;ctive umier consideration, Santilli introduced the following 1so?op¥ of
the universal enveloping associative algebra, according to §2.2, this time
realized via functions on the base manifold [1], [20].

£(G) : XiX; — E(G) : Xi+ X; = gf X, g} X,

i i i ' i nditi f isotopy, in the sense
Notice that this mapping does verify the conc.lnfnons o |
that it is realized via the generators of the original algebra, while preserves

the associativity of the product,
(G Xe g} XYk Xe = g1 Xe (9§ Xogh Xe).

The fundamental Lie rule (2.87c) can now be rewritten
9

[ B Ak B
v Y eyt — st =Ciu
¥ o * Ui oy U ik

Ck = Cljok(a). (299
The integrability conditions for the functions gi(a) to be isotopic, that is to

yield rule (2.92), can then be readily computed. Thus we reach the following
Santilli’s generalization of Lie’s second theorem.

(2.99)

(2.99)

Theorem 2.7[1], [20): Under the integrability conditions

i o ,_ 1y Ardd
yz‘“iwyﬂ -9 “'i‘-’;;ya = ¢}9!C;, + Ci;9k

the generators X; of an isoiope G of a Lie group G satisfy the isotopic rule
of associatie Lie admissibility :

[X.',X,']{- =Xi* X;-X;+ X = C",!;(a)x,,,
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(2.19) .

€(G): Xi+ X; = g/ X, g} X,,

Xe = ui‘(a)a—'z;. (2.99

where the quantitiea'é!‘j(a), here called structure functions, are generally
dependent on the (local) coordinates of the base manifold of the original
group.

In this way Santilli reached an interpretation of the F-linear combina-
tion of the isotopically mapped standard monomials of §2.2. While in the
standard realization (2.87c) the quantities C‘,-"j are constants (the structure
constants of a Lie group), the corresponding quantities which emerge after
the reformulation of the same group G in terms of the base manifold, the
parameters, and the generators of G, acquire an explicit dependence on the
local coordinates (the structure functions C:',-"j(a)). This situation has numer-
.ous technical implications (e.g., from the viewpoints of the representation
and classification theory) which are not reviewed here.

The use of the Lie algebra laws for the isotopically mapped product
(2.94a) yields Santilli’s generalization of Lie’s third theorem.

Theorem 2.8 [1], {20]: The structure functions C'!‘j(a) of the isotopic real-
ization of a Lie group G verify the identities
| Ch+Ck =0,

ChCh + CHCL + CiCL + [CF Xl + [C Xilg + [CF, X = 0. (296)

The exponentiation from the Lie algbra to the Lie group can now be

formulated in terms of the isotopic image of the ezponential law (2.77), i.e.,

G: e Xi le—G: ' Xi l¢ (2.99)

which is based on the following rule of Lie isotopy
G : [Xi, X;le = C5Xx = G : [X;, X;]; = Cl(a) X (2.99)

with consequential isotopically mapped Baker-Campbell- Hausdorff formula
1, 20] _ ‘ |
eXaeke = ex',X =gX,
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. . . 1 1
xp = Xa+ Xﬁ + Elxcnxﬁ]é + '1—2[(Xa - xﬂ)’lxmxﬂ]é]f +.00y (2-98)

whose existence is ensured by that of the standard realization. The reader
can now see the emergence of the F-linear combination of the basis directly
in the group composition law. Clearly, the enveloping algebra underlying
expressions (2.98) is the isotope £(G) of £(G). :

A simple example may be useful in illustrating the above analysis [1],
[20]. Consider the one-parameter group of dilations

299

r' = f(r;0) = 'r.

The standard generator for this group is given by

X= r%. (2.100)
Indeed |
6,0, 6, 8
0 (0/0r)y — [1 4 —(r==) + =(r==)" + ..Jr = ’r. 2.108
e r=l1+ 1!(r8r)+ 2!(r8r) tolr=er ( )
The group composition law is, in this case, trivial, i.e.,
= f(r;0)=e'r = Hr. (2.103)

Consider now the one-parameter connected Lie group of nonlinear trans-
formations ’ '

, .
f= f(";o) = -I—Lo;' = g(r,0)f(r,0),9 = Tz_o_r’ . (2.10;)

with composition law

fFoo_ r/(1—6r) r

“T=eF 1= #(1fr—0n) 1-(@+o)r (2-108)

# = f(#:6')

We are interested in realizing this group, as a necessary condition of iso-
. topy, via the generator (2.100) of the different group (2.99). This implies
the search for an isotopic function, that is, a function which multiplies gen-
erator (2.100) to yield the correct transformation law of f as a solution of
integrability conditions (2.94). Such a solution, in the case at hand, is simple
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and is given by r. Indeed, the isotopically mapped exponential law (2.96)
yields the correct result : ' '

or(r(8/07)) 8,20, 6 ;0.
¢ b= g+ ()

r
1-0r

(2.108]

Thus group (2.103) can be realized as an isotopic image of group (2.99).
The case considered above is trivial in the sense that all connected one-
dimensional Lie groups are (locally) isomorphic. Thus, to activate the truly
nonisomorphic character of the isotope with respect to the original group,
one needs more than one dimension. Such a casc is already provided by
the realization of SO(2.1) as an isotope of SO(3), in Eqs. (2.26). More
examples will be provided in §3. ‘

2.4 Isotopic Lifting of Space-Time Symmetry Groups on Met-
ric Spaces [18]

After achieving the generalization of Lie's theory reviewed in the preceding
sections, Santilli specialized it to metric spaces, so as to facilitate the direct
application to cases of physical relevance.

In this way, he achieved a result of truly important value (Theorem 2.9
below) which provides the reconstruction of an exact space-time symmetry
when conventionally broken.

In the following we shall review Santilli's original presentation as close
as possible.

We shall use the term metric spaces for the n-dimensional topological
spaces M over the field F of real numbers R, or complex numbers C or
quanternions Q, equipped with a nonsingular, sesquilinear, and Hermitian
composition (z,y), z,y € M, characterizing the mapping

(z,9):MxM > F. (2.108)
Let e = (ey,...,en) be a basis of M, and define the metric tensor via the

familiar rules
(eis€5) = gij. (2.108)

Then, the condition of nonsingularity is intended to ensure the existence of
the inverse
I=g7"9=(g;), (2.109)
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with the consequent characterization of covariant and contravariant quanti-

ties o - }
z; = gijz’, 2’ = IVz;. (2.189)

The condition of sesquilinearity
(2.119)

(z,ay + Bz) = a(z,y) + B(z,2),

or

(az + By, 2) = &(z,2) + By, 2), (2.19
where the overbar represents complex conjugation in F, permit the realiza-
tion of the composition

() = zlgy = 2'gisa, (2.113)
where the dagger represents Hermitian conjugation in M. .
Finally, the condition of Hermiticity can be formulated via the rules

(z,99) = (g'2,9) = (g2.9), (2.13)

and is introduced for reasons to be identified below.

Additional conditions, such as the positive-definite character of the met-
ric, are not recommendable for a general view of the Lie- isotopic theory,
and they will not be considered at this time. '

Metric spaces were then indicated in Ref. (18] with the notation

M= M(n,g,Fr),F =R,C,Q. (2.118)

which is also adopted hereon. Some of the metric spaces admitted fo.r F= R.
are: the Euclidean space E(3,6,R), § = diag(+l,+l,+1)‘; the b.imkowskl
space M(3 + 1,9,R), g = diag(+l,+l,+l,—l);. the R.lem_au.lman space
R(n,g(z),R), with 9(z), z € M, being symmetric an;l posl'tnve ?eﬁxpt?;
the Finsler space F(n,g(z,%),R), where 9(z,2) = 1@ f(z:,z)/&: az’) is
positive definite (for non-null #) and of rank n; anq others wn.th correspond-
ing spaces for the fields F of complex numbers and quaternions. 'I:hu,s, we
shall assume that the metric g is nonsingular, Hermitian, and verifies t'he
- needed continuity conditions (e.g., analyticity) in all variables, and we write

(2.11]

As one can see, the above definition of a metric is as general as possi-
ble, and does not coincide with the more restrictive definition conventionally

detg # 0, g' = 9,9 = 9(t,2,%,...).
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used in specific geometries, such as the symplectic or the Riemannian ones.
This situation is permitted by the Lie-isotopic theory because it does not
require restrictions on g beyond those considered here. The formalization
of the metric and its restriction to specific cases would then imply particu-
larizations (such as the removal of the dependence on the velocities) which
are not warranted or recommendable for a general study in Lie isotopy.
We consider now a special case of Definition 2.3, an m-parameter, con-
tinuous Lie transformation group G(m) on M(n,g,F), i.e., a topological
space G(m) equipped with a binary mapping, e.g.,
¢ : G(m) x G(m) = G(m) (2.119
verifying the conditions for G(m) to be a topological group, and an addi-
tional mapping
f:G(m)x M = M (2.11¥)

characterized by n analytic functions f(w;z) dépending on m parameters w
and the local coordinates z € M, which verify the conditions for G(m) to
be a Lie transformation group (closure, associativity, identity, and inverse).

We shall furthermore assume that the group G(m) acts linearly on M,
ie.,

o' ¥ f(w;z) = A(w)z, 2116
under which the group conditions can be realized in the form
A(0)=1,
A(w)A(v') = A(w"),v" = w+ v,
Aw)A(w™!) = A(w™)A(v) = I,w™! = —u, (2.149)

where I is the unit matrix in n dimensions.

Among the rather large numer of aspects of the theory of linear, contin-
uous, m-parameter Lie transformation groups, we now consider for clarity
the specialization of the following aspects of §2.2 and §2.3 to metric spaces:

(1) The universal enveloping associative algebra £ of G(m), which we

.shall indicate with the symbolic expression of the basis

8 : I’Xf’ X,X.; XrXth
(2.120)

r<sr<s<trst,..=12..n
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where I is now the n x n identity of £,

IX, = X,I = X,. (2.129)

The X’s are the generators of G(m) in their fundamental (n x n) represen-
tation verifying the skew-Hermiticity property

x} = -x,; (2.12)

the product X, X, is the conventional usociative.product of matrices; and
the attached Lie algebra is given by the familiar rule

8- :[P;,P.]t =P'P.—P.P" (2.19)

where the P’s are polynomials in the X’s. (2) The Lie’s group G(m) of
transformations on M for the ¢ase of the action to the right as in Eq. (?.l 18),
which we shall write in the symbolic exponentiated form for continuous

transformations

eX1vXawz | o Xmwm

m
= H eXawr

(2.12)
k=1

and which will be reduced to the appropriate exponential form whenever we
consider specific cases. The corresponding action to the left,

x¥ = xtat(w),

G(m): A(w)

(2.126)

can be characterized by the operation of Hermitian conjugation, which we
shall write in the symbolic form

G(m): At(w) = (ﬁ Koot (2.128)
k=1

and whose explicit form will be computed whenever the reduced form of Eq.

(2.124) is known (see the case of rotations of §3.2).
(3) The Lie algebra G(m) of G(m), characterized by the closure rules

G(m): [X,, X.)e = X, X, - X.X, = C', X.. (2.12§)

The underlying methodology we shall tacitly imply is the fami.liar. one con-
sisting of the Poincaré-Birkhoff- Witt theorem for the characterization of the

4

basis (2.120); the Baker-Campbell-Housdorff theorem for the composition
of the exponentials (2.124) and (2.126); Lie's first, second,and third theo-
rems for the characterization of the closure rules (2.127) the representation
theory; etc.

The idea of the Lie-isotopic theory [1] is that of generalizing the structure
of the enveloping algebra ¢, of the Lie group G(m), and of the Lie algebra
G(m) in such a way to preserve the Lie character of the theory (in order to
qualify for isotopy). The generalization is done via the replacement of the
simplest possible, associative, Lie-admissible product X, X, of the conven-
tional theory into a form denoted by X, X, which is still associative and Lje
admissible (i.e., its attached product X, + X, — X, + X, is Lie); nevertheless,
it is given by the structurally more general form

X, + X, = X,gX,. (2.129)

It is evident that the generalization of the product of { implies a step-by-step
generalization of the entire formulation of Lie’s theory, from basis (2.120) to
groups (2.124) and (2.126) to algebra (2.127), etc.

In paper [18] Santilli investigates not the Lie-isotopic theory per se, but
its action on a metric space. He therefore identified the genereralization
of the structure of the metric space permitting a consistent action of the
Lie-isotopic theory.

For this purpose, we shall first review the notion of metric isotopy, that
is, a generalization of a given metric space which preserves its metric charac-
ter. We shall then review the corresponding Lie-isotopic theory. Finally, we
shall apply the results to the case when the considered Lie and Lie-isotopic
groups constitute symmetries of the metric and its isotope, respectively.
This latter result will be presented via Theorem 2.9 below on the symmetry
properties of isotopy which is at the foundation of the applications of §3 to
rotations, Galilei and Lorentz transformations.

Consider the simplest possible metric spaces, the Euclidean space E(n,§,F),

F = R,C, Q, with composition law
(2,9) = 2627,

(2.39)
Suppose that the metric § has to be modified into a form of the generic type

((2.115). The emerging generalized space can be expressed via the notion of

metric isotopy as follows.
Let [ = g~ be the inverse of the new metric tensor according to (2.108).
Introduce the isotopic lifting of the field (1.38), i.e.,

F={N|N=NI,NeF=R,C,qQ). (2.130
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The composition of elements of the field with elements of the metric
space is now done according to the redefinition of the product

(2.139)

Thus, the lifting F of F essentially permits the use of a generalized compo-

ﬁbtz = Ngz = Nigz = Nz.

‘sition N #z which, while being characterized by the new metric g, preserves

the old values Nz. . )
Next, Santilli generalizes the metric space E(n,§,F) into a form E that

accommodates the new metric g under a mapping of the type

m:ExE-F. (2.133)

This implies that the generalized composition law must have v;f.lu.e inF. A
realization is given by the form patterned along the isotopic lifting of the

Hilbert spaces, Eq. (1.49), i.e.,

(@) = l(z.99) = I'giie’
(z,99) = (92,9)].

(213

Ref. [18] defines as isotopic liftings of the Eucla:dean space all p?ssi-
ble spaces E(n, g,F) over the field F = R,C,Q, equipped with ‘mappings
(2.132) realized via composition (2.132), where g Is the new metric tex.mor.

It is evident that, by construction, all possible nonsingular metrics of
the same dimension are isotopes of the Euclidean metric. This includes the
Minkowskian, Riemannian, Finslerian, and other metrics.

Note that, strictly speaking, the metric spaces M(n,g,F) cannot be
considered as isotopes of E(n,é,F), owing to the lack of lifting of tl.ne ﬁ'eld.
Nevertheless, this technical point can be ignored in practical applications

owing to the identity N # z = Nz. We can then assume that all possible -

metric spaces of n dimensions over the field F are isotopes of the Euclidean

space. X X - . .
Note that, since F is still a field, E(n,g,F) is also a metric space in the

sense indicated earlier. .

It is evident that the original Lie group G(m) cannot act consistently
on the new spaces. In fact, to begin, the action of the group on the space
cannot be formulated according to the old composition (2.118) and must be

modified into the form
2’ = A(w) # 2 = A(w)gz (2.136')

3

[where the quantities A(w) will be identified shortly]. In turn, this implies
that the old composition laws (2.118) cannot be consistently preserved, and
must be generalized into the form

A(0) = I,
A(w) + A(v') = A(w + '),
A(w) » A(-w) = A(-w) + A(w) = I, (2.13p)

which are precisely the defining conditions of a Lie-isotopic transformation
group (1], [20}. '

The most important property of generalized laws (2.135) is the replace-
ment of the old unit I with the new unit f = g~!. Thus, the dominant
feature of Santilli’s isotopy under consideration is the assumption of the in-
verse I of the new metric g as the generalized identity of the group. Since
the original identity I can be interpreted as the inverse of the metric § of
the Euclidean space, when the original group G(m) is a symmetry of §, we
expect its isotopic image G(m) to constitute a symmetry of g.

To achieve this result, Santilli uses the following main lines of the Lie-
isotopic theory reviewed in §2.2 and §2.3:

(1) Isotopic lifting of the universal enveloping associative algebra. The
Poincaré-Birkhoff-Witt theorem admits a consistent isotopic generalization,
resulting in the new basis

E:01,X, X, s X0, X, 4 X, % Xyy...,

r<sr<s<i,
r,’|‘) e = 1,2, ey B

- (2130)

now expressed not in the term of the weak unit I, but instead in term of the
identity I, which is the same as that of the group composition laws (2.134).
The generators X, are here the same as those of £. The atached Lie algebra
is now given by the isotope ’

£~ :[P,P)py = P.+P,-P,+P,
= P, gP, - P,gP, o [P:3Py), (2.13’)

The algebra £ is still “universal” and “envelopping” - not, of course, with
respect to the algebra £-, but with respect to £~. We see in this way that
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the generalized metric g enters into the very structure of the Lie product,
Eq. (2.137), as expected.

(2) Isotopic lifting of the Lie group. The new basis (2.136) permits the
construction of the new group elements A(w) via the so-called isotopic ez-
ponentiation [1], [20]. For one-parameter actions to the right, this exponen-
tiation is characteized by the old generator X of G(m) but now expanded
in the new envelopeé according to the rule

1 1 1
[+ 5(Xw) + 5(Xw) + ﬁ(x.p)’ +
+31(X0) + 2(Xw)g(Xu) + G(Xu)g(Xu)g(Xw) +
= x.lé dd .X" (2.13’)
which, for clarity of practical computation, can be reexpressed via the fol-
lowing expansion in the old envelope
1+ .(va) + ,(wa)(X gw) + 3.(X.crw)
(Xgw)(Xgw) +.. )
(e.\'ywle)f = eX*vf
= [(e"¥|e) = fewX, (2.139)

It is evident that the elements A(w) so constructed verify all the rules
(2.135), and thus they constitute the desired Lie- isotopic lifting of G(1).
The generalization to more than one dimension is permitted by the Lie-
isotopic generalization of the Campbell- Baker- Hausdorff theorem

é"’ * é" =¢é7,
y=a+f+ [a.ﬂ1+ Lla- Nl +... (214D

under which we have the deslred Lle-isotopic lifting of the Lie transformation
group (2.124), here written, again, in the symbolic form

G(m): A(w) =

= ) II ‘-x.w.

(e R

m Y
= (H ex*‘“’* )I.
k=1

G(1): A(w)

G(1): A(w)

eKrw g gXawa g Xmim

exm-qm )i

(2.14%)
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The action of the Lie-isotopic group to the left,

el =zt o Al(w), (2.142)

is given, for the one-parameter case, by the expansion of the old generator
X1 in the new envelope £, according to the rule
X!y

é(1): Atw) = l(w)(f).;. _l.(wxf)i

I+ 1'(w)t' )+ —(wX')g(th)-{-

= wX'l = éwX' -—WX

(2.143)

with reformulation in £ for practical calculations

GQ): At(w) = I+ -lli(ngf) + Eli(ng')(ng') +..]

= i(cw’xtlg) = icw'xt

= cxt""f = ic""‘x,

(2.145)

and m-parameter expression here symbolically written

. m
G(m)At(w) = I(JT eXven )", (2.14p)
=1

whose explicit form will be computed in specific cases (see, e.g., the case
of the isotopic rotations in §3). It remains to prove that the operation
of Hermitian conjugation, as conventionally defined, also acts consistently
under isotopy in E(n,g,F). The fact that this is not the case in general is
known [30]. Nevertheless, as for case (1.50), the operation of Hermiticity
persists for the particular case under consideration here, that for which the
isotopic element of the envelope coincides with that of the composition [32],
as is readily seen by using the property (2.115) and definition (2.133)

(X:A+y) = I(X,94gy)
= I((gh) z,gy) = i(Algz,gy)
= f(atsa,y), (2.147)
for whiqh
(@)t = Bt Bp— (2.14B)
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(3) Isotopic lifting of the Lie algebra. This is characterized by the iso-
topic generalization of Lie's first, second, and third theorems here expressed
according to the rules

G(m): [XiX)) = Xe+Xo— X, X,

B Xr‘gxn - X.9X,
= C‘f,(z) + X;, -

éic = C:ni ’

where the C's are the structure functions. As is the case for the expansion

(2.138), rules (2.148) can also be teformulated in £ according to either one
of the following expressions, useful for practical calculations

[xr;xo] = X9Xo- X.9X,

' [Xrgv Xag]i '
= [X;s xxlg + X,[9, X.] + X.[X1,9]
= IlgXr.9X.)

= g[X,, X, + [Xnglxl + [y.X.]Xr,

each one derivable from the other via the J acobi law.
The primary lines of the Lie-isotopic theory as outlined above are suf-
ficient for the main task of this section, that dealing with symmetries of
i tric g. A
ubl;;::go:;ethat ihe original (conventional) Lie transformation group G(m)
is a symmetry group of the composition (z,y) in E(n,$,F), or, equivalently,
of the metric 8, according to the familiar conditions

(2.149)

(2:149)

al's’' = z"&z_' = 2t AtsAz = otbz = ol (2.159)
which can hold identically iff
| Atoas ata=aat = asal =1=457", (2.158)
i.e-. A' _ A—l’
(detA)? = (detl)* = 1. (2.153)

As is well known, when conditions (2.152) are verified, we have the orth?go-
nal groups O(n, R), the unitary groups U(n,C), and others. YVhen realiza-
tions of the continuous type are considered, we have the special orthogonal
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groups SO(n, R) or the special unitary groups SU(n, C). In this latter case,
the determinant of the transformation is 1, and the discrete transformations
(e.g., inversions) are excluded.

Santilli [18] investigated the behavior of the symmetry (2.150) under an
isotopic lifting of the Euclidean space E(n,§,F) and of the group G(m) to
a form characterized by an arbitrary metsic (2.115). For this purpose, we
recall that the composition law of E(n,g,F) is based on the term

ghez= z'gz.

(219)

We therefore have a symmetry when the following conditions are identically

verified
eVez' =zt edtsdez=2tesz, (2.15§)
which can hold iff
zitg/& = Agﬂ =1, (2.156)
ie, iff
: At = A1,
(detA)? = (deti)?, (2.159)

where the inverse is computed, of course, with respect to [.
It is easy to see that, when the original transformations verify condi-
tions (2.150), their images under lifting necessarily verify the new conditions

(2.154). In fact, for the case of continuous transformations, we have, from
Eqgs. (2.142) and (2.143),

Al(w) = A(-w). (2.159)

Therefore, conditions (2.154) are reduced to one of the conditions for the
very existence of a Lie-isotopic group, Eq. (2.135).

The rules (2.155) can be expressed in a form particularly suitable for
practical applications. Redefine the elements of é(m) according to the forms

A(w) = B, B(w) = [] e,
- T k=1

At(w) = iBY(w), BY(w) = (ﬁ eXpeun)t, (2.159)
k=1
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Then, conditions (2.145) can be equivalently expressed as
BlgB =y,
(detB)? =1, (2.160)

which hold identically under the Lie-isotopic liftings of continuous transfor-
mations owing to the identity

‘ 1
c"‘"xgex"" = g-w(gXg-9Xg)+ -iw’(ngXg -9XgXg)+...

(2.16)

For the case of discrete transformations, Santilli introduces the following
Lie-isotopic lifting of inversions

Paz= (Pi)gz =Pz = -z,

.=‘ .

(2.16%)

where P is the conventional total inversion. The preservation of the sym-
metry then results from known expressions of the type

PgP =g, (2.162)

whose validity is trivial.
We reach in this way Santilli’s main result, which can be formulated as
follows.

Theorem 2.9 [18]. Let G(m) be an m-parameter 'Lie symmetry group
of the composition ztéz of an n- dimensional Euclidean space E(n,$,F)
over the field F of real numbers R, of complez numbers C, or of quar-
ternions Q. Then the isotopic lifting G(m) of G(m) characterized by a
nonsingular, Hermitian, and sufficiently smooth metric g in the local vari-
ables leaves invariant the generalized composifion «t gz of the isotopic space
E(n,g,f‘),f‘ =Fi,f=g.

All physical applications of §3 can be considered as specializations of the
above theorem to specific cases of physical relevance.
. Note that the explicit construction of the Lie-isotopic transformations
(as well as of the entire theory) can be done following the knowledge only
of the original symmetry and of the new metric.
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" Note also that all Lie algebras admit the following trivial Lie isotopy

G(m) : [X,-;X.] = X; * Xr - xo * Xr
. = (XX, - X, X)) =

X = xI,X € G(m),

with a self-evident isomorphism G(m) s G(m). The above trivial isotopy
should be excluded from the content of Theorem 2.9 because it does not pro-
vide the invariance of the generalized composition law. This can be readily
seen from the fact that the exponentials (2.141) and (2.144), when realized
for the generators X}, coincide with the original exponentials (except for the
factorization of the new unit), and no genuine lifting has actually occurred.

Theorem 2.9 has clearly far reaching mathematical and physical impli-
cations, which can be only partially reviewed here. To begin, Theorem 2.9
provides a new concept of covering Lie-isolopic symmetry under the sole

ChX,,  (2169)

* condition that the original metric § is contained as a particular case of the

new metric g.

But Theorem 2.9 applies for an infinite variety of possible new metrics.
As a result, a given, conventional, Lie symmelry G(m) admits an infinite
class of covering Lie-isotopic symmetries G'(m) The implications of these
findings will become transparent in the next section when we shall show
that the ezplicit form of the Lie-isotopic symmetry transformations evidently
varies with the varying of g.

Furthermore, under certain topological conditions on the new metric
(identified in the next section), the original Lie symmetry G(m) and its
infinite class of Lie-isotopic coverings G(m), not only become locally iso-
morphic, but they actually coincide at the abstract realization-free level.

This is evidently permitted by the abstract formulation of the symmetry,
that in terms of an abstract enveloping algebra with abstract product, say,
ab, and its realization, first in terms of the trivial associative product AB,
resulting into the familiar notion of symmetry G(m) as commonly available
in the mathematical and physical literature, 4nd then its isotopic liftings
A+ B = aAB or AgB, ot WAWBW (W? = W) resulting in Santilli’s
notion of infinite covering symmetries G(m).

Yet in turn, the above properties of Theorem 2.9 are at the foundation
of the capabilities by Santilli to “reconstruct” an exact Lie symmetry when
conventionally broken (see the next section for specific cases).

Still another property of Theorem 2.9 of considerable mathematical and
physical importance is the intrinsic nonlinear character of Santilli’s Lie-
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isotopic theory, even though ezpressed in a formally linear form, the isolinear

Jorm. ]

In fact, the transformations underlying Theorem 2.9, Eqs. (2.1.34): hav?
an intrinsically nonlinear structure in the coordinates z, their derivatives £
with respect to independent parameters, etc., and we shall wnte.

(2.164)

where the nonlinearity evidently emerges from the arbitrary dependence of
the metric in expansion (2.139), ie.,

z' = B(w;z,%,...)z

(2.166)

Nevertheless, nonlinear transformations (2.164 ) can always be written in
the equivalent isolinear form

B = exp(zg(z,%,...)wle.

2 = A(w)»z. (2.16%)
The mathematical implications of the above result are evident, and

linked to the possibility (not yet explored so far) of turning complex non-

linear problems into more manageable, equivalent, isolinear forms. o

The physical implications are equally far reaching. In f?.ct, the intrin-
sic isolinear character of the Lie-isotopic theory is the technical reason un-
derlying Santilli’s view that the expected nonlinearity of the strong inter-
actions is not a structure characterizing feature; only their expected con-
tact/nonlocal/nonhamiltonian character is. . '

In particular, the capability of turning all possible nonhnear. models, suc.h
as Weinberg's valuable attempt (1.65), into an equivalent isolinear form,. is
expected to void most of the argumentations currently presented on nonlin-
earity. . '

As a further comment, the isotopic liftings of Euclidean spaces revnetw.ed

ere are expected to be extendable to accommodate antisymmetric metrics
lal,nd their sSmplectic symmetry groups. In fact, liftings (2:138) and (2..144)
are possible also for antisymmetric metrics. The restriction to Hermitian
metrics was done by Santilli because of compatibility condition (2.147),

.having in mid operator-type applications based on the completion of the

Euclidean spaces into Hilbert spaces. ' . o
This completes our review of Santilli’s mathematical studies on his Lie-

isotopic theory which, with the sole exception of paper [34] k.nov!rn to us,
constitute all mathematical studies on the topic available at this time.
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2.5 Some Open Mathematical Problems

It is clearly remarkable for one single individual to work out the generalized
formulation of Lie's theory to the extent reviewed in the preceding sections
(as well as its applications reviewed in the final part of this presentation).

Nevertheless, the mathematical research on the Lie-isotopic theory is
only at a beginning, and so much remains to be done. The number of open
mathematical problems is so large to prevent their comprehensive identifica-
tion. We merely limit ourselves here to identify open mathematical problems
that are relevant for the physical applications considered in the next section.

To begin, the virtual entirety of basic definitions of Lie’s theory need a
suitable reinspection and reformulation into corresponding covering notions
that are directly applicable to the Lie-isotopic theory. This is the case for
the notions of: compact and noncompact algebras; simple and semisimple-
algebras; Cartan’s decomposition; Killing form; etc. A ‘

All these notions in their familiar presentation have an unequivocal
meaning because referred to one specific realization of the Lie product, the
simplest possible one AB — BA. The same notions, unless properly re-
defined, become ambiguous when referred to Santilli’s product A+ B—Bs+A =
AgB — BgA because of the infinite family of possible isotopic elements g all
with potentially different topologies.

Once these fundamental notions of Lie’s theory have been properly re-
viewed, one can pass to the study of basic methodological aspects which
have remained untouched as of now. ,

A central open mathematical problem is the representation theory of
Lie-isotopic algebras and groups. Santilli’s studies reviewed here, e.g., §2.4,
essentially provide the fundamental representation, as we shall see in §3.
But, again, a general study of the representation theory is lacking as of now
(Spring 1990) to our best knowledge.

The mathematical relevance of the problem is expressed by the fact that
the exclusion of the trivial isotopy (2.163) prevents a simplistic lifting of
the conventional theory. Also, the infinite variety of isotopic transforma-
tions (§2.4) demands a reinspection of the representation theory from its
foundations. .

The physical relevance of the representation theory is also self-evident.
It can be best expressed as essential to characterize the notion of “particle”
within the arena of physical applicability of the Lie-isotopic theory, i.e., the
notion of “hadron” under contact/nonlocal/nonhamiltonian strong interac-
tions (§1.3). A '
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Of particular relevance are studies of the representation theory of San-
tilli’s isotopic group of rotations (§3.2), and of Lorentz transformations
(83.4), which are evidently essential for possible basic advances, e.g., on the
notion of intrinsic angular momentum (spin) of one hadron under ezternal
strong interactions of the considered type.

Another mathematical aspect in need of a comprehensive study is that
of the product of the above representation, i.e., the isotensorial product of
Lie-isotopic representations. Studies on this aspect were initiated in the
only pure mathematical contribution to Lie-isotopy known to these authors,
Ref. [34], but so much remains to be done. ‘

The physical relevance of the isotensorial products of isorepresentations
is evidently provided by the need, reviewed in §1.3, of recovering conven-
tional, total, quantum mechanical quantities for an isolated bound system
of strongly interaction particles, while admitting generalized internal laws.

A further mathematical problem deserving specific studies is the contrac- -

tion and ezpansion of Santilli’s Lie-isotopic groups. Recall from §1.3 that
the “hadronization” of the classical Birkhoffian mechanics into the operator
form, hadronic mechanics, proved to be particularly valuable for the under-
standing of both new mechanics. A quite similar situation occurs for Lie-
isotopic groups. As we shall review in the next sections, Santilli applied his
theory to the isotopic lifting of the Galilei and Lorentz symmetries. While
the contraction of the Lorentz symmetry into the Galilean one (and the in-
verse expansion) is well known, no study has been conducted until now on
its covering Lie-isotopic setting. Its value for a deeper understanding of the
Galilei- isotopic and Lorentz-isotopic symmetries (see the next section) is
evident. _

The educated reader can easily identify numerous, additional, mathe-
matical problems of fundamental, yet open character.

It is hoped in this way the reader can see the need, anticipated earlier,
for a re-inspection of the entire Lie’s theory and its reformulation into a
covering form directly applicable to Lie-isotopic algebras and groups.

This review would have achieved a primary objective, if it succeeds in

stimulating this much needed, independent mathematical research.
. The authors of this review would be grateful to all mathematicians who
can send to their atterition (at the address of The Institute for Basic Re-
search, 96 Prescott Street, Cambridge, MA 02138 USA) any mathemati-
cal research directly or indirecctly related to associative-isotopic and Lie-
isotopic algebras or groups. :

3 THE CLASSICAL FOUNDATIONS OF THE
THEORY

3.1 Introductory Aspects

The Lie-isotopic theory was conceived by Santilli for the specific purpose
of attempting a generalization of conventional space-time symmetries and
related relativities [1).

In this section we shall review the state of the research in classical me-
chanics (we hope to review the operator counterpart in a subsequent paper).
In particular, we shall review the isotopic lifting of: ‘

a) the rotation group [19];
b) the Galilei group and related relativity [1, 20}; and
c) the Poincaré group and related special relativity (14, 58, 153].

For completeness, we shall also review Santilli’s [14], [21] and Gasperini’s
[60], [61], [62] research on a conceivable isotopic generalization of Einstein’s
gravitation. Gasperini’s [23] lifting of gauge theories shall be reviewed in the
Appendices, jointly with a number of other aspects. All known applications
shall be either reviewed or indicated to the interested reader, provided that
they are of classical character. This section shall end with a review of much
overdue experiments.

Regrettably, we are unable to review numerous intriguing applications
of the Lie-isotopic theory because of their intrinsic operator character, such
as: Kalnay’s [26] hadronization of Nambu’s mechanics; Santilli’s [27) true
confinement of quarks with null probability of tunnel effects; Mignani's [22)
nonpotential scattering theory; Nishioka's [25] studies; Animalu’s [28] re-
search; the studies by Janunsh’s and collaborators [24]; and others.

A few introductory comments appear to be recommendable, not only
because of the manifestly delicate nature of the review, but also in order to
prevent unnecessary misrepresentations. ,

The best way to present the material is that along the spirit of the

‘original proposals:

1. The Lie-isotopic theory provides true, mathematically consistent gen-
eralizations of conventional space-time symmetries. As such, they are
intriguing on pure mathematical grounds alone [1).-
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9. The nonrelativistic, isotopic, space-time symmetries have clear appli-
cations in classical mechanics [20].

3. The relativistic [14] and gravitational [58}, [62], isotopic, space-tin.le
symmetries are conjectural at this time because of the lack of certain
fundamental tests recommended since quite some time.

As reviewed in §2, the single most dominant mathematical concept i'n
Santilli's Lie-isotopic theory is the generalized notion of unit, t.he i_soumt
I = g~}. The single, most dominant physical concept in the apl‘)hcatn'on’s of
the Lie-isotopic theory is the notion of extended particles moving unthm' a
physical medium, such as: propagation of light in gaseous or liquid media;
motion of a satellite in Earth’s atmosphere; motion of the wave-packet of a

hadronic constituent within the “hadronic medium” [2] (the medium com-

posed by the wavepackets of the remaining constituents); a.md 'other cases.

If the particles considered are assumed as being point-like, the Lie-
isotopic theory has no relevance known at this time and none of the struc-
tures reviewed below has a known physical meaning. ' .

In fact, systems of point-like particles can only admit action-at-a-distance
interactions of potential-Hamiltonian type without collisions. The conven-
tional Lie's theory then applies in full without need for any generalization.
This is the case irrespective of whether the particles move in empty space or
in a physical medium, for that medium too becomes composed of isolated,
point-like constituents. A similar situation occurs also for.an extended par-
ticle moving in vacuum under long range, external, potential f?rces. In fact,
under these conditions, the size of the particle can be effectively ignored.
(This is the case, e.g., for the w;ve—packet of an electron when a member of
an atomic cloud.) L . .

The physical arena changes significantly when the size of the part.ncl?s
must be specifically taken into account, e.g., when the part.ncles move within
a physical medium andfor experience a deformation of th.elr shape. In these
latter conditions the particles experience interactions which are gem?rally. of
nohamiltonian, and therefore non-Lie character (§1.3). It is at this pom‘t
that Santilli’s Lie-isotopic theory offers intriguing possibilities for a quanti-

. tative treatment. In fact, as now familiar, all nonhamiltonian forces can be

incorporated in the generalized unit of the theory, while the Hamiltonian

can represent conventional interactions. o
A second fundamental physical concept in Santilli’s studies is that empty
space (vacuum) remains conventionally homogeneous and isotropic. It is the
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physical medium in which motion of eztended objects occurs which is, in gen-
eral, inhomogeneous and anisotropic. To put it differently, the Lie-isotopic
symmetries were not conceived for treating the conventional space. After all,
by ignoring certain galactic indications, there is no available evidence dis-
proving the homogeneity and isotropy of space in our Earthly environment.
Conventional space-time symmetries are then the only ones applicable, as
stressed by Santilli himself [1].

The inhomogeneity and anisotropy of physical media (whether classical
or operational), leads to the inevitable breaking of conventional space-time
symmetries beginning with the rotational symmetry (§3.2); and then passing
to the Galilei symmetry (§3.3); the Lorentz symmetry (§3.4) and, inevitably,
Einstein’s gravitation (§3.5). :

Admittedly, Santilli’s Lie-isotopic theory is only tentative at this time,
and recommended as a conceivable first step for a future more adequate
treatment. But the breaking of conventional space-time symmetries under
the physical conditions considered is simply out of any question. The in-
terested reader is urged to study the classification of the various forms of
breaking of conventional space-time symmetries provided by the variational
self-adjointness, as originally presented in ref. [1], and subsequently reviewed
in detail in monographs [63], [64).

Another important concept in Santilli's studies is the ezperimental evi-
dence of the deformability of eztended particles. Again, conventional space-
time theories are strictly referred to rigid bodies. This is typically the case
of the theory of rotations, as well known. But absolutely rigid objects do
not exist in Nature. When the deformability of objects is admitted, conven-
tional space-time symmetries are inapplicable, as stressed again by Santilli
1}, (18], [20]. ' Lo

As an example, the conventional rotational symmetry is manifestly in-
applicable to a sphere which is jointly experiencing a rotation and a defor-
mation. The inapplicability of the Galilei and Lorentz symmetries is then
consequential, owing to the central role of the rotational symmetry (as well
as for additional reasons). v ’

The deformation of extended particles moving in vacuum but under suffi-
ciently intense external forces is therefore another arena of possible physical
applications for which the Lie-isotopic theory was conceived. Again, the ef-
fectiveness of Santilli’s approach is unknown at this time, for it was merely
proposed as a first quantitative step. Nevertheless, the breaking of conven-
tional space-time symmetries under this second class of physical conditions

is simply out of any question.
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Note the independence of the breakings caused by deformation from
those caused by the inhomogeneous and anisotropic character of the physical
medium. ,

A third class of breakings is given by the ultimate essence of contact
_interactions, that of being instantaneous no matter whether in “nonrela-
tivistic” or “relativistic” mechanics. After all, these interactions have a null
range by their essential nature. We are here referring to the evidence that
motion of a particle within a physical medium results in interactions between
the particle and the medium which, by nature, are of “contact,” that is, “in-
stantaneous” and “null range” character, as well known in classical (but
not yet in particle) mechanics. These are novel interactions, for which the
notion of action-at-a-distance, potential-Hamiltonian forces has no physical
meaning. The need for a suitable generalization of conventional relativities
is then evident.

This leads to a third physical origin of the breakings of conventional
space-time symmetries, which is independent from the preceding two (re-
garding the inhomogeneous/anisotropic character of physical media, and
the deformability of extended objects).

A final concept should be re-called here, the rather remarkable capability
offered by Theorem 2.9 of reconstructing as ezact the symmetries that are
broken at the conventional Lie level. This is the case in general, not only
for the rotational symmetry, but also for the Galilei symmetry, the Lorentz
symmetries, or any other continuous or discrete symmetry.

In summary, this section shall deal with three established classes of
breakings of conventional space-time symmetries, those characterized by:

A: the inhomogeneous and anisotropic character of physical media;

B.

the deformability of extended physical objects; and

C: the instantaneous null range character of the contact nonhamiltonian
interactions experienced by extended objects moving within physical
media. ’

Santilli conceived and developed his Lie-isotopic theory for the specific
‘purpose of attempting a generalization of Galilei’s and Einstein’s relativities
capable of providing a first quantitative treatment of conventional symme-
tries, when broken according to classes A, B and C above. One of the
aspects of the studies is that the broken symmetries are not left mathemati-
cally undefined, as in tha conventional literature, but they are replaced with
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covering, exact, Lie-isotopic symmetries. In this way, Santilli put the math-
ematical and physical foundations for the construction of a conceivable new
generation of true covering relativities, as we shall see.

3.2 Lie-isotopic Generalization of the Group of Rotations [1],
(18),(19)]
3.2.1 Introduction

As is well known, when absolute rigidity is relaxed to admit the deformatjons
of the real world [51), [52], perfectly spherical objects in Euclidean space,

rlor=zz4yy+22=1, (3.1)
" can be deformed in ellipsoids
rigr = zblz + ybgﬁ +2b3z=1, (3.2)

with the consequent manifest loss of the symmetry under rotations.

Similarly, when the motion of extended objects occurs within inhomo-
geneous and unisotropic material media, the Euclidean invariant [3.1] is
generalized to a form of the type

rlgr = rigi;(t, r, %, .00, (3.3)
where, in general, the metric tensor has a dependence on time, coordinates,
velocities, and a number of additional physical quantities (such as temper-
ature, density, pressure, etc.).

In this section we shall review Santilli’s generalization of the special
orthogonal rotation group SO(3) which provides the invariance of all possible
deformations of the sphere, Eq. (3.2), while recovering the conventional
theory identically whenever the original structure (3.1) is resumed. We
shall then show that the generalized theory also provides the invariance
of the generalized metric g(¢,r,#,,..). The génera.lization of the covering,
special unitary group SU(2) will be reviewed in Appendix C.

These objectives are achieved via the use of the Lie-isotopic lifting of Lie
symmetries presented in §2, with particular reference to Theorem 2.9.
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3.2.2 Foundations of the Conventional Rotational Symmetry

The basic space is the conventional Euclidean space in three dimensions,
E(r,5,R), with local coordinates

-4
r=rf= (y) k=1,2,3, (3.4)
Z
and composition o
rr =16 = 22 4 yy + 22, (3.5)

The continuous component SO(3) of the metric-preserving group O(3) is
given by the familiar form

R(8) = e/ |ce's%| s, ‘ (36)
verifying the conditions
R'R=RR'=1,
R‘ = R_I,
detR = +1, (3.7)

where the s are Euler’s angles; the skew-Hermitian generators are given

by .
0 0 O
Ji=Ja=[0 0 1]},
~\0 -1 0/
0 0 -1\~
Ja=Ju=10 0 0},
1 0 0
0 10
Js=Jia=]1-1 0 0 3
0 0 0o/
Ji == (38)

and the infinite series leading to the exponentiations (3.6) are computed in
the universal enveloping algebra £ with conventional associative product of
matrices and unit B

€ : J;J; = associative product,
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Ii=5I=J;,
I = diag(+1,+1,+1). (3.9)

The attached Lie algebra is characterized by the familiar commutation
rules

SO(3) : [V, Jj)e = JiJ; = JjJi = —€ijudn,

i,J,k =1,2,3, (310)
while the second-order Casimir invariant is given by
3
J2=Y = -2I (3.11)
k=1
The discrete part of O(3) is characterized by the inversion
Pr=-r, i
P= djag(_l) "l) _l)s
detP = -1, (3.12)

which, as well known, commutes with all elements of SO(3). We shall keep in
mind that O(3) is not connected and that, since the reflections do not contain
the identity, they constitute a group only when combined with SO(3).

3.2.3 Lie-Isotopic Generalization of the Group of Rotations

We now introduce arbitrary, nonsingulé.r, symmetric, and sufliciently smooth
metrics over R:

g= (g"j) = (955(t)r) fy...)) (3.13)

with composition law

rar= r‘gr = r"g.-,'rj (3.14)

characterizing the isotopic liftings E(F, g,ﬁ.) of E(7,6,R), according to the
specifications of §2.4. '

We are interested in identifying the Lie-isotopic liftings O(3) of the group
of rotations O(3), that is, the set of transformations

' = R(0) +r ¥ R(8)gr, (3.15)
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It is then easy to see that the only compact Lie-isotopic algebras are the

following two: .
801(3) : signg = (+’ +, +)9

| $0,(3) : signg = (-, —,~), (3.35)

while all the remaining six algebras are noncompact, according to the clas-

sification .
S03(3) : signg = (+,+,-),

$04(3) : signg = (+,—, +),

5'65(3) :signg = (-, +,+),

SO4(3) : signg = (-, -, +),

8"61(3) :signg = (-, +,-), ,

$04(3) : signg = (+,—, ). (3.36)

To identify the type of algebras, we introduce the following redefinition
of the generators

Jiy = b33 0, Ja = 671031, Ja = b7 0050 5. (3.37)

The Lie-isotopic commutation rules for the compact algebras (3.35) then

become . X o L
§0, : [Ji;/a] = Ja, [Jasda) = Jy, [Jaidh] = Ja,

§0,(3) : [Jy)Ja] = =Ja, a3 da) = =y, [Jasdh) = - Ja. (3.38)
The second-order isotopic Casimir invariants are then given by

3 .
Ity = ¥ Insieydn = —2haya = 1,2. (3.39)
k=1

Comparison of Eqs. (3.38) and (3.39) with (3.10) and (3.11), respec-

tively, then leads to the following result.

‘Proposition 3.1 [19): All compact isotopes SO(3) are locally isomorphic to

the SO(3) algebra, and they occur for positive or negative definite metrics.

Under the assumed topological restrictions on the metric, the Lie-isotopic
algebras are integrable to their corresponding groups. The exponentials
(3.24) therefore exist and characterize well- defined, finite isotopic rotations.
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Numerous examples can be explicitly computed
consider a compact isotopic rotation around the ti
the isotope O(3). Trivial calculations then yield the

I(6:) = S,(05)i

( cosly ﬁ‘sin%

- E-airwa cosly
0 0

with underlying transformations

r = R(Bs)sr=5,0:)r

( zcosls + y{-}-sinﬂa }

—zksinﬂa + ycosls
z

which leave invariant the hyperboloids

2’63z’ + y'bdy’ + 2
= zbiz 4 ybly + 23z

= rigyr,

rflg(‘)r'

as the reader is encouraged to verify.

Note that the isotopic commutation rules of SC
conventional algebra SO(3) coincide at the abstract
treatment of rotations. The same situation occurs |
the theory, such as enveloping algebra, Casimir inva
formal unification can also be reached between the f
group 0;(3) and the conventional one O(3).

A main result of ref. [19] is then expressed as foll

Theorem 3.1 The groups of isomelries of all poés:
mations of the sphere,

"'9(1)" = zbjz + ybly + 203z = |

be = bi(t, 1, 7,...),
here denoted O, (3), verify the following properties:

96



(a) The groups 01(3) are all locally isomorphic to 0(3) when isotopically
" realized in such a way that their isounits i(l) are the inverse of the
metrics g(y) of ellipsoids (3.43).

(b) The groups (7,(3) consist of infinitely many different (but isomorphic) .

realizations, corresponding to the infinite possibilities of ezplicit, local
Jorms of the isounits i(l) (or, equivalently, of the metrics g(;)).

(c) The groups 5,(3) constitute “isotopic coverings” of O(3), in the sense
that

(c-1) the groups 6:(3) are constructed via methods structurally

more general than those of 0(3);

(c-2) the groups 61(3) apply for physical conditions broader than
those of O(3); and

(c-3) all groups 6\1(3) recover O(3) identically whenever ellipsoids
(5.43) reduce to the sphere.

The nontriviality of the notion of isotopic covering can be illustrated via
the following important property.

Corollary 3.1.1 [19]:
linear, i.e.,

While the action of O(3) on local coordinates is

v’ = R(0)r, (3.44)
that of its isotopic coverings (7,(3) is generally nonlinear, i.e.,
| ¥ = R(8)er=S5,0)r
= §(¢,r,*..;0)r (3.45)

An illustration of this occurrence is given by transformations (3.41).
In fact, the nonlinearity occurs because the elements by entering into the
transformations are generally dependent on the local coordinates (see Fig.
. 6 for some of the implications).

We pass now to the review of the noncompact forms, which, besides
being useful for achieving a classification of all possible isotopic images of
rotations, constitute the foundations of the Lie-isotopic lifting of special
relativity (§3.4).
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For the case of the noncompact algebras (3.35), lsotoplc rules (3 30)
become

§03(3) : [Jy3h2] = —Ja, [JaiJa] = Ju, [Jasdh] = Jz.

SO4(3) : [Jasa) = Js, [aida] = dh, [Jari] = =Ja,

$O5(3) : [Ji3Ja] = Ja, [Jaida] = = v, [Fash] = Ja,

§06(3) : [J13a] = Ja, [Jarda] = =Jn, [Jsh] = =z,

$07(3) : [J13da] = —Js,laida] = =, i) = s,

S0s(3) : [J13a) = —J3, [Jaida] = J, [Jdh] = - s, (3.46)

while the second-order Casimir invariants preserve form (3.39), i.e.,

j(ia) = ;J‘wwl = -21“(«:),0{ =3,4,...,8. (3.47)
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. FIGURE 6. A fundamental application of the Lie-isotopic theory: the

deformation/rotational-asymmetry of neutrons under intense external fields,
and the exact character of isotopic rotations [19, 153] As well known, neu-
trons are not point particles, but extended charge distributions with a ra-
dius of about 1F (= 10 ~'* cm). Suppose that such distributions are
perfectly spherical (an assumption already questionable [154]). Then, un-
der sufficiently intense external fields, the particles are expected to experi-
ence a deformation of their shape precisely along the fundamental invariant
(3.2) of the isotopic rotations. This deformation of shape has a number of
truly fundamental, theoretical and experimental implications. On theoreti-
cal grounds, it implies the breaking of the conventional rotational symmetry,
as manifest in the deformation of invariant (3.1) into ellipsoids (3.2). But
the abstract rotational symmetry is not broken. In fact, Santilli's isotopic
group O(3) provides an exact symmetry for the deformed neutron while
being isomorphic to O(3). Furthermore, the deformation of the charge dis-
tribution implies an alteration (“mutation” in the language of ref. [2]) of
the magnetic moment of the particle, as clearly established already at the
classical level. One recovers in this way an hypothesis formulated since the
early stages of nuclear physics (but oddly ignored in more recent treatises
in the field), that protons and neutrons experience a deformation of their
magnetic moments when members of a nuclear structure, e.g., under intense,
short range, nuclear interactions. Finally, and still on theoretical grounds,
the rotational-asymmetry of the figure implies a necessary breaking of the
conventional Galilei's and Einstein’s Relativities, thus creating the need for
suitable generalizations of Lie-isotopic type as we shall review in the mext
sections. On experimental grounds, the physical occurrence depicted in the
figure has a number of fundamental implications, for instance, in the con-
trolled fusion. In fact, protons and neutrons are expected to experience an al-
teration of their intrinsic magnetic moments exactly at the time of initiation
of the fusion process, with evident implications for confinement. The defor-
mation/rotational uymmetry/mlgnetic- moment-mutation depicled in the
figure has already been the subject of fundamental experiments by H. Rauch
and collaborators (see later on ref. [131] and quoted papers) via neutron in-
terferometric techniques. The experimenters tested the spinorial character of
the neutron’s SU(2) symmetry via the symmetry of the wavefunction under
two complete spin-flips caused by an external magnetic field. The calcula-
tions are evidently based on the conventional value of the magnetic moment
of the neutron. As a result, deviations caused by the deformations under
consideration evidently result in deviations from the SU(2) symmetry. The
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last experimental numbers (dating back to 1982) are 715.87 4 3.8deg. Thus,
the 720 deg needed to verily the exact, conventional, rotational symmetry
ARE NOT contained within the minimal value 712.97 and the maximal value
719.67 of the experimental error. A quantitative representation of Rauch’s
data [131] has been provided by Santilli [153] via his isotopic lifting of Dirac’s
equation and it will be reviewed in Appendix C. Rauch’s fandamental exper-
iment will be considered in detail in the separate review we hope to complete -
on the operator version of Lie-isotopic techniques on Hilbert spaces. San-
tilli has been a strong proponent (for over a decade now) of the repetition
of Rauch’s experiment by other independent experimentalists, owing to its
manifestly fundamental character (see, e.g., ref. [9). It is regrettable that
the experiment has continued to be ignored by experimentalists in the field.
In fact, the last available experimental numbers date back to 1982 and, most
unreassuring, show a violation, thus rendering even more compelling the need
for an experimental resolution of $he issue. The clear, unquestionable plau-
sibility of the deformation; the ready availability of all needed equipment
at numerous (low energy) nuclear laboratories throughout the world; the
quite moderate cost of the experiments as compared to other lesser relevant,
yet much more expensive experimenty preferred until now by experimenters
in the field; the manifestly fundamental character of the experiment for all
of theoretical physics; the equally sisable financial-administrative implica-
tions, e.g., for the investments in attempting controlled fusion via magnetic
confinement; and several other aspects, have forced Santilli to raise serious
issues of scientific ethics in regard to the lack of independent repetition of
Rauch’s experiment which are not addressed in this review.

The following result then holds:

Proposition 3.2 [19]: All noncompact isotopes §06(3) are Iocally isomor-
_phic to the SO(2 1) algebra, and they occur for (diagonal) metncs whose
elements have different signs.

Under the assumed restrictions, the noncompact isotopic algebras are
also integrable to their corresponding groups. The exponentials (3.25) there-
fore exist, although the range of the parameters now becomes infinite.
Again, numerous examples of “noncompact isotopic rotations” can be
explicitly constructed for all cases (3.36). As an illustration, we consider a
“rotation” around the third axis for the case of the isotope SO4(3). Then,
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trivial calculations yield the group element [19] .

—t}aiuhﬂa 0) !

cos hb;;

R(6;) = (—Bainhﬂa coshf; 0 (3.48)
0

0 1/
with underlying isotopic transformations

zcoshb; — f’-smhﬂa
R(83)r = S,(03)r = —z&amh@a + ycoahﬂa
2

(3.49)

which, this time, leave invariant the hyperbolic form
y'o3y' + 2832
zblz - yb%y + 23z

= riggr

e’ = 2'bja’ -

(3.50)

Again, the noncompact isotopes are indistinguishable from SO(2.1) at
the level of abstract, realization-free formulations.

In summary, the isotopic lifting of Lie algebras does not produce new
Lie algebras, because (as stressed in §1.5) all Lie algebras over a field of
characteristic zero are already known. Santilli’s Lie-isotopic theory merely
provides infinitely new covering realizations of known algebras. The results
of Propositions 3.1 and 3.2 are therefore predictable from the simplicity of
algebra (3.30). In fact, all simple, three- dimensional Lie algebras over the
reals are known and are given either by SO(3) or by SO(2.1) (or by algebras
isomorphic to them.)

To complete our classification, we need additional information on Lie-
isotopic algebras whose metrics have opposite signs.

DEFINITION 8.1 [19): Let G be an isotopic algebra char-
acterized by (diagonal) metrics with elements gix. The isotopic
dual G? of G is the algebra characterized by the (diagonal) met-
ric with elements g,‘fk =—gx, k=1,2,..,n

It is then easy to prove the following result.

Proposition 3.3 [19]: Isotopically dual Lie algebras are locally isomorphic.
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Note that the proposition above includes the case when one of the al-
gebras is conventional. We discover in this way that SO(3) has an image
that cannot be identified via the simplest possible Lie product AB — BA of
current use, but demands instead the use of a more general product, such
as AgB — BgA.

In fact, besides its conventional form, SO(3) can be realized via the
isotopic dual, according to the expressions

SO(3): i) = Jigli—J;gd;i
= —€iixlky
g = diag(+1,41,+1),
Ji = =J;.
S0%3): [JiJ;] = Jigl; - JigJi
= +€iixdr,
g = diag(-1,-1,-1),
J = - (3.51)

At the level of the full orthogonal group O(3), this essentially implies the
interchange of the identity I with the total inversion I = —I, the latter
becoming the identity of the isotopic dual. It is then easy to see that the
basic algebras (3.51) and the eight isotopes (3.38) and (3.46) can be divided
into two sets interconnected by isotopic duality.

Until now we have considered isotopes characterized by metrics with
locally definite topological characters, resulting in locally definite compact
or noncompact groups. To complete his classification, Saatilli indicated the
existence of isotopes that can smoothly transform compact algebras into
noncompact ones, and vice versa. Evidently, this topic is technically involved
(and yet unexplored); it therefore demands specific, detailed investigations.
We shall thus content ourselves with the mere indication of the existence of

this additional class of isotopies.

For this purpose it is more effective to return to the original basis J; of
Eqs. (3.8), to the original isotopic rules (3.30), and to the generic separation
(3.28), with diagonal metric elements gx:. An isotopic rotation around the
third axis can be readily computed from the exponentiations (3.25), resulting
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in the expression

cos(0301" 934 2 172 9n(gn922)" 23:";(?%“’9%’) 0

5¢(0) = | —gu(g11922)/2sin(829}%g}f?) cos(039;17955") 0
0 0 1

(3.52)

It is easy to see that the above transformations do not have, in general, a
globally defined compact or noncompact character. In particular, they can
be isomorphic to SO(3) for given values of the local variables and to SO(2.1)
for others. Thus they can continuously interconnect compact and noncom-
pact structures. Evidently, this is the most general possible isotopic lifting
of rotations, which includes as particular cases all other forms considered so
far.

To illustrate this occurrence, assume that the elements g;; and g33 have
the value +1, while the element g;; is given by a function of the local
variables ¢t,r,¥,... that interconnects smoothly the values +1 and -1. It
is then easy to see that, for the case g;; = ¢332 = ga3 = +1, transformations
(3.52) reduce to the familiar, compact rotations

cosf; sinf; 0
Sy(03) = (-sin% cosf; 0
0 0 1

(3.53)

while, for g1 = —g22 = ¢33 = 1, transformations (3.52) reduce to the equally
familiar, but this time noncompact, Lorentz transformations

cosh@; —sinh63 0
Sg(03) = (—sinhﬂ;; coshf 0)
0o 0 1

(3.54)

The generalization to metrics (3.34) is self-evident. Note the lack of
consideration in this review of the trivial isotopy

§O(3) : [Jird;]) = —€ijdis Ik = Jkg ™", Jix € SO(3), (3.55)
Od)  g=(+L+L+D) g=(-L-L-) 0,0
0,0 g=(+bh+bh+8) | g=(-bl.-bl.-b) 0,0
5  g=(+bh bl =) | g= (b= 46D 0,0
0  g=(+bh-bl+b]) | g=(-bl+8.-b) OB
G0 g=(-bh+bh+8) | g=(rbl-bh-b) 0. 0)

0(3): g = (811: 812+ 8n3)

e ——
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FIGURE 7. A reproduction of Table I of ref. [19] presenting a pre-
liminary classification of all possible isotopes of the conventional group of
rotations denoted with Oy(3). On the left hand side we have the most no-
table isotopes characterized by different topologies of the metric, while on
the right hand side we have their images under the notion of duality of
Definition 3.1. The isotope O(3) at the bottom of the diagram symbolizes
Santilli’s conception of one single Lie-isotopic group which unifies all pos-
sible Lie groups of the same dimension via a metric of varying topological
structure.

which does not provide the invariance of the ellipsoldical deformations
of the sphere, as indicated in the closing remarks of §2.4. On the contrary,
the gealization ‘
SO(3) : [Ki, K;] = —€ia K,

0 0 0
0 0 g,

- 00
K,=(3 ) 'o**),

K, =

10 0
0o p o

Ks=|_-2 0 of> (3.56)
0 0 0

even though conventional in structure (that is, realized via the conventional
associative envelope without any isotopy), verifies the basic invariance prop-
erty (3.26), as the reader is encouraged to verify.

Here it is important to understand that, by no means, can the results
under consideration be uniquely derived via the Lie- isotopic theory. In fact,
structure (3.56) indicates the possibility or recovering the form invarance of
the ellipsoidical deformations of the sphere via the conventionally realized
O(3) or other ways. The Lie-isotopic liftings of Lie symmetries have been
merely submitted by Santilli on grounds of their pragmatic effectiveness in
constructing the covering symmetry when a given, conventionally realized
Lie symmetry is broken, while admitting the latter as a particular case
whenever the original physical conditions are regained.
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3.2.5 Physical Applications

In order to identify physical applications, it is desirable to identify first its
dynamical foundations. This, in turn, can be done more effectively in the
arena of our best intuitions, Newtonian mechanics. Applications to particle
physics shall be considered in a possible subsequent review.

The Birkhoffian generalization of (classical) Hamiltonian mechanics (§1.3)
evidently provides the desired dynamical setting. A knowledge of mono-
graph [20] is therefore essential for a deep ‘understanding of the physical
applications of isotopic rotations.

For simplicity but without loss of generality, Santilli [19] first considered
the case of one, free, extended particle in Euclidean space E(F,§,R), and
the trivial canonical action

A(t,r)

/:dt[p-i—%rp]

¢
/’dl[pu"), - H]lym =
f

1}

(3.57)

Suppose that, at a given value of time, the particle experiences only contact
nonhamiltonian forces due to its extended character (e.g., because of pene-
tration within a resistive, generally anisotropic and inhomogeneous, material
medium). Suppose that these physical conditions can be represented via the
isotopic lifting E(7, 9, R) of the Euchdean space, i.e., via the generalization
of the action into the form

ta . 1
/ dt(ptr—iptp)
4

&2 . 1
/ dt[pigi;f; — 51’:'961'}’)'],
5} :

AS(4, 1)

(3.58)

g9 =gt ..,

which is manifestly of Birkhoffian nonhamiltonian type with identifica-
tions

' 1
Pi(t,r,p) = pigir, B = 3Pi%iiP;- (3.59)

The nonhamiltonian character of the theory can be technically estab-
lished via the property that the equations of motion underlying action (3.57)
generally violate the integrability conditions for the existence of a Hamil-
tonian in the r-frame considered [20]. The inapplicability of Hamiltonian
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mechanics implies, in particular, the inapplicability of the Poisson brackets
for the Lie characterization of both the time evolution and the theory of
rotations.

The direct applicability of Birkhoffian mechanics has the immediate ad-
vantage of permitting the identification of the generalized Lie product for
both the time evolution and the applicable theory of rotations. It is suffi-
cient to restrict ourselves to the case of a diagonal metric ¢ with constant
elements

g = diag(b}, b3 (3.60)

Use of Egs. (1.21b) and (1.22b) then readily yields the Lie- isotopic tensor

b3),b = const..

0 -\
4 -
) = ( % 0’)
= (0 -y“)
- (g_, I (3.61)
with generalized brackets
. A _183 BB ,8A
[43B] = 3K, 9 Bp ~ 9; 8p (3.62)

Simple calculations then establish the following Newtonian realization of
the isotope SO, (3) of rotations [19]

$01(3) : [4i;J;] = &by 2, (3.63)
with redefinition according to Eq. (3.38)
S0, (3): [J:;j,] = e.','kjk,
= babsJ1, Ja = bibaJa, J3 = brbads, (3.64)
and group form of the symbolic type
SO ’ 2 uv VK a‘lk
S04(3) : o' = [[] exp(4:2 52 =)o, (3.65)

k=1

with a corresponding reduction to a form of type (3.25).
The achievement of the desired objective is then confirmed by illustra-
tive examples. For instance, an isotopic rotation around the third axis with
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generator J3 can be computed via exponentials (3.65), yielding the trans-

formations ( zcos(03b1b7) - yﬁ&ain(oa.bnbz))

zg 85"(035153) + yco.!(oab]bz) (3.66)
z

v =

with additional transformations of the type (3.40) for the generator Ja.
The achievement of the form invariance of the Pfaffian action (3.57) is
then consequential. Action-at-a-distance forces can be trivially in;:orporated
in the theory via additive potentials in the Birkhoffian B = }p , provided
that they are properly written in E(F,9,R), e.g., with “squares” of the type
3.2). , _
( 3\5 a further application, Santilli [19] presented a generalization of Eul?r 's
theorem (on the displacement of rigid bodies) to the case of elastic bodies.

As the reader recalls [53], Euler’s theorem essentially states that the general -

displacement of a rigid body with ‘one point fized is a continuous rotation
around some azis. : ‘

Suppose that the object is an elastic sphere of radius 1, and that t!ne fixed
point is the origin of the reference frame. In the absence of deformatnon,.the
displacements of the object are given by time-dependent transformations
R = R(t) € SO(3). At time t = 0 one can assume

R(O) = 1 = diag(+1,+1,+1) (367)

At subsequent times t, the rotationu are such that their eigenvalues are the
elements of the conventional 3 x 3 unit /, i.e., there exists an eigenvector a
of R(t) which preserves its components in the rotated system:

d = R(t)a = a, (3.68)
or, equivalently, rotations verify the eigenvalue equations
[R(t)-T]a=0 (3.69)
with secular determinant
' det(R-1I)=0. (3.70) -

Suppose now that at time ¢t = ¢, the sphere experiences a small defor-
mation into the ellipsoid

ror=z(1+a)z+y(1+ea)y+z(l+e)z=1 (3.711)
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It is easy to see that the displacement can now be described via a compact
isotopic rotation R(t) € $0O1(3), beginning with the identification
Re)=I=g". (3.72)

It is also easy to prove that the eigenvalue equation for the rigid motion,
Eq. (3.69), admits the isotopic generalization

[R(t) - f]sa=[Si(t)~Tla=0

(3.73)
with isotopic-secular determinant (§1.3) |
det(R-I)=det(S-1) =0, (3.74)

where we have used the decomposition of Eq. (3.25), k= S,f , and Theorem
2.19 of ref. [30], p. 1310. ) )
In fact, from Eq. (3.20), det R(t) = det I. A step- by-step generalization

_of the conventional proof (see, e.g;, ref. [53], pp. 119-123) then leads to the

following result.

Lemma 3.1 [19]: The isotopic eigenvalues of the compaét-iso!opic rotations
of type 1 are the elements of the (diagonal) generalized unit I = g~1.

. Thus, much as in the conventional case, the compact-isotopic rotations
admit an eigenvector that preserves its components in the transformed sys-
tem. By recalling that the transformations considered here can only be
continuous, the extensions to the case of finite deformations and to non-
spherical objects are straightforward, yielding the following result.

Theorem 3.2 [19]: (Isotopic Lifting of Euler’s Theorem) The general dis-
placement of an elastic body with one point fized is @ compact isotopic rota-
tion of type 1 around some fized azis.

Numerous additional applications to the dynamics of extended, elastic,
and deformable bodies are possible. Here, we limit ourselves to the indica-
tion that the isotopes of O(3) seem to be naturally set for the description
of deformations, with the understanding that the theory generally demands
the use of nondiagonal metrics. In fact, all metrics of the theory of elasticity
are permitted by the isotopic theory of rotations. -
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An additional class of physical applications is the motion of extended
objects within generally inhomogeneous and anisotropic material media. In
effect, the description of the displacement of elastic bodies (Theorem 3.2)
and that of the motion within material media are complementary to each
other, in the sense that they can both be reduced to suitable isotopic liftings
of the Euclidean space.

To illustrate this possibility [19], consider a (classical) particle moving in
a region of empty space for which the Euclidean geometry applies. Suppose
now that the region considered is filled with intense radiation originating
from a distant and constant source, assumed to be at infinity. It is evident
that, under these novel physical conditions, the particle cannot be consid-
ered as moving in empty space. The new medium of propagation is space
filled with radiation. Depending on the physical characteristics of the parti-
cle (size, charge, electric and magnetic moments, etc.), the new medium will
directly affect the trajectory of the particle, that is, its dynamical evolution.
In particular, the new medium is homogeneous but manifestly anisotropic,
in the sense that the distribution of radiative energy is uniform, but the
medium has a preferred orientation in space given by the direction of prop-
agation of the background radiation.

Clearly, the Euclidean geometry is merely approximated for these broader
physical conditions. The selection of an appropriate isotopic lifting is then
relevant. We select the Finsler space with composition [19]

r'gr = ¢ f(r, u)siir

(r-up?

f(ru) = " (3.75)

where u is a unit vector (u? = ujuy = 1), here assumed along the direction
of the radiation.

The Finsler space with composition (3.74) characterizes an isotope E(7,g,R)

"of E(F,6, R). As a result, the symmetry 0(3) applies (including isotopic
reflections). The reader should be aware that the symmetry O(3) is bro-
ken for composition (3.74a) because of its inability to preserve the preferred
direction in space. The achievement of this preservation via the covering
symmetry O(3) is instead ensured by the invariance of the metric under
isotopic rotations, i.e.,
e~ lgel?® =g (3.76)
It is also clear that, in the transition from the Euclidean to the Fiunsler
space, we have the transition from a flat, homogeneous, and isotropic geom-
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etry to a curved, homogeneous, and anisotropic one. Numerous intriguing
properties then follow. Owing to the particular metric of Eq. (3.74), the
conventional Casimir J? = JiJ; is preserved by the isotopic rotations,

3
I =Re (Y Nudi) e B =32,
k=1

(3.77)

as the interested reader is encouraged to verify. This result indicates that
the angular momentum can be conserved also for motion within anisotropic
media in which the conventional rotational symmetry is broken.

We recover in this way a result already known in analytic mechanics [1].
We are referring to the fact that the conservation of the angular momen-
tum, by no means, necessarily implies the symmetry under the conventional
rotation group. In fact, angular momentum conservation can be also char-
acterized by isotopic symmetries.

IAR SYSTEM
JTABILITY OF THE ORSIT ©

COMSEAVED TOTAL ANGULAR \
NONENTUN UNDER NOM-MAMIL-
TOMIAN INTERMAL rorces i

LIZ-1SOTOPIC COVERING
OF ROTATION GROUP

SERVED ANGULAR
] ] TITUE

LIZ-ADNISSIBLE COVERING OF
/ L1E-1SOTOPIC ROTATION GROUP.

FIGURE 8. A reproduction of Fig. 5.4, p. 560 of ref. [21] repre-
senting the physical characterization of the complementary Lie-isotopic and
Lie-admissible generalizations of the conventional group of rotations. Con-
ventionally, global stability of a system is achieved via the stability of the
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orbits of each constituent, e.g., as in the Solar system. Closed nonhamil-
tonian systems, however, have identified a structurally more general giobal
stability under maximal possible monconservation and instability of the or-
bits of each constituent, e.g., as in Jupiter (see Figs. 2, 3). The Lie-isotopic
lifting of rotations reviewed in this section represents the first part of San-
tilli’s program, the characterisation of total, conserved, angular momentum
via the collection of the angular momenta of the constituents each, individu-
ally, nonconserved. The completion of the study requires the representation
of one individual nonconserved angular momentum when all other particles
are considered as external. This requires an algebra with non-antisymmetric
product. The algebras selected by Santilli are the covering of the Lie-isotopic
algebras known as Lie-admissible algebras. This leads to the possibility of
constructing a second class of generalized relativities, specifically conceived
for nonconservative conditions, which constitute coverings of the Lie-isotopic
ones [21].

" The generalization of the model to an inhomogeneous form is possible,
and occurs, for instance, when the energy distribution of the background
sea of radiation is not homogeneous. This is the case when the intensity of
the radiation varies in space and time, in which case the metric (3.74) is
generalized to forms of the type '

gii = f(r,u)di;(¢,1,%,...),

where the inhomogeneity and anisotropy are differentiated and represented
by the respective terms f(u,r) and d;;(¢,r,¢,...).

Note that, with sufficient care, the applications of model (3.77) can also
be extended to treat the motion of systems within a resistive medium with
density varying in space and time, and with a preferred direction in space.
Numerous additional applications are conceivable, as the reader can easily
see.

As a concluding remark, we would like to indicate that, by no means,
the Lie-isotopic theory of rotations is the only possibility of representing
extended particles. Ir fact, a number of additional possibilities have been
. identified in the literature, most notably, Kélnay’s approach via the use of
intervals [54] and Prugovecki’s studies via stochastic techniques [55]. Each
of these approaches has its own preferred features. For instance, the Lie-
isotopic approach has been conceived to achieve a covering unity of thought;
Kélnay’s approach is particularly tailored for certain quantum-mechanical

(3.78)
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measures; Prugovecki’s approach Is particularly suited for extended (per-
fectly spherical) particles under electromagnetic interactions.

Despite these differences, a central property of Santilli’s Lie-isotopy is
its “direct universality” which, for the case of classical mechanics, can be
inferred from the theorem of Direct Universality of Birkhoffian mechanics
(Ref. [20], Theorem 4.5.1). As a result, all possible approaches to rotations
are expected to be a particular case of Santilli’s isotopic group (5(3).

3.3 Lie-isotopic Generalization of Galilei’s Relativity [1], [19],
[20]

3.3.1 Introduction

The Lie-isotopic generalization of the classical Galilei’s Relativity was a first
central objective of Santilli's studies, evidently conceived as a necessary step
toward a compatible generalization of Einstein’s Special Relativity (reviewed
in the next section).

The mathematical foundations of the generalized relativity, hereinafter
referred to as Santilli’s Galilean Relativity, were achieved in the first memoirs
of 1978 [1], [2], as reviewed in §2.2 and 2.3. These foundations were then
complemented with studies [18] reviewed in §2.4.

The physical foundations of the generalized relativity were identified
also in the original memoir of 1978 which contains the proposal of a still
more general covering of Galilei’s Relativity of Lie-admissible type, Studies
specifically devoted to the Lie- isotopic subcase under consideration here
were continued during the period 1979-1981. The covering relativity was
formally submitted in 1982 in Chapter 6 of ref.[20] entitled precisely: “Gen-
eralization of Galilei’s Relativity.” The central part of the covering relativity,
that of the isotopic theory of rotatlons, was presented in the subsequent pa-
per [19], as reviewed in the preceding section. From here on we shall tacitly
assume a sufficient knowledge of the isotope O(3) and, particularly, of its
applications.

Evidently, we cannot review here in details such rather vast research.
We shall therefore review only the central aspects of the covering relativity.

For notational convenience, we shall first review the rudiments of Galilei’s
Relativity in classical Hamiltonian mechanics, and then pass to a review of
Santilli’s covering.
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3.3.2 Foundations of Galilei’s Relativity

Galilei’s Relativity is a body of methodological tools for the form-invariant
characterization of closed-isolated systems of

1. particles which can be effectively aproximated as being point-like;

2. when moving in vacuum (empty space) assumed as homogeneous and
isotropic;

3. under the conditions that possible speeds are much smaller than that
of light (i.e., v € ¢,), quantum mechanical aspects are ignorables (i.e.,
A > h), and gravitational effects are absent (i.e., all spaces have null
curvature).

The mathematical formulatnon of the relativity can be summarized as
follows.

Let E(3) be the Euclidean space in three dimension. Let a system of
N particles in E(3) have the local coordinates i,k = 1,2,...,N, which are
the physical cordinates with respect to the observer. Let the phase space be
represented via the cotangent bundle T* E(3) with local coordinates y, P,
where §} = mkr;, are the physical linear momenta of the particles considered.
Let R represent the physical time t of the observer. The basic manifold of
Galilei’s Relativity is then given by the (6N + 1) dimensional space R x
T*E(3). Its local coordinates shall be written in the unified notation

Rx T*E@3): (t;7,5) ¥ (40)

a = (a*) = (i, Pa) s = 1,2,...,6N (3.79)

when emphasis is needed on the symplectic geometry on T*E(3), and in the
still more general notation

R x T*E(3): (t;7,5) ¥ (b)
b=(b*) = (t;7,§),p = 0,1,2,...,6N

when emphasis is needed on the contact geometry of the entire space R x
‘T*E(3).
The celebrated Galilei’s transformations can be written

tot'=t+t,,
G(3.1): {ﬁ, - i’* = R(0)% + Tokt + o, (3.81)

Pr — P, = R(0)Pr + mii,k,
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(3.80)

and they characterize the Galilei group G(3.1), with ten parameters (8:5,; 7051,
and related subgroups: rotations 05(3), Galilei’s boosts Ty, (3); translations
in space T7,(3); and translations in time T;,(1). The Lie algebra G(3. 1) of
G(3.1) is then given by

G(3.1) = [0;(3) © T5,(3)] & [T, (3) + T, (1)]

where +(®) represents the direct sum (semidirect sum).

The following Definition is presented in ref. [20] to focus attention on
some of the central methodological tools of Galilei’s Relativity. For a com-
prehensive list of references, including some of Galilei’s historical work, see
ref. [20], §1.A.a.

DEFINITION 3.2 (Galilei’s Relativity): Consider a local,
analytic, regular, unconstrained, conservative, Newtonian system
of N particles in the unigue, normal, first-order (vector field)
Jorm ezpressed in the local variables of its experimental observa-

. (3.82)

tion ke /
AM) = T = (¥ — [ Pka/ Mk
@)= (5..) === Tl0)
p=12,...,2n =6N;k=1,2,... ,N;a=z,y,2;p = mi

(3.83)
(where SA stands for varational self-adjointness), with the ten
total conserved quantities

Ewi =T(p) +V(r) = X,
Peot = ZPI: = E mipg = {Xz,Xa,XA},
k=1 k=1
My = Zrk X Pk = {X51X81X7}’

k=1

N
Guot = ) _(myrs — tpi) = {Xs, Xo, X10)-
k=1
Then, Galilei'sRelativity can be defined as a form- invariant de-
scription of closed self-adjoint systems, that is, as the symmetry
of the equations of motion under the ten-parameter Lie transfor-
mation group G(3.1) (form-invariance):

G(3.1) : b* — b™(b),b = (1,a)

(3.84)
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2 o _, .0 .8
=g == pa *
- e 8 -y 0
= OO == g
0 . i} 2

= E"(b')a-b-,"; =Z (41")5-“,—.l o5 = =(b') (3.85)
whose ten generators X, represent conservation laws (3.83) (closed
self-adjoint character):

cu(b) = Xk20 () = 0,k = 1,2,...,10.
Xi(0) = T b =0, 12y 000y

The relativity is characterized by the following Jormulations.

I. Analytic formulations. ‘They essentially consist of the repre-
sentation of the equations of motion via the conventional
Hamilton’s equations » :

Oa# Oa Oa*
aR: _o_j_l_a) - (onxn "lnxn)
B Onxn /'’
(3.87)

(w‘n’) = (E‘T - 8¢y l“x'.

R° = (p,0)
and related canonical formulations (canonical !mnsforma-.
tion theory; canonical perturbation theory; Hamilton-Jacobi

-equations; Noether’s theorem; etc. )
I1. Algebraic formulations. They essentially consist of the .mfi-
versal enveloping associative algebra £(G(3.1)) of Galilei’s
algebra

]

()

(3.86)

F
F=FoGoGoGOd...,

R [Xi, X;] - (Xi® X; — X; ® Xi),
G(3.1) = [E(GB.1))]" : [Xi, X;) = ChXs,  (3.88)
the canonical realization of Galilei’s group (here ezpressed

in symbolic form prior to a scalar eztension)
ap0Xe 9
daP Ba*

G(3.1): a* — o = exp(f*w )a*,
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¢* = {‘o; i'.o;é:ﬁvo},
and related Lie’s theory (representation theory, etc.).

(3.89)

II1. Geometric formulations. They essentially consist of the

characterization of the (autonomous) equations of motion
as a Hamiltonian vector field

Zlw;=—-dH (3.90)

with respect to the fundamental symplectic structure
oR;
“1=3(3an ~ 30

and related symplectic and contact geometric formuations
(Lie’s derivatives, etc.).

)da* Ada” = dpp Adr*®  (3.91)

Note that the “time component” of canonical realization (3.89) of Galilei’s
relativity a’ = exp(tw®? -gfh—%)a characterizes the time evolution of the sys-
tem and should not be confused with the time translation. In particular,
the latter acts on time, t — ¢’ =t + t,, while the former acts on the a vari-
ables, a(t) — a(t +¢,). Also, the latter is unique, while the former depends
explicitly on the Hamiltonian, and therefore its explicit form is different for
different systems.

A few comments are in order. First, we sould stress the restriction of the
applicability of Galilei’s relativity only to closed self-adjoint systems. This
restriction is based on the notion of (physically) ezact symmetry applied
to the case at hand. In fact, we have the combination of the mathematical
condition of HHamiltonian form-invariance and related first integrals, with the
physical condition that the first integrals directly represent laws of nature.

The conservative character of the forces is then a consequence.

We can say in different terms that Definition 3.2 applies only for systems
of Newtonian particles verifying the following conditions.

1. Closure condition: The system can be considered as isolated from the
rest of the universe in order to permit the conservation laws of the
total mechanical energy, the total physical linear momentum, the total
physical angular momentum, and the uniform motion of the center of
mass,

2. Self-adjointness condition: The particles can be well approximated as
massive points moving in vacuum along stable orbits without collisions,
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in order to restrict all possible forces to those of action-at-a-distance,
potential type.

3. Form-invariance: The ten conservatlon laws follow from the Galilean
symmetry of the system.

The existence of physical systems'obeying these conditions is unequivo-
cal. For instance, our solar system in Newtonian approximation is indeed a
system of this type, and, as such, obeys all conditions for the applicability
of Galilei’s relativity.

&

3.3.3 Arena of Applicability of Santilli’s Covering Relativity

The applicability of Galilei’s relativity is the exception, and its violation is
the rule in Newtonian mechanics for several reasons. The most important
is that Newtonian “particles” can be well approximated as “massive points”
only under very special conditions. In fact, Newtonian systems generally
imply motions of extended objects (e.g., a satellite) in a resistive medium
(e.g., Earth’s atmosphere), in which case their reduction to massive points
would imply excessive approximations (e.g., the approximation of the satel-
lite erbiting in our atmosphere with a conserved angular momentum). When
the extended character of the objects is represented together with their gen-
eral motion within physical media, the dynamic conditions become unre-
stricted. As a result, the equations of motion break the Galilei’s symmetry
according to one of the mechanisms of the classification of ref. [20], §A.12
(isotopic, self-adjoint, semu:anomcal canonical, and essentially self-adjoint
breakings).

Equivalently, we can say that, if Galilei’s relativity is imposed in its exact
meaning, it generally implies an excessive restriction of the acting forces,
with consequentially excessive approximations of the perpetual-motion type.

In view of these and other considerations, Santilli constructed a gener-
alization of the analytic, algebraic and geometrical foundation of Galilei’s
Relativity to attempt a covering relativity for the form-invariaat description
of closed- isolated systems of:

'1’. extended-deformable particles which cannot be effectively approximated
as being point-like;

2’. when moving in physical media which are generally inhomogeneous and
unisotropic;
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3’. under the condition that the dynamical evolution is still “nonrelativistic”
(i.e., v € ¢,), “classical” (i.e., A > h), and “nongravitational” (i.e.,
null carvature).

It should be stressed that the above arena is specifically restricted to
closed-isolated systems in which case the medium is evidently a part of the
system (see Fig. 9).

FIGURE 9. A reproduction of Fig. 5.2, p. 532 of ref. [21] depicting the °
three most important reference frames for closed nonhamiltonian systems:
the frame of the observer, the center-of- mass frame of the system as a whole,
and the center-of-mass frame of each individual constituent. In conventional
dynamical systems (with action-at-a-distance interactions of point-like con-
stituents) these frames represent all stable orbits, and result to be equivalent.
The corresponding situation for closed nonhamiltonian systems is different.
To begin, the orbit of one individual constituent is unstable and, therefore,
it is generally noninertial. Secondly, the center-of-mass frame of the system
as a whole generally represent stable conditions. As such, it cannot be linked
to the center-of-mass frame of each constituent via linear transformations,
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such as the conventional Galilean (or Lorentz) transformations, but requires
suitable generalizations. The Lie-isotopic generalization of Galilei’s Relativ-
ity [1), [20] deals only with the observer’s and center-of-mass frame of the
system as a whole. The inclusion of the center-of-mass frame of each con-
stituent requires a still more general Lie-admissible generalization of Galilei’s
relativity [1], [21] which is not considered here.

The covering relativity is also applicable to other systems, e.g., when the
medium is considered as external. In this case, however, the emerging “con-
served quantites” are only first integral, without in general direct physical
significance. In fact, the total energy, the total linear momentum and other
physical quantities are generally nonconserved for open systems.

Also, the reader should be aware that conditions 1’), 2°) and 3’) were
conceived as a sort of classical image of the structure model of hadrons
[2] whose constituents have extended wave-packets moving in the hadronic
medium made up of other constituents. However, classical mechanics offers
numerous systems verifyng the above generalized conditions (e.g., Jupiter)
in a way independent from possible operator-counterparts.

Our review shall therefore be purely classical. In order to have the
appropriate perspective, the recommended research attitude is the oppo-
site of the conventional one. Customarily, one first assumes an established
relativitgy, and then restricts the dynamics to that compatible with the as-
sumed relativity. On the contrary, Santilli advocates first the assumption
of dynamical conditions as identifiable in nature, and then the search for a
compatible relativity. This research attitude can be implemented according
to the following three steps: the identification of the largest possible class
of systems with unrestricted dynamics; the identification of the methods for
their treatment; and the identification of the covering relativity.

3.3.4 Closed Non-Self-Adjoint Systems

When a system of particles is isolated from the rest of the universe, it must

necessarily obey the ten conservation laws (3.84); that is, it must be closed.

However, this does not necessarily imply that all internal forces are of the
potential, action-at-a-distance type. In fact, closure conditions (3.84) are
‘compatible with internal forces of contact, nonpotential, non-self- adjoint
type due to internal collisions and/or motion within resistive media. This
leads in a natural way to the notion of closed non-self-adjoint systems [2]
reviewed in §1.3 in their second-order form. Their formulation for first-order
systems can be presented as follows.
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Implement closed self-adjoint systems (3.83) with an unrestricted col-
lection of local and analytic forces. These additive forces can be classified
into self-adjoint (SA) and non- self-adjoint (NSA), resulting in the following
systems

@ = (£7) =) =@+ e

CHlet)* (s i, ) 69

where one can recoginze: the conservative forces fk "(i“) verifying Galilei’s
Relativity; plus additional forces F3A(t,,5) that are also self-adjoint and
Newtonian, but not necessarily Galilei-form-invariant; plus additional forces

FNSA(, i",'p‘,i)', .) that are, in general, Galilei-form-noninvariant, non- self-
adjoint, as well as non-Newtonian (that is, they can also depend on the
acceleration and other non-Newtonian terms).

It should be indicated here that the original presentation [1], [20] put
the emphasis on Newtonian forces. Nevertheless, following a private com-
munication by Santilli, we have added here non-Newtonian forces, not only
because the results of refs. [1], [20] are readily applicable to these forces
without any modifications, but also because the inclusion of accleration-
dependent forces has truly intriguing implications in the operator- images
of the theory for particle physics, e.g., the capability of achieving consis-
tent nonrelativistic bound state models in which the total energy is higher
than the sum of the rest energies of the constituents (a possibility which is
precluded in conventional quantum mechanics). Also, explicit examples of
the generalized relativity have indicated the existence of these acceleration-
dependent forces, as we shall review below. Finally, acceleration- dependent
forces appear, quite independently, in recent studies by A.K.T. Assis [56]
and others in ordinary (nongravitational) mechanics via the postulate that
the total acting forces on an individual body is null and the use of Mach's
principle. The total enegy is modified in the above implementation, trivially,
because of the additional presence of potential forces,

Ewt=T(p +V(r)+ U(t,r,p),

Yo
T(p) = E%—pk *Pks

daU

a.-k Yk (3.93)

FEA(tv r, )_

120



All the other total quantities (3.84b)-(3.84d) remain unchanged. In fact,
physical quantities such as the total linear momentum Pq, are defined in a
way independent from the acting forces which, clearly, can only affect their
behavior in time.

DEFINITION 3.3 [2],[20]: The most general possible class
of local, analytic, closed, discrete, and non-self-adjoint systems
is given by the class of all possible, consistent, generally overde-
termined and constrained systems

) =@t,a) =

(@) = (;:Iu

Pka

( Pko/ mk
fSA) + Ff.‘(t r,p)+ Ff\
8X.

SA(t,r,pp, .. ))
8X.-

»_ 228,

Xi(t, a) = 5
Xy = Eye = T(P) +V(r) +U(¢,r,p),

N
zl'kxl’ln

k=1

N
{szxaa X‘} =Pt = z:mkpk’ {XS’XG)X'I} = Mlot =
k=l .

{XS’X% XIO} Gtot = E(mkrk - th):
k=1

p=21,.,6Nk=12..,Na=zy,2i=1,2,..,10. (3.94)

The primary difference between closed self-adjoint and non- self-adjoint
systems is that the conservation laws of totalquantities are first integrals of
the equations of motion for the former, while they are, in general, subsidiary
constraints for the latter.

The physical ezistence of closed non-self-adjoint systems is established
by a simple observation of nature. For instance, the Earth, when considered
as isolated from the rest of the universe and inclusive of its atmosphere,
is precisely a closed system with unrestricted internal forces, rudimentary
approximated by Eqs. (3.94).

The mathematical ezistence of the systems is established by the existence
theory of overdetermined systems.. In fact, the following hierarchy exists of
classes of consistent systems (3.94) with a dynamics of increasing complexity
‘and methodological needs [20}:
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Class a: when the conserved total physical quantities are first integrals of
the vector field;

Class 3: when the conserved total physical quantities constitute invariant
relations of the vector field;

Class y: when the conserved total quantities constitute bona fide subsidiary
constraints of the vector field.

For brevity, we limit ourselves to the illustration of class a. The existence
of the more general classes 8 and v will be only indicated.

Assume for simplicity that the additive self-adjoint forces in Eqs. (3.93)
are null. This implies that the original total energy (3.83) persists during
the implementation of the systems with internal contact forces. We now
impose the conservation laws to be the first integrals of the new systems
according to the (strong) equality

. axX; f
Xitva) = ZouT* %X
X _
= (35 “+—) —aa“F“ 0. (3.95)

But the original Eqs. (3.84) are verified by assumption. Thus conditions
(3.95) reduce to
8X 3X. NSA _ n.
Jar L = g the =0 |
that is, the non-self-adjoint forces must be null eigenvectors of the matrix
(0Xi/0pka). Wlien all ten conservation laws are worked out in detail, they
imply the following conditions

N
z: Pk - FilSA =0,
k=1

(3.96)

ZFNSA =0

B
- k=1

Note that these are conditions on non-self-adjoint forces for total phys-

(3.97)

ical quantities to be first integrals. As a result, conditions (3.97) are only

sufficient for the consistency of systems (3.93) and not necessary.
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It is now trivial to see that consistent systems of class a do indeed
exist. In fact, the consistency of systems (3.94) has been reduced to that
of systems (3.97). These are functional systems of seven equations in IN
unknown functions F{Y54. Solutions in the functions F{¥54 exist beginning
with N = 3. The case N = 2 is a special one, inasmuch as the closure forces
the orbit to be in a plane. The number of Eqs. (3.97) therefore reduces
to five, while the number of functions F{Y54 is four. Despite the lack of
sufficient degrees of freedom, a solution still exists, and it is reviewed later
on. o

The N-body, closed, non-self-adjoint systems of class a (N > 3) are also
instructive at all levels of study. For instance, conditions (3.97) might con-
ceivably be derived via arguments of global stability of the system achieved
via unstable orbits of the constituents. _ ,

In fact, condition (3.97a) (which ensures the conservation of the total
energy) is clearly a first condition for global stability via unrestricted inter-
nal exchanges of energy; conditions (3.97b) (which ensure the conservation
of the total linear momentum and the unform motion of the center of mass)
are a clear expression of additional conditions of global stability via un-
restricted action and reaction effects with null total value; and conditions
(3.97c) (which ensure the conservation of the total angular momentum) are
clearly the last expectable condition for global stability. (A first statisti-
cal study of closed non-self-adjoint systems has been conducted by Tellez-
Arenas, Fronteau, and Santilli [29)].) -

However, as indicated earlier, conditions (3.97) are only sufficient for the
systems considered. When the broader class 8 is admitted, Eqs. (3.95) are
generalized into the weak equality for invariant relations

Xi(t,8,) = M(t,8,)Vj(t,a,) = 0; (3.98)

that is, they hold along the solutions of the systems. In turn, conditions
(3.98) themselves are only sufficient, inasmuch as the most general class of
the systems (class 7) is that for which the conservation laws are bona fide
subsidiary constraints of the equations of motion. The study of these latter
systems is left here to the interested researcher.

3.3.5 Symmietries, First Integrals, and Conservation Laws in Birkhof-

fian Mechanics o

As is well-known, Galilei’s relativity in.its contemporary interpretation is an
expression of some of the most advanced analytic, algebraic, and geometric
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techniques of Hamiltonian Mechanics. But a necessary condition for a closed
system to be non-self-adjoint is that the vector field is not Hamiltonian
in the variables (,r,p),p = mr, of its experimental observation. This
implies that, for systems (3.94), not only do we have the general lack of
Galilei form-invariance, but we actually have the lack of applicability of the
methodological foundations of the relativity. In turn, this creates the need
to identify covering methods before any attempt at the construction of a
covering relativity can acquire scientific value.

The direct universality of Birkhoff’s equations for the representation of
all closed non-self-adjoint systems was established in Chapter 4 of ref. (20},
together with the methods for the construction of the Birkhoffian repre-
sentation from the equations of motion, as well as the identification of the
underlying degrees of freedom. The representation can be constructed ac-
cording to the equations

OB, oR, . . 9B oR,
(841“ ~ 8a¥ J(t,a) = Oa* 8t
p=1,2,..6N, (3.99)

where the Birkhoffian can be the Hamiltonian H, i.e., the total energy,

B = H =T(p)+ V(r) + U(t,r,p), (3.100)

and the R-functions are obtained via one of the three methods of Corollary
4.5.1d, loc. cit. In this way, while all self- adjoint forces are represented by
the Hamiltonian, all non-self- adjoint forces are represented via the general-
ization of the canonical tensor wy, into the Birkhoffian form Q,,, (which is
not possible in Hamiltonian formulations). .

The transformation theory of Birkhoff’s equations is worked out in detail
in Chapter 5 of ref. [20]. Regrettably, we cannot possibly review it here for
brevity. The theory emerges as being a true covering of the transformation
theory of Hamilton’s equations. This allows the use of the Birkhoffian me-
chanics and its Lie-isotopic/symplectic-isotopic structure for the construc-
tion of the desired generalization of Galilei’s relativity.

In the following, we shall review, for brevity, only the most essential as-
pects. To begin, Santilli formulated his covering theory in its broadest pos-
sible form, that of the contact geometry in unified local coordinates (3.80).
For this purpose, Birkhoff’s Eqs. (1.21) should be written in the unified
notation :

Quu(b)db” = 0,4 =0,1,2,...,6N
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0 v (fﬂv + QE")JGV =0 ,
R (b)db) = | oR, _ SR 3.101
Rl {(%‘;‘.‘-‘—%?-‘)da"—(&?ﬁ%)dt:o (3-101)
where the first equation holds in view of the trivial identity
8B BR.. v 0B OR,. .. 8B 3 Ra
e T )0 = Ga 5 )G + =0 (3.102)

and where, as assumed in §1.3, we use the Birkhoffian B for the case of
its generic functional dependence, and the Hamxltoma.n H when specifically
restricted to be the total energy.

The reader should be aware that (Chapter 5, ref. [20]) all possible
smoothness and regularity preserving, but otherwise arbitrary transforma-
tions

b= {} = (i, 5} — V'(b) = {4™(B)} = {t'(t, 7, 3% (¢, 7, P), 7' (tn‘?ﬂ} )
3.103
are contact-isolopic, i.e., they preserve the contact nature of the underlying
two forms :

2(8) = 38,0 (B} A db” = S, (B)d8" A &8 = ()
W) = 2 ) 2 (3104

To understand this property in more explicit terms, recall that Hamil-
ton’s equations preserve their canonical form only under a special class of
transformations, the canonical ones. As indicated in §1.2, when Hamilton’s
equations are submitted to a general, noncanonical transformation, they are
transformed precisely into Birkhoff’s equations. Unlike the simpler case of
Hamilton’s equations, the covering Birkhoff’s equations preserve their form
under the most general possible transformations.

This point is important for the covering relativity. In fact, in the con-
ventional Hamiltonian case, symmetries must be first canonical, and then
form-invariant transformations. In the covering Birkhoffian setting the first
condition is unnecessary.

We reach in this way the following definition (ref. {20], p. 238)

DEFINITION 3.4 (Symmetries in Birkhoffian Mechanics):
The most general possible smoothness and regularity preserving
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transformations (3.103) on R x T*E(3) are said to be symme-
tries of Birkboff’s Eqs. (3.101) when they are identity contact-
isotopic, i.e., they leave form-invariant the contact tensor

o .,
obs o
= Il =0,

or, more ezplicitly, when the following particularization of trans-
formation rules (3.104) holds

Q,,(0)d* = 5(b')db"

(3.105)

i o W-}-ﬁgﬂ-)da
(Ru(b)dd”) = ((%L_g‘: %gg)@v_(gﬂ-+9§ﬂ)dt)
= (—ﬂ,p(b')db"’)
_ o (8% + §fi)da” )
= Cop)\ (3 - $8p)da? - (28 + Yt
— o, (3.106)
or

Ra(t,) = (Ru o ~ Bam)(t'0),

. 1 .
B(t'\d) = (Bﬂ R,,%)(t', a).
Equivalently, we have a symmetry when the primitive one-form
of Birkhoff’s equations (the integrand of the Pfaff’s actwn)

form- invariant up to Birkhoffian gauges,

aG(v')

d m’
obre Jab

R,(a)da*—B(t,a)dt & R,(b)db* = RL(¥)db"™ = [Ra(b')+— 0"

R'a(b') = (RM e )(b') (3'107)

Clearly, the symmetries of Hamilton’s equations are a particular case
of the symmetries of Birkhoff’s equations, in exactly the same way as the
transformation theory of Hamilton’s equations is a partncula.r case of that of
Birkhoff’s equations.
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Most important is the property that the new time ¢/, in general, can be
not only a function of all old variables t'(t,r, p), but also the image of any
old variable (Corollaries 5.3.3a and 5.3.3c, loc. cit.).

We move now to the review of the generalized methods for the construc-
" tion of first integrals from known symmetries of Birkhoff’s equations. For
this purpose we suppose that given Birkhoff’s equations possess the following
Lie symmetry group of infinitesimal transformations

G:= (o) ~m=(J)

(8% + 6b%) = (¥ + w'a (b))

(aﬁ?f;&':b) ’

where the w’s are the infinitesimal parameters.

(3.108)

Then, via the direct use of variational techniques, the Pfaffian action

transforms according to

GA= / Ro(b)av* - / Ryt = - /D ) diGe),  (3.109)

where D, is the original (closed) interval of time, and Dy is its image under
the transformations.

By recalling the Pfaffian variational principle (equations (5 3.50), loc.
cit.), we can write along a possible or actual path.E°

; /D R0 = /D e, ()i
= - [ IR + SCOIE)
= —w / dts [n,.(b)a“(b)m.(b)]w")

= v /D.dtalﬂu(t,a)ﬁ."(t,a)-B(t,a)P.'(t,a)
- Gi(t,a)(E°). (3.110)

In this way we reach the following important result of refs. [1], [20]:

Theorem 3.3 (Noether’s Theorem for Birkhoff’s Equations) If Birkhoff’s
equations admit a symmelry under an r-dimensional connected Lie Group
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G, of infinitesimal transformations, then r linear combination of Birkhoff’s
equations ezist along an admissible path which are ezact differentials, i.e.,

—I i(0) = Q,.(b)braY,

L(b) = Ru(b)al(b) +Gilb)

Ryu(t,0)i (t,a) - B(t,0)fi(t,0) + Gi(t,a),

i=12,..,r.

(3.111)

A quite simple, alternative proof can be formulated via (a) the prop-
erty that Noether’s theorem also applies to first-order totally degenerate
Lagrangians L(t,a,a); (b) the property that Birkhoff’s equations coincide
with Lagrange’s equations in L(t,a,a); and (c) the specialization of the the-
ory to the case at hand. This alternative approach gives rise to the quantities

L(t,a,8) = R,(t,a)d* — B(t,a),

- L)ét + §G(t,a)
- (R,.a“ - R,é* + B)it +8G
= w'[Ru(t,a)i!(t,a) - B(t,a)i(t,a) + Gi(t,a)],  (3.112)

Corollary 3.3.1. The quantities (3.111) are ﬁrst integrals of Birkhoff’s
equations

—1-(b)ls° = D (b)b*&} (b)lge = 0.

The covering character of Theorem 3.3 over the corresponding Hamil-
tonian formulations is expressed by the fact that, when the Pfaffian form
becomes the canonical one (i.e., for R = R° = (p,0) and B = H), we have

(3.113)

L = praif® - Hpi+G;

oL ,, , 0L ,, ...
s~ (et = L)bi +Gi

(3.114)
which is the formulation of the conventional Noether’s theorem in Hamil-

tonian mechanics. Additional properties (such as the lack of necessary inde-
pendence of the r first integrals, the lack of their necessary direct physical
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meaning, etc.) can be obtained via the extension to a Birkhoffian context
of the analysis of Chart A.9, ref. [20].

We now pass to the review of the Lie algebra structure of an r-dimensional
symmetry G, of Birkhoff’s equations. By recalling the lack of algebraic
structure of the general nonautonomous case (Chart 4.1, loc. cit., we must
restrict ourselves for this purpose to semi-autonomous equations (1.21).
(The capability of reducing all nonautonomous equations to this form is
proved in §4.5, loc. cit.) Also, we assume the reader is familiar with the
problematic aspects related to the physical meaning of the Birkhoffian un-
der the reduction considered. Finally, we shall assume that Theorem 3.3
is applied to the reduced semi-autonomous form (rather than the original
nonautonomous form), because symmetries are not necessarily preserved
under the reduction considered.

An inspection of the notion of symmetries of Birkhoff’s equations soon
reveals that they are not canonmical transformations. The necessary and
sufficient condition for infinitesimal transformations to be contact-isotopic
transformations is that they have the form

o = a* + v QW (n)gf: (t,a),

R, OR,, ;..
o = (102 - Sty (3.115)

where the w’s are, again, the infinitesimal pa.rameters and the X 's the gen-
erators of G,.

The necessary and sufficient condition for a transformation of this type
to be a symmetry is therefore that it leaves the Birkhoffian invariant, i.e.,

B(t,) = B(a) + 5o 'n"""x = B(a)+wi[BiX]

Oav
= B(a).
Thus we reach the following additional result of refs. [1], [20]:

(3.116)

Theorem 3.4. (Integrability Conditions for Birkhoffian Symme-
tries) Necessary and sufficient conditions for infinitesimal, contact- iso-
topic transformations to be symmetries of the autonomous Birkhoff’s equa-
tions are that the generalized Poisson brackets of the Birkhoffian with all the
generators X;(a) of the transformations are identically null, i.c.,

[B:Xi}=0,i=1,2,..,r (3.117)
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The use of the isotopic generalizatioxi of Lie’s theory reviewed in §2 then
yields the following Corollary (see, in particular, the generalization of Lie’s
structure constants C,~';- into the structure functions C,!‘,-(a) of (§1.3).

Corollary 3.4.1. The Lie algebra G, of an r-dimensional Lie symmetry

| group G, of Birkhoff’s equations is given by the vector space (over the field

F of real numbers) of the generators X; verifying Eqs. (3.117) equipped
with the generalized Poisson brackets as the applicable realization of the Lie
product, and venfymg the following closure rules ezpressed in terms of the
structure functions C, (a)

[Xi:X;) = CE(a)Xs. (3-118)

In closing this topic, we can therefore say that each and every aspect of
the Hamiltonian formulation of symmetries, first integrals, and conservation
laws has been consistently generalized into a Birkhoffian form.

3.3.68 Construction of the Covering Relativity

At this point we review the definition of the covering relativity and then
identify methods useful for its constructnon We shall then review a few
examples.

DEFINITION 8.5 [1], [20]: Santilli’s Galilean Relatmty is
a description of physical systcms verifying the Jfollowing primary
conditions:

1. the relativity provides a form-invariant description of closed
systems of extended particles under action-at-a-distance self-
adjoint interactions as well as contact non-self-adjoint in-
teractions; '

2. the relativity is based on the isotopic generalization of the
methodological formulations of Galilei’s Relativity, that is,
on the Birkhoffian generalization of Hamillonian mechan-
ics, on the isotopic generalization of Lie theory, and on
the symplectic and contact geometries in their most general
possible local and ezact realizations; and

3. the generalized relativity recovers the conventional one iden-
tically when the systems are reduced to pointlike constituents
with consequential lack of contact non-self-adjoint interac-
tions.
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By keeping in mind the conditions for a new theory to qualify
as the covering of an ezisting one (§1.3), property 1 ensures that
the new relativity applies to a physical arena broader than that of
the conventional one; property 2 ensures that the new relativity
is based on a generalization of the methods of the conventional
one; and property 3 ensures the compatibility of the new relativity
with the conventional one.

On more specific grounds, property 1 is classically realized via
the construction of a ten-parameter Lie-isotopic transformation
group G(3.1) which verifies the form invariance of systems (3.94 )

G(3.1) : b — b'(b),b = (¢,0)
o= 8§
Dy abn o

¥)-2— a7 = r°(b')3';

I = (1,I%(t,a)), (3.119)
and whose generators X;(b) represent directly the conservation
laws of total quantities (3.94c)-(5.94f), i.e.,

X.-(b) =0,i=1,2,..,10. (3.120)
Property 2 is classically malwed via the following Jormulations.

1. Isotopic generalization of Hamiltonian formulations; which es-
sentially consists of the representation of the equation of
motion via the semiautonomous Birkhoff ’s equations

{[agzga) _ 81‘;:@]&, B(t, a)}

re) = I“‘(b)— = P (o'
I (

=0 (3.121)

and related Birkhoffian covering of Hamiltonian formula-
tions (generulized canonical transformations, generalized Ham

Jacobi equations, etc.).

I1. Isotopic generalization of Lie’s theory; which essentially con-
sists of the isotopic lifting of the universal enveloping as-
sociative algebra §(G(3. 1)) of Galilei’s algebra G(3.1) and
attached isotopic algebra G(3.1)

{6E) = %,
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- F=FpGaoG+G®--,
R = [XiiX;] = (Xi+ X; - X+ X,),
G(3.1) = [((GE.1)]" : [XiX;) = Ch(a)X, (3.122)

the Lie isotopic realization of the symmetry group G(3.1)
(here symbolically written prior to iso-scalar eztensions)

G(3.1):a* — a" = exp(6*Q**(a )Zf: 300"
OR
Q8 = (|| 800" ORq "-l)aﬂ

{ok} = {to; o; 00? Vol (3.123)
and related theory (generalized representation theory, etc.).

II1. Isotopic generalization of canonical geometries; which es-
sentially consists of the characterization of the (autonomous)
equations of motion as a Birkhoffian vector field

I'LQ;=-dB (3.124)
with respect to the ezact but otherwise unrestricted symplec-
tic structure

1 0R,
= ={—— o v
2, 2( Bab 8a“ )da A da”, (3.125)

and related symplectic as well as contact geometric formu-
lations (Birkhoffian realization of Lie’s derivatives, etc.).
Finally, property 8 is classically realized via the additional
condition that, together with the reduction of systems (3.94a) to
the self-adjoint and Galilei form-invariant form

" _ [ Pra/mu Plcc/mk =
(T)lpnsazo = (fSA FNSA)FNSA.O ( fku ) = (2%),
(3.126)
we have the reduction of the group G(3.1) to Galilei’s group
G(3.1), i.e., .
: G(3.1)|prsa—g = G(3.1),
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ap( 19Xk D X, d
exp(0*°(a) =2 - ,)|PN$A—0 = exp(0w’ ooh o s):

When all these conditions are met, group G(3.1) is the iso-
topic covering of Galilei’s group, herein after called the Galilei-

isotopic group.

A rather direct way of arriving at the covering relativity is the following
[20). When confronted with equations of motion violating Galilei’s form-
invariance, a frequent attitude is that of transforming the equations in a
new coordinate system in which the applicability of familiar notions is recov-
ered. It is intriguing to know that this is always possible. In fact, Theorem
6.2.1 of ref. [20] on the Indirect Universality of Hamilton’s equations has
the following consequence (which can be proved via the superposition of a
Daurboux’s and a canonical transformation).

Lemma 3.2. Consider a non-self-adjoint and Galilei fom-non-invaﬁantb

system (3.93). Then a transformation always exists under which the trans-
Jormed system is Galilei form- invariant.
In particular, a transformation
a* — a**(a) (3.128)

always exists under which the new system acqliires the “free” structure
L] - m
@@y = ("),

" = (° aaa )(a‘),

(3.129)

with consequential form-i mvanance under Galilei’s group in the new coordi-

nates BX P
k, o »

= exp(0"w™ 5l e o™

However, this way of recovering Galilei’s relativity is mathematically
consistent but physically illusory. In fact, one of the uncompromisable con-
ditions for the physical meaning of abstract mathematical algorithms is that
they admit a realization in the frame of the experimental observation. It is
easy to see that the variables r*(r, p) and p*(r, p) in which symmetry (3.130)
holds are generally nonrealizable experimentally. In fact, the functional de-
pendence of the new variables in the old is generally nonlinear, therefore

G(3.1): a® — a*™ (3.130)
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implying the inability of setting measuring apparata along trajectories of
the type r* = aexpfr - p, etc.

This deficiency can be bypassed by transforming symmetry (3.130) from
the mathematical coordinates r*, p* to the original ones r,p via the inverse
a* — a(a®) of transformations (3.128). However, these transformations
must be necessarily noncanonical, trivially, because the original vector field
is non-Hamiltonian by assumption. One can then prove that, under such
an inverse transformation, the conventional relativity (3.130) in mathemat-
ical coordinates transforms into the isotopic covering relativity in physical
coordinates. In fact, under noncanonical transformations, Hamilton’s equa-
tions transform into Birkhoff’s equations; the conventional Poisson brackets
transform into the generalized ones; and the conventional canonical realiza-
tion of Galilei’s group transforms exactly into form (3.123) according to the

rules
ox: o X, 8
k af 0% = g*qP k
0w b -ﬂoa-« MO =
da*
af —_—
n (a) .“ “v 8“‘”’

Xi= Xk(t,a’(a)). (3.131)

We can therefore conclude by saying that Santilli's covering relativ-
ity emerges rather naturally, provided that excessive approximations of
perpetual-motion-type are avoided, and the local. variables permitted are
restricted to be those of the experimenter.

3.3.7 Examples

We would like to review now a few specific examples.

The intriguing classical case of two particles was first identified in the
original proposal for closed non-self-adjoint systems (ref. [2], pp. 622 ff), and
submitted as a Newtonian limit of conceivable structure model of the neutral
pion under deep mutual penetrations of the wavepackets of the constituents.
The case was then studied again in additional papers (see, e.g., ref. [4]). The
two-particle case was however put in a Birkhoffian/Lie- isotopic form only
recently by A. Jannussis, M. Mijatovic’ and B. Veljanoski [57] who worked
out also a constrained version of the three-body case. In the following we
shall therefore review the main results of ref. [57)].

It should be indicated that Relativity 3.5 was called in ref. [57] the -
“Galilei-Santilli Relativity.” We have submitted here the terms “Santilli’s
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Galilean Relativity” to stress the truly profound maﬁematicd, physical
and epistemological (see below) differences between Galilei’s and Santilli’s

relativities.
Consider the case of a closed non-self-adjoint two-particles for which Eqgs.

(3.94a) become -
: MR =0,

mF = fSA(F) + FNSARF, 7, P), (3.132)

where
M=m+m,
mym3
my +my’

m=

R:_umdr:rl—z
my + mz

with the closedness conditions (3.97)
FNSA = _ Fivsa def [NSA
7. FNSA 2o,
r x‘f NSA = ¢,

The general solution of the iboveconditions is

(3.133)

(3.134)

FNSA = ﬂ['-'?n) - “ﬁu)]v

(3.135)

where g = const. and #(2n) ig 2n-th derivative of the relative coordinate. We
shall take n =1, i.e.,

n=012,...,

FNSA = o - )
Note that force (3.136) is non-Newtonian and that the only admissible orbit
is the circle (think of gears turning one inside the other in which case the
mutual grbit is circular indeed and no elliptic orbit is possible) [2]. The
motion is then contained in a plane, as in the conventional Kepler case.
Further, we shall work in the Laboratory Frame. If we choose the

Coulomb force k
fSA

= W(;‘, - f2), (3.137)
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(3.136) -

where k is a constant of proportionality, the generalized two- body Kepler
problem can be written . :

™n = -glf - "zls{-l - 72),
= m k
m - — Fq —
Ry Y (A —7) (3.138)

We can reduce equations (3.138) to the normal first-order form
A

fi my
Bl 2 =0
al | -wari-f)
" FAr (i = )

= (zhyk)’ik = (Psbpyk)vk =12

R

(3.139)

- where the last expression represents the planarity of the motion.

We can identify the Birkhoffian representation if we assume
m-g k-

m 2m; |7 —7a]

m-g., m—g_ =~
{Rll}-—'{ m P1y mgm,o,m,

p=""9 21
m 2m|

(3.140)

" with

a = (71, 72, 1, P2)-
The Lie-isotopic tensor is then given by the simple, scalar isotopy

(3.141)

m-g
() = 2 L(w,,).
By using the Birkhoffian gauge transformation (ref. [20], p. 62)
dG(t,a)

dar °
aG(t,a)
at '’

(3.142)

Rn - R:a(t’a) = Ry(t,a) +

B = B' = Eis = B(t,a) — (3.143)

we have

BI = = i’.l i"z - k
E‘“ 2m| + 2m: I?l . Fgl’
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_eh P
G =G+ 37) (3.144)
and ‘ p ‘5
N_(M-g. m—g_. gtH _gti;
(B} ={——h.—]—"h, g mmz} (3.145)
i.e., : '
0B’ OR,
-y _ )
Qui” = o= + 2. (3.146)

We can now obtain the contravariant Lie-isotopic tensor, which results to
be, in this case, of the simple form

(@) = () = ,,,L_yw"). (3.147)

The time component of the Santilli’s Galilean Relativity is then given
by
- ‘2'_";!_ 3 '_nn:_ 2
) +t%+—,;—l-,g;+(7,-')—,,%+...

= _Prha _PEHE ¢
(™) = 2 +tm, - =3 m,‘ _:?r’—m’ + ... (3.148)

A+imas oy
LTy
Pp —t=0=-A - C-..

m-g P
where
e i R o
= TRomAp T,
= k h_h 3k e e =y PP ‘
¢= |Fy = 723 my "‘2)+Ii"1—?z|3‘r'—")[("_")(m, mz)]' (3.149)

The form-invariance of the equation of motion can then be easily verified.

The Lie-isotopic rotation group SO(2) can be constructed via the tech-
niques of §3.2. Note that, since the term m/(m — g) in generalized tensor
(3.147) has a definite signature, SO(2) is isomorphic or anti-isomorphic to
S0(2).

We should recall for the reader’s convenience that, while the conventional
rotational symmetry SO(2) in a plane leaves invariant the familiar form
zz + yy = inv., the isotopic symmetry SO(2) leaves invariant the form

. m
zqz + yqy = Inv.,q = m_—g

The isomorphism between the rotational symmetry and its isotopic covering
is threfore trivial in the two-body case (but not so from the three-body case
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(3.150)

on). The construction of the remaining “components” of the Galilei-isotopic
relativity is trivial for the two-body case and shall be left to the interested
reader, jointly with the proof of its local isomorphism with the conventional
components. ‘

We consider now the three-body Kepler problem in the presence of non-
Felti—adjoint internal forces which has been treated for the first time in ref.
57.

The equations of motion are:

- mims .
LE r3 (1'1 = r3) + FINSAa
13

= mamy . mams3 =
mafs = -2, 1) - T ) 4 A,
12 23

> _ Mmymy ., . myma _, ] :
mars = -—03 (f3—71) - 3 (3 — 72) + FJ'54, (3.151)
13 23 ,

where

2 = |7y = 73l, 113 = |71 - 73], and ryg = |73 - 7. (3.152)

From closedness conditions (3.97) we obtain for the components of the
non-sgelf-adjoint forces:

I3—2
P =D=—F,
Zy—Z3

I3 — 23
1 — 23

: y3—4
Fy; =
ly 33—3‘1Fl:

Ya—y2
Py = D——==
2y —— F.

F3v=(Dy2—y3 +
Z) -3 I, — 23

F3; =(D

!Is-yx)F

1z

F, =
1z z3— 2, Flz'
_npiB—-2
-2 23—z
Fo=(D2=—4+2"p, (3.153)




where
D = [(;‘ - ’-..3)2] (3.154)
£((72 - 73)?)
and F. is arbitrary. Under the assumption that
1 d
R = 5(31 - 23)(2-‘-(1'3 - Ta)z)F (3.155)

where F is an arbitrary function, formulae (3.153) take the following sym-
metrical expressions:
Fia = (r'® = r)(f2 — F3)(F2 - 3)F
Faa = (r% = r)(7, - f3)(7y - F3)F
Fis = -Fia - F
ke = (23, ¥ky21),8 = 2,9, 2. (3.156)

However, it is computationally quite elaborate to obtain the components
of the Lie-isotopic tensor from this general form of non-self-adjointness. For
this reason Jannussis, Mijatorie’ and Veljanoski choose the following special
case: “

FNSA = o(7y - 73)
IS4 — o(rs- )

) '1(':"1 - 3)
where 7 is a resistive coefficient.
We can see that the above forces are Newtonian and non-self- adjoint
and obey the closedness conditions (3.97a) and (3.97b). However, condition
(3.97¢) leads to the subsidiary constraint

(3.157)

(3.158)

where €is a constant vector. According to a definition given above, we are
therefore dealing with a closed non-self- adjoint system of class 7.
The normal first-order form is

fiXf+f2axf+faxf=¢

5 .
a0 E ‘

f -

1?’5: T B (R ) - ",‘J"("l -B)+1E-2)|T 0. (3.159)
% ——’s—"('z -i)- "'*,?r‘("z -fB)+ & ,)

Ps \—ms'-'“‘("a —-f)- m;‘s'”"('a -R)+ (& - &))
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If we choose
7 -

{Ru} = {1 + 175, 52 + 771,53 +7172,0,0,0}
a = (71, 72,73,1, P2, P3), (3.160)
the Lie-isotopic tensor is given by
(0)oxo (1)oxs .
Sl N ol LY

7(1)axs

The various components of Santilli’s Galilean Relativity can then be com-
puted explicitly (see ref. [57] for details). ‘

The (local) isomorphism between the “time components” of the conven-
tional and generalized relativities is, again, trivial. The isotope 50(3) of
the full rotation group can again be constructed from the knowledge of the
generalized tensor, Eq. (3.161), and the techriques of §3.2.

Since the elements of the tensor have a topologically defined character
(constants for each fixed 7), one can prove again the (local) isomorphism be-
tween SO(3) and SO(3). The nontriviality of the generalization, however, is
now more transparent than in the simpler two-particle case. Unlike SO(3),
its covering SO(3) leaves form-invariant an infinite- family of ellipsoids char-
acterized by all possible values of 7. The form-invariance of the equation
of motion under SO(3) also holds, and its proof is left to the interested
reader. The (local) isomorphism between the remaining components [those
of “acceleration type”] is then expected from similar arguments.-

These results illustrate the nontriviality of Santilli’s covering relativity
over the conventional one. In fact, the generators and, therefore, the physical
conserved quantities remain the same. Nevertheless, in the transition from
the conventional to the covering relativity we see the emergence of internal,
non-self- adjoint nonhamiltonian forces which are rendered representable by
structurally more general analytic, algebraic and geometrical formulations.

—-7(1)ax3 0O3x3

3.3.8 The Covering Lie-Admissible Formulations

The reader should be aware that the covering relativity reviewed here is
only a particular case of that proposed in memoir [1], and worked out in
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more details in monograph [21], which is of the more general Lie-admissible
type. The primary conceptual difference between these two relativities is
the following. While the Lie-isotopic relativity is specifically constructed to
represent total conservation laws of closed/isolated systems, the still broader
relativity of Lie- admissible character is conceived to represent time rates of
variation of physical quantities for open systems of extended particles under
external contact, nonlocal and nonhamiltonian forces. In particular, while
Lie-isotopic symmetries are used to represent conservation laws, the still
more general Lie-admissible symmetries are used to represent time-rate-of-
variations of physical quantities. The (mathematical and physical) covering
nature of the latter over the former notions is evident. Regrettably, we
cannot possibly review this still broader approach here (although we hope
to do so in a separate review at some future time). The existence of the
broader Lie-admissible relativity was used by Santilli to illustrate a central
point: the lack of terminal character of physical theories, beginning with his
own theories, no matter how broad they appear to be (see the hierarchy of
conceivable relativities depicted in Fig. 15 of §3.5).

3.3.9 Epistemological Commeﬁtl

We now pass to the review of certain epistemological aspects. At this point
it becomes essential to avoid preconceived ideas, merely established because
of their extended use rather than on true technical grounds.

The epistemological differences between Galilei’s and Santilli’s relativi-
ties are several and quite deep. We can consider here only a few. To begin,
we must stress again the differencesin physical attitudes. When dealing with
Galilei’s Relativity, one customarily assumes first a basic symmetry, and
then searches for physical systems that are compatible with that particular
symmetry. In Santilli’s Relativity this attitude must be reversed: one must
first select a system of equations of motion as established by ezperimental
or other information, and only then construct a relativity that is compatible
with it. The insistence in the former approach is so questionable, to have im-
plications of scientific ethics, as it is the case when excessive approximations
of physical reality are involved. In fact, the insistence on Galilei’s Relativity
as the sole possible relativity literally implies the acceptance of the perpet-
ual motion in our environment. Santilli’s position is quite firm on this [1]:
any proposed generalization of Galilei’s Relativity is evidently debatable as
part of the essential scientific process of trial and error, but the need for a
suitable generalization of Galilei’s Relativity in Newtonian Mechanics must
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. be simply out of the question.

A second aspect deserving a specific comment is the contemporary atti-
tude of associating only one symmetry with each given relativity. This is cer-
tainly correct for the arena of applicability of conventional relativities (closed
self-adjoint systems), but it is definitely erroneous for structurally more gen-
eral systems (closed non-self-adjoint systems). In fact, the nonhamiltonian
forces result in a generalization of the Lie product, and, in particular, of the
basic tensor 2*¥ which characterizes the structure of the Lie-isotopic trans-
formation group. Different nonhamiltonian forces then result into different
tensors 2 and, thus, different Lie- isotopic transformations.

It follows that, while Galilesi’s relativity 3.2 characterizes only one sym-
metry, Santilli’s covering relativily 3.5 characterizes an infinite family of
covering symmetries all admitting Galilei’s symmetry as particular case.

" This is another uncompromisable point, for the evident reason that, again, if

one insists in selecting only one Lie-isotopic symmetry, excessive restrictions
on the physical systems follow, with the consequential problems related to
excessive approximations as recalled earlier.

A further aspect where preconceived ideas may lead to misconceptions
is the customary linear structure of relativity transformations in contempo-
rary physics. The abandonment of linearity in favor of nonlinear relativity
transformations is another uncompromisable point for a more adequate rep-
resentation of Nature. In fact, the insistence in preserving linearity for all
possible relativities of Newtonian mechanics directly implies, again, the ac-
ceptance of the perpetual motion in our environment. An inspection of the
various examples of Lie-isotopic groups [1], [20] reveal that they are in fact,
generally nonlinear. Santilli’s Relativity 3.5 therefore characterizes generally
nonlinear symmetry transformations. A most intriguing aspect is that all
these nonlinear transformations can be cast into an isotopically linear form
(§2.4), which is essentially achieved by incorporating all nonlinear terms in
the isotopic unit, thus leaving the structure of the theory formally linear.
The physical and mathematical implications of this property are also in-
triguing although they are more transparent in the operator formulation of
the theory.

Still another aspect deserving a comment is the routine tendency to
characterize relativities via the so-called manifest symmetries [20], i.e., sym-
metries that can be essentially identified with a visual inspection. This is of
course the case for the simple systems of Galilei’s Relativity. When consider-
ing physically more complex systems, this attitude too must be abandoned,
again, as a condition for a more adequate representation of physical reality.
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In fact the Lie-isotopic symmetries are, in general, nonmanifest. This point
was illustrated in the original proposal (1] by showing that some of the rela-
tivity transformations are so complex, to be characterized by transcendental
functions.

The reader should keep in mind that the convergence of power- series
expansions is established (under the assumed topological restrictions) for
the isotopically lifted Poincaré-Birkhoff-Witt theorem (§2.2). As a result,
all possible Lie-isotopic groups (3.123) admit convergent and explicitly com-
putable, finite, transformations. Thus, Santilli’s methods always permit the
ezplicit computation of the covering symmetry transformations, from the
sole knowledge of the old transformations and of the generalized Lie tensor
Q4 representing the nonhamiltonian forces. The point is that the reader
should not expect simple, easily computable symmetry transformations for
rather complex physical systems.

Still another point deserving an epistemological comment is the vexing
problem of inertial reference frames. As well known, contemporary relativ-
ities are specifically restricted to inertial frames. But these frames do not
exist in our Earthly environment, nor are they expected to be available in
the future, owing to the lack of inertial character of our Solar system as well
as our Galaxy. Owing to this occurrence, Santilli’s Relativity is specifically
conceived for noninertial reference frames, as stressed since the original pro-
posal [1]. More specifically, Relativity 3.5 is restricted, by construction, to
the actual reference frame  of the observer which is essentially noninertial.
The covering relativity then maps noninertial frames into noninertial frames.
This is another uncompromisable point for attempting a better representa-
tion of physical reality. In fact, the insistence in preserving inertial frames
would imply, as a consequence, the admission of only linear transforma-
tions. In turn, this would imply again the acceptance of perpetual-motion
approximations, thus preventing a more adequate representation of physical
reality.

Numerous epistemological aspects (such as the apparent characterization
of a privilege reference frame, that at rest with the medium in which motion
occurs) will not be considered here because not yet sufficiently investigated
in the current literature, to our best knowledge.

In summary, the assumption of the equations of motion as the funda-
mental quantities of the theory implies all the epistemological consequences
considered here, such as: the need for an infinite family of relativity trans-
formations one per each individual system; the intrinsic nonlinearity of the
relativity transformations, although expressible in a formally isotopic-linear
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form; the general nonmanifest character of the relativity symmetries;. and
the intrinsically noninertial character of the covering theory.

It is remarkable that, despite all these profound differences, Galilei’s and
Santilli’s Relativities coincide at the abstract, coordinate-free level. In fact,
under the assumed topological restrictions, the Galilei group (3.89) and its
covering (3.123) are locally isomorphic.

3.4 Lie-Isotopic Generalization of Einstein’s Special Relativ-

ity [21], [14], [58]
3.4.1 Introductory Remarks

The construction of the Lie-isotopic generalization of Einstein’s Special Rel-
ativity is another central objective of Santilli’s studies under the following
major structural conditions: : :

o The generalized relativity should recover the Galilei- isotopic relativity
(§3.3) under the nonrelativistic limit (or group contraction);

o The generalized relativity should be a covering of the conventional one
in the sense identified earlier (see the end of §1.3); and, last but not
least,

o The generalized relativity should be admitted, locally, by a conceivable
Lie-isotopic generalization of Einstein’s Gravitation (see next section).

The generalized relativity verifying the above conditions shall be called
hereon Santilli’s Special Relativity. Its mathematical foundations are those
submitted in memoir [1] of 1978, as reviewed in §2. The physical foundations
are essentially a relativistic generalization of the Galilean one, also submitted
in memoir [1]. The generalized relativity was formally submitted in a paper
of 1983 [14], following the completion of the studies on: the space-time
formulation of the Lie-isotopic symmetries (§2.4); the isotopic generalization
of the group of rotations (§3.2); and the isotopic generalization of the Galilei
Relativity (§3.3).

Important foundations of the generalized relativity are also submitted in

- paper [12] and monograph [21] which preceded ref. [14). Finally, important

complementary aspects are submitted in the last available paper on the
topic, refs. [58], [153].

Of utmost importance for the new relativity is Theorem 2.9 (which is
indeed quoted in page 549 pf ref. [14]). In fact, the generalized relativity is
ultimately a realization of this theorem, as the reader will see.



To emphasize the speculative nature of the studies, the reader should be
aware that the physical departures of Santilli’s from Einstein’s Special Rela-
tivity are rather deep, inasmuch as each and every law of the old relativity is
replaced with a covering law. As an illustration, the new relativity predicts
the existence of physical conditions (within hyperdense hadronic matter)
under which massive, physical, ordinary particles can (locally) attain speeds
higher than that of light in vacuum (hereinafter indicated with c,).

To emphasize the thrilling aspect of the covering relativity, the reader
should be equally aware that, after careful examination, we have found no
experimental, phenomenological or other evidence capable of disproving the
novel predictions. On the contrary, all available phenomenological informa-
tion (e.g., that on the anomalous dependence of the mean life of unstable
hadrons with speed) appear to confirm the novel predictions quite clearly,
including that of causal physical speeds higher than c,. The predictions had
simply escaped other research on Lorentz noninvariance because of the lack
of rigorous mathematical tools capable of constructing a covering relativity.

Needless to say, the resolution of the validity or invalidity of the new rel-
ativity will occur at some future time via direct experiments on fundamental
space-time symmetries. The need for conducting these crucial tests, which
have been proposed since quite some time but essentially ignored until now,
will be stressed at the end of the next section on gravitation (§3.5.18).

A true understanding and appraisal of the new relativity requires the
mind to be free of preconceived ideas, essentially established by prolonged
use, rather than reai physical support. In approaching Santilli’s Special
Relativity, the reader is urged to abandon the central physical arena of
Einstein's Special Relativity (motion of point-like particles in vacuum), in
favor of a much more complex physical reality (e.g., extended wavepackets
moving within hyperdense media composed of wavepackets of other parti-
cles). No experimental, theoretical or epistemological information accumu-
lated throughout this century on Einstein’s Special Relativity is therefore
applicable to Santilli’s much more complex physical setting. New studies,
specifically tailored for the new relativity, must therefore be conducted.

During the preparation of this review, we had access to the files of the
Institute for Basic Research in Cambridge, Massachusetts, which include a
number of virtually completed, yet unsubmitted manuscripts by Santilli fol-
lowing works [12], [14]. In fact, manuscripts [58}, [153], available since 1985,
were released for printing in conjunction with this review. It is appropriate
here to stress that this section contains no new results besides those already
published in the quoted literature. We were authorized to use the unpub-
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lished manuscripts only to gain insights for a more mature presentation of
published material.

Owing to the novelty of the new relativity, and despite a number of inde-
pendent contributions that have already appeared in the literature (reviewed
later on), a number of truly intriguing and fundamental problems remain
open to this writing at the classical level (let alone the corresponding op-
erator level for particle physics), such as: the proof that Santilli’s Special
Relativity recovers the Galilei-isotopic relativity under the nonrelativistic
limit; the construction of the representation theory of the Lorentz-isotopic
group (only the fundamental representation has been achieved until now);

- the isotensorial products of these isorepresentations for the treatment of

composite systems; etc.
This review will achieve a primary objective if it succeeds in stimulating
this much needed independent research.

3.4.2 Foundations of Einstein’s Special Relativity

As clearly stated in the historical contributions by Lorentz, Poincaré, Ein-
stein, Minkowski, and others (see, e.g., ref. [65] and quoted historical litera-
ture), the body of formulations today known as Einstein’s Special Relativity
was conceived for the description of:

1. particles which can be effectively considered as being point- like,
2. while moving in vacuum (empty space) conceived as homogeneous and
isotropic; and

3. under the conditioiis that the setting is classical (i.e., the action A 3>
k) and gravitational effects are ignorable(i.e., the space has null cur-
vature).

The above conditions clearly include the electromagnetic interactions of
charged particles in vacuum, as well as a vast number of other cases of
physical relevance.

The relativity is based on the form-invariance of the following separation
in Minkowski space M(z,n,R)

1 = (nw) = diag(1,1,1,-1)
z? = z'nz = 2Pnua” = 22! + 272? + 232° - 2ic3et,

co = speed of light in vacuum,
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(3.162)

under the largest possible group of linear transformations. This yields the
celebrated Lorentz transformations, e.g., for motion along the third space
component

zi= coly iy = 1,2,3,4,

V=2l
z¥ = 23

2 = y(z - ot),y = (1= F°)""/%,8 = v/co,
Y= 1(:;‘ - Bz3/c,). (3.163)

The relativity constructed via Lorentz transformations characterizes well
known physical laws, such as: the relativistic composition of speeds

_ttn
’_1+’§“’

with wnéequential impossibility for causal physical signal and for processes
to exceed the speed of light in vacuum (under conditions 1, 2, 3 above); the
constancy of ¢, for all observers; the time dilatation

Veot (3.164)

: 24 g4
At =z¥ - z¥ =14t = (_123_;#):%‘ (3.165)
the Lorentz contrél:tion . 1 i ' '
Al =13 - 23 = \/1- B1AL, = 1 - Bz}, - 2ho); (3.166)
the Doppler’s effect and related aberration
w' =w(l- fcosa);
cosa’ = (cosa — f)(1 - fcosa) (3.167)

and other laws.

Owing to incontrovertible experimental confirmations, Santilli [14] as-
sumed that Einstein’s Special Relativity is ezact under conditions 1, 2, and
3 above. The same assumption is evidently embraced in this review.
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3.4.3 Survey of Lorentz Noninvariance Research

Ref. [14] begins with a review of independent research on conceivable con-
ditions under which the conventional Lorentz symmetry is not expected to
be ezact. The understanding tacitly assumed hereon is that its approzimate
character remains out of the question.

Authoritative doubts on the exact validity of the Lorentz symmetry un-
der physical conditions different than those conceived by Lorentz, Poincaré,
and Einstein have been expressed since the early part of this century. For
instance, in regard to the interior of strongly interacting particles, Fermi
[66] clearly expressed in 1949

“doubts as to whether the usual concepts of geometry hold for
such small region of space.”

The legacy of Fermi and other Fathers of contemporary physics was based on
the expected nonlocal nature of the strong interactions (§1.3) which implies a
breakdown of the mathematical foundations of the Lorentz symmetry (e.g.,
its topology), let alone its physical properties.

The above legacy remained unanswered for decades, until systematic and
quantitative studies were initiated in the '60s.

Consider an unstable hadron moving in a particle accelerator. Its center-
of-mass motion must strictly obey Einstein Special Relativity because mo-
tion occurs in vacuum under long range electromagnetic interactions. The
actual size of the hadron is therefore ignorable and all Einsteinean conditions
1, 2 and 3 (§3.4.2) are met.

Deviations from the special relativity (and the Lorentz symmetry) are
conceivable only in the interior of the particle. One of the most direct ways
in which such possible interior deviations can manifest themselves to the
outside is via deviations from the prediction of Einstein Special Relativity
regarding the behavior of the mean life 7 with the speed of the hadron, i.e.,
via deviation from the Einsteinian law originating from Eq. (3.165)

Y o7

The initiation of quantitative phenomenological studies on the above
“Lorentz noninvariance” are usually associated in the literature with the .
research by Blockhintsev [67], Redei [68], and others who suggested a mod-
ification of law (3.168) of the type

(3.168)

T = 7,7(1 + 10%4%a?), (3.169)

148



where a, is a fundamental length.

Numerous additional studies followed along similar lines in various branches

of physics. For instance, Kim [69] provided, via the use of quantum field
theory, specific percentage prediction of deviations from law (3.168) at a
number of different speeds.

A considerable phenomenological study was conducted by Nielsen and
collaborators (see ref. [70] and quoted papers) for the weak decay of hadrons
within the context of unified gauge theories. In these studies deviations from
the Lorentz symmetry occur in the Higgs sector of spontaneous symmetry
breaking. The use of available experimental information then leads to the
following modification of the Minkowski metric [loc. cit]

v = Guv = My = Xuws

X= dias(%a,%a,éa,a), (3.170)
with generalized mean life
Cr=17(14 é0;7—2), (3.171)
where the Lorentz asymmetry parameter a assumes for pio'ns the value
a=(-3.794137)x 1073, (3.172)
and for kaons ?
a = (0.61£0.17) x 1073, (3.173)
with weighted average
a=(0.5410.17) x 1073, (3.174)

" Subsequent work by Huerta-Quintranilla and Lucio [71] confirmed a de-
formation of the Minkowski metric of type (3.170), but reached different
values of the Lorentz asymmetry parameter a = (3.6 £ 5.2) x 10-3.

A further phenomenological study regarding the anomalous energy-dependen

of the mean-life as well as of other parameters of the K° — K~ system
was conducted by Aronson et al. [72]. The data which were obtained
from a series of regeneration experiments at Fermilab (in the energy range
Ex = 30 — 130GeV) specifically indicate that the values of the mass differ-
ence Am = my, — mg, the lifetime s, the C P-violation parameters |n._|
and tan ¢, as determined in the K° — XK’-system rest frame, depend on
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the velocity of this rest frame with respect to the laboratory. The authors
arrived at the conclusion that the experimental results, if correct, cannot be
ascribed to an interaction of kaons with an electromagnetic, hypercharge,
or gravitational field, or to the scattering of kaons from stray charges or
cosmic neutrinos. In order to describe the anomalous behavior of these four
parameters, denoted by x, they introduced the slope parameters b&N) defined
by '
X = xc(l + b;N)aN),

a=Ex/m,N = 1,2, (3.175)

and presented an elaborated analysis of the origin of these b&m. We note
that Eq. (3.175) exhibits in fact, up to a factor a, Blokhintsev-Redei-like
behavior as it was described earlier for the lifetimes of unstable particles,

Eq. (3.169).

In regard to theoretical studies on Lorentz asymmetry, the literature
is rather vast indeed and only a few representative contributions can be
indicated here. Gasperini has conducted a number of investigations such as:
the ultrarelativistic particle motion within the context of gauge theories,
with local broken gauge symmetry [73]; the possible breaking of the Lorentz
symmetry in the very early stages of the universe [74]; the possible origin of
Lorentz asymmetry from strong gravity [75] (see also papers [76]); besides
specific studies via Santilli’s Lie-isotopic (and Lie-admissible) techniques we
shall review later on. i

The conceivable Lorentz noninvariance of the primordial fluid was also
studied by Rosen [77].

Ellis et al. [78), Zee [79] and others have studied the hypothesis of a
possible decay of the proton from the viewpoint of Lorentz noninvariance
within the context of grand unified theories. In particular, these authors
have essentially confirmed Fermi’s statement of some four decades earlier to
the effect that in the small region in the interior of the proton “anything”
can happen.

Aringazin and Asanov [80] have studied the gravitational and other con-
sequences for a possible, local, Lorentz noninvariance from the viewpoint of
the Finslerian geometry [81], 82].

In regards to efforts for the construction of a possible generalization of
Einstein Special Relativity besides those of ref. [14], the most notable theory
is provided by Bogoslovski’s Special Relativity [83), which is based on the
following Finslerian generalization of the Minkowski metric for homogeneous
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but anisotropic spaces

. zhguz’ = z”(v“n,pz"/z'q,,z’)'/ 02", (3.176)

where v® is a vector along the direction of anisotopy and r is a scalar pa-
rameter. Bogoslowsky’s generalization of the Lorentz transformations are

given by expressions of the type

Y = §(z° - vzt),

Y = (=4 - 1’:—3), (3.177)
where the new parameter
7 =911 - ofe)/(1 + v/co) 2 (3.178)

characterizes the Lorentz asymmetry.

In this way, Bogoslovski constructed a bona-fide generalization of the
Lorentz group, although the methods were those of the conventional Lie’s
theory, and the relationship to the Lorentz group ;ema.ined unknown.

Yet another generalization of the Lorentz transformations is that pro-
vided by Edwards [84] and, independently, by Strel’tsov [85], which can be
written

2V =22,

_ .2

z ’

2 = 1+ 50~ g - ve)

v
0
cqel

1,1 1
v = —(= = =)v]z* - 23}, zt =1t 3.179
with related invariant
3 3 2.z -
thgu 2’ = 22! + 222? +.2%2° - 2¥[c}e] - (-:% - :;-)F]z‘, (3.180)

where 7 has the conventional value, and c},c3 represent the speeds of light
in opposite space directions.
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The Edwards-Strel’tsor transformations are clearly based on a possible
anisotopy of time and recover the conventional Lorentz transformations for
€} = ¢3 = co. -

A comprehensive presentation of the above (and other) topics can be
found in a recent monograph by Lagunov [86]. More recent research by
Strel’tsov can be found in ref. [87), which include an extension of the aniso-
topy to the space components. Further work on anisotropy deserving a
mention is that by Ikeda [88].

The above outline of research on Lorent non-invariance (outside Lie-
isotopic studies), even though far from complete, is sufficient for the scope
of this paper. In fact, as we shall see, all the models reviewed in this section
(and more) shall result to be particular cases of Santilli’s Special Relativ-
ity [14], trivially, because of the arbitrariness of the generalized metric g
appearing in the isounit [ = g~ as shown by Aringazin [33). A

The objective of ref. [14) was, however, not limited to the construction
of a covering relativity that could unify all available research. An addi-
tional objective was to prove that, under suilable topological restrictions,
the Lorentz symmelry can be proved to be still ezact, of course, when real-
ized at the covering isotopic level.

We shall now begin our presentation of the new relativity beginning with
the arena of its physical applicability. We shall then review the generaliza-
tions of the Minkowski space identified in ref. [14] and subdivide them into
three classes owing to the variety of physical possibilities. A review of the
new relativity will then follow.

3.4.4 Arena of Applicability of the Generalized Relativity

The earlier, well written, treatises on Einstein’s Special Relativity stressed
explicitly its conception and limited applicability to point-like particles (see,
e.g., the title of Chapter VI of ref. [90]). Unfortunately, this sound scien-
tific attitude was terminated in more recent times, perhaps because of the
overwhelming successes of the relativity for electromagnetic interactions.

In a series of articles [1], [2], [3], [4] (as well as in monograph [64]),
Santilli brought back to the attention of the physical community the intrinsic
limitations 1 and 2 of §3.4.2 of Einstein’s Special Relativity, and the existence
of physical conditions beyond those of the original conceptions, under which
the applicability of the relativity is questionable.

By continuing his studies on the Galilean setting, Santilli [14] submitted-
a generalization of Einstein Special Relativity for the description of closed-
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isolated systems of:

1’ extended-deformable particles which cannot be effectively approximated
as being point-like; '

2’ when moving in a physical medium which is generally inhomogeneous
and anisotropic;

3’ under the condition that quantum mechanical effects are ignorable (A >
k), and gravitational profiles are absent (null curvature);

under the further condition that the generalized relativity is a covering
of the conventional one, i.e., it recovers the latter identically when physical
conditions 1’), 2°) and 3') above recover 1), 2) and 3) of §3.4.2.

As the reader can see and as expected, conditions 1'), 2’) and 3') above
are a relativistic generalization of conditions 1'), 2’) and 3’) of §3.3.3 for the
Galilean framework. They have been specifically and primarily conceived
for the representation of hadrons as closed-isolated systems of extended-
deformable particles whose constituents possess extended wavepackets mov-
ing within a medium composed of other wavepackets (the “hadronic medium”
[2]). Nevertheless, conditions 1'), 2’) and 3’) above apply also to a variety
of classical cases such as: motion of light in liquids (Cherenkov light); mo-
tion of charged particles in metals (e.g., the motion of electrons in metals,
possibly along Graueau’s [91] formulation of the Ampére-Newman electro-
dynamics); interior problems of planets (e.g., Jupiter) with locally varying

- angular momentum and other physical quantities; etc. '

The reader should be aware that Saatilli conceived his Lie- isotopic rela-
tivity specifically for closed-isolated systems. This is a consequence, on one
side, of assuming the total physical energy H as the generator of the time
evolution (as in Einstein’s case) and, on the other side, of the Lie character

of the theory, that is, of the anticommutativity of the Lie-isotopic product .

[A;B] = —[B;A). Under these conditions, the only possibility for the total
energy is that of being conserved according to the familiar rule

H=[HH|=0,H=T+V. (3.181)

For the case of systems that are open, for which H = f(t) # 0, Santilli
submitted in the final part of monograph [21] a further generalization of his
Lie-isotopic relativity, this time of Lie-admissible character with product
(A;B) which is neither symmetric nor antisymmetric, (A;B) # +(B5A). In
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this case the total energy can indeed be the generator of the time evolution
as well as be nonconserved

H=(HH)=f(@t) #£0. (3.182)

The covering Lie-admissible relativity reduces to the Lie-isotopic one under
the condition

(AB)g -0 = [A3B]. (3.183)

This review is restricted to the Lie-isotopic case. The reader should be

aware that, as it is the case for the Birkhoffian mechanics [20], the Lie-

tsotopic theory can also represent open systems. In this case the generator
of the time evolution is the Birkhoffian B # H with rule

H = [H;B] = f(t) # 0. (3.184)

A knowledge of these structural foundations is essential for a true un-
derstanding of the following review, and will be tacitly assumed hereon. .

Notice, as stressed earlier, that the space (empty space) remains perfectly
homogeneous and isotropic. The fundamental inhomogeneity and anisotropy
of Santilli’s Relativities originates from the physical medium in which motion
occurs.

3.4.5 Isotopic Generalizations of the Minkowski Space

The next step of ref. [14] is the construction of suitable generalizations
of the Minkowski space capable of: a) representing the generally inhomoge-
neous and anisotropic character of the theory; b) admitting the conventional
Minkowski space as a particular case; and c) allowing a formally isolinear
theory while the underlying transformations are intrinsically nonlinear.
From hereon, we shall call Santilli’s spaces all generalizations of the
Minkowski space obeying conditions a), b) and c) above. Due to the large
variety of admitted cases, these spaces will be divided below into three
classes of increasing complexity and methodological needs. The main idea
of ref. [14] is that, in the transition from empty space to a physical medium,
the Minkowski metric 7,, is generalized (“mutated” [21]) in a form g,
verifying conditions a) and b) above. The generalized metric g,,, is assumed
to be Hermitean, nonsingular and sufficiently smooth but otherwise with
an arbitrary dependence in all needed local quantities, such as: space-time
coordinates z and velocities Z (see below); index of refraction n; density u; .
temperature T'; etc.
Juv = gu(z3 25055 T5..). (3.185)
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The Hermiticity and smoothness of g,, implies the existence of its re- It is this interplay between the isotopic transformation theory and isoscalars

duction to the canonical (diagonal) form - that ensures isolinearity. For details, the reader is recommended to consult
N Myung and Santilli [30].
uv = diag(g11, 923, 933, ~9a4)» (3.186) It is intriguing to note that, without a lifting of the field R — R (joint

with that of the Minkowski space and of the Lie product), the generalized
relativity of ref. [14] would have been mathematically inconsistent,

In practical calculations, the lifting R — R can be ignored, as it is the
case for hadronic mechanics, because of a property similar to Eq. (1.40)
where the measured numbers are the conventional ones. In fact, by keeping
into account the multiplication in R :

which is the onlyl one considered in ref. [14] as well as in this review.

The condition of nonsingularity implies the existence everywhere of the
inverse g~! which, as now familiar, is the generalized unit / = g~! of the
theory. : .

We remain with the central condition c) of achieving isolinearity. This is
achieved in ref. [14] via the techniques of “hadronic mechanics” (§1.3). Let

R be the field of real numbers and let M(z, 7, R) be the Minkowski space. By def Nl = NyNof = NTIV;, (3.193)
DEFINITION 3.6 [14]: _Sa,nt.illi’a spa?ces M(z,9,R) are given . the scalar action R # M coincided with the conventional one R x M
by all possible isotopes of the Minkowski space M(z,n,R) where: o
the space-time coordinates z remain unchanged; the metric 1) is Nsz2=Nz. (3.194)

generalized into Hermitean, nonsingular and sufficiently smooth,
but otherwise arbitrary forms g with a dependence on all needed
local quantities g = g(z; z; n; u; T;...); and R is the isotope of R

After clarifying the above mathematical structures, ref. [14] makes cer-
tain assumptions that are embraced hereon. In essence, we shall deal with -

three tities:
characterized by (see Eq. (1.38) for the complez case) quantities
. A . A-—Fourvectors. Their components are the same as those in M, but their
=a~! - ’
R={N|IN=N LNeR,I= 9} . (3.187) scalar value is given by the contraction in M, ie,2?2= z#g,,z#, with

cprs o . R TIr, . the clear understanding that the correct form is (3.192). The terms
The lifting R — R allows the achievement of isolinearity, as per condi v : ) ;
tion c) above (§2.4). In fact, the linear transformations isofourvector or isocoordinates shall be sometimes used to prevent con-

: fusion with the conventional case.
M(z,n,R):z' = Az, (3.188)

B~ Threevectors. Their components are the same as those in the isotope

are now lifted into the isotransformations E(7,9,R) of the Euclidean space E(F,3, R) used for the isorotation
X X def theory (§3.2) and the generalized Galilean relativity (§3.3). The con-

M(z,9,R): = Asz'S Agz, (3-189) traction (“square”) of three vector is then given by 7% = rigi;r? with

the understanding that a law of type (1.187) is more rigorous. Again
the term isovector may be occasionally used to stress the departure
(3.190) from conventional Euclidean space.

which are formally linear, yet intrinsically nonlinear because of the general

dependence A ‘
Axz = Ag(z;2;,..)z
o C-Scalars. These are ordinary numbers N € R, with the understanding
R R ,
Scalar values on M(z,,R) are in R, that a more rigorous form is that of Equation (3.187). We shall at times
M(z,9,R):2? = z"q,,2" € R, (3.191) call an ordinary number an isoscalar to stress the tacit assumption of
structure (3.187).

i alar values on M(z,g,R) are in R ‘
while scalar (=9 K) Santilli’s spaces as per Definition 3.6 above are rather numerous indeed.

M(z,n,R): z? = z%gu 2"l € R. (3.192)  We shall therefore introduce the following classification.
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DEFINITION $.7: Santilli’s spaces M(z,g, R) are classified
into :
o Spaces of Class I, denoted M 1(z,9, R), when the metric g
preserves the topological properties of the Minkowski space,
i.e., it is of the particular type

g= di‘g(bg’bgvbg’ ‘52)1
(3.195)

and the space has null curvature, i.e., the Christoffel sym-
bols of the second kind are identically null

Jup = b: >0,p=1,2,3,4,

ad 1
r‘pw = Eﬂw(ﬂww + Govu — g,...,.) =0,

d
Guoy = ?gz%v“vv’P =1,2,3,4; (3.196)
¢ Spaces of class II, denoted Mi(z,9,R) when they are
still flat, i.e.,
X, =0,p=1234, (3.197)

but the generalized metric g looses, in general, the topolog-
ical properties of the Minkowski metric; and
o Spaces of Class III, denoted Mz, g,R) when they are
curved, i.c., '
I, # 0. (3.198)

For the purpose of achieving a covering of Einstein’s Special Relativity,
Santilli restricted the presentation of ref. [14] to spaces of the first class,
Mi(z,g, R). In fact, the reader now familiar with the Lie-isotopic theory can
expect that the assumption of spaces Mi(z,g,R) assures the admission of
the conventional theory as a particular case, while the Lie-isotopic covering
of the Lorentz symmetry is isomorphic to the conventional one (see below).

Intriguingly, the spaces Mi(z,9,R) are sufficient to unify all research on
Lorentz noninvariance reviewed in §3.4.3, as we shall see.

The reader should be aware that the Lie-isotopic generalization of the
Lorentz symmetry holds also for an unrestricted metric g, including the case
when g is Riemannian or of more general gravitational nature.
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An advance knowledge of this point is essential for the reader’s under-
standing of the continuity of thought in the transition from the relativistic
framework of this section to the gravitational context of the next section.

Note that the contact interactions due to motion in resistive media are
generally independent of the coordinates z, but dependent on the velocities
Z and other quantities. A considerable class of physical conditions under
consideration in this paper therefore verifies the condition of null curvature
e.g., (3.196), via the stronger conditions ,

9w
oz

Unless otherwise specified, metrics of this latter type are assumed hereon.
Notice also the enclosure properties

=0,p=1,2,3,4. (3.199)

My C My C My, (3.200)
which illustrate the poésibilities of increasing generalizations offered by tﬁe
Lie-isotopic theory.

3.4.6 Physical Interpretation of the Generalized Metric

Before passing to the review of the generalized relativity, it may be rec-
ommendable to point-out the physical meaning of the generalized metrics
of Santilli’s spaces. Stated differently, our problem is to clarify the fate of
light when dealing with physical media because, after all, these media are
generally opaque to light. The space components of metric (3.186)

(gl'j) = diag(gu,.‘hz'gaa) . (3.201)

is the metric of the isotope E(r, g, R) of the Euclidean space E(r,g,R), Eq.
(3.28) hereinafter assumed as being dimensionless. It remains fundamen-
tally unchanged in the transition to Saatilli’s (3 + 1)-dimensional isotopic
spaces. All the physical consideration on metric (3.201) of §3.2 therefore
apply for this section. For example metric (3.201) can represent a deforma-
tion of the particle considered caused by external forces, the inhomogeneity
and anisotropy of the medium considered, etc. (See Appendix C for appli-
cations.) :

Almost needless to say, the Lie-isotopic generalization 0(3) of the group
of rotations O(3) reviewed in §3.2 is a central part of the new relativity, and
its knowledge shall be tacitly implied hereon. :
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The remaining component g4 of metric (3.186) must evidently have the

dimension of the square of the velocity, and we shall put for isospaces M;
9 ¥ E(m; T;.), 24 = (3.202)

Our problem is the physical interpretation of the “velocity” c.

The simplest possible cases are those of fluids transparent to light, such
as water. In these cases ¢ clearly represents the speed of light in that par-
ticular medium, according to the familiar law ¢ = ¢,/n < c,, where n is the
index of refraction. Note that, at a deeper study, n is not a constant, but
possesses a rather complex functional dependence precisely of type (3.202).

At times, fluids may be opaque to light but not to other wavelengths.
In this case Santilli [loc. cit.] suggests the replacement of light with any
electromagnetic wave that can propagate within the physical medium con-
sidered.

Nevertheless, physical media are generally opaque to all electromagnetic
waves. This is the case of metals (whether solid or liquid), or more complex
media such as the structure of nuclei, of hadrons or of collapsing stars.
Evidently, no electromagnetic wave can classically propagate within these
media in a conventional sense (the propagation of virtual or physical photons

is excluded here because of quantum mechanical nature).
1/2

In these more general cases, the quantity ¢ = g 4 generally represents a

purely geometrical object without necessarily representing a physical, actual
speed. The above conclusion can be best reached by considering spaces M.
In this case we are dealing with curved spaces in which each element of the
metric, including g4, has a purely geometrical interpretation, as familiar in
the theory of gravitation. This situation is merely extended by the notion
of isotopy also to flat spaces of type M;.

The occurrence can be illustrated by considering the medium composed
by one kaon, and Nielsen-Picek’s generalization (3.170) of the Minkowski
metric, i.e., )

1 1 1
g=(1- 3®1-gal-3a, -c3(1+a)),z' =t¢, (3.203)
in which case
Ju=c¢ = co(l +a)> cov
a= (0.54 +0.17) x 103, (3.204)

159

The best conceivable interpretation of component (3.204) is that it is a
purely geometrical quantity. In fact, we know at this time of no electromag-
netic wave or other causal signal that can classically propagate through a
kaon.

Note that value (3.204) chamctenna a speed ¢ higher than the speed of
light in vacuum c,. But, as correctly stated in refs. [12], [14], this does
not necessarily mean the ezistence of physical speeds within the kaons higher
than c,. The latter problem can only be investigated later on when reviewing
the characterization provided by the generalized relativity of the maximal
speed of massive, physical particles within the kaon structure.

As a further comment, note that the explicit form of the generalized
metric must be obtained from experimental, phenomenological, or other
considerations, but it cannot possibly be predicted by the generalized rela-
tivity owing to the endless variety of possible media. This can be illustrated
by comparing Nielsen-Picek’s metric for the kaons, Eq. (3.204), with that
of the pions, Eq. (3.172), in which case

=¢(1+a) <,
a=(-3.79+1.37) x 1073. (3.205)

Thus, in the transition from kaons to pions, the Lorentz asymmetry pa-
rameter a changes not only in value, but also in sign. With the advancement
of our knowledge, one should therefore ezpect in general different metrics for
different hadrons, with a complexity predictably increasing with mass (evi-
dently because the size of hadrons does not increase with mass thus resulting
in an increase of density with mass). Highly complex metrics for superdense
hadronic matter as occurring, say, in the core of collapsing stars, are then
conceivable as limit cases.

3.4.7 Lie-isotopic Generalization of the Lorentz Group

We shall now review a central part of refs. [14], [58], the Lie-isotopic gener-
alization of the conventional Lorentz group, in its broadest applicable form,
that for spaces of gravitational types My11(z, g, R) with diagonal separation

: V 4 4
z? = z¥g,,2* = z'gnz! + 2lgnz® + 239332 — lguzt 2t =,

(3.206)

I" = ’9 *?(Guow + Yovu — Guv,e) # 0.
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Regrettably, we have not been authorized to present unpublished ex-
tensions of the Lorentz isotopy available in Santilli’s manuscripts, e.g., for
non-diagonal metrics which are applicable to gravitational theories more
readily than separation (3.206).

Nevertheless, spaces My are sufficient for our objective: show that the
Lie-isotopic theory allows the construction, apparently for the first time, of
the symmetry transformations in their explicit form for arbitrary gravita-
tional theories, let alone for arbitrary flat deformations of the Minkowski
metric [58].

For clarity of notations, let us first review the structural foundations of
the Lorentz group. Consider the linear transformations in Minkowski space
M

2’ = Az,z" = 'A%, (3.207)

Under the condition that they leave invariant the conventional separation

(3.162), one obtains the familiar rules
A** AP = 1ap,

det(A) = £1, (3.208)

whicﬁ characterize the siz-parameter Lorentz group on M, usually denoted
0(3.1), with familiar components 0}(3.1) and 0}(3.1) of which O},(3.1)
forms a connected Lie transformation group, i.e., it verifies the conditions

A(v)A(-u) = I = diag(1,1,1,1),
A(w)A(v') = A(u + o),
AO0)=1, (3.209)

where the six parameters u = {f, 1} represents the three Euler angles 6 and
the three parameters u of the Lorentz boosts.

" The remaining components form a group only when combined to 01(3.1)
owing to the presence of the discrete transformations (inversions)

Pz = P(f\t) = (-7,1),

Tz = T(F,t) = (, -t),

PTz = PT(F\t) = (-7, -1). (3.210)
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Let J and M be the generators of 0_',(3.1) in their fundamental repre-
sentation, e.g., that of ref. [92], p. 40 (see also Eqs. (3.8) for the space
generators)

(0 0 0 0y
Jicta=]0 0 10
1=98% 10 -1 0 0]

\o 0 oo)

00 -1 0
J2=J={oo 0 o\
k 3 10 0 o)

\0 0 0 o/
) (o 1 0 0y
. -1 000
Ja=du=|, oooy

\0 00 0

(0 00 -1y
0y 0 00 0
M“M“‘ko 00 o]’

-1 00 0/

(0 0 0 0)
e _ [0 0 0 -1
.M"M“‘ 0 0 0 o]

\0o -1 0 o0

(00 0 0
. _l00 0 o
M3 =Mz = 00 o0 -1/ ‘(3.211)

\0 0 -1 o}

The structural foundations of the connected Lorentz group 01(3.1) are
then given by the now familiar forms: '

‘A) The Enveloping Associative Algebra 8(01(3.1)) characterized by the

ordered, infinite dimensional basis
£(04(3.1)) : I, Xa, Xi X, XiX; Xy ..
i<HiI<j<k

X ={J,M};i,j,k =1,2,3; (3-212)
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B) The Lie Group O} +(3.1), characterized by convergent infinite series in
8(0,,,(3 1)) here formally written

0}(3.1) : A(9, B) = (T}, exp(Jabs)le ) (T3 exp(Maws)|e), (3.213)

C) The Lie algebra 01(3.1) characterized by the familiar commutation

rules in the neighborhood of the identity I € £(0}(3.1))
s Ik = —€isndis
(Mi, Mj] = +eiidi,
[V, Mj] = —€ija My, (3.214)

where the product is, of course, the simplest conceivable Lie product
of matrices A, B
[A;Ble = AB - BA. (3.215)

The second-order Castm:r mvamnta are then given by the familiar

expressions
o ¢, 3
L CL=T - M = Y (Ide — MiMy) = =31,
k=1
Ca=J M=) JM =0, (3.216)
T k=1 )
where one should keep in mind that the selected basis verifies the
property
Ji = =Ji, M = My. (3.217)

We now pass to the review of the isotopic lifting of the Lorentz group
0(3.1) which is one of the central objectives of this review, and which was
presented for the first time in ref. [14]. The isotopy will now appear trivial to
the reader with some familiarity with the techniques; yet it’s mathematical
and physical implications are far from trivial.

The first step is to lift the linear transformation theory on M Eq.
(3.207), into its isotopic generalization on space Miy; with separation (3.206)

2’ =Aee ¥ Rz gimm T, .. )z,
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(3.215)

The emerging transformations are generally nonlinear, although isotopi-
cally linear. The second step is to impose the form-invariance of separation
(3.206) which yields the isotopic conditions

=zt e A Y 2tghT, g = ¢".

" t

ez =zt s Al Asz =2t 0z, (3.219)

which can be explicitly. written
AsA=AsAt=i=4"
det(A) = det(l),

and constitute a clear isotopy of conventional conditions (3.208).

The theory reviewed in §2, partlcula.rly the isotopy of Lie’s theorems
(§2.3), ensures that the transformations A preserve the six parameters u =
{8,5) of the original transformations A(u), and form a siz- parameter, con-
nected, Lie-isotopic transformation group on Myyy, i.e., they verify the iso-
topic group laws

(3.220)

A(u)sA(-u)=F=g"
i\(u) * A(u’ )= f\(u + '),
A(0) = 1. (3.221)

The explicit form of the isotopic lifting of the Lorentz group is then
provided by the isotopes of structures A), B) and C) above. For later needs,
we introduce the following redefinition of the basis

Xy = (Ji, My} = - X,
i = 9395 3 0y = 97 95 P U5 Js = 91y a3 s
M = gkkl/’Ml,,k =1,2,3.
We then have the following results of ref. {14).

(3.222)

A’) the isotopic lifting é(01(3.1)) of the enveloping algebra 5(01(3.1))
characterized by the infinite (ordered) isotopic basis (§2.2)

5‘(01,(3.1)) : I‘,)‘(.-,)'(‘ #X,';X.‘ tf(,' * X;,,...;

i<ii<j<k. (3.223)
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B’) The isotopic lifting 01(3.1) of the connected Lorentz group 0,',,(3.1))
characterized by convergent infinite power series expansions in é(01(3.1))
here symbolically written

3 3 R .

03(3.) : A, ) = (3 sexp(Ja8u)le)(L *exp(Mywi)le), (3-224)
k=1 k=1

which can be reformulated in 5(0!,_(3.1)) for computational facility

(T3, exp(Jigbi)le) (i, exp(Mrgwi)le)
= exp A(0,w); (3.225)

01(3.1): A(d, %)

C') The isotopic lifting O},(3:1) of the Lie algebra 0}(3.1), which is char-
acterized by the isocommutation rules

[l = —€ijides

(M M) = —gueiindi,

[Ji:M;) = -9,7.',-” zfijkﬂk’ (3-226)
where the Lie product is now less trivial than (3.215)
[A;B] % [A,Bli=A+B=B#A4,

(3.227)

= AgB — BgA.

The isocenter of the algebra is now given by the isotopic Casimir
operuator of the first order, I, and those of the second-order

3
s _ i Lo N (figdh — 2 MegMy) = -31
Ci=J g“M‘ ,E( kgJk - kg My) )

3
Ca=JdsM =Y (JrgMi)=0. (3.228).

k=1

As expected for mathematical consistency, the values of the Casimir
invariants are isoscalar, i.e., elements of R and not ordinary scalars
(this clarifies the need for the lifting R — R pointed out in §3.4.5).
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The isotope 6(3.1) of the entire Lorentz group O(3.1) is achieved by
including [14] the isodiscrete transformations (or isoinversions)

Paz = Pa(Ft) = P(7,t) = (-71),
T sz = T o (7,1) = T(F,t) = (F,-1),
ﬁ#z = P*Tltz:f‘tpiz
= PTz = PT(F,t) = (-7, 1), (3-229)
with explicit realization
P = Pi,T =Ti,PT = (PT)i. (3.230)

The above results then leads to the following property which is the most
important application of Theorem 2.9.

Theorem 3.5{14] The Lie-isotopic generalization 0(3.1) on spaces M 1i(z, 9, ﬁ_)

with metric (3.206) of the Lorentz group O(3.1) on M(z,n,R), hereinafter
called Santilli’s (or Lorentz-isotopic) group leaves form-invariant, by con-
struction, the separation in Myyi(z,9,R), i.c.,

0(3.1): 2 ¢z = z'g(z)z = 2" ¢ 2’ = 2"g(2(2"))z’'
z' = A(0, %) + z = A(, D)gz.
An inspection of the results then leads to the following.

(3.231)

Corollary 3.5.1 [14]: The process of Lie-isotopy is insensitive as to whether
Santilli’s spaces M(z,g,R) are flat or curved.

An inspection of isotopic expressions (3.224) or (3.225) yields the follow-
ing additional property.

Lemma 3.3 [14]: The isotopic transformations (3.224) can be ezplicitly
computed from the sole knowledge of the conventional Lorentz generators J
and M in their fundamental (§z4) representation and the generalized metric
g.

In fact the assumed topological restrictions on g assure the existence of
an isotopic Poincaré-Birkhoff-Witt theorem (§2.2). The proof of the conver-
gence of exponentials (3.224) to a finite form is then reduced to the proof of
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the convergence of the conventional exponentials (3.213). Corollary 3.3.1
(14],/58]: The Lie isotopic theory allows the ezplicit construction of the
form-invariant transformations not only for flat generalizations Mi(z,9,R)
and My((z,9,R) of the Minkowski space M(z,n,R), but also for all per-
mitted gravitational models on H:z;(z, g,ﬁ.), whether of conventional or
generalized type (see nezt section).

An inspection of isotopic commutaticn rules (3.226) and the use of the
theory of §2.4 (see also the classification of the isotopes O(3) of §3.2) leads
to the following additional property.

Lemma 3.4 [58]: The isotopic groups 0(3.1) on Myyi(z,9,R) are gen-
erally nonisomorphic to 0(3.1). Depending on the assumed metric and its
topology, O(3.1) can be isomorphic to any siz-parameter group of Cartan’s
classification, i.e., 0(3.1), or 0(2.2), or O(4) or other groups.

The reader should note the appearance of the structure functions of
§2.3 in isocommutation rules (3.226). Remarkably, Santilli identified the
need to replace the structure constants with structure functions on pure
mathematical grounds, while studying the isotopic generalization of Lie’s
second theorem [1]. This was several years before the essential appearance
of these functions in actual models.

Recall that the central idea of the Lie-isotopic generalization of a given
Lie symmetry is to leave unchanged the parameters and the generators of
the theory, and generalize instead the Lie product. In the preceding analysis,
Santilli left the parameters of the Lorentz group unchanged under the lifting,
but changed the generators via redefinitions (3.222). This was done to reach
form (3.226) of the isocommutation rules which is more suitable for the proof
of the isomorphism of O(3.1) with O(3.1) of the next section.

The reformulation in terms of the original basis (3.211) is straightfor-
ward. Consider that basis in the form M,,,, and recall that their commuta-
tion rules are given by

[Mag, Moys] = =0y Mps + a6 Mpy + Ny Mas = 56 Marvs
n = diag(1,1,1,-1). (3.232)

It is then simple to show that, under isotopic lifting, we have the isocom-

mutation rules ‘
[isdi] = =€iixgundi

[MisM;) = —9a4€ijiJ
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[JisM;] = —gjj€ijn M (3.233)
which can be written in the unified notation [58]
[MapiM 5] = —9ayMps + gas Mpy + 9pyMos — 9ps Mo,
g9 = diag(g11, 912, 933, —944)- (3.234)

Note that, despite the similarities of rules (3.232) and (3.234), the alge-
bras are not generally isomorphic because of the possible different topologies
of the metrics 5 and g. Also, the reader should keep in mind that isocom-
mutation rules (3.234) occur for a generally curved space, although of the
isotopic form Mjy;.

The extension of the results to the Poincaré algebra (also called the
inhomogeneous Lorentz algebra P(3.1) = O(3.1) @ T(3.1), where T(3.1) is
the Lie algebra of the group of translations in conventional Minkowski space,
has been investigated by Santilli in ref. [58] for the case when g does not
depend on space-time coordinates z.

Consider the isocomposition of a Lorentz-isotopic transformation A and
of an isotranslation T on spaces M

{A,T}tz:f\tz+a,

(3.235)

by keeping in mind that the product of two such transformations '{l.h,f'l}
and {A3, T3} follows the isotopic rule

a = (a") = (@,a*) = const.,

{A;,T]} * {Az,f‘g} = {A; * Az,f‘l + Az * Tz}. (3.236)

Let P, be the generators of translations in conventional Minkowaki space
(recall that the M, generators are also the conventional ones). Then, the
Lie- isotopic generalization of the Poincaré algebra is given by the isocom-
mutation rules [58]

. [MagiMoys] = —GayMps + 9asMpy + 95y Mas — 995 Moy
P(3.1): [Mag Py = gpy P - 9oy Fp,
[}?a;Pﬂ =0,

(3.237)

(where the reader should keep in mind the diagonality of the P’s).
Again, despite the similarity of isoalgebra (3.237) with the conventional
one, the algebras P(3.1) and P(3.1) are generally nonisomorphic.
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The extension of the above result to the lifting P(3.1) of the Poincaré
group P(3.1) is straightforward (58] and essentially provided by the semidi-
rect product of the isotopic group 0.'._(3.1), Eq. (3.224), times the isotopic
group of translations

1(3.1) : T(a) = exp(P*na”)le = T exp(P*guuz” e,

with similar procedures for the inclusion of the isoinversions. For these and
other aspects we refer the reader for brevity to the locally quoted paper.
In order to identify the isotopic Casimir operators, we have to review
the means of lowering and raising the indices of the various quantities (58]
which follow conventional geometrical (e.g., affine) approaches. Let |g| be
the determinant of g, and introduce the contravariant metric tensor g
defined by '

(3.238)

9" 9av = 8, (3.239)
with solution
191 = lgw|™", (3.240)
i.e., because of the diagonal character of the considered metrics,
™ =gn. (3.241)

Then, the covariant (contravariant) vectors z,(P*) are characterized by
relations of the type

z, = g’ 2" = ¢*2,, Py = guP", P* = ¢"'F,,

(3.242)
and verify the identities
zPgut’ = 2,0"z, =2z, =2z,2"
= zigjz’ — 2lguz’, (3.243)
as the reader can verify.
Similarly, for tensors we have the raising of the indices
M* = g**g*® Mg, (3.244)

with similar forms for other cases.

After these preliminaries, one can introduce the -isolopic generalization
of the Pguh’-Lubanski four-vector (or Pauli- Lubanski isovector) on isotopic
spaces My (58]

W, = %e,..,,,wﬁ + P, (3.245)
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which verifies the properties

[MapgiW4] = 95, Wa — 90y Wp,

[PaiWg] = 0, (3.246)
where use has been made of the isotopic rule (30]
[4B +C] = [A;B] + C + B+ [AC). . (3.247)

_ It is then easy to see that the center of the Poincaré- isotopic algebra
P(3.1) is given by the isounit / = g™, the quantities in R

P? = (P*g,,p")i = (P'gi; P — P*gu P,

W2 = (Whg W)i = (Wig;Wi - WiguWH)i,
as well as any of their iso-combinations.

The derivations of the numerical values of the above isocasimirs from
the conventional ones is the mathematical foundation of Santilli’s concept
of “mutation” of elementary particle when immersed within dense hadronic
matter [2]. This important new concept is illuatrated in Appendix C via the

isotopic lifting of field equations (153}, i.e., field equations that are covariant
under P(3.1).

(3.248)

‘3.4.8 Lie-isotopic Generalization of Einstein’s Special Relativity

Following ref. [14], we now restrict the analysis to Santilli’s spaces of the
first class, Eq. (3.195), with fourth component (3.202), i.e.,

Mi(z,9,R) : 22 = z/g,,z¥ = 2 b3z! + 22b3z? + 230323 — 24?24,
. .

=412, =0, (3.249)

where the diagonal elements have a positive-definite character in the consid-
ered region of isospacetime. The subsequent property follows from Theorem
2.9 and the preservation by spaces M| of the topological character of the
conventional Minkowski space.

Theorem 3.8 [14]: The Lorentz group O(3.1) on Minkowski space M(z,n,R)

and all possible isotopes O(3.1) on spaces M(z,g,R) are (locally) isomor-
phic, and they coincide at the abstract, realization-free level.
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To put it differently, there ezists only one abstract Lorentz group, say
O(3.1), that realized in terms of a Lie algebra with abstract product ab— ba,
where “ab” is an unspecified Lie-admissible product in a coordinate free
form. Then there exist infinite varieties or realizations O(3.1) in terms of
the product AgB — BgA where g possesses the same topological structure
of the Minkowski metric. Finally, there exists the “simplest possible realiza-
tion” O(3.1), that of the contemporary literature with trivial Lie product
AB — BA and the Minkowski invariant. All these different realizations are
geometrically equivalent, and algebraically isomorphic.

Owing to the convergence of exponentials (3.225) (Lemma 3.3), the iso-
topic transformations can be easily computed for each given generalized
metric g (which is the only unknown of the expantions).

In the case of motion along the third axis and for arbitrary elements
b3, c2, exponential (3.225) on M yields the following generalization of the
Lorentz transformations (3.163) introduced in ref. [14]

10 0 0 z!
. 01 0 0 z?
r= =
zT=Asz=14 cosh(we)  —psinh(we) | | 23 |° (3.250)
0 0 -Bsinh(we) cosh(we) z!
which can be written more explicitly
(V=g
¥ =22
z:y = “7(33 - vz‘), (3.251)
V= ‘7(3‘ - %’213)’
where
5 = cosh(we) = (1 - )12 = (1 - 242)-1/2
\ sinh(we) = "—"ggﬁ;ﬁz = "—:Q! (3.252)

by = ba(z;2;m; i T )i e = (25 250545 T .. ).

The nonlinearity of Santilli’s transformations is then evident. The verifi-
cation that they do leave form-invariant separation (3.249) is a simple but
instructive exercise for the interested reader. The computation of different
forms for different explicit expressions of the metric is also trivial. Finally,
the inclusion of the conventional Lorentz transformations, Eq. (3.163), as a
particular case is also evident.
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Needless to say, the transformations acting in the three-space {z!,z?,z3}
are the isorotations of §3.2. Eqs. (3.251) provide an example of isoboosts.
The isoinvertions have been reviewed in §3.4.7.

DEFINITION 3.8: Santilli’s transformations (also called Lorentz-
isotopic transformations) shall be called of the first, second or
third class, depending on whether they leave invariant the sep-
aration of spaces of the first, second and third class (Definition
3.7), respectively. Their most general form is characterized by
arbitrary superpositions of isorotations, isoboosts and isoinver-
sion3.

We now come to a central point of this review.

DEFINITION 38.9: Santilli’s Relativity of the First Class, or

Santilli’s Special Relativity, is the generalization of Einstein’s

Special Relations chamcterize{i by the Lorentz-isotopic transfor-
mations of the first class on M(z,g,R).

The following property can be easily proven.

Theorem 3.7 [14]: Santilli’s Special Relativity is a covering of Einstein’s
Special Relativity in the sense that

a the generalized relativity is constructed with mathematical methods (the
Lie-isotopic theory) structurally more general than those of the con-
ventional relativity (Lie’s theory in its simplest possible realization);

b the generalized relativity describes physical conditions (eztended-deformable

particles moving within inhomogeneous and anisotropic media) which
are structurally more general than those of the conventional relativity
(point-like particles moving in vacuum); and
c the generalized relativity
[c-1] contains the conventional relativity as a particular case;

[c-2] can approzimate the conventional relativity as close as de-
sired, evidently for g = n; and

[c-3] recovers the conventional relativity identically forg =1, I =
I = diag(1,1,1,1).
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The ezplicit construction of the generalized relativity will be reviewed in
the nezt sections. ‘

DEFINITION 3.10: Santilli’s Relativities of the Second and
Third Class are those characterized by Lorentz-isotopic_ trans-
formations of the second and. third class on Myi(z,9,R) and

Mi1i(z,9,R), respectively.

Note that these more general relativities do not constitute, in general, “cov-
erings” of Einstein’s Special Relativity (in the sense of Theorem 3.7) because
the generalized metrics g do not admit, in general, the Minkowski metric as
a particular case. '

Also, note that the isotope O(3.1) of these broader relativities is not
necessarily isomorphic to 0(3.1), as indicated earlier.

The generalization of Class II is important to achieve the desired unity
of physical and mathematical thought. In fact, one can find in the literature
several studies on conceivable generalizations of the special relativity, still on
flat spaces, but with a topology different than that of the Minkowski metric.
All these studies are then unified by Santilli’s Relativity of the Second Class.

As an example, Recami and Mignani (93] have introduced the superiu-
minal transformations

2% = zhgs! = —2? = —z'yz,

(3.253)
which are evidently transformations in ﬂlt(t;g, li). Note that Recami-
Mignani’s transformations provide the generalization to (3 + 1)-dimension
of the notion of isotopic dual introduced in §3.2 (Definition 3.1) for the case
of the isotopic lifting of rotations. The reformulation of transformations
(2.353) in terms of the Lie-isotopic theory is therefore recommended.

The generalized relativity of Class III is of gravitational character and,
as such, will be discussed in the next section.

In closing, we note that no lifting of the Lorentz group with isotopies
different than those of ref. [14] has been investigated until now, to our
best knowledge. We are referring to isotopies of the associative enveloping
algebra with products of the type (1.10) i.e., A+ B = WAWBW, wi=Ww.
The reader should however be warned about the general loss of the unit
under the latter isotopy, with evidently deep implications for Lie's theory
which are absent in isotopy A+ B = AgB, I = g~1.
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3.49 Maximal Speed of Massive Particles within Physical Me&ia

In Einstein’s Special Relativity, the maximal speed of a massive particle (or
of a causal, physical signal) is that of light in vacuum. It is characterized
by the infinitesimal separation in Minkowski space M

ds? = d2'6;;dz? — dzicldzt,dz* = dt, (3.254)
when of null value,
df- df - dtc3dt = 0, (3.255)
resulting in the value ,
dr
Viee = () =<3 (3.256)

which also provides the fundamental invariant of the theory.
In Santilli’s Special Relativity, the infinitesimal separation is defined on
isotopic spaces My, and is given by

ds? = dz*bldz* — dz'c?dat. (3.257)
The case of null separation
drkbldr* — dic’dt = b, (3.258)
then yields the expression
%ﬁ Z% = cX(z;2; 0y T; ...), (3.259)
which is the covering, fundamental invariant of the new theory.
POSTULATE 3.1 [12],{14]. The mazimal possible speed
Vaz = |§|M¢z  C(z; 2 T;...), (3.260)

predicted by Santilli’s Special Relativity for massive physical arti-
cles (or causal signals) propagating within physical media (§3.5.6)
can be higher equal or smaller than the speed of light in vacuum
¢ .

VMez =C C ¢, (3.261)

depending on the particular physical conditions at hand.
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To illustrate this postulate, it is best to consider the case of an isotropic
Euclidean space for which Equation (3.259) becomes

g =M h=b=b=b>0. (3.262)
The maximal speed C is theﬂ given in this case by
d‘
VMes = I;:Iu.. =C= % (3.263)

The existence in Nature of causal physical signals propagating faster
than light in vacuum, which was postulated in ref. [12], has a number of

independent, although preliminary, confirmations. Consider for instance,

Nielsen’s mutation of the Minkowski metric Egs. (3.170), i.e.,

g = diag(1 - %a,l -%a,l - lc:t, -c3(1+a)). (3.264)

3
Then, Santilli’s maximal speed C for the case of m, Eq. (3.173), is given
by
a=(0.61£0.17) x 1073 > 0,
l+a

1-ia

and does indeed result to be higher than ¢,. For the case of the pions, Eq.
(3.172), we have instead

> Coy ' (3.265)

C=c¢

a=(-3.79+137) x 10~ <0,

C= C.,T_—ia < €0y (3.266)
i.e., the maximal possible causal speed is smaller than c, (recall from §3.4.6
that light itself cannot propagate within such hyperdense media). Eqs.
(3.265) and (3.266) provide clear illustrations of Postulate 3.1 for the cases
of maximal speeds higher and lower than the speed of light.

At a deeper analysis, all studies on Lorentz noninvariance reviewed in
§3.4.3 generally admit mazimal possible speeds higher than that of light in
vacuum. This is the case of the studies by Blockintsev [67], Pecei [68], Kim
[69], the various works by Neilsen and collaborators [70], Huerta-Quintanilla
and Lucio [71], Aronson et al. [72), and others.
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In general, all modifications/mutations of the Minkowski metric must
necessarily result in an alteration of the mazimal speed of causal signals,
trivially, because the space remains flat. The emerging new mazimal speed
can then be, depending on the conditions considered, higher, equal or smaller
than the speed of light, ezactly along Santilli’s Postulate 3.1.

The above property was put in rigorous terms by de Sabbata and Gasperini
(149] who, stimulated by Santilli’s paper [12], computed the maximal pos-
sible speed within hadronic matter via the use of gauge theories, resulting
again in a maximal speed which is higher than ¢,. These latter calculations
are reviewed in Appendix B.

Additional, independent evidence, again purely preliminary, in support
of Postulate 3.1 is given in astrophysics by certain galactic conditions under
which ordinary matter appears to propagate faster than c,.

- More specifically, Santilli postulated the following cases [12]:

a) Nuclear structure, in which case the maximal speed is expected to be
generally lower than c,;

b) Hadronic structure, in which case the maximal speed is expected to be
generally higher than c,; and

c) Superdense star structure (e.g., the core of a collapsing star) in which
case the maximal possible speed is expected to be much higher than
¢o and, under suitable limit conditions, even infinite.

The physical basis for the above expectations is provided by the interac-
tions at the foundation of the studies on Lie-isotopy: the contact, nonhamil-
tonian interactions experienced by particles when moving within physical
media. In fact, as stressed earlier, these interactions are of instantaneous
character by conception and, as such, substantially outside Einstein’s Spe-
cial Relativity. Furthermore, the interactions are of nonpotential nature also
by assumption. Therefore, conventional relativistic considerations regarding
the energy needed for the acceleration of the particles simply do not apply.

‘A new physical horizon, beyond that of Einstein, then emerges quite clearly.

When a particle is under the joint action of conventional forces (e.g.,
electromagnetic, or weak, or strong, or gravitational), plus the additional
contact forces due to motion within a medium, the emerging maximal speeds
is then expected to be precisely along Postulate 3.1.

The postulated increase of the maximal speed in passing from nuclear to
star conditions is suggested by the progressive increase of the contact non-
hamiltonian interactions. In fact, the condition of mutual wave overlapping
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of the constituents of nuclei (protons and neutrons) are minimal and esti-
mated of the order of 103 nucleon’s volumes from values of nuclear volumes
as compared to the volumes of the charge distributions of the nucleon.

In the transition to the structure of hadrons, such as the protons and
neutrons themselves, the conditions of mutual overlapping of the wavepack-
ets of the constituents increase substantially to about 100% of the charge
distribution which is approximately the same for all particles and equal to
the range of the strong interactions (1F). Finally, in the transition to the
core of stars undergoing gravitational collapse, we have not only 100% over-
lapping of the wavepackets of the constituents, but also their compression.
A progressive increase of the maximal possible speed is then consequential.
This is, in essence, the central physical idea of the postulate submitted in
ref. [12]. -

It should be stressed, to avoid misrepresentations,.that particles propa-
gating at speeds higher than c, are not tachyons when dealing with Santilli’s
Special Relativity, but ordinary physical particles. In fact, the conventional
notion of tachyons demands propagation in vacuum, being strictly referred
to the conventional special relativity. In Santilli’s case we have motion
within physical media, thus resuiting in a different notion of tachyons, as
conjectural particles traveling faster than the speed C of Postulate 3.1.

Another point that should be stressed to minimize misconceptions is
that the notion of marimal causal speed in Einstein’s special relativity is an
absolute constant, the invariant ¢, that applies everywhere in space-time.
In Santilli’s Special Relativity, instead, the notion of the marimal causal
speed is a strictly local invariant that can be generally defined only in the
neighborhood of a point or at best in small regions of space (e.g., the interior
of a kaon).

© 3.4.10 Isotopic Generalization of the Light Cone

Another important concept introduced in ref. [14] is the generalization of
the conventional notion of “light cone” caused by isotopic liftings of the
space.

DEFINITION 3$.11 [u]: The isolight cone, or hypersurface
of maximal speed of massive particles, Eq. (3.261), is the defor-
mation of the light cone caused by the lifting of the Minkowski
. space M(z,1, R.) into Santilli’s isotope of the first class, M, l(z, 9y R.),
and divides the isospace itself into the following three regions:
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1. isotime-like region, when the separation is negative- defi-
nite;

2. isonull region when the separation is null; and

3. isospace-like region when the separation is positive definite.
(See Fig. 4 for more details.) ,

Specifically, suppose that the observer is at the origin of the isotopic

space M1 Let 2, a.nd z3 be two isoevents in M;. Then their separation can
be

Isotime-like when z2 < 0,
Isonull when z? =0,
Isospace-like when z2 > 0, (3.267)

where

22 = z¥g,,z" = z"bzﬁ.-,-z"' - z‘c’z‘,

z=z —-25,28 =1. (3.268)

xayx + yazy — tC3t = 0
€ <cCeuum
xlx+ylv-tc2t-0

. °o' cnelmm

n,x'-vnzv—tczt-o‘
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FIGURE 10. A reproduction of Fig. 1 of ref. [58] depicting the defor-
mation (mutation) of the light cone caused by contact, instantaneous, null
range interactions experienced by (extended) particles when moving within
a physi¢al medinm. The deformed cones characterise the maximal speed of
causal signals (e.g., the maximal speed of a massive ordinary particle) which
results to be equal, greater or smaller than c, = Ceqcuum, depending on
the physical conditions at hand. All available phenomenological information
is encouragingly favoring the hypothesis of physical speed within hadronic
matter higher than c,. In fact, all research on Lorents “noninvariance” re-
viewed in §3.4.3 favor a deformation of the Minkowski metric in the interior
of hadrons. In turn, such a deformation necessarily implies an alteration of
the maximal speed of massive particle (58]. The maximal speed can then
be bigger or smaller than ¢, depends on the circumstances. And in fact,
as illustrated in the text, the Nielsen-Picek deformation of the Minkowski
metric [70] implies that the maximal causal speed is smaller than c, inside
the pions, but it becomes higher thaa ¢, inside the kaons exatly along the
two corresponding, deformed cones of the figure. This appears to indicate an
increase of the maximal speed with the density, thus supporting the general
calculation of the maximal speed provided in Appeadix B, of course in a
preliminary way. The reader should be aware that [58] Einstein’s Special
Relativity remains strictly valid in the arena of its original conception (mo-
tion of point-particles in vacuum). Nevertheless, when considering funda-
mentally different physical conditions, deviations are not only expected, but
actually necessary to achieve compatibility with available phenomenological
information (§3.4.3). Finally, such deviations are referred, specifically, to the
Special Relativity and not to the Lorents symmetry which remains exact in
the interior of hadrons although at the covering Lie-isotopic level.

Throughout this section we shall assume for simplicity (but without loss

of generality) that the metric of the isotopic Euclidean space is of the type
' gij = 2655, > 0, (3.269)

The following four cases are identified in ref. [14].
CASE 1A: Vpye = 65,6 < Co.

This is the case of propagatioi of light and particles within transparent

fluids, a typical example being given by the Cherenkov light. In this case, as
well known, light propagates at a speed smaller than ¢, given by the familiar
rule

et
=0 (3.270)
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but ordinary massive particles, such as electrons, can propagate faster than
light within that medium, with a maximal speed being given by c,. These
are precisely the conditions of Case 1A. Its representation by isotopic space
M can be expressed via the separation

; ; 1 1 1 2
= 2 C
z'guz" = 2'6%6;;2" — 2824 = z‘Fz’ + :J:’F:t2 + 33?5’ - z‘n—‘;z‘,
c Co
VMaz = § = Coic= - < 0;Vmaz # ¢, (3.211)

where c represents, more generally, the speed of propagation of electromag-

netic waves. The use of Eq. (3.263) then yields the expression Vj,; = Co.
Note that this is the simplest conceivable isotopy, the scalar one of the

type (1.3)

- (3212)

We can therefore say that a dilation of the conventional Minkowski invariant
can represent the transition in the propagation of light from empty space to
transparent fluids such as water.

CASE 1B: Vi,: < €o,¢ < €.

This second case represents physical media which are not transparent
to electromagnetic waves (otherwise we could have Case 1A). In this case,
the medium implies the presence of “drag” or other effects under which
the maximal speed is smaller than ¢,. The best illustration is given by the
dynamics in the interior of pions according to Nielsen-Picek metric (3.266).
Another possible example is given by motion of electrons within metals
which are evidently opaque to light, e.g., along Graneau’s formulation of
the Ampere-Newman electrodynamics [91].

In this case we have invariants of the type

1
V-
z“gl“’z - "2 I“fh‘uzv,

; ; 1 1 1 c2
z4gue’ = 2'b36;27 — 2lat = ' 2! 4 2P —2? 4 202 — 202,

my mj my m;

c m
V S e ==—C, < ¢
Maz b ms 0 09
Co

c= m_2 < €o VMaz # c, (3-273)

where m; and mz and non-null scalars.

Note that isotopic lifting (3.273) is less trivial than (3.272), for the ev-
ident reason that it is no longer a scalar isotopy (because of the difference
between the scalar multipliers of the space and time components).
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Tests II, are of manifest, less, comparative relevance. These ethical aspects
have been pointed out by Santilli [132], and are not reviewed here. We
restrict ourselves only to indicate that, when fundamental tests remain ig-
nored for protracted periods of time, scientists in good faith should expect
the emergence of ethical issues.

But the fundamental tests primarily suggested in this review are the
following.

FUNDAMENTAL TESTS III: Measure the local validity or inva-
lidity of Einstein’s Special Relativily within hadronic matter via
the measure of the behaviour of the mean life of unstable hadrons
at different energies (Figure 16).

The test in this case are numerous and consist, more specifically, of the
measure of the behaviour of the mean life of (at least) pions and kaons at a
sufficient number of different speeds to allow the verification or the disproof
of the Einsteinian law ($.165),

T =197 = 7o(1 - v3/c3 -1/2 (3.492
%

As reviewed in Section 3.4, possible deviations from law (3.492) should
follow Santilli’s isotopic law (3.279), i.e.,

2 -l_/2
vbv ) (3.493)

T=1b"7=1'o(1—7

which, as shown by Aringazin (89}, unifies all known or otherwise conceivable
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models of “Lorentz noninvariance” reviewed in Section 3.4.3.

i

U

SALINAL SPEED § ¢
OEFENDING ON INTERIOR
PEYSICAL CEMSCIERISTES

SEPARATION
:;:'1:1 - -x’t’,:’ -

FIGURE 16. A reproduction of Figure 5.6, page 592 of monognph [21)
summarizing the conceptual basis of the fundamental experimental tests rec-
ommended in this work: measure the behaviour of the mean life of unstable
hadrons while moving at different energies in a particle accelerator. The
center-of-mass motion strictly obeys Einstein’s Special Relativity. Never-
theless, the interior dynamics is fundamentally noneinsteinian. This is due
to the fact that the former dynamical evolution occurs in vacuum, while the
latter deals with motion of extended wavepackets (the hadronic constituents)
moving within a physical medium composed of other constituents. The com-
patibility of the above two different dynamical conditions has been proved
at all levels of description, that is, at the Galilean (§3.3), Relativistic (§3.4),
Gravitational (§3.5) and operator levels (§1.3), and it is now an established
fact. The only known way according to which deviations from Einsteinian
laws in the interior dynamics manifest themselves in the exterior one is via
departures from the Einsteinian law of time dilation. As a consequence, the

proposed tests are the most fundamental ones conceivable at this time, inas-

much as they probe the local Einsteinian or noneinstenian behaviour of the
ultimate structure of matter. It is very regrettable that the tests, proposed
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fields and sufficiently high rotational conditions. Nevertheless, the experi-
ments may well be within practical realization nowaday, owing to advances
in superconductivity and other fields.

The fundamental nature of Tests I is manifest. For instance, the tests
could well allow the resolution of the vexing problem of “unification” of the
gravitational and electromagnetic fields originating in the charge structure
of matter along Santilli’s hypothesis of their “identification” (3.334), i.e.

MG = gElm (3.489)
In turn, such an identification would open the door to realistic possibilities
of achieving a unification, not only of the electromagnetic and weak interac-
tions (as permitted by the conventional Lie theory), but also of the strong
and gravitational interactions, as conceivable under isotopic lifting of gauge
theories (See Appendix A).

There is also little doubt tha.t l-\mdamental Tests I are now grossly over-
due.

The second group of expenments revnewed in this work consist of the
following. ,

FUNDAMENTAL TESTS II: Measure the deformation/rotational-
assymmetry/magnetic-moment-mutation which is ezxpected for neu-
trons (or any other hadron) under auﬂictcntly intense (e.g. nu-
clear) external fields (Figure 6).

The tests have been conducted by Rauch and his collaborators (see ref. [131]
and quoted papers) via neutron interpherometric techniques up to 1982, but
regrettably halted since that year. ‘

The latest available experiments tested the spinorial symmetry of neu-
trons via two complete spin flips while the (low energy) neutron beam is
under the action of an external nuclear field (i.e. the spin flips occur while
neutrons are under external nuclear forces). The best available measure are
715.87 + 3.8 which, as such, do not include (within the limits of the ex-

perimental error) the 720 deg needed to establish the exact nature of the

spinorial symmetry.

A preliminary, but full and direct representation of the above deviations
from the exact SU(2) symmetry has been reached by Santilli [153] via the
iso-- Dirac’s equation, i.e., the isotopic generalization of the conventional
Dirac’s equation which is the invariant under the Poincaré-isotopic group of
Section 3.4.
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Fundamental Tests II shall be considered in detail in a separate review
on the “hadronic generalization of quantum mechanics” (Sect. 1 .3), owing
to their essential operator nature on Hilbert spaces. Here, we limit ourselves
only to indicate the manifest plausibility of the violation of the conventional
rotational symmetry in particle physics. In fact, perfectly rigid, spherical,
charge distributions (3.1), i.e.

rér=zz4yy+22=1 (3.490)

do not exist in Nature, but admit instead deformations, e.g., of the ellipsoidic
type (3.3), i.e.

zbiz + ybjy + 263z = 1
b >0,k=1,2,3

r'gr =
(3.491)

with manifest breaking of the roational symmetry. The deformation is mea-
surable because it implies a (necessary) alteration of the magnetic moment
which, in turn, is measurable via the test of the spmor 2x-symmetry of
neutrons under external nuclear interactions.

It should be stressed that the tests have been fully within current exper-
imental feasibility since quite some time, as well known.

The fundamental nature of Tests II is incontrovertible. After all, the
rotational symmetry is at the foundation of quantum mechanics and all of
particle physics. It is a truism to say that deviations from the rotational
symmetry, when experimentally established, could stimulate a new scientific
renaissance. In particular, the mutation of metric (3.490) into form (3.492)
is a clear case of isotopy and, as such, it provides one of the most important
applications of Santilli Lie-isotopic generalization of the group of rotations
(§3.2). This implies, in particular, that the rotational symmetry remains
ezact at the isotopic level. Only its conventional reahza.txon is violated by
deformations (3.492) (see Appendix C).

Fundamental Tests II are also grossly overdue. In fact, the only avail-
able tests are those by Rauch and collaborators [131]. In particular they
show a violation of about 1% (outside statistical errors). Lacking the final
experimental resolution of the issue one way or the other, the entire branch
of particle physics dealing with the rotational symmetry is now in a state of
“suspended animation”.

The situation becomes unreassuring and acquires nonscientific (e.g., ethi-
cal) overtones if one notes that all experiments currently preferred in particle
physics, besides costing substantially more than the relatively inexpensive
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We .choose, as usual, this second integration constant equal to —2m =
—2GM (where G is the Newton constant and M the mass of the central
source) in order to obtain the Newtonian gravitational potential in the weak
field limit; combining (3.484) and (3.485), we obtain then, to first order in
a,

e = 1-22,
r

¢ (1 - 2%)”‘“ Pli+ia) (3.486)

The value of # could be determined by imposing the boundary condition
that, in the limit in which the gravitational field is vanishing, the metric
must reduce to the isotopic form (3.441). In this case one can easily obtain,
to first order, § = In(1 + a) (modulo a suitable renormalization of the
constant value of the light velocity in vacuum). Notice, however, that the
requirement of spherical symmetry is not sufficient to determine univocally
the choice of the time coordinate in the proper-time interval (3.481) and,
. in view of the general covariance of the theory, we are free to define a new
coordinate t’' = f(t), where f is an arbitrary function of ¢ only.

Using this freedom we can choose then the time coordinate so as to
eliminate the exponential factor on the right-hand side of Eq. (3.486b) or,
in other words, to put the integration constant 8 = 0. Therefore

& = (1 -2?) e

In this way Gasperini obtains the static, spherically symmetric approximate
solution of the isotopic equations (3.436), to first order in a,

m 1+4a 2 dr?
- (l - 2-r—) dt* + 1—_27/’_

" (3.487)

ds? =

4+ r%(d6? + sin’ 0dy?). (3.488)
The usual Schwarzschild solution can be recovered in the limit a — 0,
corresponding to an exterior motion.

Isotopic lifting (3.488) of the Schwarzschild metric is significant for a
- number of aspects. In fact, it opens up a problem, unexplored until now,
regarding the implications for black holes caused by the isotopic lifting of
gravitation.
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More specifically, we are referring to the identification of the dépar-
tures from the Schwarzschild metric and gravitational singularities in gen-
eral caused by a bona-fide representation of the physical conditions of the
interior problem with metrics less approximated than (3.441). All available
studies are essentially based on the same theory for both the exterior and
interior problem without any treatment of their physical differences.

Note also that the Lorentz-isotopic theory can provide the explicit form
of the symmetry transformations, not only for the isotopically lifted metric
(3.488), but also for the conventional Schwarzschild metric. Their explicit
construction is another interesting open problem we recommend for consid-
eration by interested researchers.

3.5.18 Some Overdue Fundamental Experiments

A primary purpose of this review is to recommend the conduction of truly
fundamental experiments, that is, of experiments on fundamental physical
laws, rather than tests on secondary aspects and, therefore, of secondary
relevance. We shall review below a few basic tests which have been sug-
gested for quite some time, but have remained, regrettably, ignored by the
experimental community and are now substantially overdue.

The first basic tests were reviewed in Section 3.5.3 and they can be
expressed as follows: '

FUNDAMENTAL TESTS I: Measure the prediction of gravita-
tional theories that any electromagnetic field is a source of a
gravitational field (Figure 13)

The experiments have been lingering in the literature on gravitation
since the early stages of the theory. In 1974, Santilli [100] brought them
back to the attention of the experimental community by recommending first
the measure of the gravitational field which is expected to be produced by
large magnets as available at several laboratories. This first test is well

~ within current ranges of sensitivity of neutron interferometric techniques.

Secondly, Santilli suggested the conduction of deeper tests to measure the
contribution to the gravitational field caused by the dynamical conditions
of charges and/or magnetic moments (see Figure 13 for a summary and
ref. [100] for details). These additional tests, apparently, were not feasible
in 1974 because of limitations on the sensitivity of gravity meters, on one
side, versus limitations for reaching sufficiently high electric and /or magnetic
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To first order in a, including also general-relativistic effects, Gasperini ob-
tains the approximate equation of the orbit

0 @
u z(u) + (u)= % [1 4 cos(p — w0 — Ayo)], (3.478)
where 2
3m
AW = (F - laﬂa) ("4 (3.479)

is the precession of the orbit per unit revolution angle . After a full revo-
lution (¢ = 2x), the perihelion shift is then

Ago = “T"' (1- x,na%).

The above equations, again, are valid for the interior problem only of
Gasperini-Santilli Gravitation with Nielserni-Picek tangent metric. They es-
sentially provide a quantitative, although approximate model of deviations
from conventional Einsteinian equations that are expected for realistic con-
ditions in the interior motion. Equivalently, Eq.s (3.478) provide a first
approximation of the physical differences existing between the motion of a
test particle in the exterior case (motion in vacuum) and in the interior case
(motion within a physical medium). :

(3.480)

3.5.17 An Isotopic Generalization of the Schwarzschild Metric

Gasperini [62] finally computed explicitly a Lie-isotopic generalization of the
Schwarzschild metric for the case of Nielsen-Picek parametrization (3.441)
of local Lorentz “noninvariance”. It should be stressed from the outset that
the isotopic metric provided below is not an ezact solutions of Eq.s (3.433),
but it provides a solution only on a first approximation.

Nevertheless, the emerging model naturally applies to the interior of the
neutron star of the preceding sections. As one can see, the findings are sig-
nificant to illustrate the profound physical implications of the Lie-isotopic
generalization of Einstein’s Gravitation, e.g., for the problem of black holes.
The reader should be aware that similar results are obtained via any the-
_ory capable of representing the local nonconservation of angular momen-
tum and other quantities in the interior problem. To put it differently, the
Schwarzschild metric is a by-product of the perpetual motion approxima-
tion in the interior problem implied by Einstein’s Gravitation. If physical
reality is admitted and quantitatively represented, say, for the vortices in
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Jupiter’s atmosphere with a varying angular momentum, a departure from
Scwarzschild metric is unavoidable. A-suitable revision of the conventional
notions of “singularities” and “black” (or “brown”) holes is then expected.
The usual procedure to obtain a static and spherically symmetric solu-
tion of the gravitational equations is to introduce spherical polar coordinates
{r,0,¢}, so that the proper-time interval can be written in the “standard

form”
ds? = —e”dt? + e*dr? + r3(d6? + sin® 4d?), (3.481)

where v and A are functions only of r (notice that a static and isotopic metric
like (3.481) can be a solution of the isotopic equations (3.447) because, using
the metric of Nielsen and Picek as the metric of the local Santilli space, we
are considering a deviation from the conventional Lorentz invariance which
is still rotationally invariant).

The explicit computation of the Christoffel symbols and of the curvature
tensor for the metric (3.481) shows that R, = 0if a # B, that R,? = R33,
and that the only nonvanishing components of R4,*? are

Ry*" = R4‘+lﬂ,-e"\
rdr '’
a2 _ a__ldv
Rﬂ = R43 = 2r dre . (3.482)

In this case the isotopic equations (3.447) are reduced to only three inde-
pendent equations: '

1Py, Lo L(dn)? 1dvdvdh
2dr3 " rdr " 4\dr) " adrdrdr
Iy L)' 1D Ldvd_ 2ads
2dr? " 4 \dr rdr  4drdr~  3rdr’
dv d) a dv
=2 e[ _22 ] = =2
Pl (@ D) a0
By subtracting (3.483b) from (3.483a) and integrating, we get
v(1-3a)+A =4, (3.484)
where § is an integration constant; Eq. (3.483c) gives then
re’-32)-8 =+ | const. (3.485)

258



Using Eqs. (3.466), the radial equation (3.456) can be rewritten

% (@ - 2mu)a2u?(hu) ¥

+ h’u’(hu)‘a‘? -
= a {(l - ‘2mu)"i-i(h2u")

+335),

k(1 - 2mu)(”'§°)}

(3.467)

where 4 = r~! and a prime denotes derivatives with respect to ¢. Notice

that a circular orbit of constant radius, u’ = 0, is still a possible solution of

the isotopic equation (3.467). Supposing v’ # 0 the equation of the orbit
becomes, to first order in a,

o"(hu)e - %au" + y‘(hu)xi"'(l — 2mu)

+ gaunu" + mu?(hu)¥'e(1 - 2mu)-?

."_'"(1 + 3;)(1 — 2mu)~(+3e) (3.468)

An approximate solution of this equation can be obtained by using an iter-
ative procedure (as in general relativity), putting

© . Q)

uNU 4 u (3.469)

where ‘8’ is the unperturbed Newtonian solution, obtained putting a = 0 and
neglecting the relativistic contributions. We suppose then that the isotopic

. (0
corrective terms, of order @ u, are not larger than the terms representing

general relativistic corrections (~ m uz) due to the curvature of the world

manifold, and that both contributions are included in (1!1).
Putting the a = 0, from Eq.s (3.467) we have

O\ ! (0) (0)
(1 2m u) h2 u? +h2 u?
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gy (1 2m ‘8’) = -1, (3.470)
and Eq. (3.468) for ¥ is reduced to
| ©® © m
u'+u -7 =0 (3.471)
The well-known Newtonian solution
)
u= —'[1 + e cos(p — o)) (3.472)

represents an ellipse with eccentricity e, semimajor axis a, and semilatus
rectum L related by
hz

L=a(l-¢%)= p (3.473)

To first order in a, neglecting terms of order higher than

0 a (o)

@ U~ 7 an and m v~ — (3.474)

JA
we have, from (3.468) and (3.469), the following equation for (1‘1):

@ © 4 ©_, m
+ u ~3m u? +3 —2ah2
8 WO 16 m

)
+ 3auu +3a;‘—21n(h ) 0.

(3.475)
Using now the explicit expression (3.472) for (3), we can expand the last two
terms for orbits with small eccentricity, neglecting terms of order ¢? and
higher. We can also neglect the terms representing constant corrections, as
they do not produce observable effects, keeping only those corrections whose
contibution increases continuously at each revolution. Equation (3.475) is -
reduced then to

W, w_ [6md
v+ u= ( ?ahz) ecos(p ~ ) (3.476)
and the solution is
(1) m? m
u= (37'-2- - l,ﬂa) me sin(p — @) A(3.47‘7)
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Integrating this conservation law over an isospacelike section (§3.4.11) of
the world tube of the test particle, performing a multipole expansion of
the gravitational field inside the particle according to Papapetrou’s method
[125), multiplying by dt/ds, and using Eq.s (3.460), one gets, in first approx-
imation

% / B2’ /=g[0¥9(1 - -ga) + §ae(“)a4~]

+T va“% / dax"/__—ge(qv) =0. (3'462)
Finally, defining
moutu’ = % / Bz’ /“go), (3.463)

where my is the mass, and u* = dz* /ds is the four-velocity of the test body,

we obtain the following equations of motion, for a Lie-isotopic theory of
gravity in which the deviation from the Lorentz symmetry is paramtrized
by the metric of Nielsen and Picek

4 d¥z¢ 4 d3z4 dz¥ dz*

(1-30)gm +300 Gr + T o m =0 (3464)

In the limit « — 0, we recover the usual geodesic equation, as expected.

The above example of equations of motion is important to illustrate
another aspect of the generalized theory, the local deviation from geodesic
motion in the interior problem (only), which is the crucial condition for the
representation of local internal deviations from conservative conditions, and
interior trajectories of perpetual-motion type.

The example also illustrates the “No No-Interaction Theorem” of Sect.
3.4.15. In fact, for a # 0, trajectory (3.464) cannot be reduced to a geodesic
motion. As a result, the test particle under consideration is experiencing a
nowhere reducible, nontrivial interaction.

As a final comment, the reader should be aware that Eq.s (3.464) have
primarily local meaning, that is, they provide a first approximation of the
motion of the test particle in the neighborhood of a given point of isospace
M.

3.5.168 An Example of Isotopically Lifted Orbital Motion for the
Interior Problem

Gasperini [62] continued his example with the explicit calculation of the
modification to orbital trajectories caused by isotopy, again, for the case of
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Nielsen-Picek parametrization of local Lorentz “noninvariance”. We review
this additional development below because of its practical value for explicit
calculations regarding the interior problem.

The reader should be aware that Gasperini presented the isotopy of
orbital trajectories for the ezterior problem [62]. The objective was that
of ascertaining possible upper limits to Nielsen-Picek Lorentz-asymmetry
parameter a that could be established by the precession of the perihelium
Mercury.

Following Santilli’s analysis [58}, such objective is no longer realizable,
even though the orbital equations reviewed below' remain valuable for the
interior problem only. '

To put it differently, the Gasperini-Santilli Gravitation as per Eq.s (3.433)
recovers the conventional Riemannian geometry in the exterior problem and,
thus, admits conventional orbital motion in the exterior problem.

Using spherical polar coordinates, and inserting the Christoffel symbols
corresponding to the metric (3.441) the isotopic equations of motion (3.464)
for 22 = 0 are satisfied by assuming that the orbit is confined to the equa-
torial plane (as in general relativity), so we can put everywhere 8 = 1/2 =
const. The remaining equations for 2! = r,z3 = ¢, and z* = ¢ become then

(1- %a)? + %:—;\i” - re~Ap?
ldv v=2;2 _ -
g V=0

4 .. 2.,
(1 = 5“)?"' ';”P = 0,
i+di=0 (3.465)

where a dot now denotes derivative with respect to s.
The last two equations can be easily integrated, and we obtain

ra(ljr-ga)gb = hl+§a'

ei = &k, (3.466)
where h and k are two integration constants. Notice that Kepler’s second law
is modified, as the areal velocity is no longer constant but becomes a function
of the radial coordinate, r?¢ o r~%/3 (if a # 0); this is a consequence of
the generalized angular momentum conservation law of the isotopic theory.
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maximal possible speed of causal signals. These questions are answered by
Santilli's Special Relativity (§3.4). The reader should recall that the value
of the fourth component of metric (3.441) is greater than the speed of light
in vacuum, j** = co(1 + @) > co,cp0 = 1,a > 0. Nevertheless, 7}** is not the
invariant of the theory, which is given instead by the maximal speed of causal
signals (§3.4.9), and this speed, for the model of neutron star considered,
results to be greater than co (see Appendix B for more details).

The reader should be aware that the above results, are not peculiar for
the Nielsen-Picek metric, because any modification of the Minkowski metric
necessarily implies a change in the maximal speed of causal signals [14],(58].

In summary, the example illustrates that the Gasperini-Santilli gravi-
tation ezhibits deviations in the tangent space of the interior problem from
Einstein’s Special Relativity, but the Lorentz symmetry remains ezact. In
turn, this occurrence is important for the formulation of experiments, as
suggested in the closing Section 3.5.18.

3.5.15 An Example of Isotopic Equations of Motion

Gasperini [62] continued the example reviewed in the prededing section
by working out explicitly the isotopic equations of motion for the case of
Nielsen-Picek metric (3.441) on Santilli’s space M;. We reproduce the ex-
ample below because of its value for interior problems, such as its direct
applicability to the neutron star of the preceding section.

As stressed earlier the equations of motion for a test particle in a given
external Lie-isotopic gravitational field are to be obtained by integrating the
conservation laws of the energy and angular momentum. This follows from
the field equations and the Bianchi identities of the Lie-isotopic theory.

By taking the covariant exterior derivative of the isotopic equations
(3.434), we obtain the isotopic Bianchi identities

Vit‘ U= fl‘b AT
vR* = 0. (3.454)

Using these relations, the exterior covariant derivative of the field equations
(3.434) and (3.435) gives the conservation laws of the isotopic theory, for
the energy-momentum :

vO4= giz" A Reqpeq (3.455)
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and for the angular momentum

. .
ER“k AT* AT copea =0 (3.456)

where the symbol “Elm” has been dropped for simplicity. To first order in
a, the torsion is vanishing, R® = 0, the connection is Riemannian, and con-
dition (3.455) is reduced simply to 768¢ = 0, which, introducing holonomic

indices, can be rewritten as

A,0% =% =0 (3.457)

where a semicolon denotes the covariant derivative performed with the Chrisof-
fel symbols.

The second isotopic equation of conservation (3.456) provides informa-
tions on the antisymmetric part of the canonical stress tensor. In fact, Eqs.
(3.456) and (3.434) imply

O°AT' -6'AT* =0,  (3.458)
and can be rewritten in the tensor language as
" — 0" = 0"r,* - 64%1,". (3.459)

Expanding ©*" in power series in the parameter a, and using the explicit
form of 7,, one obtains, to first order in a

ol 4 ebwl’
i;.le(“)g‘u — eliulg]

o =
ekl = (3.460)
where round and square brackets denote respectively symmetrization and
antisymmetrization.

Therefore, the isotopic conservation equations are different from the cor-
responding general relativistic one because, in the isotopic theory, the canon-
ical energy-momentum is no longer a symmetric tensor, even in the case of
spinless matter. . -

Using the properties of the Christoffel connection, Eq.s (3.457) become

o (‘/__ge(l‘”)) I ‘/__ge(av)

+9, (v=g6) = 0. (3.461)
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evaluates the isotopic corrections to the usual Einstein theory to the first
order in a.
In this approximation we have
T =~

. a a
d"‘(l‘s’l 5! s"(”i))

1

= Tlab = ZXeb (3.445)
The vacuum field equations (3.376), neglecting a? terms, and putting ¢ ~ 1
and 745 = 1x4s, become

Gt = -2-R.°x —-Rc‘fo. + -R.,, Xd (3.446)
from which, using the explicit expression (3.442) for x,s, we have again to
first order in a,

a
Gas = 3(Re“bs - R%5caniat + Reasad™) (3.447)

Notice the explicit breaking of the‘ conventional Lorentz ﬁymmetry, corre-
sponding to the contraction of the curvature with the Kronecker tensor 43,
instead of that with the Minkowski metric 7,).

Notice also the reconstruction of the exact Lorentz symmetry at the
Lie-isotopic level because metric (3.441) verifies conditions (3.433d).

Other isotopic corrections to Einstein’s equations are due to the non-
Riemannian part of the connection, contained implicitly in the curvature
terms. The first order contribution to the torsion can be obtained from Eq.s
(3.366), puttiong  ~ 1 and 74 = Xas/2: ‘

1. . 1 . 1 .
Qs = §[Cu'x.°¢ + E'Ybo'Xci - 5‘7«'){6&]

where 7,4 is the Riemannian part of the connection, defined in Eq. (3.368).
Using Eq. (3.367), one obtains the isotopic connection to the first order in
(43 .

Wach = Tach + Kach (3.449)
where
Koy = %hu"&n' — Teb'bai + YTba'bci
—Yea' 6] (3.450)
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(3.448)

Again the presence of the Kronecker symbol denotes the deviation from the
conventional Lorentz symmetry. Notice that in this particular case the non-
Riemannian part of the connection is nonvanishing only if at least one of the
indices of Kap. is equal to four, otherwise Kgu. = 0 because of the metricity
of the Riemannian connection, Yjce = —7bac-

Finally, using the definition of curvature (3.351) applied to the connec-
tion (3.349) one finds, to the first order in a,

R“vcb = R‘wub + 8(‘, Kv]d + 8|y“ v]cb
+Kp, v y (3.451)

where R,,® denotes the usual curvature tensor for the Riemannian part
of the connection. By using contraction to obtain the Ricci tensor and the
scalar curvature, one gets

G°5+a[ Kc)bc _ la[ Kﬂcdaab _
K28 + 15 K g + Ky

ng =

- (3.452)
Combining Eq.s (3.447) and (3.452) we have the explicit expression for the
first order isotopic corrections to Einstein’s field equations G4 = 0:

1
G = B+ hKa“t

+7[|"' Kj]c Nad — Yald KCI = K[clb 7c]|

+3(Ra6s — R6cius + Resas™) (3.453)
where the contorsion K is given by Eq.s (3.450).

Note that the considered neutron star has a discontinuous transition from
the interior to the exterior problem, as far as matter density is concerned.
A step funciton is in this case appropriate for the realization of condition
(3.433c).

The above example is useful to illustrate the local symmetry of the the-
ory. In fact, the conventional, local Lorentz symmetry is manifestly broken.
But metric (3.441) preserves the topological character of the Minkowski
metric, thus verifying Theorem 3.5 and conditions (3.433¢c). The Lorentz
symmetry therefore remains exact.

The next issue illustrated by the above model is the dynamics of the
tangent isospace Mj, that is, which is the local invariant, and what is the
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vides no numerical alteration of the results achieved by Einstein’s Gravita-
tion, trivially, because of the identification 85 = M,,, + tEl™. Also, when
seen from the outside, the Gasperini- Santilli gravitation coincides with the
conventional one because of the subsidiary constraints (3.433e). As a mat-
ter of fact, the restriciton of the isotopy to the interior problem, and the
conventional total conservation laws as subsidiary constraints are imposed
[58] precisely for the purpose of avoiding any quantitative differentiation in
the exterior problem between the isotopically lifted and the conventional
theory. As a result, we know of no criticism that can be moved against the
Gasperini-Santilli ezterior problem unless exactly the same criticism applies
also to the conventional theory (see Yilmaz's criticisms of Section 3.5.4).

In closing, we would like to mention the fact that the Gasperini-Santilli
Gravitation is a genuine covering of Einstein’s Gravitation in the sense of
ref. [1), that is :

a) The generalized theory is constructed via mathematical meth-
ods (Lie- isotopy) more gene:al than those of the conventional
theory;

b)  The generalized theory describes physical conditions (con-
tact nonhamiltonian interactions) more general than those of the
conventional theory; and

c) The generalized theory admits the conventional one as a
particular case when all isotopic elements are everywhere equal
to the identity.

The authors would be grateful to any colleagues bringing to their atten-
tion (at the address of the Institute for Basic Research, 96 Prescott Street,
Cambridge, MA 02138 USA) any information, whether in favor or against,
related to the theory of gravitation here considered.

conventional theory; and

c) The generalized theory admits the conventional one as a
particular case when all isotopic elements are everywhere equal
to the identity.

The authors would be grateful to any colleagues bringing to their atten-
tion (at the address of the Institute for Basic Research, 96 Prescott Street,
Cambridge, MA 02138 USA) any information, whether in favor or against,
related to the theory of gravitation here considered.
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3.5.14 An Example of Isotopic Interior Problem

We now consider, as an example, a neutron star which, for simplicity, is as-
sumed to be spherical; homogeneous and isotropic. In his original proposal
[60], Gasperini worked out an example of the isotopically lifted gravity which
is directly applicable to the interior problem of such a neutron star. For sim-
plicity, we shall ignore herinafter the source term and restrict our attention
to the pure contribution from the isotopy. Its generalization to include the
source term was worked out by Gasperini in the subsequent paper [62)].

A very simple parametrizaton of Lorentz “non-invariance” formulations
has been suggested by Nielsen and Picek [70] in terms of the following gen-
eralized metric tensor (§3.4.3)

i =0t -xtheM (3.441)

Under the assumed rotational invariance, x, is 2 symmetric traceless tensor,
defined in terms of only one constant parameter a

3

Xab = _‘diag (ly1s113)=
= %(%b+25.5) '

(3.442)

If the metric (3.441) is interpreted as the metric of Santilli’s isospace My
(for a different interpretation see however ref [75]), one can formulate a Lie-

~ isotopic theory of gravity based on this metric, by‘introducing the isotopic

element
T,b = diag (\/1 ‘F ‘/1 1 +a) (3.443)
for which
PTATS = disg (1 ~21-21-2 a))
R — (3.444)

The underlying assumption is that the neutron star has the same den-
sity and interior problem, say, of kaons. The gravitational field is however-
modified, as we can see explicitly by considering the vacuum field equations
of the isotopic theory.

Suppose that the deviations from the Lorentz symmetry are very small,
i.e. @ < 1 (in ref. [70] the value a < 10~3 has been obtained from experi-
mental data relative to the charged pion and kaon decays). Gasperini then
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and/or in the density of the interior medium; the Lorentz-isotopic symmetry
transformations for the related tangent space should be explicitly computed
via the techniques of Section 3.4; the verification of conventional total con-
servation laws should be explicitly proven; and the covering nature of the
gravitaitonal model over the corresponding relativistic and Newtonian mod-
els should be studied as an important element for completing the classical
study of closed nonselfadjoint systems.

An important point in the explicit construction of a model of gravitation
(3.433) is that Santilli’s electromagnetic tensor for the case of the interior
problem is not the conventional one of Maxwell theory on curved spaces
[129], but requires a construction-on an 1sotopxcally lifted space along Nish-
ioka lines [127].

The possible existence of a (noncanonical) Birkhoffian representation of
the interior problem should also be investigated because of the possibility of
allowing an unambiguous “hadronization” into an operator form on Hilbert
spaces, along the lines of Section 1.3, Eq (1.58) and following.

In turn, the existence of a consistent “hadronization” could allow the

identification of the possible short range contributions to the “origin” of the
gravitational field, i.e. those of weak, nuclear and strong character.

Another problem that remains open is the resolution of the issue of
“unification” of the gravitational and electromagnetic fields, as attempted
in most of the literature, versus the “identification” of the gravitational and
electromagnetic fields advocated by Santilli (§3.5.3).

- A further problem that remains open is the study whether the Gasperini-
Santilli Gravitation is capable of resolving Yilmaz’s criticisms of the con-
ventional theory (§3.5.4), by keeping in mind that Yilmaz’s stress-energy
tensor is readily admitted under isotopy for the interior problem, while the
exterior field equations do exhibit a tensor which, even though it is not a
stress-energy tensor, it is nevertheless a source tensor.

Despite the existence of these open (and rather intriguing) problems, we
are unaware of any experimental, phenomenological or other information
that may disprove the Gasperini-Santilli Gravitation. This is evidently due
to the fact that all classical information accumulated during this century
on gravitation is strictly related to the exterior problem and certainly not
applicable, say, in the interior of a star. We therefore know of no criticism
that can be moved against the Gasperini-Santilli interior gravitation. As a
matter of fact, all available information favors the generalized relativity over
the conventional one. We are referring, classically, to the incontrovertible ex-
perimental evidence of local interior departures from the conventional rota-
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tional and Lorentz symmetries, versus the perpetual-motion approximation
implied by the conventional theory. At the microscopic level, all available
phenomenological information also favors a departure from the Minkowski
metric in the interior of hadrons, as reviewed in Section 3.4.3. Needless to
say, all this information is merely preliminary. The final resolution of the
issue is evidently of experimental nature, and will occur only after the con-
duction of the fundamental tests of space-time symmetries recommended in
Section 3.5.18 (see Fig.6).
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FIGURE 18. A reproduction of Figure 6.1 page 250 of monograph [20]
(see also the more general Figure 1, page xvii of monograph (21]) express-
ing Santilli’s view of the lack of existence of terminal physical theories. In
fact, starting from conventional relativities, the figure includes the general-
ized relativities reviewed in this work, and indicates the yet more general
relativites that are already conceivable at this time, although not technically
realizable because of insufficient mathematical formulations (e.g., insufficient
‘topologies).

As far as the exterior problem is concerned, the generalized theory pro-

246



is the Riemann curvature tensor;

(3.49

1
ruva = Egaﬁ(avgvﬁ + avyuﬁ — dpgw)

are the Christoffel symbols; R,” = R,."",R = R,.“ﬁ

GoP = Ra® — 26.°R (3.999)
_ 2
is Einstein’s tensor; and finally, 7,” is the traceless part of the tensor T,°.
The Gasperini-Santilli field equations for the ezterior problem are given
by
Gap = 05" (3.448)

To avoid possible misrepresentations of the above equations, the reader
should recall that, in the conventional theory for the exterior problem, the
matter tensor M, is null, and all sources resulting from nonull total values
of the charge and of the magnetic moments are represented via an additional
tensor tE‘;‘. In Santilli identification of the gravitational and electromagnetic
field, Map' = OE", such an additional tensor is redundant because the
contributions tf}}" are automatically produced by the contributions of each
individual charged consituent of the body considered. ,

It is easy to see that the Gasperini-Santilli Gravitation does indeed verify
most of the conditions set forth in Section 3.5.5, with the understanding that
considerable additional research remains to be done.

To begin, the background (empty) space remains homogeneous and isotropic,

as represented by the local Minkowski metric n of Eq.s (3.433d). Neverthe-
less, the geometry of the interior problem is generally inhomogeneous and
anisotropic, as represented by the metric 1j of the tangent isospace Mj;.

The theory is, in the interior problem, essentially noninvariant under
local, conventional, Lorentz transformations. This is a necessary condition
to represent local variations from conventional conservation laws (in a way
compatible with the total conservation laws) and avoid perpetual-motion ap-
proximations. Nevertheless, the theory is invariant under the local, Lorentz-
isotopic symmetry (§3.4). Furthermore, under condition (3.433d), this sym-
metry results to be isomorphic to the conventional one.

In the transition to the exterior problem, condition (3.433c) ensures the
recovering of the conventional Riemannian geometry with a conventional,

local, Lorentz symmetry.
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However, unlike Einstein’s Gravitation, the Gasperini-Santilli theory ex-
hibits in the exterior problem a nowhere null source tensor of the gravi-
tational field, thus allowing the compatibility of the gravitational theory
with the charged structure of matter. Gravitation is then nowhere reducible
to pure geometry, but it is generated, in a classical approximation, by the
contributions of all charged constituents of matter.

Finally, the conventional conservation laws (see, e.g., ref. [129], Section
1V-20) are imposed as subsidiary constraints in order to achieve a gravita-
tional counterpart of the notion of closed nonhamiltonian systems, which
we have already encountered at the Newtonian (§3.3) and relativistic (§3.4)
levels. As the reader will recall, conventional total conservation laws are
imposed as subsidiary constraints in all these systems.

The reader should also recall that, at the Newtonian and relativistic lev-
els, the systems considered admit algebraic solutions, that is, the number of
constraints represented by total conservation laws results to be less in num-
ber than the total number of internal nonselfadjoint forces (for N > 3). The
systems therefore admit particular cases in which total conservation laws are
automatically satisfied without being bona-fide subsidiary constraints (see,
Eq.s (3.96) and following comments). As expected, exactly the same situa-
tion occurs at the gravitational level, e.g., because the number of subsidiary
constraints for total conservation laws is less than the number of isotopic
elements.

We therefore expect the existence of explicit models of the Gasperini-
Santilli Gravitation in which the conventional total conservation laws are
automatically verified without being genuine subsidiary constraints to the
isotopic action (3.433a). Nevertheless, in general, Eq.s (3.433¢) are indeed
bona-fide subsidiary constraints to action (3.433a), exactly as it happens at
the Newtonian and relativistic levels.

In this way, the Gasperini-Santilli Gravitation verifies most of the condi-
tions 1-9 of an “ideal” gravitational theory introduced in Section 3.5.5, with
the understanding that so much remains to be investigated.

An explicit example verifying all conditions (3.433) is presented in the
subsequent sections via a small constant deformation of the Minkowski met-
ric in the interior problem. ‘

Without any claim of completeness, we point out below the following
open problems.

The explicit construction of a general example verifying all conditions
(3.431) is recommended. In particular: the example should exhibit a non-
trivial functional dependence of the isotopic elements at least in the velocities
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equations defining the torsion R® and the curvature R®. The simplest
action, including matter sources minimally coupled to gravity, can be written
as

S= /(i-R“ AVEA Ve %e, AV, (3.432)
" where O, is the canonical energy-momentum three-form, whose exp{lcqft ex-
pression, in terms of the canonical energy-momentum tensor 0%, is

0° = 0%¢,,,pdz’ A dz° A dz’? (3.439)
and e,,qp is the totally antisymmetric symbol.

As reviewed earlier, a Lie-isotopic theory of gravity can be formulated
by introducing a generalized frame T® = V*T;® where T, is an isotopic op-
erator which defines the lifting of the vierbein field. The structure equations
are then '

R* = dT* +u0* AT*

R® = dw* 4wt Au. (3.434)
In this way, one is led to the following Lie-isotopic action without source
= % / R® AT A Teqpea- (3.438)

The geometric and algebraic structure of general relativity is preserved;
ho:v‘ever, the gravitational gauge fields are T* and w*®, instead of V* and
w*. ,

It seems therefore natural, in the framework of such Lie-isotopic grav-
itational theory, to introduce matter according to the formal prescription
(3.390) supposing that the canonical stress tensor O, is minimally coupled
not to V%, but to the generalized isotopic frames T*.

The Gasperini [60],[62]-Santilli [58],{100] Gravitation can then be de-
fined by the following equations

5= (TR AT AT - %ef‘m AT®) (3.438)

T.b = X (&,p,T,...)
T} =0

>R

ﬁob = ch‘Td. = Diag (bg,bg’ b:zh _bz)» ba >0
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95’;‘ =0

where: Eq. (3.433a) is Gasperini’s [60] isotopic action with Santilli’s [100]
hypothesis on the electromagnetic origin of the gravitational field, of course,
in this first classical approximation; the second and third equations repre-
sent the assumed functional dependence of the isotopic elements and their
restriction to the interior problem only [58]; Eq.s (3.433d) represents the
restriction of admissible metrics for the tangent isospace to be topologically
equivalent to the Minkowski metric, so as to preserve the exact character of
the Lorentz symmetry; and Eq.s (3.433¢) represent the conventional conser-
vation laws as subsidiary constraints to isotopic action (3.433a). Note that
the condition of topological equivalence, Eq.s (3.433d) implies the validity
of all topological properties of the Lie-isotopic theory, such as the sufficient
smoothness of functional dependence (3.433b) or the invertibility of the el-
ements T,°.

The variation of action (3.433a) with respect to T* gives the isotopic
generalization of Einstein’s field equations '

(3.43%)

Note that the same equation can be obtained also by using the definition

1-
SR A Toeppa = %esﬂm

T = V*T}® and performing the variation with respect to V', because T,

is invertible.
The variation with respect to the connection w®® (supposing that we are

- considering unpolarized macroscopic matter, i.e. that w® is not explicitly

contained in the matter part of the action) gives the isotopic generalization
of the usual torsion equations

1.
=R* A TP¢qp0q = 0.

3 (3.438)

In order to obtain a solution of the field equations for the interior problem
it is convenient to rewrite the isotopic equations (3.433) in the usual tensor

. language, introducing explicitly holonomic indices. Using the decomposition

T =V + 7 for the isotopic frames, Eq.s (3.434) yield the Gasperini- Santilli
field equations for the interior problem

Go® = 059™ + Go¥ 1P — Ry, %6.° + RPr” + Rua*Pr,*,  (3.438)
where:

(3.48)

Rﬁuap = Gvrvap _&ruaﬁ + rppprva’ - I‘vpﬂruap
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In this generalized geometrical framework gravitation can be interpreted
as a deviation of the world manifold from Santilli’s tangent isospace My;;.
This allows Gasperini [59},(60] to reach the following, important, additional
result '

ISOTOPIC PRINCIPLE OF EQUIVALENCE: Gravitational ef-
fects may locally disappear when the melric of the space-time
manifold approaches the metric of the tangent, Santilli’s isospace

My, i.e. for
- )

In fact, it can be seen from Eq.s (3.347), that the isotopic connection &

can be locally eliminated by putting V,; = §3. A free falling observer in flat -

spaces defined by V;? = §; will no longer represent an inertial frame for the
Lie-isotopic theory. In this system, force fields are the physical manifestation
of the Lorentz-isotopic symmetry (see the deviation from geodesic motion of
3.5.10). Also, the deviation of the isotopic metric #) from the conventional
Minkowski metric 7 is a measure of the “breaking” of the (conventional)
Lorentz symmetry.

To understand the generalized theory of gravitation we are here formu-
lating (see below for a more accurate definition), the reader should think of
a test particle that begins its motion in the ezterior problem. In this case
motion occurs in empty space, and the metric of the tangent space is the

conventional Minkowski metric. The geometry for the exterior problem is

then the conventional one, but the field equations are not expected to be
Einstein’s Eq.s (3.320) because of the lack of electromagnetic source (Section
3.5.3). ‘ '

Suppose now that the same test particle moves into the interior problem
(say, Jupiter’s upper atmosphere). Then the particle experiences velocity-
dependent, contact forces which imply a necessary deviation from the con-
ventional Minkowski metric of the tangent space. The Lie-isotopic general-
ization of Einstein’s Gravitation is then activated. The new physical features
(the generally inhomogeneous and anisotropic character of the medium, the
velocity- dependence of the forces, etc.) are represented precisely by gener-
alized action functional (3.370). »

As far as the local symmetry of the tangent space is concerned, the
contact interactions of the interior problem do genefate a deformation of the
Minkowski metric, but the deformation is not such to alter the topological
character of the original Minkowski metric, in the sense that the topological
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structure Diag (1,1,1, -1) cannot be deformed into an inequivalent topology,
say, of the type (1,1,-1,-1). As a result, the Lorentz symmetry remains exact
although at the covering isotopic level.

In closing, we would like to indicate that S. Weinberg [122] has proposed
a quasi-Riemannian theory of gravity with a tangent space symmetry other
than the Lorentz symmetry. It would be interesting to identify the possible
connections between Weinberg’s and Gasperini’s works.

Similarly, C. Wetterich [123] has proposed a vierbein of the type

g euel # 1 (3.446)
starting from a different physical motivation, within the context of multidi-
mensional, chiral, fermionic theories.

Also, Rosen [124] has formulated a bimetric theory in which one of the
two metrics describes gravitation, and the other describes a generally curved
background associated to a fundamental reference frame, a preferred rest
frame of the universe. The connections with the Lie-isotopic theory of grav-
itation are remarkable and deserving a study. In fact, the former metric
can describe gravitation in both theories,.and the second metric could be
associated, in the Lie-isotopic theory, with a priveleged reference frame at
rest with the medium in which motion of the interior problem occurs, as
suggested in ref. [1). Note that liftings (3.420) and (3.421) apply to both
metrics of Rosen’s Gravitation and that, under restriction (3.424), the exact
nature of the (abstract) Lorentz symmetry persists.

Studies directly related to the Lie-isotopic lifting of Einstein’s Gravita-
tion have been conducted by Nishioka [127,[128]. In the first paper, one
can find a Lie-isotopic formulation of Maxwell electromagnetism and a Lie-
isotopic formulation of Gravitational, electromagnetic and scalar fields. The
second paper deals with the connection of the Lie-isotopic lifting of the Rie-
mannian manifolds with the Lyra and Weyl Manifolds (see Appendix A).

L

3.5.13 Gasperini-Santilli Gravitation

We shall now summarize all the preceding results of this section and present
the essential aspects of Gasperini-Santilli General Relativity (or Gravitation,
for short). .

As now familiar, the conventional Einstein’s General Relativity can be
formulated as a gauge theory for the Poincaré group. The fundamental
variables of the theory are then the frames V°® and the connection w®®.
Using the algebra of the Poincaré generators, one obtains the usual structure
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bolically write

Flat theory Flat tangeat space *
Loreats symmetry 0(3.1) - Loreats ~ isotopic symmetry §(3.1)
Minkowski space M(z,1,R) . Santilll space Mryr(s,9,1RR)

(3.424)
where the generalized tangent space is assumed to be generally curved.

To review the above resuits from a different perspective, Santilli’s Lorent-
isotopy theory is first applicable to conventional gravitational theories, be-
cause it provides means for the explicit construction of the generalized trans-
formations leaving invariant the separation in a curved manifold. This result
is per se remarkable, because the explicit form of the symmetry transforma-
tions in gravitational theories is vastly unknown. Note that the theory of
Section 2 ensures the existence of finite, convergent power series expansions
(3.224) under the assumed topological conditions on the metric (nonsingu-
larity and sufficient smoothness). Nevertheless, this does not mean that the
resulting transformations have a simple form, because complex sums are
expected (including transcendental functions; see the examples of ref. [1]).

But all gravitational theories are two-metric theories, one metric for the
curved space and one metric for the tangent space. Whenever the tangent
space is a generalization of the Minkowski space, Santilli’s isotopy of the
Lorentz symmetry applies again, thus allowing the ¢onstruciton of the ex-
plicit symmetry transformations of the tangent space. Furthermore, the
techniqes show that, in this latter case, the deviations of the generalized
tangent metric from the conventional Minkowski one may only be apparent,
in the sense that the Lorentz symmetry can still be exact at the Lie-isotopic
level.

We now pass to the inspection of the Lie-isotopic generalization of Ein-
stein’s gravitation. First, the Lorentz-isotopic symmetry is applicable to the
curved space via lifting (3.420).

Second, Gasperini [60] identified the local Lorents-isotopic character of
" the theory (or, more accurately, constructed the generalized theory in such a

way to be locally Lorentz-isotopic). In fact, via the use of lifting (3.350) and .

vierbein (3.351), Gasperini obtains a generalized theory with the tangent
space characterized by the metric ’

77“ = vchoT ‘0

The Lie-isotopic character of the theory is then evident.
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(3.428)

Santilli [58] reinspected Gasperini’s results and introduced the restriction
of the isotopic metric i} to be topologically equivalent to the Minkowski metric,
and we shall symbollically write

'.' i Diag (bgs bg’bgv - (3'428)

The above restriction essentially ensures that the isotopic Lonentz symmetry
and the conventional one are isomorphic.

Restriction (3.423) is formulated for curved tangent spaces Mj;. Never- -
theless, flat tangent isospaces M; are generally sufficient for practical appli-
cations of the isotopic theory of gravity (see the examples later on in this
section). In this case, restriction (3.423) implies the equivalence of metric
(3.422) with the diagonal form (3.195), i.e.

1 = Diag (b],53, b3, ~5}),5 > 0 (3.429)

which is characterized by lifting (3.350) via the explicit form of I;.he isotopic
elements [60]

b3),62 > 0,p=1,2,3,4.

(Ta*) = Diag (51,52, b3,b4),b6 > 0 (3.428)

The local isomorphism of the Lorentz-isotopic and the conventional symme-
try is then ensured by Theorem 3.5. All the examples to be reviewed later
on are particular cases of isotopic elements (3.425).

In summary, the Lie-isotopic gravitation is a two-metric theory as it hap-
pens for all gravitational theories. The primary difference with conventional
theories is that the metric of the tangent space (for the interior problem
only) is generalized. However, this does not imply a breaking of the lo-
cal Lorentz symmetry, but its preservation as an exact symmetry, although
realized in its most general possible form.

Also, the two metrics are not independent, but rigidly related. In fact,
according to Eq.s (3.350) and (3.351), the tangent space metric (3.422) is
defined via the isotopic elements of the algebraic (Lorentz) isotopy which is
coupled nonminimally to the gravitational metric according to the rules [60]

(3.428)

In different terms, the Lie-isotopic lifting of Einstein’s gravitation pro-
duces a form of quasi-Riemannian gauge theory with a tangent space group
other than the Lorentz group (in conventional realization), and that group
results to be the Lie-isotopic Lorentz group.

i = V) = VTV TS
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More specifically, suppose that the celestial body considered has no at-
mosphere. Then, the transition from the interior to the exterior problem is
dxacontmuous and a step function is appropriate. Suppose instead, that the
body has an atmosphere with a density continuously going to zero with the
increase of r. A correspondingly smooth realization of conditions (3.419b)
is then needed. ' '

The equations of motion for isotopic elements (3.419) are expected to
be the same as those of Section 3.5.9. Nevertheless, specific studies to this
effect are absent at this moment, to our knowledge.

Santilli [58] finally suggested the use-of integrodifferential realizations of
the isotopic elements, as a way to represent more closely the nonlocal nature
of the contact interactions ezperienced by the test particle.

This yields an intriguing geometrical structure. Recall that all avail-
able geometries are essentailly local in character because the topology most
known until now is local in nature. A bona-fide generalization of a geometry
into a nonlocal/integrodifferential form therefore requires a generalization of
the background topology into a suitable nonlocal form, which has not yet
been accomplished by mathematicians in a final form applicable to physxcs,
to our best knowledge.

Santilli’s Lie-isotopic lifting appears to be able to bypass these topologi-
cal problems and yield a genuine, mathematically consistent nonlocal/integro-
differential geometry. The idea is so natural to “creap in unnoticed”. The

mechanism is essentially based in incorporating all nonlocal /integrodifferential

terms in the isotopic unit (or elements) of the theoty. But Lie’s theory leaves
such unit unaffected. Thus, conventional, local topologies can be used, while
the emerging geometrical context is intrinsically nonlocal.

As indicated in Section 3.5.5, if local realizations of the isotopic elements
are desired, one can obtain them via power series expansions in the velocities.
As a result, the velocity-dependence of the isotopic element is, in general,
arbitrary, and depends on the considered conditions at hand, including the
value of the speed itself. In fact, as now familiar in engineering (but equally
gso in physics), contact forces of test particles in Earth’s atmosphere (say,
rockets or satellites) may reach powers in the three-velocity as high as the
10-th.
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3.5.12 The Locally Lorentz-lsotopxc Character of the General-
ized Theory

We now review a central aspect of the Lie-isotopic generalization of Ein-
stein’s Gravitation, its local Lorentz-isotopic character identified by Gasperini
(60}, and its restriction to a form isomorphic to the Lorentz group by Santilli.
[58]. Animportant property of the isotopic theory of gravitation is therefore
that the local Lorentz symmetry, rather than being “violated” in the interior
problem, is instead realized in its most general possible form.

For clarity, let us recall the definition of Santilli’s spaces of the first, sec-
ond and third class My, M1, M1y (83.4.5). In essence, Miisa space with
null curvature equipped with isotopic metric (3.195) which is topologically
equivalent to the Minkowski metric; M;; is an isospace also with null cur-
vature, but the topological equivalence of the metric with the Minkowski
metric is generally lost; finally, My is a generally curved isospace. '

Recall also from Section 3.4.7 that the Lie-isotopic lifting of the Lorentz
symmetry is formulated for space Mm, although it evidently admits for-
mulations in the simpler spaces M", and M;. Of all these liftings, the
isomorphism of the Lie-isotopic Lorentz group with the conventional group
is ensured only for isospace M;.

The applications of these results to any theory of gravitation are at
least twofold [58]. First, as anticipated in Section 3.4.7, Santilli’s lifting
of the Lorentz symmetry provides means for the -explicit construction of
the generalized transformations leaving invariant the metric g of the curved
space. As the reader will recall, this is. achieved via the sole knowledge of
the new metric g and use of expansions (3.224).

This first step is applicable to any theory of gravitation, (whether Lie-
isotopic or not, and Riemanniaa or not) and we shall symbolically write

Flat theory Cumdv ‘
gravitational theory
( m" Symmetry 0(3. 1) ) - Lorentz — = isotopic symmetry §(3.1)
owski space M(z,n,R) Santilli space Mm(z.y.R)

(3.429)

Secondly, the lifting is applicable to the tangent space of any general-
ized gravitational theory (Lie-isotopic, Riemannian-cartan, affine, etc.), in
which the local symmetry of the tangent space is no longer the conventional
Lorentz symmetry. Again, the methods provide the means for the explicit
construction of the generalized symmetry transformations in their explicit
form, via the sole knowledge of the generalized metric 7} and we shall sym-
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Another very simple, but interesting, lifting in terms of a not constant iso-
topic element is obtained starting again with the form (3.345) of the isotopic
operator, and putting

Tab = o5,

where ¢ is a scalar field, ¢ = (z)

Following the same procedure as before, we obtaln again Eq.(3.411).
This time, however, the last term of the isotopic torsion is not vanishing,
and we have a theory with a new algebraic structure, different from general
reltivity. In particular, V® = @V*® and the isotopic torsion (3.410) becomes

explicitly R
R =dpAV® 4+ oR®* + p*p A V® (3.414)

where R® + 7V* is the usual torsion two form relative to the standard
frame V*. In this case the choice of a standard gravitational action (3.344)
is no longer justified, as the underlying geometrical structure is changed,

- and the problem of finding an appropriate action to formulate a conslstent
Lie-isotopic theory in this case is presently open.

Santilli [58] reinspected the above findings by Gasperini and pointed out
that the isotopic elements T,® represent the deviations from the conventional,
local Minkowski space caused by motion of a test particle within the physical
medium of the interior problem. As a consequence, the functional depen-
dence of the elements T,? is expected to be, in general, not only the local
coordinates z of the test particle, but also the velocities #, density u of the
interior medium, temperature T, and any other needed physical quantity,

i.e.
T} = T.X(z,2,p,T,...) (3.416)

In particular, the dependence on the local coordinates could be indirect, e.g.,
via a dependence of the density and temperature on the distance r from the
center of the system, i.e.,

Tﬂ‘ = Tﬁb(ia l‘(z)o T(z)’ "')

but without a direct dependence on z.

In different terms, the most important functional dependence of the
isotopic elements is in the velocities because, when a particle is at rest
with respect to the interior medium, the contact nonhamiltonian forces are
null: The second dominant functional dependence is on the density because,
again, when such density is null, the contact nonhamiltonian forces are also

(3.418)

(3.416)
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null. Santilli’s therefore suggested the following form of the isotopic elements

(1Y) = diag (fi, fas S5 f2)
‘ fc = fa(i'l‘vT)oavb =1,2,3,4 (342‘)

where the local dependence of the density and temperature on the distance
r from the center is ignored for first, local approximations.

The important aspect is that elements (3.417) commute with all gen-
erators of the Poincaré algebra, by therefore putting the foundations for
regaining the exact (but isotopic),local, Poincaré symmetry, as we shall see
better in the next section.

Once the isotopic elements are interpreted as representing the deviations
caused by the interior physical media from the dynamics of the exterior
problem, it then follows, as a consequence, that they must reduce to the
identity in the exterior problem itself. This leads to the subsidiary constraint

. (or conditions) imposed by Santilli [58] on all Lie-isotopic generalization of

Einstein’s Gravitation
ch"r>R = 6lb (3.4‘3

where R is the radius of the sphere of the interior problem, and r = | 7 | is
the distance of the considered local point from the center.

As now familiar from the work by Gasperini [60), when T, = §,% the con-
ventional gravitational theory is recovered in its entirety. In-this way Santilli
ensures the existence of a generalized geometry for the interior problem of
gravitation, while ensuring the preservation of conventional geometries for
the exterior problem, exactly along the preceding occurences at the Newton-
jan (§3.3) and relativistic (§3.4) levels.

It should be stressed, however, that, even though the geometry for the
exterior problem is the conventional one, the field equations are expected to
be different than those by Einsteins, Eq.s (3.320), because of their source-
less character which is incompatible with the charged structure of matter
(§3.5.3).

In summary, we shall hereon assume the followmg realization of the iso-
topic elements

(Tab) = Diag (fhfhf& f4)’ fa= fa(irl‘sT)
b 3.449)
where the second conditions can be verified either with a discontinuous func-
tion (say, a step function) or with a smooth functional behaviour, depending
on the physical conditions at hand.

>R = 6‘
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where, to first order in T,
dt
F* = x/d’z\/—gﬁ“ =
_2d — a3 2 l‘}ﬂ/ (av)
= da/d"zy/ gA +4{ua 5 & x /=gA™) (3.400)

is the isotopic 4-force acting on a spinless test particle.

Notice that in global flat space (g, = 7,, everywhere) this force is
vanishing. However, it cannot be locally eliminated, because of the curvature
dependent terms contained in A*4 appearing in the first integral; F* is then
similar, in this respect, to the spin-curvature forces [125],[126] which break
the validity of the equivalence principle in its strong form.

As pointed out by Santilli [58), Eq.s (3.406) are the gravitational ex-
tensions of the Lorentz-isotopic dynamics, Eq.s (3.305a). The gravitational
formulation of closed nonselfadjoint systems of N particles each moving
within a medium composed by the remaining particles is then characterized
by [58]

{ B+ (L)t = Ry £=120 ot
. w =

where one recognizes the conventional total oonsemtlon la.wu (see, e.g., ref.
[129]) as subsidiary constraints.

Also, Eq.s (3.406) cleary establish the No No-interaction Theorem of
Section 3.4.14, trivially, because the nongeodesic forces cannot be eliminated
in a Lie- isotopic theory of gravitation. Thus, a nontrivial isotopic lifting
always implies the existence of nontrivial interactions.

This result is physically trivial if one keeps in mind the arena under
consideration here: test particles moving within a physical medium in the
interior problem of gravitation. In fact, a test particle cannot be reduced to
free conditions when moving, say, in Jupiter’s atmosphere.

As a final remark, the reader should be aware that the nongeodesic
forces Fysa have been derived here for the case of the simplest possible
realization of the isotopic elements T,®. When such elements acquire a
nontrivial functional dependence, say in the velocities (see Sect. 3.5.10), the
nongeodesic forces also acquire a nontrivial functional dependence. It is at
this more general level that the nonselfadjointness of the nongeodesic forces
emerges more clearly. '
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3.5.11 Restriction of the Isotopically Lifted Gravitafion to the
Interior Problem

We now pass to the review of other important aspects of the generalized
theory: the extension by Gasperini [60],[61) to isotopic elements with a non-
trivial functional dependence, and its use by Santilli [58] for the restriction
of the lifting to the interior problem of gravitation.

As shown in Section 3.4.11, the algebraic structure of the Poincaré group
is preserved not only in the case of a constant matrix T,*, but also in the
case of variable isotopic elements. Consider, as an example, the following
particular form [60]

T} = diag (fu(21), fa(=2), fo(23), fu(24)) {3{‘2: )
where f;(z;) are four scalar functions, each depending only on the corre-
sponding coordinate. Assume the general expression for the isotopic p struc-
ture (3.340), where X4 are the Poincaré generators, X4 = {P,,Ms}. As
the isotopic elements (3.409) commute with rotations, but not with transla-
tions, the isotopic curvature reduces in this case to

R = RAXA = {di!A + %fao“i&a A ilc}XA +
+ VOAVTSO[P, TP, - (3.410)

where A4 + {V*,w%} are the components of the isotopic potential. We
obtain then, from (3.418) the following isotopic structure equations

R* = dV*+uw AVP + VEAVRPAT.)
R® = dv® 4w Auwt (3.41p)

But since [PpT.%] x 84T.°, it is easy to see that for the particular form

(3.409) of the isotopic elements, one has

Tp*04Tjg* =0 (3.418)

In this case the generalized structure (3.518) reduces simply to Eq.
(3.411). The algebraic and geometrical structure of the Lorentz group is
preserved, and an isotopic gravitational theory can be formulated following
exactly the same formalism of Section 3.5.7, with the only difference that
there is an additional contribution to torsion due to the derivative of TS
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stress-energy tensor 6»") the equations of motion of the isotopic theory are
different from the ones of the Einstein-Cartan theory considered previously.
Consider in fact the isotopic field equation (3.376) and, to simplify nota-
tions, let us denote with A,? the isotopic correction to the Einstein tensor,
i.e.

Aa’ = ¢-1(Ravap - R“l’r”llaaﬂ + Rnaypfv")
+ ¢ n'Fp (3-396)
Suppose that, introducing matter, the isotopic field equations (3.376), i.e.

Go? = As? (3%

(3399

and. that torsion is related to spin according to the usual Eq. (3.390). We

then have ' '
' Galp = 398+ Afis (3399)

and from the contracted Bianchi identity (3.395) we obtain the following
conservation equations '

o*;, +2Q,0* + 20‘.’9," - UqﬁuRmp =
2
. -I(Aw;v +2Q, A" +2Q,** Ao ”)

are modified as follows ‘ k
¢a = Aap +-'2'eap

(3.408)

which differ from Eq.(3.391) because of the A** terms representing the con-
tributions due to the coupling of gravity to the isotopic tensor.

Again the connection of the above results with Yilmaz’s [101] theory of
gravitation is remarkable. In fact, tensor (3.396) is evidently inclusive of
Yilmaz's stress-energy tensor.

We can therefore say that the isotopic generalization of Einstein’s grav-
itation naturally produces Yilmaz’s stress-energy tensor.

The connection of the above results with Santilli’s [100] identification of
the gravitational field with the electromagnetic field of matter constituents
is also intriguing. In fact, the tensor O, of Eq.s (3.398) can be interpreted
as Santilli’s electromagnetic tensor OE!™ of Eq.s (3.333).

In summary, the isotopic generalization of gravity does indeed offer gen-
uine hopes of achieving all conditions 1 through 9 of Sections 3.5.5 for an
“jdeal” theory of gravitation, as we shall see better latter on.
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3.5.10 Deviation from Geodesic Motion of the Isotopically Lifted
Gravitation

Gasperini [60] then passes to the identification of another important aspect
of the generalized theory of gravitation, the irreducible lack of geodesic char-
acter. In turn, this property is at the foundation of the proof of the “No
no-interaction theorem” considered in Section 3.4.14, as well as of several
other implications of the generalized theory.

The equations of motion of the isotopic theory are not geodesics even in
the case of spinless test particles. In this case, in fact, we have from (3.398)

2
Og = —-k-/\[am (3.403)

and Eq. (3.400) becomes
a(v=ge) +y=g{ ¥ Jote = 25, (v=ga
+%\/§(k“.,., Alevl _pwvi, —2Q, A —2Q,% A, %) (3.408)
Suppose that the deviations of T,® from the identity are very small. We

can put ¢ ~ 1 and 7 < 1 and, neglecting terms which are quadratic in T,
conservation eq. (3.410) reduces to ’

S(v=g0®)) 4+ =g { > } 8l 4 /g#4 = 0.
where, to the first order in T,
VgEt = 2/, =
20,(v/=5A) 4 2/ {da} Al (3.409)

(3.408)

and :
A = R** 1" — ReP1a" = R.Prp%g" 4 ROPvry, (3.408)

The integration of this equation, according to the standard procedure,
shows that the path of a test body in this isotopic theory deviates from a
geodesic, and it is described by the equation

dp* u},, "
da+{uap"—F_o

(3.406)
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where p# = m u# is the momentum and u* the four-velocity of the test body

(§3.4.13). | . o
In the Einstein-Cartan theory [120},[121] we have two Bianchi identities,
one for the curvature

v }Z"6 =0 (3.385)

and one for the torsion :
VR*= ROy AV (3.386)

By introducing holonomic indices, and contracting the first identity, we
obtain, instead of Eq. (3.387), the following one

G = -2 Q,G* — 2 Q,**Gy” + Sap, R**° (3.380)

and contracting the Bianchi idgntjty for the torsion one obtains
Gla) = Shg +2 QuSas® (3.388)

where Q, = Q,a%, Sopy is the so-called modified torsion tensor
Sas” = Qug” + 825 - 95Qa; (3:84)

and the covariant derivative now must be expressed in terms of the Riemann-
Cartan connection. ,
Using the field equations of the theory

‘ k
‘G“y = Ee"y
Spa = koo | (3.399)

where O, is the (generally nonsymmetric) canonical energy-momentum
tensor, and 0, the canonical spin density tensor, one obtains, from Eq.
(3.387), the following generalized conservation law

O +2Q,0" +2Q,"0," — gas R* P =0 (3.394)

Writing explicitly the covariant derivative, and separating the symmetric
and antisymmetric part of ©#”, this equation reduces to [125]

su(v/=30m) + v=3{ 1 } 6 + y=gK# 000 =
= /=g0p, R*P _ (3.398)
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and integrating this conservation law, as before, one can obtain the gener-
alized equation of motion for a test particle in the Einstein-Cartan theory.

Notice that the antisymmetric part of ©¥ can be expressed as a funciton
of the spin density. For a spinless test particle one has then Ouva = 0 and
Opu) = Gl = 0, 50 that the conservation law reduces to the Riemannian
one (3.390) and we obtain again a geodesical motion, as noticed first by Hehl
[126).

The isotopic theory of gravity has the same geometrical structure as
an Einstein-Cartan theory, as shown in Section 3.5.7, in which torsion is
produced by the isotopic element 7,%. Using the decomposition (3.361), the
isotopic structure (3.347) can be written

R¥® = duw® +wl Aw®

R = dV* 4w AV (3-398)
where L ' . .
R = —¢"HCi'ria + wp i}V A VE (3.39%)
By taking the Lorentz exterior covariant derivative, we get the same Bianchi
identities as in the Einstein-Cartan case '

vR* = 0
VR* = RYWAV? " (3.398)

and then, contracting indices, we are led to Eq. (3.387), (3.388) as before.

In order to obtain the equations of motion, however, it is necessary to
introduce field equations relating Einstein tensor and the torsion tensor of
the isotopic theory to the matter sources, so that the corresponding con-
servation equations for energy-momentum and angular momentum can be
written. '

To this aim, the isotopic theory for pure gravity considered until now
must be completed by introducing a term in the isotopic action coupling the
matter sources to gravity. As the full theory must be based on a Lie-isotopic
algebra, also the matter fields, in general, will be coupled to the operator
defining the isotopic lifting. '

It should be stressed, therefore, that consistent equations of motion can
be formulated only in the framework of a complete Lie-isotopic theory, in-
cluding matter sources besides the gravitational field.

Such a theory will be reviewed later on. However, even in the simple
case in which the matter Lagrangian does not contain explicitly the iso-
topic element (and then the source of gravity is simply the usual canonical
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is the usual curvature tensor, constructed from the Riemann-Cartan connec-
tion w; Ry = Ruay® is the Ricci tensor; R = R,,* is the scalar curvature
(flat indices are holonomized by means of V¢, for example 7, = V;V,,‘r..);
finally, g = det g, = (det V*)?, and

uv = VoV, 1 = diag (1,1,1,-1)

is the world metric tensor. .

Santilli’s Lie-isotopic theory becomes then, in this case, an Einstein-
Cartan theory for gravity coupled, in a strongly nonminimal way, to a sym-
metric second- rank tensor. '

The variation of the isotopic action in the form (3.370) with respect to
w°®, gives the expected constraint on the isotopic torsion,

3379

Re=gyV*=0.
By varying Eq.(3.370) with respect to the frames V*, we obtain the modified
Einstein field equations .

(3.378)

(P*R®AVE + QR AT)eqpoa+ (PR A Verd + ROAT 1 Yeqper = 0 (3.375 .

or, in the usual notations
G = g (Fa? - 1"GP) + ¢ " FP, - (3.379)

where G,” is Einstein’s tensor and

FfP = R.*n? + ra’R,° - %R"ap - RS 7, o + Ruayprvu' (3'383)

In the same way, the variation of the action (3.370) with respect ot ¢

and 7 gives the equations for the isotopic element. The kinetic terms for
these fields are obtained inserting, into the definition of curvature (3.372),
the explicit expression for w®.

Notice that Eq. (3.363) can be solved by an iterative procedure, under
the hypothesis that the isotopic element T induces small deviations from
the original geometrical structure, i.e. Tay —7ab = £ab, With |€as] € 1 (a sort
of weak-field approximation). To the first order in £, R* is then equivalent

to

dV® + W AV +dE° =0, (3.388)
and this equation can be easily solved for w to obtain the first-order isotopic
contribution to the connection.
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The connection between Gasperini’s modification (3.376) of Einstein’s
field equations (3.320) and Yilmaz’s modification (3.336) is remarkable. In
fact, Yilmaz'’s stress-energy tensor tf{" is contained in the right hand side
of Eq.s (3.376). A study of this important, yet unexplored aspect, is recom-
mended here to interested researchers.

3.5.9 Isotopic Generalization of the Equations of Motion

To clarify better the generalized theory, Gasperini [60] provides the explicit

calculation of the generalized equations of motion. '
Asis well known, the equations of motion in a gravitational theory should

be obtained as a consequence of the energy-momentum conservation, which

. follows from the contracted Bianchi identities and from the field equations

with matter sources for the interior problem.
In general relativity, the contracted Bianchi identity is given by

G*":, =0 (33!»

where a semicolon denotes the usual covariant derivative in terms of the
holonomic connection I',, 9. The field equations are given by.

k

G = Zom (3.386)

where ©#* is the (symmetric) matter energy-momentum tensor. The con-
servation equations which follow from the above equations are given by

ow =0 (3.351)

and can be written explicitly (remembering that in thi§ case the connection
reduces to the Christoffel coefficients) as

3(vV=96") + {fa}v=90™ =0 (3.383)

By integrating this conservation law over the world tube of the test
particle, following Papapetrou’s method [125], defining ’

m u'u’ = % / d’z/—go"™ (3.38})

and developing in power series the gravitational field, one gets in first ap-
proximation (pole-particle) the geodesic equation of motion

% +{h}rw =0 (3.38p)
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lifting of a torsionless theory (such as general relativity), the connection w?

of the isotopic theory contains a generally nonvanishing torsion part.
Consider in fact the following decomposition of the isotopic element:

TS = o6t + 1} (3.368)

where 4¢ is the trace and 7,* = T,¥ — é,® the tracefree part of T,®. The
isotopic frame then becomes \

Ve =T* = VITy%ds* = pV* +1° (3.368)

and the isotopic structure eq. (3.359) can be rewritten

dVe + S AV 4 o {dr® + W AT} =0 (3.365)
from which
R=gVe=-p"lyr*#0 (3.368)

where R® is the usual torsion two-form relative to the standard frame.
Gasperini [60] therefore reaches the following important conclusion.

The Lie-isotopic lifting of @ Riemannian geometry induces even
in the absence of matter, a Riemann-Cartan [120],[121] geomet-
rical structure, with the isotopic element acting as a source of
torsion. -

The connection w can be explicitly calculated in terms of V' and r solving
Eq. (3.359) which can be written explicitly as

1 1
Coe® +5un"c = e’ + Qu” = 0

> (3.363)

Cic* = VWHV28, V5 (3.368)

are the usual Ricci rotation coefficients, and Q,.* are the components of the
torsion tensor

cha

where

ViV 0V mit + wpa®iVegt ')

1 1.
¢ H{Cu'n® + uatire’ - Swe'in'})

(3.364)

(remember that 7,% is a constant matrix).
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By cyclic permutation of indices in Eq.(3.363), using the metricity prop-
erty [118] w*® = w8l one obtains then

(3.380)

Waeh = Yach + Kach

where v, is the usual Riemanniaa part of the connection

Yach = Chea = Ceab = Cabe (3.360)
and K, is the contorsion tensor [120],[121]

Kach = Quca = Qcab — Qabe (3-3@)

This isotopic theory can be interpreted [60] then as an Einstein-Cartan
theory for gravity coupled nonminimally to a symmetric second-rank tensor,
which is a source of torsion according to Eq.8(3.366).

3.5.8 Modified Field Equations with Torsion

Another direct way for showing the differences between the conventional
and the isotopically lifted gravitation identified by Gasperini [60][61] is to
work-out explicitly the field equations, and show that they do not coincide
with the pure geometrical equations (3.320) but exhibit a first-order nonull
tensor on the right hand side. This result is implicit in Eq.s (3.357). We
shall derive it again for clarity following ref. [61). -

As now known, the second structure equation (3.347) defining the cur-
vature two-form is not modified by the lifting, i.e. R*(&) = R*}(w) =
R,,%%dz* A dz”. The action (3.349) for the isotopic theory becomes then,
using (3.361)

§= % / R A(VEAVIR? 4+ 20VE A8 + 1° A 1)eqbea- (3.379)
By introducing explicitly holonomic indices, we have dz# Adz* Adz® Adz? =
d*zc#v*P, and using the properties of the totally antisymmetric symbols we
can rewrite this action in the more familiar tensor language

5= / d'z/=g[Rp* ~2pR 7" + 2Ry 1t 0™ _%R‘Taﬂfn *+ Ruvapr® 1],
(3.3%4)

where: square brackets denote antisymmetrization;
R‘waﬁ(w) = V:prz(a“,w,]“ + U[J‘“Uy]cb) (3.378)
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where T,y = T}, is a symmetric constant matrix, and n,, = diag(1,1,1,-1) is
the Minkowski metric.
In this case the isotopic potentials (3.341) become

Ve = V‘Tf , * = w*® (3
(3-3¢6)
ON

(3.349)

Therefore, the connection and the curvature are not lifted (for the simple
case considered); however, according to Eq. (3.347), the connection is de-
fined in terms of a generalized vierbein field VJ :

and the isotopic structure equations are

-~

R = R'T =‘d‘T‘+w"5AT’
R*(9) = R*%(w)=du® + v’ A uw®

Vi=VT=T; (3.359)

The action (3.344) for this isotopic theory of gravity becomes.

(3.39)

By introducing explicitly holonomic indices, we have R®® = R,,,**dz* A
dz”, and dz* A dz* A dz° A dzP = d'ze#¥*P. By using the properties of the
totally antisymmetric symbols Gasperini rewrites this action in the (perhaps
more familiar) tensor language

+ 2 RO°TPTs + RWPTL Tp" }

3:&/1:"'(..;),\1*-/\1"(“

(3.359)

R = W7V, + wp,*w,)") (3.359)

is the usual curvature tensor for the connection w, Ry = Ruav® is 2the Ricci
tensor, R = R,* the curvature scalar, and g = det g,,, = (det V;')?, where

(3.358)

is the world metric tensor. Finally, Lorentz indices are holonomized by
means of V!, for example T,,* = V;V;‘T.‘, and

where

Guv = V:V:"ﬂb

¢ =9""Tuw =0Ty

(3.356)
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is the trace of the isotopic element. . .
Comparing the action (3.350) of the isotopic theory with the usual Ejn-

stein action
S= o [ROAVE AV = z [dav=sr  @ash)

the coupling constant of the usual gravitational Lagrangian is renormalized,
R/k — R/K [60), where

_ %
¢2 - Tapra

as expected in general when performing the isotopic lifting of a gauge theory
(See Appendix A). Also, the isotopic element is coupled, in a strongly non-
minimal way, to the curvature tensor, thus introducing additional terms to
the Lagrangian besides the scalar curvature. Notice that these new terms are
all proportional to the scalar curvature, if the isotopic element is the same
for all the generators of the group or, in other words, if T, is proportional
to 1,s. ' ‘

By varying the isotopic action (3.349) with respect to the frames Ve,
Gasperini obtains the modified Einstein’s field equations in vacuum

K (3.358)

R*¥(w) A VT Ti %€ bed = 0 (3.358)

or, in the usual notation, .

4¢Tavaﬂ = _2 R Tgvap - 4 R“yTy“Tap +

+4 BT T* + 4 T T, R + 4 Remud P T T, (3.380)
where

(3.3

is the usual Einstein’s tensor (remember that in the standard theory the
vacuum field equations are simply G,? = 0).

By varying (3.349) with respect to the connection w® one obtains the
expected constaint on the isotopic torsion, i.e. :

RO =yT*=dT* + AT =0

Gya = Ryﬁ - %Rsyﬂ

(3.35W

where 7 denotes the Lorentz covariant exterior derivative. From this equa-
tion Gasperini is led to the remarkable result that, even considering the
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Lie-isotopic generalization, as reviewed in Appendix A. The Lie-isotopic lift-
ing of gravition was presented subsequent to such gauge isotopy.

Consider Einstein’s Gravitation for the simplest possible case, that with-
out matter and field equations (3.320). Reformulate such theory in the gauge
language [117].

Let P, and M, be the conventional generators of the local Poincaré
symmetry, where small Latin indeces denote anholomic Lorentz indeces.
Denote the usual frame and connection one-form with

V* = Vodz*, w = whdz*, (3.338)

respectively where small Greek indeces denote Lorentz indeces in our space-
time (as in. the preceding sections of this work).
The standard “potential” of Einstein’s Gravitation can then be written

h=hAX, = VP, + v M, (3.339)

where capital indeces A, B,... run over the set (a,ab,...).

Along the lines of Santilli’s Lie-isotopic theory [1], Gasperini [60] leaves
the parameter and the generators of the theory unchanged, but submits the
various composition laws to a lifting characterized by generally different iso-
topic elements T4 2 for different generators. Conventional potential (3.339)
then becomes under lifting )

h = WAT BXp =VT.PR + VoT,%M;. +

+ 0T, P, + T4 My (3.340)

Suppose that the isotopic elements T42 are constant matrices, which
commute with the Poincaré generators and among themselves. The isotopic
curvature can be expressed in terms of the generalized components of the
potential A4 = hBTg4 = (V*,1°*} according to the expressions

Ve _hATE® = VM + w™T°
tb'b = hBTBd = Vcncb + wedeab

(3.341)

Using the standard commutation rules of the Poincaré algebra, one ob--

tains then the same structure equations as in general relativity [118]
Re=dve + % AV (3.342)

and

R = do® + w°c A 9 (3.343)
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deﬂning the isotopic torsion R*, and curvature R, in terms of the isotopic
potentials A4 = (V",u‘:"‘}. ‘

Imposing the constraint R° = 0 as in general relativity, the group man-
ifold procedure prescribes then for this theory the standard Einstein action
expressed in this case with the generalized variables R4 and h4, ie.

= ﬁ / R¥() A Ve AV (3-344)
where €,4c4 is the totally antisymmetric symbol, and k = 16xG/c} is the
usual Newton coupling constant.

In this way, Gasperini [loc.cit] achieves a result analogous to those reached
in Sections 3.3 and 3.4, namely, that the conventional Einstein’s Gravita-
tion and its image under isotopic lifting coincide at the level of abstract,
realization-free formulations. '

Despite these similarities, and exactly as it happens for the Galilei-
isotopic and the Lorentz-isotopic cases, the physical differences between the
conventional and the isotopically lifted theory of gravitation are rather deep.

In order to identify these differences, the isotopically lifted theory must
be explicitly worked out and expressed in terms of the conventional potential
hA = {V‘,w"‘} for, again, these mathematical symbols represent physical
quantities that remain unaffected by the lifting. )

It then follows that the geometrical structure underlying the isotopically

lifted theory is more general than that of the conventional theory, as we
shall see below.

3.5.7 Isotopic Origin of Torsion

Gasperini [60] first illustrated the physical differences between the conven-
tional and the isotopically lifted theory by showing that the former is a
torsion free theory, while the latter is, intrinsically, a gravitation theory
with torsion. In turn, the appearace of torsion is of fundamental nature,
inasmuch as it allows the possibility of attempting the resolution of at least
some of the problematic aspects of Einstein’s Gravitation recalled earlier
(Sect. 3.5.4).
Consider the simple isotopic lifting defined by

Tat=0=T (3.145)

Tos =T’ # b, Tap™ = 6,°6%

220




.

The foundations of the studies are provided by Santilli’s identification
of the apparent electromagnetic origin of the gravitational field (§3.5.3),
the Lie- isotopic generalization of the conventional Lie’s theory (Section 2);
the Lie- isotopic generalization of Galilei Relativity (§3.3) and of Einstein’s
Special Relativity (§3.4); as well as the formulation of the Lorentz-isotopic
symmetry for generally curved isotopic spaces Mm (§3.4.7).

Following these lines Gasperini {59),(60],(61],[62] constructed, for the first
time, a step-by-step Lie-isotopic generalization of Einstein’s Gravitation
which possesses precisely a local Lorentz-isotopic character. He then pre-
gsented numerous developments, particularizations and examples.

Santilli [58) reinspected Gasperini’s theory, by making a number of ad-
ditional contributions, such as: the restriction of the isotopy to the interior
problem only in order to recover the conventional homegenuity and isotropy

of space as well as the conventional Riemannian geometry for the exterior

problem; by restricting the Lie-isotopic theory in the interior problem to be
locally isomorphic to the abstract Lorentz symmetry, so that this fundamen-
tal symmetry is not lost, but only relized in its most general possible way;
and by presenting additional contributions reviewed below.

The generalized theory of gravitation which emerges from the above
studies shall be referred hereon as the Gasperini-Santilli General Relativity
(or the Gasperini-Santilli Gravitation). .

In the remaining parts of this section we shall review such a novel theory,
point out which of the above requirements 1-9 is verified, and identify some
of the open problems. ' ‘

R 1]
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FIGURE 14. A reproduction of Figure 5.7 of ref [21] illustrating the °
essential aspects of the “ideal® theory of gravitation reviewed in Section
3.5.5: the physical differences between the exterior and the interior dynam-
ics, with motion of test particles in vacuum (empty space) in the former case,
and motion within a physical medium in the latter case. For these reasoms,
ref.s [64] and [21] advocate the use of the conventional local, Lorentzian the-
ory of gravitation for the exterior problem. The reader should be aware that
the gravitational theory for the interior problem advocated in ref. [21] is a
covering of the Lie-isotopic theory reviewed in this section, owing to its Lie-
admissible character. As it happens for other levels of study (see, e.g., Figure
3), the Lie-isotopic theory puts the emphasis on total, conventional, conser-
vation laws under generalized internal structures. The still more general
Lie-admissible approach essentially represents one individual test particle
when the rest of the system is external, thus resulting in an open, noncon-
servative, system requiring the Lorents- admissible generalization [21] of the
Lorents-isotopic symmetry of this review.

Remarkably, the Gasperini-Saatilli Gravitation we shall review hereon
is only a particular case of a more general theory of gravitation of the cov-
ering Lie- admissible (rather than Lie-isotopic) character for the study of
open gravitational problems, which has been independently investigated by
Gasperini [114],Santilli [21], P.F. Gonzalez-Diaz [115], A. Jannussis and col-
laborators [116] and others. This more general approach whill not be re-
viewed (although we hope to review it in a future work).

In Section 1.2 we quoted Bruck’s statement to the effect that the notion
of algebraic isotropy is “so natural to creep in unnoticed”. In this section
it is appropriate to quote Gasperini’s words (ref. [59], p. 652): “This (Lie-
isotopic) generalization (of Einstein’s gravitation) is so natural to appear
nearly trivial. However, its physical implications are rather deep”, as we
shall see.

8.5.8 Lie-isotopic Lifting of Einstein’s Gravitations without Source

In three pioneering papers of 1984 Gasperini [59],(60},(61] presented a Lie-
isotopic generalization of Einstein’s Gravitations for the case without energy-
momentum tensor of matter (see later on for the case with source tensor).
The starting point is the formulation of conventional gravitational the-
ories as gauge theories with local Lorentz invariance [117). Sasperini first
shows that conventional gauge theories admit a consistent (and intriguing)
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Santilli [58] contends that Yilmaz’s tensor 131 sees its origin in the
short range (weak and strong) interactions at the foundations of the struc-
ture of matter. More explicitly, he recalls that all fields of the elementary
constituents of matter are expected to contribute to the total gravitational
mass. Of these fields, the electromagnetic fields reviewed in §3.5.3 is ac-
countable for the ij"' tensor which, as such, is traceless. The remaining
weak and strong fields are responsible for an additional tensor. It is easy to
see that such tensor cannot be traceless and, thus, it can well be Yilmaz’s
stress-energy tensor tSr**, :

The position assumed in this paper is that the correct field equations for
the exterior problem are expected to be Eq.s (3.337), with the understanding
that the contribution to the gravitational field by tSI* is expected to be
substantially smaller than that of Bf,','”. The former tensor can tehrefore
be ignored in our first classical appraximation.

3.5.5 Some Desirable Features for a Generalized Theory of Grav-
itation

By combining the various problematic aspects of Einstein’s Gravitation,
Santilli [58] advocates the construction of a suitably generalized theory of
gravitation having the following primary features.

INTERIOR PROBLEM N

1. The generalized theory should represent motion within a gen-
erally inhomogeneous and anisotropic material medium. The un-
derstanding is that space itself remains homogeneous and isotropic.

2. The generalized theory should be based on a nonlocal, in-
tegrodifferential generalization of the Riemannian geometry in
order to account for the nonlocal forces experienced by an ex-
tended test particle moving within the medium composed by
all the other particles. If a local-differential approximation is
assumed (via power series expansions in the velocities), the gen-
eralized theory should be able to produce under the PPN ap-

in order to avoid perpetual motion approximations, as evident
in the classical physical reality of the interior problem.
4. Despite all the above departures from the conventional Ein-

stein's Gravitation, the generalized theory should be locally Lorentz-

isotopic (§3.4) and, in particular, the local Lorentz-isotopic sym-
metry should be isomorpbhic to the abstract Lorentz symmetry
on isotopic spaces My (§3.4). This latter requirement evidently
demands the realization of the preceding characteristics via a
Lie-isotopic generalization of Einstein’s Gravitation.

5. The generalized theory should admit a non-null Birkhof-
fian representation via a nontrivial, Pfaffian generalization of the
canonical action principle. Furthermore, such a representation
should permit an unambiguous “hadronization” of the theory
into an operator form on Hilbert spaces (§1.3). .
EXTERIOR PROBLEM

6. Along the lines of the Galilean (§3.3) and relativistic (§3 4)
closed nonhamiltonian systems, the genmeralized theory is ex-
pected to be a theory with subsidiary constraints to ensure the
validity of conventional total conservation laws, as well as to en-
sure any needed additional feature.

7. The generalized theory is expected to be purely Riemannian
in the exterior geometrical character and, therefore, should pos-
sess the local, conventional, Lorentz character in the exterior
problem;

8. The generalized theory should incorporate the electromag-
netic tensor originating from the charged structure of matter
and resolve the problem of the “origin” of the gravitational field
(§3.5.3). In case such a tensor is not sufficient to resolve all
problematic aspects identified by Yilmaz (§3.5.4), the genreal-
ized theory should incorporate the stress-energy tensor of the
gravitational field.

9. Last, but not least, the generalized theory must be compatible
with all available experimental data on gravitation.

proximation all possible Newtonian equations of motion, with
an arbitrary functional dependence on the velocities (the essen-
tially nonselfadjoint forces of ref. [63]).

3. The generalized theory should be able to represent local devi-
ations from the conventional rotational and Lorentz symmetry,
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It should be stressed that a gravitational theory satisfying all the above
requirements does not exist to this writing, to our best knowledge. Never-
theless, major advances have been made along these lines as we shall report
in the rest of this section. A
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By implementing Einstein’s equations with the stress-energy tensor, Yil-
maz has constructed a generalization of the theory, hereinafter referred to
as Yilmaz’s Theory of Gravitation for the ezterior problem with rather re-
. markable possibilities, such as:

a) compatibility with the Newtonian description of the planetary motion;
b) compatibility with the relativistic description; and
c) compatabliity with the quantum-mechanical formulation.

In particular, Yilmaz's theory appears to be consistent with currently avail-
able experimental evidence. . -

The latest development in the space-time theory of gravitation is the
rediscovery of Freud’s identity and its application to the problem of exterior
field equations. Freud’s identity was originally found by P. Freud [112] in
1939. It was mentioned by W. Pauli [65] in 1958 in the “Notes” section of
the Dover edition of his famous 1921 work and by J. Weber [113] in his 1961
work on gravity waves but no systematxc application to the problem of field
equations was made.

Recenly H. Yilmaz [110] pointed out that the existence of two indepen-
dent identities (that of Bianchi and of Freud) creates a severe restriction
on the possible form of the field equations. This is the problem of overde-
termination in the presence of multiple conditions and the consequences
are quite dramatic: In order for the field equations to be compatible with
two identities one must add in the ezterior problem the stress-energy tensor
t0r*" on the right hand side with unit cofficient (3™, = 1. Otherwise the
ﬁeld equations either have no solutions or only solutnons which are trivial
(for example, only a 1-body solution if A # 1) or solutions which are non-
unique (for example, a linearly accelerating frame depending on a parameter
¢ = +/(1 — X) which is double valued).

Compatibility requires A = 1, so that in this case one has non-trivial
N- body solutions and, at the same time, all solutions are unique since
e = +\/(1=X) = 0. Furthermore, Yilmaz demonstrates that only when
A =1 (that is, only when the field equations are compatible with the two
identities) that the theory is experimentally viable.

An example of this is that, unless A = 1, there are no N-body solutions,
hence the N-body equations of motion cannot be constructed other than
(possibly) by puttiong the second, third, etc. bodies by hand. But then the
theory becomes a test body theory and cannot predict the 532" per century
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N-body part of the perihelion advance of Mercury, since test particles cannot
interact with each other.

These points were already made by H. Yilmaz [11] before the rediscovery
of Freud's identity but now with their exact derivation using that identity
the results become quite strong.

Yilmaz’s theory itself is not immune from criticisms. For instance, Eq.s
(3. 336) are unable to account for the first-order tensor Gf.',"‘ of Section 3.5.3
owing to the different structures of the two tensors (one traceless and the
other not). As a consequence, the electromagnetic field originating from the
charged structure of matter and propagating in the exterior problem is not
explicitely represented in Yilmaz’s theory.

This indicates that, even though Yilmaz’s criticisms of Einstein’s Gravi-
tation appear to be valid, and his objectives a), b) and c) above are equally
valid, his theory might need further generalizations to achieve compatibility
with other aspects, such as the origin of the gravitational field itself.

A fundamental problem which is open at this writing is whether the argu-
ments by Yilmaz apply also for Eq.s (3.333) with an electromagnetic tensor
on the right, or they hold only for Eq.s (3.336) with a stress-energy tensor
on the right. To put it differenly, the issue addressed here is whether the
arguments by Yilmaz remain valid when the tensor on the right is traceless.

This issue is important for the final identification of the r.h.s of the ex-
terior equations and, in particular, for the problem whether Eq.s (3.333) are
sufficient or they have to be implemented into still more general equations
of the type

G = 8—:3(5 (0Eim 4 ¢Grw) (3.337)

Note that the argumentations by Yilmaz are specifically valid for the
exterior problem, such as the planetary motion. Nevertheless, if the stress-
energy tensor must be added for such a problem, it evidently persists in the
interior problem.

A primary emphasis of this review is the identification of the origin of
any tensor that is needed in the r.h.s of the field equations for the exterior
problem. This emphasis has been the guide for the presentation of the elec-
tromagnetic tensor Bf,f"‘. As a result, we cannot escape the problem of
the possible origin of Yilmaz's stress-energy tensor tf,',"“’. To put it differ-
ently, if a clear origin of such a tensor can be identified, its place in the
r.hs. of the field equations becomes incontrovertible irrespective of any of
the advantages reviewed earlier in this section.
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of the electromagnetic and gravitational fields, e.g., via Santilli’s hypothesis
of their “ideatification” (Assumption 3.1). The second test suggested in ref.
[100) is a deeper refinement of the first test and considerably more difficult
in practical realisation. An inspection of energy-momentum tensor (3.330)
under potential (3.332) indicate that a significant part of gravitational mass
(3.331) is due to the dynamical conditions of the charges. The second test
under consideration was intended precuely to test the contributions to the
gravitational field originating from the dynamical conditions of the charges.
For that purpose, Santilli suggested the measurement of the gravitational
field (also via neutron interferometric techniques) produced by the “electro-
magnetic heads” of the ﬁ;ﬁe which, as one can see, essentially consist of
opposite charges and magnetic moments in extremely high rotational con-
ditions so as to reproduce the conditions of the structure of matter as close
as possible. Apparently, this second test was not feasible back in 1974 (San-
tilli, private communication) owing to a namber of limitations such as: the
impossibility to reach sufficiently high angular momentum, and electromag-
netic fields. Nevertheless, this secoad.class of experiments can well be within
practical feasibility nowadays owing to the advancements in technology that
have occured in the meantime (e.g., in superconductors). Whether along the
lines of proposals [100] or any other approach, the above tests are strongly
reoommended here for consideration by experimenters in the field.

Stated differently, the ultimate objective of ref. [100] was to conduct a
study on the origin of the gravitational field along the hypothesis underlying

- Eq.8 (3.332), . :
MM« = oEim, (3.334)
After all, the use of mass terms is nothing but an expression of our ignorance
of the dynamical structure ongma.tmg the mass.

A number of approximate expressions for the tensor 9’5’"‘ are computed

in ref. [100). The value of the tensor MM** itself can evndently be assumed as -

an approximation of Of,',"‘, provided that its dependence in space is assumed
to be equal to that of 9,",3,',"‘, and the€ tensor can be rendered nowhere null.

A number of conceivable experiments to test the expected gravitational
character of the energy of electric or magnetic nature (which have not been
conducted to this day, to our best knowledge) were also formulated in ref.
[100] (See Figure 13).

As a final comment, the reader should be aware that the extension of the
analysis to a celestial body with a non-null electromagnetic phenomenology
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is simple. Einstein’s field equations assume in this case the familiar form

ij 8IG ( MM.( + tElm) (3.335)

where tE!™ ig the electromagnetic tensor solely due to the total electromag-
netic qua.ntntnes (and, as such, its value is much smaller than that of Of“,"')
Eq.s (3.335) are trivially contained as a particular case of Eq.s (3.333), i.e.
©FE!m is inclusive, by construction, also of total electromagnetic effects.

3.5.4 Problematic Aspects of Einstein’s Gravitation for the Exte;
rior Problem Caused by the Lack of Stress-Energy Tensor.

By far the leading expert on the problematic aspects of Einstein Gravitation
for the exterior problem is H. Yilmaz. We list here only some of his papers,
ref.s [101] through [111}. Yilmaz’s analysis is related to that by Santilli
(§3.5.3), although it is based on different physical motivations. In fact,
Yilmaz advocates a generalization of Einstein's field eqnations (3.320) for
the ezterior problem of the type

8xG
G = _thv
T

(3.336)

where tf,"' is the stress-energy tensor of the gravitational field, i.e., a tensor
physically and mathematically different than ij"' of Eq.s (3.333).

Yilmaz’s motivations for Eq.s (3.336) are numerous and can be only sum-
marily reviewed here. First, he shows that, when the stress-energy tensor
is absent, the Newtonian limit of Einstein’s Gravitation is unable to recover
the Galilean description of the planetary system, because it recovers instead
the so-called Hooke’s mechanics (in which the Sun has infinite inertia and
there is no principle of action and reaction). When the stress-energy tensor
is however present, this problem is apparently resolved.

Furthermore, Yilmaz [loc.cit] shows that, in the absence of the stress-
energy tensor, Einstein’s gravitation is appartently unable to recover the
energy- momentum conservation law of the Special Relativity.

More seriously, Yilmaz additionally shows that, under the absence of the
stress- energy tensor, Einstein’s Gravitation is indeed capable of representing
the celebrated 43" of advancement of the perihelium of Mercury, but serious
problematic aspects exist for a consistent representation of the basic 532" .
because of the strict Hamiltonian character of Newton’s laws.
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The extension to the proton is trivial inasmuch as it implies a simple
increase of the sum in Eq. s (3.331). The extension to atoms and molecules
then follows the same pattern along Eq.s (3.332), and with similar results.

Notice that ©5!™ cannot be rediced to zero unless one alters the struc-
ture of matter, e.g., by forcing all charges to be at rest and sufficiently close
to each other.

As a result of this analysis, Santilli [loc.cit.] concludes that any massive
celestial body with null total electromagnetic phenomenology has a sizable,
first-order, energy-momentum tensor 95'"' due to the electromagnetic struc-
ture of matter which is nowhere mduc:ble to zero.

Under the classical approximation here considered (i.e., short term, weak
and strong interactions are ignored), the following hypothesls was formu-
lated.

ASSUMPTION 3.1 [100] (Strong Assumption):
The gravitational mass of any massive body is entirely due to the
“electromagnetic field of its charged constituents.

The “weak assumption” (which is the minimal possible under the cal-
culations of ref. [100]) is that the gravitational field of a massive body is
substantially, but not entirely due to the electromagnetic field of the charged
constituents (because of the additional short range fields of the weak and
strong interactions).

On the contrary, no contribution to the gravxtatxona.l field is admitted
in Einstein's Gravitation, evidently because, under such a contribution, the
" r.h.s. of Eq.s (3.320) cannot be null. :

In different terms, the gravitational field is nowhere sourceless, because
the only possibility to render integral (3.332) null is to work-out an ad hoc,
profound modification of Maxwell electrodynamics which would undoubt-
edly result to be contrary to experimental evidence.

Under the classical approximation indicated earlier, ref. | 00] therefore
submitted the following reformulation of Einstein’s field equations for both
the ezterior and the interior problem ‘

BIGOE,,"

G = (3.333)4

where ij"‘ is precisely the energy-momentum tensor produced by all charged
constituents of matter.
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As a consequence of the above results, Santilli put the foundation for
a possible genuine resolution of the vexing problem of the “unification” of
the gravitational and the electromagnetic fields, and replace it with the
“identification” of the gravitational field with the electromagnetic field of
the matter constituents. The understanding is that contributions from short
term (weak and strong) interactions must be expected from a future operator
formulation of a gravitational theory.
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FIGURE 13. A reproduction of Figure 7 of ref. [100] depicting the
“electromagnetic heads® of the proposed experiments. All gravitational the-
ories predict that any electromagnetic field generates a gravitational field
via mass (3.331). This prediction has not been expenmenhlly verified until
now. For this reason, Sastilli suggested back in 1974 (100] the conduction
of this fundamental test in a number of ways. The first proposal was to test
the prediction itself in its most direct possible way, via the use of the largest
available sources of electromagnetic fields, e.g., those of the large magnets
available in a number of laboratories. The test can be conducted via abail-
able neutron interferomenter techniques and/or gravity meters of high sen-
sitivity by measuring first the background with the magnetic field off, and
then the gravitational field following the activation of the magnetic field.
To our best knowledge this first fundamental experiment is indeed feasible
nowaday (and of rather contained cost) because, on one side, neutron inter-
ferometric techniques have reached a very high degree of sensitivity, while,
on the other side, we have available very large sources of magnetic field.
Regretably, this proposal has remained ignored by the experimental com-
maunity, to our best knowledge, despite its manifestly fundamental nature,
e.g., for the possible resolution of the vexing open problem of *unification”
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(3.325)
where
) {A®,B%} = A°B®? + BPA®
D =X°-YZ, (3.326)

When the magnetic moments y of the constituents (in a snnglet ground state)
are included, we have an additional potential outside the x0 system given

by

af D abp
WAZ(z) = (bt +eo(D e}t -
. afl D
- ot L) (3.327)
with additional total electromagnetic field
Fo = il + uFyjpa + ,,i.;',ﬁ, (3.328)
where . '
af 3ch arnf _ 4P? D*\D.: 3.329
F:/ps dal‘ ‘?(FD' .D)D,, (3.329)
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After a judicious handling of the advanced and retarded component, ‘the
corresponding energy-momentum tensor is then given by

s 1
e:o = ;(I:O“Ffﬂ“"'
F:’oﬁ - qFoﬁ_*_“FGB

1 Q
1 BF::F,?“ )
(3.330)

The volume integral of the 0 — 0 component of the above tensor then char-
acterizes the electromagnetic contribution to the gravitational mass of the
=0,

mEm = é / 0,00dv (3.331)

Explicit calculations [100] show that the above value of mf.!"‘ is very close
to the rest mass of the % Under certain velocity-dependent corrections
(caused by the deep wave overlapping of the x° constituent), the total rest
mass of the 70 can be reached both, via Schrodinger’s type equations [2] as
well as via purely electromagnetic contributions [100)].

Clearly, such a large, first-order value of the electromagnetic field in the
exterior of the x° is incompatible with Einstein’s field equations (3.320).
Note that the x° was selected because, (as it is the case for the celestial
body considered) it has null total charge as well as null total electric and
magnetic moments. '

The extrapolation of the analysis to a massive body is conducted in ref.
[100] in sequential steps. First, the problem of the neutron n is considered
under the assumption (rather generally accepted nowaday) that quarks are
not elementary but have a structure resulting from a suitable bound state
of a yet unknown number of elementary charges.

This results into an energy-momentum tensor for the neutron of the type

1 1
Gf},"‘ v (FuaF: + Z'Im'Fa-til'-"Jlr ﬂ) ,

N
FEm = 3~ ((FEm™ 4 ,FEm),

quu=1

(3.332)

where the sum goes over all elementary constituents. For a sufficiently high
number of such constituents under sufficiently high dynamical conditions,
volume intergral (3.331) for the case at hand acquires, again, such a high
value to be able to account, in principle, for the entire gravitational mass of
the particle.
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Santilli [100] essentially shows that the above purely gravitational feature
of Einstein’s ezterior gravitation is incompatible with the charge structure
of the body considered in an apparently irreconcilable way (see Fig. 12). As
well known, matter is composed of atoms which, even though neutral, are
composed of charged particles in highly dynamical conditions, the peripheral
electrons and the elementary charged constituents of protons and neutrons.
It is the dynamical condition of the charged consituents of matter that re-
sults into a total non-null electromagnetic field outside the body considered,
contrary to Eq.s (3.320). (See Figure 6). Owing to the importance of this
point for the analysis of this paper, let us review its essential aspects.

As a first step, Santilli computes the total electromagnetic field outside
a %0 under the assumption that it is a bound state of a generic “parton” and
an “antiparton” (say a quark-antiquark system, or equivalently in Santilli’s
approach, an “eleton”-“antieleton” system) of charges (+4,-q). The analysis
is purely classical and relativistic. Also it is based on the conventional
Maxwell’s theory of electromagnetism in flat space-time via the use of the
(advanced and retarded) Lienard-Wieckert potential at a point z of the
Minkowski space M :

An(2) = —q:m—"',m = Adv.,Ret., (3.321)

Under the approximation of a point-like structure of the x0 constituents
and of their absence of magnetic moments (spin zero), the potential of the
system at an exterior point in Minkowski space M is given by

v‘l
= - 23Rt _ 0 L4, —tASY
q{[C-um dona Ot a
Cona Bt o 2oat || s an (9.322)
- «~Ret d—M = U-Adv d_.A(iv - § nmsinm

where: ¢, = —1 for positive charges; € = +1 for negative charges; the C’s
are (at this point) arbitrary constants verifying the properties

CiRet +Ciadv = 1, :
C-Ret+C-aav = 1; : (3.323)
and o ‘
Al (2) = —genem ™= : (3.324)
dnm _
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FIGURE 12. A reproduction of Fig. 1, p. 111, ref. [100] pmenﬁng a
schematic view of a celestial body with null total charge as a *gas” of charged
particles in highly dynamical conditions. Even though the total charge is
sero, the total electromagnetic field is nowhere null in both the interior
ard the exterior problem. Explicit calculations show that such a field has

» a value 90 high to account, in principle, for the gravitational mass of the

body (Assumption 3.1). These results establish an incompatibility between
Einstein’s Gravitation and Maxwell’s Electromagnetism in the sense that
the latter theory predicts the existence of a large, first order source due to
the charged structure of matter which is simply lacking in the former theory.
Ref. [100] evidently embraces Maxwell’s electromagnetism and suggests a
revision of Einstein’s gravitation with the inclusion of a rowhere null source
tensor. Besides the resolution of the above inconsistency, the revision also
offer’s the possibility of resolving the vexing problem of *unification” of the
gravitational and electromagnetic fields via their “identification” in the sense
of Assumption 3.1.

The exterior energy-momentum tensor is then gfven by

ir {'d%[csD,,"Dnﬁ + (‘D : ”)R{Dav ”ﬁ}n

nn’

—(ld:af;%:’)[(Dn . ”nl){D:l,v"p} - ';-(”n ) vn'){Dna‘Dg,}
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obeying a unitary, Hamiltonian time evolution). Such a proof evidently
does not exist. Santilli contends that the proof is impossible for numerous
technical reasons, such as the impossibility for a finite number of unitary,
Hamiltonian time evolutions to reconstruct a classical, noncanonical, non-
hamiltonian time evolution.

Again, in the words of the quoted author, the insistence in the capability
to resolve classical violations of the rotational symmetry at the particle level
without rigorous mathematical proofs, constitutes suck an approximation of
Nature to shift the issue from a technical to an ethical context. Besides, San-
tilli [loc.cit.] points out the evident need to construct a classical theory of
gravitation capable of representing the classical reality as is, and prior to its
possible particle counterpart. The next problematic aspect (which is also
linked to the above “illusory” reduction) is the now vexing impossiblity of
achieving a consistent quantum mechanical formulation of Einstein’s gravi-
tation, despite serious und protracted efforts. Santilli [loc.cit.] claims that
this additional problematic aspect is due to the intrinsic property of Ein-
stein’s Gravitation of admitting a null Hamiltonian. As a result, a “true”
quantization of the theory (i.e. a unique quantization without ambiguities)
is expected to be quite difficult if not impossible to achieve owing to the
intrinsically Hamiltonian character of quantum mechanics.

In view of this occurance, and because of the evident need that any
future theory of gravitation must eventually admit a consistent operator
formulation on Hilbert spaces, Santilli [loc.cit.] suggests that a more ade-
quate theory of gravitation for the interior problem (which is not expected
to be Hamiltonian because of the power series expansions in the velocities
indicated earlier ) should admit a consistent Birkhoffian representation via
a generalize Pfaffian action principle (§1.3). 'Once such a nonull structure
has been identified, “hadronization” without ambiguities becomes at least
conceivable (see also §1.3).

Finally, in regards to the problem of quantization/hadronization, San-
tilli [loc.cit.] does not see the need, or even the consistency, of a quantum
mechanical formulation for interplanetary distances, but only locally, in the
interior problem. To put it differently, the conceivable operator formulation
of gravity is recommended for the interior, but not for the exterior prob-
lem. This is trivially due to the evidence that quantum mechanical effects
are manifestly present in the interior problem and manifestly absent in the
exterior one.

For a technical understanding of the above comments, we urge the reader

to acquire a knowledge of the techniques of variational selfadjointness [63])
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and understand occurrences such as the violation of the integrability con-
ditions for the existence of a Hamiltonian in the frame of the observer for
systems experiencing forces with an arbitrary dependence on the veloci-
ties, while such a representation always exists, (directly universality) for the
Birkhoffian covering of Hamiltonian mechanics [20].

3.5.3 Problematic Aspects of Einstein’s Gravitation for the Ex-
terior Problem Caused by the Lack of Source

The problematic aspects for the interior problem reviewed above are absent
or otherwise inapplicable to the exterior problem of gravity.

In fact, the Riemannian geometry is evidently applicable to the exterior
problem because of the absence of all the contact, nonlocal, integrodifferen-
tial effects of the interior dynamics. Also, the medium of the exterior prob-
lem, empty space, can be well assumed to be homogeneous and isotropic.
Finally, since motion occurs in empty space with evident local conservation
laws, the local Lorentz character of the theory is also applicable. Santilli
[58] therefore advocates a gravitational theory for the exterior problem that
is Riemannian and locally Lorentz in character.

Despite that, Einstein’s Gravitation for the exterior problem remains still
affected by such fundamental problematic aspects to raise serious doubts on
its approximate validity. )

A first problematic aspect relevant for this review was identified also by
Santilli in 1974 [100). It consists of an apparently irreconcilable incompati-
bilty of Einstein’s field equations for the exterior problem with the electro-
magnetic structure of matter.

Consider a celestial body with null total electromagnetic phenomenology,
i.e., null total charge, null total electric and magnetic dipole moments, etc.
Under these assumptions, Einstein’s field equations for the interior problem
are given by the familiar form

Gu ¥ Ry - -;-y...,R = ﬁu)}‘;‘ |

3.319
) (3.319)

where G, is Einstein’s tensor, and Mb‘,“ is the energy-momentum tensor

of matter. For the ezterior problem the equations acquire the familiar form
Gu=0 (3.320)

which represent the essence of Einstein’s Gravitation, namely, the gravita-
tional field of a celestial body with null total electromagnetic phenomenology
is characterized by pure geometry without source.
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tically null probability of tunnel effects for free quarks); identification of the
quark constituents with physical, ordinary particles; etc.

As it occurred in the preceeding parts of this review, in this section we
shall ignore operator profiles and restrict the analysis only to classical as-
pects. Thus, all short range quantum mechanical interactions of the interior
problem will be only marginally indicated without treatment.

We shall now begin with a review of some of the problematic aspects of
Einstein’s Gravitation; identify what we call an “ideal” theory of gravitation;
and then pass to a review of Gasperini [59,60,61,62] and Santilli [14,21,58]
work on the Lie-isotopic General Relativity.

3.5.2 Problematic Aspects of Einstein’s Gravitation for the In-
terior Problem

Einstein’s Gravitation is based on a geometry, the Riemannian geometry,
which is local and differential. Santilli [21),{64] points out that such a ge-
ometry is fundamentally incompatible with the interior problem of celestial
bodies, because of the incontrovertible nonlocal nature of the forces for the
interior dynamics, as well as the ultimate nonlocal nature caused by the
mutual penetration and overlapping of the wavepackets of particles in the
core of the celestial body considered (Fig. 1). .

The use of a suitable nonlocal integrodifferential generalization of the
Riemannian geometry is therefore advocated as the fundamental mathe-
matical tool for 2 more adequate treatment of the interior problem.

The above occurrance leaves open the problem whether the Riemannian
geometry can be at least approzimately valid for the interior problem. The
answer to this question appears also to be negative.

A known way to approximate contact nonlocal interactions experienced
by an extended object moving, say, within a gas, is via power-series ezpan-
sions in the velocities, as well known in Newtonian mechanics.

In this way, locality is regained in first approximation; yet the power
series in the velocities allows a quantitative treatment of the conditions
considered. Santilli [loc. cit.] contends that the Riemannian geometry does
not allow the representation of a sufficiently high value of the power of the
velocities, thus preventing a nontrivial, quantitative treatment of the interior
dynamical conditions (this is also known in the specialized literature as the
Cartan legacy, that is, the inability of the Riemannian geometry to recover
all possible Newton’s equations of motion under PPN approximations, see
ref.[4]).

201

Another central property of Einstein Gravitation is its intrinsically ho-
mogeneous and isotropic character. Santilli [loc.cit.] contends that such
character is in violation of incontrovertible physical evidence for the interior
problem (only). In fact, interior motions are not in empty space, but occur
within the physical medium constituted by the celectial body itself. In turn,
such medium is, in general, inhomogeneous and anisotropic. As an example,
the density of Jupiter manifestly increases with the decrease of the distance
from the center.

Owing to this occurence, Santilli [58] advocates the construction of a
gravitational theory for the interior problem capable of representing motion
within generally inhomogeneous and anisotropic material media. The un-
derstanding is that space itself remains homogeneous and isotropic, exactly
as in the Newtonian and relativistic cases.

Another central feature of Einstein’s Gravitation is its local Lorentz char-
acter. Santilli (loc.cit.] contends that this character too is violated in clas-
sical mechanics by incontrovertible physical evidence. In fact, the local
Lorentz character implies, in particular, the local rotational symmetries, as
well known. Santilli therefore suggests the observation of dynamical systems
in the interior problem of our Earth, such as satellites during re-entry with

 their continuously decaying angular momentum; the vortices in Jupiter’s

atmosphere with their continuously varying angular momentum; etc. All
these systems constitute incontrovertible physical evidence of the breaking
of the (conventional) rotational symmetry in our classical environment. The -
violation of the local Lorentz symmetry is then consequentive.

In the words of the quoted author, the insistence in the acceptance of
Einstein’s Gravitation for the interior problem directly implies the acceptance
of the perpetual motion in our environment. In turn, the acceptance of
excessive approximations of Nature, inevitably raises ethical issues (which
are not considered in this review).

The customary attitude when facing systems with varying angular mo-
mentum is that such breaking of the rotational symmetry is “illusory” in the
sense that, when the interior system considered is reduced to its elementary
particle constituents, the rotational symmetry is regained in full. '

The suggestive “journey without return” in the Solar system [17] shows
that such an attitude itself is “illusory”. In fact, a mathematical proof of the
contention would require that an object such as a satellite during re-entry,
with its continuously decaying angular momentum (and noncanonical, non-
hamiltonian time evolution) is reducible to a finite number of elementary
particles all possessing a locally conserved angular momentum (and thus
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3.5 Lie-Isotopic Generalization of Einstein’s Gravitation [14],
[58],(60},[62]

3.5.1 Introductory Remarks

-As stressed in the preceding section, when violations occur because of motion
within inhomogeneous and anysotropic media, Einstein’s Special Relativity
must still be considered approzimately valid.

The situation for Einstein’s General Theory of Relativity (or Einstein’s
Gravitation for short) is different because of the existence of so many and so
deep problematic aspects to create serious doubts even on its approximate
validity.

The literature on these problematic aspects accumulated throughout this

century is so vast that it cannot possibly be reviewed here. We shall simply

limit ourselves to a review of those problematic aspects that have a direct
relevance for our objective: a review of the Lie-isotopic generalization of
Einstein’s Gravitation.

A necessary condition [64] for nnderstandmg the problematic aspects, as
well as for avoiding potentially major misrepresentations, is a return to the
old separation of (any) theory of gravitation into

A) The interior problem. This is essentially the theory of gravitation appli-
cable to the interior of the minimal surface (or sphere, for simplicity)
containing all matter (thus including the atmosphere, when it exists).

B) The ezterior problem. This is eentiaﬂy the theory of gravitation ap-
plicable to the exterior of the above identified surface (or sphere).

The best way to illustrate the distinctions between the above two prob-
lems is by observing their physical differences as they occur in Nature.

Consider the motion of a test particle in a given gravitational field, say,
that of Jupiter. When considering the erterior problem, motion occurs
in vacuum (empty space), in which case the actual size of the particle is
ignorable. We can then effectively deal with a point-like test particle moving
in vacuum under a gravitational field, with consequential local conservation
laws, e.g., that of the angular momentum.
~ When the same test particle enters the interior problem, the situation
is different because we now have motion within a physical medium such as
Jupiter’s atmosphere. Under these conditions, the actual size of the particle
is no longer ignorable, but must be properly represented to avoid excessive
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approximations of physical reality. We therefore have motion of an ex-
tended particle within a physical medium, with the consequential contact,
nonhamiltonian forces we have encountered at each level of our analysis
(Newtonian, relativistic and, therefore, gravitational), with all their partic-
ular physical implications that are simply absent in the exterior problem
(inapplicability of the notion of potential, null range, deviations from local
conservation laws, etc.).

At a deeper analysis, the distinction between the exterior and the interior
problem is even deeper than that. In fact, the interior problem includes not
only the long range interactions (electric, magnetic and gravitational), and
the contact nonhamiltonian interaction indicated above, but also the short
range interactions that are typical of the structure of matter (such as the
weak, nuclear and strong interactions). By comparison, the exterior problem
includes only the long range interactions without any contact or quantum
mechanical effect. :

The distinction between the interior and the exterior problem was well
known soon after the inception of Einstein’s Gravitation but it has been
ignored in more recent times, thus reaching the condition of (most of ) the
contemporary literature in which no mention is made of such distinction.
This is regrettable owing to the incontrovertible experimental evidence es-
tablishing the physical differences of the motion of a test particle in the
exterior and in the interior problem.

The distinction under consideration is crucial for the physical applica-
tions of the Lie-isotopic theory, consistently, at all levels of study, from the
Newtonian to the relativistic and to the gravitational level. In fact, the dis-
tinction was brought back by Santilli in 1978 [2] with the notion of closed
nonhamiltonian systems (§3.3), and then extended to the relativistic context
(§3.4). As now familiar, these systems obey conventional relativities for the
exterior dynamics, but require a structurally more general description for
the interior problem. _

It is then natural to expect that a similar distinction plays a fundamental
role in the Lie-isotopic formulation of gravity.

A similar distinction also exists in the structure model of hadrons [loc.
cit.] according to the “hadronic generalization of quantum mechanics” (§1.3)
in which, again, conventional quantum mechanical laws and relativities ap-
ply in the exterior problem, while structurally more general laws and rela-
tivities apply in the interior dynamics. In turn, this dichotomy opens up a
truly new frontier of possible advances, we hope to present in a subsequent
review, such as: achievement of a true confinement of quarks (with an iden-
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symmetry transformations, with the consequential excessive approximation
of Nature indicated earlier.

Despite all the above differences with the conventional case, it is re-
markable that Santilli’s and Einstein’s Special Relativities coincide at the
abstract, realization-free level. By keeping in mind the large variety of dif-
ferent particular cases admitted by the Lie-isotopic theory, this latter prop-
erty provides genuine hopes for a true, ultimate unity of mathematical and
physical thought.

We regret being unable to review a considerable number of contributions,
all conceived in a way entirely independent from the Lie-isotopic theory, but
which eventually result to be a particularization of the Lie-isotopic lifting of
the Special Relativity.

conventional, conservation laws. Finally, we have a third description, that
of one individual constituent when considering all the others as external.
The relativity suggested for this latter viewpoint is of *Lorents-admissible®
type along monograph [21}, that {s, with an algebraic structure capable of
directly representing the nonconservation of the physical quantities of the
constituent. Note that in the atomic structure one single relativity, Ein-
stein’s Special Relativity, is fally sufficient for the description of both, an
atom as a whole and one of its peripheral electrons. This is due to the fact
that the electrons have stable orbits under potential forces. The conventional
Lie-Hamiltonian structure is then sufficient. In the transition to the struc-
ture of hadrons, the situation is different because individual constituents are
in generally nonconservative conditions under the action of nonhamiltonian

CENTER-OF-~MASS TREATMENT: the speciel relstivity
under point-lils appreximetions

FIGURE 11. A reproduction of Fig. 2 of ref. [58] depicting the vari-
ous descriptions that may eventually result to be needed for the dynamical
behavior of a hadron. First, we have the description of the center-of-mass
behavior of the particle ander external, action-at-a-distance interactions,
say, when moving in a particle accelerator. This first description strictly
obeys Einsteia’s Special Rél;tivity. Second, we have the description of the
structure of the particle when inspected from an outside obéerver. In this
case, Santilli’s “Lorents-isotopic relativity” reviewed in this section is rec-
ommended because the generalized unit of the theory allows the represen-
tation of nonlocal.vinte;rodiﬂer.ersﬁnl internal forces due to mutnal wave
overlapping of the hadronic constituents, all in a way compatible with total,
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forces. A description of non-Lie type is then recommendable. We hope to
review the above aspects in a subsequent paper on *hadronic mechanjcs.”

We limit ourselves to mention Preparata works [97) which are based on
the idea of a possible anisotropy in the interior of hadrons with intriguing
implications. Quite clearly, Preparata’s research, in its classical formulation,
is a particular case of Santilli’s Special Relativity which, as now familiar,
deals with the most general possible class of anisotropy and inhomogeneity
in the interior of hadrons. Intriguingly, as now predictable, Preparata’s
anisotropy does not imply the necessary violation of the Lorentz symmetry,
which could be recovered as an exact symmetry at the level of Lie-isotopic
formulations (Theorem 3.6). Needless to say, the establishing of the property
requires a form of statistical averaging [98] of Preparata’s space or other
approaches capable of reducing the quantum field theoretical setting of ref.
[97] to a primitive, classical, anisotropic framework. o

Similarly, we are unable to review a rather considerable number of addi-
tional research, such as the studies by P. Ba.ndyopadhya.y and S. Roy [98],
or S. Roy [99] and others.

We would be grateful to any colleague who sends to our attention (at
the Institute of Basic Research, 96 Prescott Street, Cambridge, MA 02138
USA) articles or references of papers directly or indirectly related to Santilli’s
Special Relativity for their possible review in a future work.
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3.4.17 Reconstruction of the Lorentz-Isotopic Symmetry when
Conventionally Broken

One of the most important properties of Santilli’s Special Relativity is that
of being able to reconstruct as exact, at the isotopic level, space-time sym-
metries that are conventionally broken (see fundamental Theorem 2.9).

The direct consequence is that all statements of “Lorentz noninvariance”
or “breaking of the Lorentz symmetry” available in the contemporary llter-
ature are generally incorrect on strict technical grounds.

As an example, consider the phenomenological studies by Nielsen and
collaborator [70). They result in generalized metric (3.170), i.e.,

. 1 1 1 2

g = diag(1 - Ea,l -3 1- 3® -c5(1+ a)), (3.318)

which is clearly “Lorentz noninvariant” but only when the symmetry is

realized in its simplest possible way, that via the trivial Lie product AB —
BA.

If the Lorentz symmetry is realized instead in a more general way, via
Santilli’s isotopic products A* B~ B+ A = AgB — BgA, with the metric g
given by form (3.318), then the Lorentz symmetry remains exact (Theorem
3.6).

A similar situation occurs for all cases of “Lorentz noninvariance” re-
viewed in §3.4.3 Consider, for instance, the generalization of Einstein’s Spe-
cial Relativity proposed by Bogoslovski [83] for Finslerian invariants of type

(3.176). Since the topological character of the conventional Minkowski met--

ric is preserved (for positive-definite anisotropic terms), Theorem 3.5 applies
and the abstract Lorentz symmetry in Bogoslovski's Special Relativity re-
mains exact. /

The implications of the above results are far reaching. A central resuit
of the Lie-isotopic studies is that, by no means, the Lorentz symmetry is
“broken” and therefore “abandoned.” Instead, it is preserved in full, although
realized in its most general pomble form.

As a consequence, all the “deviations” from conventional laws ezpressed
by Postulates 3.1-3.5 are deviations from the Einsteinian realization of the
Lorentz symmetry, and not from Lorentz symmetry which remains ezact.

3.4.18 Epistemological Comments

A few epistemological comments are important to illustrate in more depth
the physical departures of Santilli's Special Relativity from the Einsteinian

195

one.

As now familiar, the generalized relativity has been constructed with
the objective of admitting the Galilei-isotopic relativity as particular case
for “nonrelativistic” speeds. As a result, all the epistemological comments of
§3.3.9 on the Galilei-isotopic relativity apply, of course, in their “relativistic”
generalization.

Traditionally, the (conventional) Lorentz symmetry has been assumed
as the fundamental symmetry of Nature. The metric (or the equations of
motion) have then been restricted to comply with such a symmetry. Santilli.
advocates the reverse attitude: one should assume as fundamental physical
information the metric (or equations of motion) as provided by ezperimental,
phenomenological or other evidence, and then seek the generalized relativity
capable of leaving that metric (or equations of motion) invariant. This is the
case of generalized Minkowski metric (3.170) by Nielsen and collaborators
[70] for the interior of pions or kaons. The insistence on the assumption of the
conventional Lorentz symmetry and Minkowski metric as the fundamental
quantities would directly imply disagreements with available phenomeno-
logical information, besides forcing the excessive approximations of physical
reality indicated in §3.3 (Perpetual-motion approximations, etc.).

As for the Galilean case, relativistic studies have been essentially re-
stricted until now to only one symmetry, the Lorentz symmetry. San-
tilli’s Special Relativity characterizes, instead, an infinite number of different
symmetry transformations, each of which i3 a covering of the conventional
Lorentz symmetry. This is evidently due to the infinite variety of possible
metrics g. If only one symmetry is imposed, whether conventional or gener-
alized, a substantial limitation on the representational capability of physical
reality would follow.

The abandonment of linearity in favor of intrinsically nonlinear, but for-
mally isolinear transformations, is another condition for a more adequate
representation of Nature. Again, the insistence on the linearity of the trans-
formations would imply another substantial limitation on the representa-
tional capability, with consequential excessive approximation of Nature.

Also, as in the Galilean-isotopic case, Santilli’s Lorentz-isotopic symme-
tries are generally nonmanifest; yet they can be ezplicitly computed from the
sole knowledge of the new metric and the old Lorentz symmetry.

Finally, Santilli’s Special Relativity has been conceived to map noninertial
Jrames into noninertial frames, because inertial frames are a conceptual ab-
straction that cannot be realized in ezperiments. From a different viewpoint,
the insistence of the preservation of inertial frames would imply only linear
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Theorem 3.8 [58]: (The No No-Interactions Theorem). Syatems of par-
ticles on isospace My which ven/y Santilli’s Special Relativity (i.e., are co-
variant under the Lorentz-isotopic group) cannot be reduced to a fnae form
unless the genemlazed relativity is reduced to the conventional Einsteinian
relativity (and the isospace M is reduced to the conventional Minkowski
space M (ezcept for a possible scalar isotopy).

The proof of the theorem [58] is based on Gasperini’s [60] Lie-isotopic
generalization of Einstein’s Gravitation and, in particular, the property that,
under a nontrivial isotopy of the Minkowski metric, the motion cannot be re-
duced to a geodesic one (i.e., it is irreducibly nongeodesic), thus establishing
the existence of irreducible, nontrivial interactions.

The main conceptual foundations of this important result is the follow-
ing. Recall that the Birkhoffian formulations are based on a nontrivial gen-
eralization of the conventional canonical action into a Pfaffian form. Now,
at the conventional (relativistic) level, there exist canonical transformations
capable of reducing the system to its free, and therefore noninteraction,
form. :
At the level of Santilli’s Special Relativity, the situation is different. In

fact, the use of the transformation theory can at best reduce the Birkhoffian
to the free form, but the system remains interacting owing to the remaining
nontrivial Pfaffian terms.

To put it differently, the conventional transformation theory can at best
eliminate the potential-Hamiltonian forces, but not the contact, nonhamil-
tonian forces owing to their representation by the generalized unit (and
related Lie-isotopic brackets) which evidently remain totally unaffected by
the transformation theory. This yields Theorem 3.8 above. In conclusion,
particles obeying Santilli’s Special Relativity and which therefore admit a
generalized isounit I, cannot be free. This important property has truly
fundamental implications, especially in particle physics, as we hope to indi-
"cate in a subsequent paper on “hadronic mechanics” (§1.3).

3.4.16 The Direct Universality of the Lorentz-Isotopic Symmetry

As the reader familiar with the Lie-isotopic techniques can now predict, San-
tilli’s Lie-isotopic generalization of the Lorentz symmetry is directly univer-
sal, i.e., capable of including all possible cases of noninvariance or general-
izations considered until now (universality) without any need of the trans-
Jormation theory (direct universality).

This property is a direct consequence of the arbitrariness of the metric

193

g in the Lorentz-isotopic symmetry. It is the “relativistic” counterpart of
the direct universality of Birkhoffian mechanics and its Galilean-isotopic
relativity [20).

As an illustration, the generalized relativity on isotopic spaces M; in-
;ludes, as particular cases, all models of Lorentz noninvariance reviewed in
3.4.3

This latter property has been studied in detail by Aringazin [89) for
the case of (1 + 1)-dimensional spaces with components z3 and z*, and
the assumption that the quantity b of the Lorentz-isotopic transformations
(3.251) does not depend on the local coordinates, but only on the velocities
v, thus allowing power series expansion of the type

b)) =14+X+M7+ 27 +..., (3.316) .

where the A’s are much smaller than one, and the quantity 4 is. the con-
ventional relativistic one. By putting ¢, = 1 for convenience, Aringazin
expresses behavior (3.279) of the mean life of unstable hadrons in the form

2

r=n{l+ A7 + M1+ A7 + [3‘l + 214+ ) +..), (3.317)
which evidently includes behavior (3.169) by Blockhinstsev [67] and Pecei
[68], as well as behavior (3.171) by Nielsen and collaborators [70]. The
case of behavior (3.175) by Aronson et al. [72] for the mean life is also a
subcase of Aringazin’s expansion (3.317). The corresponding behavior for
other parameters of the K-system, such as the mass difference, were obtained
by Aringazin via a Lie- isotopic lifting of the field equations compatible with
the assumed structure of the metric underlying Eq. (3.317). For brevity, we
refer the interested reader to ref. [89).

Finslerians spaces are also a subcase of the isotopic spaces and are ob-
tained, trivially, by factorizing the anisotropic term from all terms of the
metric g = Diag.(b?,c2), as the reader can verify.

In case a model of Lorentz noninvariance breaks the topology of the
Minkowski metric but it is still flat, the isotopic spaces M|y, are needed. The
lifting of the Lorentz symmetry is in fact unaffected by this generalization,
as indicated earlier. This broader class includes models such as Recami-
Mignani’s superluminal invariants (3.253), ref. (93], and others.

The illustration of the direct universality of the Lorentz- isotopy with
other available models is left to the interested reader.
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and, for "nonrelativistic” conditions, does indeed recover the corresponding
Galilei-isotopic counterpart (except for a scale term)

Efin ™ Em3c*(1 + -ﬂ’) ES+ m vigijv. (3.308)

Suppose that the particles are under the action of an electromagnetic field

generated by the other particles, and represented with the four potential

A%(z). Then, the correct form of the potential energy in M; must be written
.l i e .' y

U(z)o )= ;-:Aﬂ(z)g,.,z.. (3.309)

To add the contact nonhamiltonian forces, one needs only to general-
ize conventional, relativistic, variational principles into those of Birkhoffian
type, where the Birkhoffian is the conventional total Hamiltonian properly
formulated on M;.

The simplest class of such nystemn is a relativistic generalization of the
Birkhoffian systems used to identify realizations of the isotopic group of
rotations (5(3), Eqs. (3.57). By assuming for conventional Hamiltonian on
M expressions of the type (see, e.g., ref. [96], p. 127)

H= Z ﬁ-pgg,,,p: - ):m.é +U(z,2) + = ): Aes (3-310)

where the As are multipliers, the desired partncula.nzation of systems (3. 305)
can be represented by the genera.hzed action [58]

A= / (5" P}l + Y Tude - Hlds. (3.311)
1 s s )
The symplectic tensor of the theory is then given by
Q= ( 0 '9“") vir$ = 1,2,...,8, (3.312)
Guv 0
with corresponding, Lie-isotopic counterpart
Q; = ( gt 0)=\-g» "0 ) (3.313)
and generalized Poisson brackets. ’
[4:B] = A _,0B 8B _,0A (3.314)

9zn 9w opp ~ GpuImd gpe-
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The departure of the generalized from the conventional brackets is a direct
representative of the non-self-adjoint forces, as the reader is urged to verify
via a study of monograph [20).

Systems (3.311) then assume the Birkhoffian form

wOH
-l - .
B =9"7= 8#”’“ -g* Frra
2 OH . oH .
Al = 8_1‘.’1“ = -_8A.’ (3-315)

where, as now familiar, the last two sets of equations represent the subsidiary
constraints Z, « , = —1.

Note the manifest Poincaré-isotopic invariance of Pfaffian action (3.311),
with consequential conservation laws. Note also that the conserved quan-
tities are the conventional ones because Santilli’s Lie-isotopic theory leaves
unchanged the parameters and generators of the original symmetry.

Almost needless to say, several refinements of systems (3.305), (3.306)
or (3.315) are possible, most notably, that via Dirac’s theory of relativistic
systems with constraints. For brevity, we must refer the interested reader
to paper [58] for a discussion of these and other aspects. For the purpose of
this paper it has been sufficient to review that: ‘

1. the relativistic generalization of Galilei-isotopic, cloa;d, nonhamilto-
nian systems can be consistently formulated in isospaces M;

2. such systems are not only consistent, but generally admit infinite va-
rieties of different solutions; and

3. the systems admit a representation in terms of (relativistic) Birkhoff’s
equations which allows the identification of the generalized metric of
the theory from given nonhamiltonian forces via the use of the tech-
niques of monograph [20].

The above results are amply sufficient for the limited scope of this review.

In closing, we would like to mention another important consequence of
Santilli's Special Relativity, that of being able to bypass the so-called No-
Interaction Theorem of Einstein’s Special Relativity (see, e.g., ref. [96]).
The theorem essentially states that, under certain quite plausible, Lorentz-
covariant conditions, systems of particles that are in nontrivial mutual inter-
actions are incompatible with Einstein’s Special Relativity. For the isotopic
setting we have instead the following property.
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thus yielding the following relationship

Fewton = ﬁ—chSm.'u.'- (3.304)
‘As now familiar, forces (3.300) are classified into self- adjoint (SA) and
non-self-adjoint (NSA) depending on whether they are derivable or not from
a potential [63].
We reach in this way the following “relativistic” generalization of the
Galilei-isotopic systems (3.93) of N particles with Hamiltonian and non-
hamiltonian forces [58]

Moty = esat Kansa
a=1,2,...,N,
d d Y
—Ple==—()_pb) =0,
ds’ dsé} .
d d X
;M:'27=Z;(.§Mf )=0,

(3.305)

where the ten conservation laws for the P}, and -M/;, are the relativistic
version of the ten Galilean conservation laws of Eq. (3.93) and the last
equations are the conventional constraints for relativistic theories, evidently
expressed in the generalized metric.

Equations (3.305) constitute systems of 4N ordinary differential equa-
tions with N + 10 subsidiary constraints, which can be interpreted as alge-
braic constraints in the 4N components of K§g,. Thus, for N > 3, system
(3.305) admit an infinite variety of solutions, the case N = 2 being a special
one, exactly as it happened in the Galilean case (§3.3).

. Systems (3.305) are of central relevance for Santilli’s Special Relativ-
ity, not only classically, but also operationally. In fact, the systems are
proposed as a classical limit of structure models of hadrons, in which each
extended-deformable constituent moves within a medium with metric g,
characterized by the wavepackets of the other constituents.

As presented, systems (3.305) are based on the requirement that the
center of mass of the system, when seen from an outside observer, obeys

e oV
2o9uie = ",1$
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Einstein’s Special Relativity, while having a manifestly generalized internal
structure obeying Santilli’s Special Relativity.

A large variety of generalizations, implementations and modifications of
systems (3.305) are conceivable. Stronger requirements may be expressed
by the more restrictive systems [58]

du®
m:ﬁ = Kisa+ Kinsas

a=12,...,N,

d d iy s
zpt‘;t = O'T‘:M:;: = O,z:‘g“,z: = -1,

- (PP =0,

d 1 |
E(W“q,..W’) =0,W= Et‘am\Mﬁﬂ'\w

N
Xt‘:n'hwxlvu = _lixt‘:n = Zz‘:’
ex=l
where one can see, not only the ten conventional, relativistic conservation
laws, but also the condition that total quantities can be well defined in
the conventional Minkowski space. For these stricter systems, the general-
ized internal structure is not detectable from the outside, trivially, because
ezternal observers can only detect total quantities, and such quantities are
constrained to a conventional Minkowski space.

Note that, despite their restrictive character, systems (3.306) remain
consistent for sufficiently large N. In fact, the total number of constraints is
N 1-13. By assuming that the self- adjoint forces are conventionally assigned,
one remains with a total of 4N + 4 free functions, the 4N components of
K\ s, and the four diagonal functions of the metric g. Solutions then exists,

(3.306)

.again, for N > 3, and they are expected for N = 2.

Following ref. [58], we shall now present a special class of closed non-
hamiltonian systems, those verifying by construction the Poincaré-isotopic
symmetry. In this case the ten conservation laws for P}, and MY, are
guaranteed by the symmetry itself (see Theorem 3.3) and can therefore be
ignored. v

Recall that the kinetic energy of each particle is given by

E}; = m*c? = m%5¢?, (3.307)
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that is, the value m,c3 of the conventional relativity is replaced by mye? of
the generalized relativity. :
By keeping the conventional assumption

E

P‘ = (3.295)
c
where E is the energy of the particle, we have from Eq. (3.294)
picp* - e 7= E? - plaijp’ = moe!, (3.296)

with the following consequences.

POSTULATE 3.5 [58]: The mass m, of a particle moving
within a physical medium varies with speed according to the iso-
topic law : :

) m=m,Y,

¥= (1 - ﬁz)lh’
NI =
and its equivalent value of the energy for at rest conditions is
. given by - : ‘L
E=m,c’g mec3, (3.298)
where ¢ is the speed of the light (or electromagnetic wave) within
the medium considered, when admissible, or a geometrical quan-

tity characterized by the medium itself.

(3.297)

Note that for the case of water represented by invariant (3.271), Eq.
(3.297), coincide with the conventional ones, trivially, because in this case
b/c = c,. Also, in this case p? = Jp? and the conventional Einsteinian ex-
pression E = m,c3 can be recovered. In order to have a nontrivial departure
from the conventional relativity one must have an isotopic generalization of
the Minkowski metric other than its scalar isotopy g = ;}m.

For the case of Nielsen’s metric for kaons, Eq. (3.170) one has

- y2l-la
- _Y ST 30112
m = mo(1 a2 l+a)

E = mocz(l +a)> "‘ocz:
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a = (0.61£0.17) x 1073, (3.209)

that is, the mass m of the particle is not infinite at speed ¢, (because the
particle in that metric can exceed c,, see §3.4.9) and the energy equivalent
at rest is higher than that predicted by Einstein’s Special Relativity.
Conceivably, the above deviations from the conventional predictions are
suitable for experimental resolutions in favor of one or the other prediction.
It should be stressed that isotopic laws (3.299) are referred, specifically,
to a mesonic constituent and not necessarily to the particle as a whole.
Note that the fundamental isoinvariant (3.294) is the central starting
point of the Lie-isotopic generalization of classical (and operator) field the-
ory. See in this respect Appendix C.
An important particularization of Santilli’s Special Relativity with min-
imal deviations from the conventional setting has been worked out by Ani-
malu [95]. We regret to be unable to review it here for brevity.

3.4.15 Relativistic, Closed, Nonhamiltonian-Birkhoffian Systems

We now review the preliminary studies presented in ref. [58] on the rel-
ativistic extension of the Galilei-isotopic notion of closed, nonhamiltonian
systems. .

Consider the iso-four-force on isotopic space My, which is given by the
Minkowski force 1

K= (K”) = (R,WK'Q.','R'),

referred to the isotopic contraction on Mj. This means that K* is no longer
orthogonal to the four velocity u* (§3.4.13) on the conventional Minkowski
space, i.e., K#n,,u” # 0. We have instead the isotopically lifted property

(3.300)

K*gu v’ = K,g"u, = K*u, = K, u* = 0. (3.301)

The dynamic equations for one particle can therefore be written

du* ' ‘
= K*
Moy = K*. (3.302)
The space component is given by
di dz! dii . dii
m,z = m,I:‘F = m,‘ycz =K. (3.303)
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POSTULATE 3.4 [58]: The Doppler frequency shift for elec-
tromagnetic waves propagating within physical media (e.g., trans-
parent liquids) follows the isotopic law

o = wi(1 - Beona), g = (1= 7,0 = B, (3ams)
with isotopic aberration rule -
cosa’ = (cosa — f)/(1 - fcosa). (3.286)

The above generalization of the corresponding Einsteinian laws is im-
portant for astrophysical considerations. In fact, galactic space is far from
empty, being filled-up with dark matter, radiations, and (real) elemen-
tary particles (ignoring virtual ones). As a result, propagation of light
between galaxies should follow Santilli’s law (3.285) rather than Einstein’s
law (3.167). Over sufficiently long intergalactic distances (e.g., for far away
galaxies), the difference between the laws should imply experimentally mea-
surable differences. This can conceivably provide a first experimental reso-
lution of prediction (3.285) suggested in ref. [58].

Note that the generalization is trivial for metrics such that b/n = ¢,. For
instance, in the case of propagation of light in water (Cherenkov light), we
have isotopy (3.271) under which isotopic laws (3.285) and (3.286) coincide
with Einsteinian laws (3.167). We reach in this way the important conclusion
that the Doppler shift for light in water follows the conventional Einsteinian
law [58]. In order to have a significant generalization we either need a value
b/c # ¢, or an anisotropic and inhomogeneous three-dimensional medium.

3.4.14 Isotopic Generalization of Relativistic Kinematics

We now pass to the review of the isotopic generalization of the conventional
kinematics for one particle according to ref. [58], which, as the reader may
readily predict, is the basis for the isotopic lifting of field equations outlined
in Appendix C.

The generalization is mathematically quite simple. Nevertheless, its
physical implications are far reaching. It is recommendable to mention at
this point the fact that, in some of his last papers, P. A. M. Dirac [94] pro-
posed a generalization of his celebrated equation which results to be precisely
of isotopic type, that is, of a quite simple generalized mathematical struc-
ture. Nevertheless, the spin of the represented particle is generalized from
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the value 1/2 of the conventional equation into the value 0 of the isotopic
form.
Introduce the infinitesimal invariant in isotopic space M;

- ds? = —dz*g,, dz* = dzic*dz? - di'g;dz,

dz = t,g;; = b%6;; (3.287)
from which one can write
dz#*  dz#
- Tg‘“‘r —4 l. (3-288)
We now define as iso-four-velocity the vector on M;
dz#
v = d_a | (3289)
To compute the'coxhponents of u*, we éa.n write from Eq. (3.288)
from which we have the fourth component
ol _a
s Cds 1©
,7 = (l - ﬂz)—l/z'
R -
f= % (3.291)
The space components are then given by
dz*  dzidz* ‘
k - _ —_a
w=—_= e Jev*. (3.292)
We now define as iso-four-momentum on M; the four-vector
P = mou¥,p = (moicd,mofc). (3.293)

By recalling the lowering and raising of the indices in M; of §3.4.7, we then
have the fundamental property

P'9up’ = Pug" Py = P'pu = pu?”

m252c3vig;iv’ — m3y%c!
.2, v'gijv!
- m2 4 2(__C‘2L - l)

-m3c?, (3.204)
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In fact, if one assumes in Eq. (3.276) v; = v2 = c, one obtains the
noninvariant condition 2%

Vg,g = -l—+—b2' # C. (3.277)

On the contrary, if one assumes vy = v3 = Vprar = ¢/b, one obtains the
invariant relation
Vit = 2—;& = £ = Vires: (3.278)
Note that, for the case of Einstein’s Special Relativity, we trivially have
the identity Vigez = ¢ = ¢,, thus recovering the familiar invariance of c,.
The nontriviality of Santilli's Special Relativity is the capability to show
that, in actuality, the invariant quantity is Vass- and not the speed of light.
As indicated in ref. [14], Postulate 3.2 is verified by the Cherenkov light
(in which Vias is precisely c,), and appears to be plausible for other cases.
After all, when light propagates at speeds smaller than c,, those speeds cannot
be the invariant of the theory. Postulate 3.2 is equivalently reached when
no electromagnetic wave can propagate at all within the medium consid-
ered. Any consistent relativity must, under these conditions, provides the
invariance only of the maximal speed of propagation of massive particles.

3.4.12 Isotopic Generalization of Time Dilation and Lorentz Con-
traction

The generalization of Einsteinian laws (3.165) and (3.166) provided by San-
tilli’s Special Relativity can be directly read from the Lorentz-isotopic trans-
formations (3.251).
POSTULATE 3.8 [14]: The depehderwe of time intervals
with speed follows the law of isotopic time dilation

At,

At = ‘?At, = @)1_/2- (3.279)

while space intervals follow the law of isotopic space contraction
32\1/2 vb? 1/2
Al=(1-p8%)"%Al, =(1- -?..-) Al,. (3.280)
As indicated in §3.4.9, isotopic law (3.279) appears to e confirmed by
all available phenomenological elaborations of the dependance of the mean
life of unstable hadrons at different speeds, although still in a preliminary
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way because of the lack of direct experiments. In the final part of §3.5 we
shall then show that isotopic law (3.279) has a truly crucial character for
fundamental experiments, such as the resolution of the validity or invalidity
of the locally Lorentz character of current theories.

3.4.13 Isotopic Generalization of the Doppler Effect

The generalization of the Doppler Effect for motion within physical media
(assumed in this section to be transparent to light) is straightforward, and
was worked out in detail in ref. [58]. '

The “plain wave” form of the electromagnetic waves on Santilli’s isotopic
space M can be written

P(z) = Aexp(ik* - 2)|¢ = Aexp(ik*g,,z*| [, (3.281)

where one can recognize the familiar expansions in the isoenvelope £ as well
as the expansion in the original envelope €. The isounit I shall be ignored
hereon for simplicity (see §3.4.5 for conments in this respect).

The k-isovector in Eq. (3.281) is an isonull vector with components

kg, k¥ = Kb’k — w? = 0, (3.282)

where w is the wave frequency and k is the wave vector. Again, for simplicity
we have assumed an homogeneous three-space with metric g;; = b%¢;;.

Suppose that the above wave is detected by two observers § and §’,
e.g., one at rest with the source of the wave and one in motion with respect
to it at relative speed #; along z3. Suppose also that. k makes an angle a
with the z3-axis in frame S k3 = |k| = ¥ cosa. Let o/, ', and o be the
corresponding quantities in frame 5.

Santilli’s Special Relativity requires the form invariance of the “isowave”
(3.281), i.e.,

k¥ g,z = k*g,, 2", (3.283)
under which
kll = kx,km - kﬁ’
K? = §(° - fi*) = |¥| cor’a,
- ’
K = 4(k* - fk®) = “’7 (3.284)

Elementary algebra then leads to the following
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Note also that m; and m; can also have a local dependence on a variety
of physical quantities, as it is ultimately the case for the index of refraction
n of invariant (3.271). Such functional dependence must be provided by the
physical information at hand, and cannot be predicted by any relativity.

The understanding is that the electrodynamics of charges moving inside
conductors is not expected to be exhausted by this case alone, trivially, be-
cause different conductors imply different media and, thus, different isotopes
M;. This is particularly illustrated by conductors in limit conditions (eg.,
superconductivity) in which Vaysax is expected to be c,.

CASE 2A: Vifes < €oy€ > €o.

This is the case submitted in ref. [12] for the nuclear structure in which:
1) light cannot propagate through the medium itself, thus requiring a geo-
metrical interpretation of the term ¢ (§3.4.6); 2) contact nonpotential inter-
actions now appear because of the dense nature of the medium (as compared
to that of metals and of fluids); and 3) the maximal speed of the particles
(e.g, the nuclear constituents) is conjectured to be smaller than ¢,, no matter
what interactions is used, and we shall write invariants of the type

z4guz” = 2'b6;;27 - zic?zd,

WMoz = E < €3¢ > €0 VMasz # €. (3.2714)

The ultimate physical property represented in this case is the fact that,
unlike the atomic structure and other cases, nonrelativistic approaches are
very effective in nuclear physics.

Notice alsa that the above treatment is a clauwal approximation. As a
result, processes such as local photons exchanges are not represented because
of their essential quantum mecha.mca.l character.

CASE 2B: Ve, > €5, > €.

This is the case submitted in refs. [12], [14] for the hadronic structure
itself as well as for limiting conditions of hadronic matter, such as the core of
a collapsing star. In this case the quantity ¢ can be assumed to be essentially
that of Case 2B. The maximal speed of massive particles (e.g., the hadronic
constituents) is conjectured in this case to be higher than the speed of light
in vacuum because of the action of the contact, instantaneous forces (§3.4.9),
and we shall write separations of the type

kak 4.2.4

z“g,..,z =z -zcz,

VMeaz = = > €0y € > €0y ViMaz # €. (3.275)

b
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This is the intriguing prediction of Santilli's Special Relativity which
appears to be confirmed by available phenomenolog:cal calculations on the
deformation of the Minkowski metric in the interior of kaons and other
hadrons (§3.4.9), as well as by explicit gauge calculations (Appendix B).

- In summary, we can conclude that Santilli’s Specxal Relativity predicts
a variety of cases in which:

o the value of g.l ? can be C Co, and independently,

o the maximal speed of massive particles Vas,, can also be C €y a8 well
as their combinations.

The predictions of Case 1A (Cherenkov light) appear to be confirmed by
available experimental information; the predictions of Case 2B (motion in-
side hadrons) appear to have indirect phenomenological confirmations from
the elaboration of available data on the behavior of the mean life of unstable
hadrons at different energies (§3.4.9 and Appendix B); the predictions of in-
termediary Cases 1B and 2A are plausible, but not sufficiently investigated
as of this writing.

The understanding is that the future, final resolution of the validity or
invalidity of predictions (3.271), (3.173), (3.274) and (3.275) will require
direct, fundamental experiments (§3.5.18).

One point is important for this review. Despite the lack of final resolu-
tion, there is no experimental or other evidence available at this time that
can disprove the prediction of the generalized relativity, to our best knowl-
edge. In fact, as stressed earlier, no information on Einstein’s Relativity
can possibly be applied to the much more complex physical conditions of
Santilli’s covering. :

3.4.11 Isotopic Composition of Speeds

The use of successive Lorentz-isotopic transformations (3;251) yields, after
some algebra, the following isotopic covering of Einstein law of composition
of velocities, Eq. (3.164)

v

vm=m-.

POSTULATE 3.2 [14]: The invariant speed is not, in gen-
eral, that of light, but the mazimal speed of pmpagatmn ‘of mas-
sive particles Vipaz C ¢,.

(3.276)
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in the literature for decades, have been ignored by experimentalists until
now.

For instance, Nielsen and Picek [70] have reached modification (3.170)
of the Minkowski metric in the interior of pions via the use of currently
available phenomenological information

1 1 1
g = (l—ia,l—sa,l—sa,—(l+a))

.a=(-3.79+137)x 1073 (3.494)

which, when plotted in law (3.493) yields the non-Einstenian behaviour

v(1-1a)’v
(1 +a)?

Similarly, for the case of kaons, Nielsen and Picek have reached modification
(3.170) of the Minkowski metric with

r=7|l- (3.495)

a = (+0.54 £ 0.17) x 1073 (3.496)

with corresponding non-Einstenian behaviour (3.495).

Numerous, additional, essentially similar, quantitative -predictions also
exist in the literature as reviewed in Section 3.4.3.
Let us also recall alternative law (3.171) proposed by Nielsen and Picek,

2
r =10y (l + foy )
3.
which is however reducible to Saatilli’s unified form (3.493) as shown by
Aringazin [89).

Note not only the different value of the “Lorentz-asymetry” parameter
a but also its different sign in the transition from pions to kaons. This
confirms, quite eloquently the need to conduct Tests III for at least pions
and kaons. »

The reader should keep in mind the truly fundamental implications of
modifications (3.493) of Minkowski metric, as represented by Santilli’s Spe-
cial Relativity (Sect. 3.4). For instance, the maximal speed of a physical,
massive, particle (or causal signal) is smaller than cg for the interior of pions,
but bigger than co for the interior of the heavier kaons and, expectedly, of all
remaining (still heavier) hadrons. In turn, the possibility for causal signals

‘i.e.
(3.497)
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of surpassing the speed of light in vacuum, if experimentally established,
would have truly deep implications throughout all of particle physics, by
offering intriguing and still unexplored possibilities (e.g., the achievement
of a true confinement of quarks with null probability of tunnel effects [27]).
Finally, the experimental verification of deviations (3.493) would establish
the need for a Lie-isotopic generalization of Einstein’s Gravitation for the
interior problem &t the operator/particle level In turn, this would have at
least two-fold implications. First, the occurence would be a rather natural,
particle-image of the established classical violations of Einstein’s Special
Relativity in the interior dynamics, such as satellites during re-entry with.
a continuously decaying angular momentum. Secondly, the occurrence con-
sidered would finally remove the current, rather widespread belief that the
classical violations of the Special Relativity are resolvable via the reduction
of the classical object to its elementary particle consituents (see Sect. 3.5.3
for the lack of technical feasibility of such a belief).

The tests for unstable leptons, such as the muons, are recommended but
positively not in lieu of the above tests for hadrons. In fact, the problem
whether leptons are elementary or composite is still basically unsolved. If
they are indeed elementary, then they are expected to obey law (3.492)
exactly, thus leaving the issue under consideration here (local Einstenian
character of strong interactions) fundamentally open. At the same time, if
the tests are conducted for unstable leptons, and they show violation, this
would be indirect experimental evidence of their composite structure.

It should be stressed here that Fundamental Tests III are quite simple
and fully feasible nowadays. In fact, they require relatively low energies, and
as such, they are realizable in all available particle accelerators throughout
the world. Also, the tests are of very moderate costs, particularly when
compared to the costs of the current search for heavy mesons and other
contemporary particle experiments. Finally, Tests III require no theoretical
elaboration of the results, trivially, because they have simply to measure a
time at a given speed. As such, they are intrinsically model-independent (a
feature rather rare in contemporary particle experiments).

The motivation for the conduction of the suggested tests are simply
compelling, because of their number and diversification. They are at the
very foundation of the Lie-isotopic theory, and, as such, have been reviewed
throughout this work. We simply recall here:

1. The incontrovertible experimental evidence requiring a deep overlap-
ping of the wavepackets of the constituents of unstable hadrons (Figure
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1) with consequential nonlocal nature of the strong interactions. In
turn, such a nature implies a necessary violation of Einstein’s Special
Relativity, as well known since quite some time;

2. All phenomenological calculations of the mean life conducted until now
show clear violation and none of them recovers Einsteinian law (3.492).
We are referring here to the predictions by Klochintsev [67], Redei [68],
Kim [69], Nielsen and Picek (70}, Huerta-Quintanilla and Lucio (7],
Aronson, Block, Cheng and Fishback [72], and several others;

3. The incontrovertible/ experimental evidence of the violation of Ein-
stein’s Special Relativity in classical macroscopic dynamics of interior
problems recalled earlier;

as well as other motivations. , '
The contributions made by the Lie-isotopic theory at the various levels

considered (Newtonian, relativistic and gravitational) are numerous, such
as: .
a) The proof of the compatibility of deviations (3.493) for the interior
problem, with the exact character of Einstein’s Special Relativity for
the center-of-mass motion of the unstable hadrons (see Figure }6)
achieved, as now familiar, with the notion of dosed‘nonhamiltoman
systems; . -

b) The construction of genuine covering relativities at all levels of study
which do not leave the “broken” context mathematically and phys-
ically undefined, but replace it with covering, explicitly computable
symmetries unifying all available generalizations;

c) The clarification that, contrary to popular belief, the Lorentz sym-
metry remains exact under generalized law (3.493). As a result, all
predictions of violations of ref.s [67] through [72] must be referred,
specifically, to Einstein’s Special Relativity and not to the Lorentz
symmetry;

and numerous additional contributions reviewed in this work.
The fundamental experiments under consideration have already been
recommended for decades, but regrettably, they have not been conducted

until now. . _ .
For instance, the paper by Kim [69] originated as a preprint at SLAC

back in 1977. The paper by Huerta-Quintanilla and Lucio [71] originated as a
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preprint at FERMILAB. Santilli [132] conducted a rather considerable effort
in the period 1978-1981 at various laboratories in the USA and abroad (see
ref. [132], Vol. I, Sect. X, Vol. II, Section XII and Vol. III, Sect. XXXIII)
to recommend the conduction of Fundamental Tests III but this effort too
resulted in no actual conduction of the tests.

In particular, Kim [69] concludes his analysis with the statement that
Tests III are such to “deserve a serious, unprocrastinable study”. Santilli
states on p. 1977 on ref. [4] that '

“Until the validity or invalidity of Einstein’s Special Relativity for -
strong interactions has been ezperimentally resolved, all theoreti-
cal studies on hadrons and all ezperiments in strong interactions
will remain of conjectural character”.

Note the conjectural character of the ezperiments on strong interactions
in the absence of Tests IIL In fact, Einstein’s Special Relativity is a central
component of the data elaborations of experiments on strong interactions. -
If deviations of type (3.493) do occur, a corresponding alteration of the
data elaboration is evident, and equally evident is the alteration of the
experimental results.

In short, the entire, theoretical and ezperimental knowledge on strong
interactions is kept in a state of “suspended animation” by the lack of Tests
III, and this situation will persist until the tests are finally conducted. The
economical, let alone scientific implications for any additional deferral of the
tests are then evident. .

This situation is regrettable, not only for the experimental community,
but also for the entire physics community, world-wide. The lack of conduc-
tion of the tests has essentially left the foundations of contemporary physics
in a state of “limbo”, with no resolution one way or the other, and with
manifest imlications beyond those of scientific nature.

As well known, physics is a discipline with an absolute stundard of value:
the ezperiments. Lacking a direct experimental verification, physical theories
remain conjectural no matter how old, and no matter how important they
are.

Ezperiments themselves have their own standard of value: the more fun-
damental the test, the more relevant is its conduction as compared to lesser
fundamental tests. It is in the tradition of physics to measure and then
measure again physical quantities. And in fact, the mean life of unstable
hadrons at rest has been measured a truly considerable number of times, and
additional tests are scheduled for a refinement of available data (see, e.g., ref.
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[133] and quoted papers). But then, by comparison, the conduction of new
fundamental tests of these mean lives at different speeds is manifestly more
important than the refinement of already established data. By no means
are we against new measurements of the mean life of unstable hadrons at
rest, because all feasible experiments must be supported. We are merely
‘stressing a known absolute standard of value among various experiments.

The reason for priority on fundamental tests are evident and well known.
Refinements of available data can at best imply refinements of available
theories. But new, fundamental tests of the type recommended here have,
by comparison, potentially far greater implications, no matter whether the
results are in favor or against Einstein’s Special Relativity.

In the final analysis, ref.s [67) through [72], by no means, recommend
the test of the violation of Einstein’s Special Relativity. On the contrary,
they simply require its verification in new physical areas, such as in the
interior of hadrons, in the tradition of physics: via experiments, rather than
conjectural theoretical work.

When the above scientific scene is put all together, including:

o the manifestly fundamental character of the experiments;

the clear plausibility of the violations;

the rigorous mathematical structure of the proposed covering theories;

the clear feasibility of the experiments with ::nrrently available equip-
ments and technology; '

their moderate costs when compared to other, lesser relevant tests;

o the truly historical implica.iions of the results, whether in favor or
against old doctrines;

and many additional motivations, the conduction of Fundamental Tests III
becomes simply compelling. . '

A primary hope of this review is that experimentalists will understand
this scenario, and finally conduct the much overdue tests.
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APPENDIX A: LIE-ISOTOPIC LIFTING OF GAUGE
THEORIES '

Gauge theories, within the context of the conventional formulation of
Lie’s theory, have been instrumental for an important physical achievement:
the unification of electromagnetic and weak interactions (see, e.g., ref. [134)

‘and quoted papers).

The Lie-isotopic covering of the above theories appears to offer realistic
possibilities of advances, in due time, toward a much broader unification
which is inclusive of the strong as well as the gravitational interactions. This
possibility is a central theme of a subsequent possible review on Santilli’s
“hadronic generalization of quantum mechanics”.

At this point we merely limit ourselves to mention that these advances
toward a “true grand unification” are made conceivable by the following
elements reviewed in this work: the novel representational capabilities of
Lie-isotopic theories offered by the isounit [ = T-1, Eq. (1.35); the addi-
tional degrees of freedom offered by the isotopic element G of the underlying
Hilbert space, Eq. (1.49); and, last but not least, the hypothesis of “iden-
tification” of the gravitational field with the electromagnetic field of matter
constituents, Eq. (3.334).

In this appendix we shall review the pioneering works of 1983 by M.
Gasperini [135),[136] who formulated, for the first time, the Lie-isotopic
generalization of gauge theories. We shall also review important advances
achieved subsequently on the subject by M. Nishioka [128],[137], [138], and
G. Karayannis and A. Jannussis [139]. The analysis shall remain essentially
classical as in the rest of this review. All major operator aspects are deferred
to the possible subsequent review of “hadronic mechanics”. Additional im-
portant research by Nishioka, Karayannis, Jannussis et al on isotopic gauge
theories will be reviewed in Appendix C following the introduction of iso-
topic field equations.

By following Gasperini’s original presentation [135] as close as possi-
ble, we shall first review, for notational convenience, the notion of compact
gauge group, present its Lie-isotopic covering, identify some of the physical
implications and then conclude with a review of additional advances.

Suppose we have a field theory invariant under some compact Lie group
G of global transformations, which can be represented as follows:

v =Uy (A.1)
U =X (A2)
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where 8* is a set of constant real parameters, and X} is a matrix represen-
tation of the generators of the group, satisfying the rules

[X:, X;] = § cii* Xa (A.3)
where c.',-" are the structure constants of the Lie algebra of G. The infinites-

imal form of the transformation (A.1) is

69 = —ic* Xy (A4)

where ¢* are the infinitesimal parameters corresponding to 6*. Notice that
the representation matrices of the transformations are unitary

vtu =1 v, uj=0 (A.5)
and the basic invariant of the theory is $+¢ = ¢/+¢'.

If the global symmetry is enlarged to a local symmetry, i.e. if we consider
' transformations with space-time dependent parameters, 8 = 6*(z), then
the theory is no more invariant, in general. The invariance is restored if
the partial derivative of the matter field, 8,9, is replaced with the covariant

derivative

Dy = (8, — ig A Xe)I$ (AS6)

where g is the group coupling constant, and the gauge potential 4, = A‘",X k
is a vector field with values in the Lie algebra of G. Its transformation
properties are fixed by imposing that D,y transforms like 1, that is

D,U$ = UD,¥ (A7)
We obtain then

ALX; = UALXU™ - é(a,.v)v-‘ (A8)

Performing an infinitesimal transformation, i.e. putting
UsI-ictXy , U =I+ikX, (A9)

and using the commutation relations (A.3), we can obtain, from Eq. (A.8),
the infinitesimal gauge transformations for the potential vector

§AL = -ia,.e‘ + el Ak (A.10)
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Finally, we must complete the field theory by adding a dynamical term
for the gauge potential. To this aim, one defines the Yang-Mills field strengths
F,,, as follows ‘

Fut¥=Fi X = —';%[D,.,D..]tll (A11)
that is, using Eq.s (A.6) and (A.3),
Fi, = 8,Al - 0,A, +g c;s' ALAL (A.12)
Its transformation law can be obtained from Eq.s (A.11) and (A.7)
F,,=VUF, U™ (A.13)

and then we can construct the following gauge-invariant kinetic term

Tr(F,F*) = Tr(F,, F*) x F, F* (A.14)
These few basic notions on classical gauge theory are sufficient for the pur-
pose of this review. Further details can be found by the interested reader in
ref. [134]. '

At this point, Gasperini [137] introduces Santilli’s Lie-isotopic generaliza-
tion of the conventional formulation of Lie’s theory (Sect. 2). For notational
convenience we review the isotopy for the case at hand.

Given an invertible and hermitian operator T, the enveloping Lie algebra
of a theory with associative product AB and unit [ is generalized introducing
the isotopic (associative) product A+ B = AT B and a new unity =17,
such that Axf=Tx A= A. |

As a consequence, the usual definition of hermitian conjugate, A*, and
inverse, A~!, of an operator A must be replaced by the isotopic generaliza-
tions, the T-hermitian conjugate (1,4 / ), i.e.,

At =TrA] (A.15)
and the T-inverse .
AV =fa U] (A.16)

Furthermore, the T-isotope, exp A; of an exponential operator exp A, is
given by Eq. (2.138), i.e.

éA =ieTA = eATI'

(A.17)
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The Lie-isotopic lifting G of the compact Lie group G is represented then
by transformations (3-1%5), i.e.,

(113 .
Y=Uxy (A.18)
where .
U= e~i®"+Xn = o=iXart' | (A.19)
The explicit computation of its isotopic hermitian conjugate
UF = T Xap=1 _ it +Xa | (A.20)
and of its inverse
01 = 71T -t = 0450 f (A21)
shows that U is a T-unitary operator, since
o+ =p-1 (A.22)

It is important to mention that G is locally isomorphic to G if T is a positive-
or negative-definite isotopic element (this result is due to Santilli’s Theorem
2.9).

Another important point is that the isotopic condition of hermiticity co-
incides with the usual one, when the Hilbert space is generalized introducing
the isotopic inner product (a,b)* = (a,Tb)I of Eq. (1.50).

Notice also that the infinitesimal form of the Lie-isotopic transformation
(A.19) is given by

U=i-ihX, (A.23)

and

5 = —iX; *gkw (A.24)

respectively.

At this point, Gasperini [135] introduces his Lie-isotopic generalization
of a gauge theory, by following as close as possible the structure of a con-
ventional theory.

Suppose we have a field theory invariant under the global isotopic trans-

formations

v=Uxy (A25)
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where U is the representation of a continuous, Lie-isotopic group G, and is
given by Eq. (A.19). As U is a T-unitary operator,

U« 0 =F=0x0*% (A.26)
the basic invariant of the theory is then structure (2.153), i.e.,
vrap=gtay =gt a0t 20y (A27)

_In order to preserve invariance also under local isotopic transformations
U = U(z) (i.e. 8 = 6(z) and/or T = T(z)), we introduce, in analogy with
ordinary gauge theory, the isotopic covariant derivative

D, = (8, - igAk x Xi)I (A.28)
and we impose the following transformation rules
D, =0xD,0 (A29)
that is S |
DixUxyp=UxD,*9¢ (A.30)
By using the factorization D = b“ fand U =0 I , where
Du= 8, - igAt x X, (A.31)
* . Kk
U= ee*Xn (A.32)
we obtain, from Eq. (A.30),
AxXi=U A X, U -8, 0)0 (A.33)

~ which is the isotopic lifting of the gauge transformations (A.8). In order

to obtain the corresponding infinitesimal transformations, we develop (} as
follows '

l} ~ T—ickx X,
-1

U =~ I+ickaX, (A.34)
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and then we get, to the first order in ¢,

SAL * X; = %a,,(e’-‘ % X3) + 1AL X;, 6% % Xi] (A.35)
which can be written
ALTX; = -%(og.é‘r)x.- + AL TIX X (30
where we have introduced the isotopic commutators [1], i.e. '
[Xi:X;] = XiTX; - X;TX; (A.37)

Finally, Gasperini [loc.cit] defines the isotopic Yang-Mills field strengths
F,, for the gauge potential as follows:

Fux¥= -:;1[1‘)”‘;13,]1[: =

= -%(D,.*i), ~DyxD)x¥ (A.38)
which transforms covariantly under an isotgpic gauge transformation. In
fact, from Eq.s (A.29), (A.38) he gets

B = O Eyx07

Its explicit expression can be easxly obtained substituting Eq. (A.28) into
the definition (A.38). The result is

Fi, % X; = (8,4} - 8,AL) x X; + AL(850,T -
~630,T)X; — igAL ATIX;3Xi]

Equations (A.28),(A.36) and (A.40) describe the main as?ects ?f Gasperi.ni’s

Lie-isotopic gauge theory. It must be stressed that the 1s?top|c generaliza-

tion is simple but not trivial, as one can see. For exa.mp}e in Eq (A.40) the

gauge field is radically modified by the coupling to t!le .lsotoplc el?mex}t T.
At this point, Gasperini [loc.cit] passes to a preliminary physical inter-

i the results.
pret;;:'otxllﬁ:fpurpose, some additional information on the element T is needed.
Assume the simplifying hypothesis that T is in the center of the algebra of

the original Lie group G, i.e.

(A.39)

(A-40)

(X, T) =0 (A41)
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since, as stressed by Santilli [1),[58], this condition is verified in several cases
of physical interest.

In this case, using the commutation relations (A.3), the basic equations
of the Lie-isotopic gauge theory can be rewritten as follows:

Dyxv = (8, - igTALXy)¥ (A42)
A = S - ‘
84, = e L(€°T) + cja’(e7T) AL (A43)
Fi, = u A, = 9 AL + gTc;' AL A% (A44)

where _ . '
Vudly = 9,4', - A',T o’ (A.45)

1

r,°= 5(0"‘,.8..T - 6°,6,T)T! (A.46)

Comparing the above isotopic equations with the corresponding equations of
the conventional theory, Gasperini interprets the isotopic theory as a gauge
theory for local transformations with infinitesimal parameter " = ¢'T, and
with an effective coupling constant given by

9=9T (A47)

Since the isotopic element does depend, in general, on the spacetime coor-
dinates z, the linear momentum p, the energy E, and so on, then we have a
gauge theory with a variable coupling ¢’

(A.48)

This offers rather interesting possibilities which could be connected with
the phenomenon of the so called “running coupling constants” (i.e. cou-
plings evolving as a function of the energy scale), which takes place in the
framework of the grand-unified theories [134].

Furthermore, the isotopic field strengths of Eq. (A.44) can be interpreted
as the gauge field for a potential A, coupled to the geometry of an effective
Riemann-Cartan space (§3.5) equipped with the antisymmetric connection
Tw® = -T.* of Eq. (A.46). ,

It should be stressed that the coupling (A.45) of the gauge field to the ge-
ometry is the usual “minimal coupling” obtained by replacing partial deriva-
tives with the geometrical covariant ones. In a Riemann-Cartan space such

¢ =4'(z,p,E,.....)
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a coupling is usually forbidden, as is well known [120] because it destroys
the gauge invariance of the theory, and only more indirect interactions, such
as a “semi- minimal” coupling, are allowed between torsion and the gauge
~ potential (§3.5).

It is then remarkable that the minimal coupling of Eq. (A.45) is com-
patible with the invariance under isotopic gauge transformations. But even
more remarkable is the fact that the coupling of the gauge field to the ge-
ometry of a curved manifold is not only allowed, but also necessary when
the isotopic lifting of a gauge theory is performed. This may suggest, as
stressed by Santilli [20], that the Lie-isotopic theory represents a promising
clue towards a satisfactory quantum mechanical formulation of gravitation.

Another point worth noticing is that, by putting

T=1If(z) (A.49)
where f(z) is a scalar function, Equations (A.42-A.46) reduce to the same
equations proposed by Hojman et al. [140) for the case of an abelian Lie
group, and generalized by Mukku and Sayed [141] to the non-abelian case.
The latter theories, therefore, are only particular cases of the Lie-isotopic
lifting of a gauge theory.

In papers [140],{141), however, the modification of the gauge structure,
and the explicit form of the torsion tensor (i.e. of the antisymmetric part
of the connection), are introduced “ad hoc”, with the only justification of
allowing a gauge invariant coupling between torsion and the gauge potential.
In Gasperini’s theory, on the contrary, the modification of the theory, and
the necessity of introducing a connection with a nonzero antisymmetric part,
given in Eq. (A.46), are well justified as the consequences of an underlying
isotopic algebraic structure.

Notice that by putting T = 1, the Lie-isotopic gauge theory reduces to
.the usual gauge theory. As a result, Gasperini’s isotopic gauge theory is a
bona-fide covering of the conventional theory, in the same way as Santilli’s
Relativities are a covering of the conventional ones (Sect. 3).

Gasperini then concludes paper [136] with the following words.

“Perhaps the most intriguing dream of contemporary physics
is to describe all interactions with a unified theory. Electro-weak
and stong forces have been put together into grand-unified the-
ories [134], but it seems likely that the gravitational interaction
can be included only by gauging a graded Lie group and using
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a graded algebra (eztended supergravity theories [1{1]). The re-
sults, however, are not fully satisfactory up to now, as the theory
is unable to contain the totality of ezisting particles, even in its
mazimal eztension (N = 8). As stressed by Santilli [1], the
graded Lie theory is only a particular case of the Lie-admissible
theory. Therefore it is tempting to speculate that a realistic uni-
fied theory, comprehensive of all particles and forces of nature,
will be reached only on the ground of Lie-admissible generaliza-
tion of supersymmetry and eztended supergravity.”® '

Note the referral, specifically to the broader Lie-admissible generalization
of the Lie-isotopic gauge theory, evidently for a structurally higher level of

treatment. ’
£ & % *%

We now review the research by M. Nishioka, beginning with paper [137].
As shown in the preceding review, in his formulation of the isotopic gauge

theory, Gasperini essentially selects an element T which is in the center of
the algebra of the original Lie group G,

[Xi,T]=0.

Under this hypothesis, Gasperini obtains the basic equations of the Lie-
isotopic gauge theory which are reviewed here for convenience

(A.50)

D,¥ = (8, - igTAL X, ¥,
1 i ir
6A, = -7 W(€'T) + cji'(7T) AL,

Fj, = VuA} - VAL + gTc;i’ Al A, (A51)
where ) ) :
Vul, = 0,4, -T,,° A,
1
[w® = 5(60,T - §0,1)T", (A.52)

1.9,_, are the isotopic covariant derivatives, A:, are the gauge potentials, and
F},, are the field strengths.

In the space-time with symmetric connections I'},,* consider isotopic co-
variant derivatives (A.51a) and the covariant derivatives (A.52a) with anti-
symmetric connection I'y,®. Then, the covariant derivatives are generalized
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to
Dy A = (8, — igTARXa)2 + T, A7, .
VuAi = 8,4, - L 53)

where \* are the components of an arbitrary vector, and L,,* are given by

L, =T,"+T,° (A.54)
The generalized isotopic covariant derivatives (A.53a) are equivalent to
the covariant derivatives appearing in a gauge model of gravitation except
for the variable coupling constant gT'. 7
Following the well known parallelism of vectors defined by Levi-Civita
in a Riemannian manifold, Eisenhart [142] gave a definition of parallelism
of vectors in a general connected manifold given by

D | pewis) xe (L
"'('d?“’“" o) Ml t
where A’ are the components of a vector on a curve which is the locus of
points for which the coordinates z* are functions of a parameter t. The
curves whose tangents are parallel with respect to the curves are called the
paths of the manifold. The equations of these curves are ,

. {4
L,..,',\"i"—) =0

=2 (A.55)

dt \ de? »dt dt ) dt \de? ' o dt dt

From (A.56) it is clear that all connected manifolds for which I',° are the

same but I';,,7 are arbitrary, have the same paths. . .
The changes of connection which preserve parallelism were also investi-
gated by Eisenhart. Nishioka [137) makes use of these results. Let L“.,’. a..nd
L,.° be the coefficients of two different connections, under the condition
that parallel directions along every curve in the spa.qe-time are the same for

the two connections,

L’ =Lu° +2656, (A57)

where ¢, is an arbitrary covariant vector.

If we denote the symmetric and antisymmetric parts of L,,° by T},,°.

and ,,,° respectively, from ’(A.54) and (A.57) they are given by

i“y’ = L“y‘ + 26:¢y + 6:¢“,

Q,.° =T0° +856, - 629, (A.58)
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dz* (.ﬂzﬂ o wds” dz’) _dz* (fz_” T '?‘_‘;'.i‘_’) =0. (A.56)

From (A.52b) and (A.58) Nishioka concludes that 2,7 vanishes if the. fol-
lowing relations hold

0,T = -2¢,T. (A.59)
In this case, from (A.58a) and (A.58b) I'),,” becomes
1
r,=r,’°- 5(6:8,T +620,T)T, (A.60)
and L/, ° is symmetric.
If T is a function, ¢, becomes the gradient
where we assume T is positive definite. In thfs case we have
ZZup = L:ypv (A.62)
because, in general, from (A.57)
H j a¢ a¢v
Li, = Li.wp +26; (3,;: - 3,.9) ’ (A.63)

where LY, , are the components of the curvature tensor for.L,,°.

From the above analysis, Nishioka [137] concludes that, as far as the
preservation of parallelism is concerned, the symmetric connection in space-
time plus the antisymmetric connection induced by the Lie-isotopic lifting
become equivalent to the symmetric connection E:w" provided that (A.59)
or (A.61) hold. ,

We now pass to the review of Nishioka’s paper [128]. Santilli (Sect. 3.4)
has shown that, in the framework of a Lie-isotopic theory, the conventional
Lorentz symmetry should be replaced with a generalized Lorentz-isotopic
symmetry whose transformations preserve a corresponding Minkowski-isotopic
metric describing a generally inhomogeneous and anisotropic physical medium.
Along these lines Gasperini (Sect. 3.5) has formulated a corresponding Lie-
isotopic theory of gravity, i.e. a generalized gravitational theory based on an
underlying Lie- isotopic algebra and has moreover suggested the formulation
of a Lie-admissable theory of gravity.

In note [128] Nishioka takes a slightly different position from the above,
stressing the isotopic generalization of the associative product and neglecting
the isotopic lifting of other concepts or of other entities. Along this line the
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author gives some connections between the Lie-isotopic lifting of the space-
time (Riemannian manifold) and the Lyra or Weyl manifold.

Following the parallelism of vectors defined by Levi-Civita in a Rieman-
nian manifold, Eisenhart [142] gave a definition (A.55) of parallelism of
vectors in a general connected manifold. Changes of connection which pre-
serve parallelism were investigated also by Eisenhart. Let L,,° and L,,” be
the coefficients of two different connections. We impose the condition that
parallel directions along every curve in the space- time are the same for the
two connections. The condition is given by

1

L.,°=L,°+ 2% A, (A.64)

where A, is an arbitrary covariant vector. Notice that, if L,,° are sym-

metric with respect to s and v, then L,,° are asymmetric. Notice also the

introduction of an arbitrary vector A, which plays an important role later.

As usual, Nishioka assumes that in the space-times the length of the
displacement vector £ = dz* between two points P(z*) and P'(z* + dz*)
is defined by the invariant quantity

ds? = g, dz*dz”, (A.65)

where g, is the metric (symmetric) tensor of second rank. Nishioka’s iso-
topic lifting of the space-time begins by introducting the isotopic associative
product :

ds? = g, +dz* + dz*, (A.66)

where the symbol » defines Santilli's product A + B = A¢B, and ¢ is a
positive definite scalar function.
In the usual space-times the parallel transfer of a vector £* is given by

5€* = —T,,*¢"dz", (A.67)

where I',,# are the Christoffel symbols of the second kind. For the isotopic
lifting of (A.67) Nishioka assumes

368 = —L,," + £ +dz°, (A.68)

where L,,* are the coefficients of the connection in a general connected
manifold. .

For the parallel transfer of length, Nishioka assumes as in the Riemannian
manifold that it is integrable, that is,

g s+ E) =0. (A.69)
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The above condition can be considered as the isotopic lifting of

6(9.,€"6") = 0.
From (A.68) and (A.69) Nishioka obtains the representation of L,,*

(A.70)

- _ i o
L,,.,' =¢ zrw’ +¢ ‘-2'(6‘|AV + J:An - 9w A’), (A.71)
where E,.,’ have been found to be symmetric with respect u and v.
By setting '
$'A,=B,, =4, (A.72)

L,,° are found to have the same form as the coefficients of a connection in
a manifold suggested by Lyra in 1951 [143] as a modification of the Weyl
manifold, which had a defect of nonintegrability of lergth transfer. In Lyra’s
geometry ¢ is called a gauge function and B, is the electromagnetic field.

Although one can obtain the coefficients of connection in Weyl’s geom-
etry provided that ¢ = 1, this is uninteresting, because it is a very special
case of Lie-isotopic liftings. If one uses a new unity I = ¢~!, which is an
important concept in Lie-isotopic theory, the coefficients of the connection
in Lyra manifold L{}* can be written as

L) =1L,°, (A.73)

where ¢ is a gauge function and A, is an electromagnetic field. In this way,
Nishioka [128] identifies a remarkable connection between the isounit , the
gauge potential A, and the electromagnetic potential B,,.

We now pass to the review of Nishioka'’s papers [138], which essentially
consists of the introduction of the gauge field via the Lie-isotopic lifting of
the Hilbert space (Sect. 1.3) where the commutator between the isotopic
element and the generators of the Lie algebra does not vanish.

Let T be an operator that is nonsingular and Hermitian. Following [30]
we shall introduce the isotopic lifting 7 of the Hilbert space # of quantum
mechanics. Let vectors be ¢, 1/3, The inner product will be defined via

" Eq. (1.49), i.e.

(#1¥) = (2IT1¥) = (4IT¥)eC (A14)

and normalization .

(¢le) =1, (A.75)
where all symbols without the upper hat denote the corresponding quantity
H.
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Following ref. [1], Nishioka defines the Lie-isotopic lifting of the envelog-
ing associative algebra of Hermitian operators A, B on C whose composi-
tion is given by the simple associative product AB, into the isotopic form
£ characterized by the product A ¢+ B = ATB and the new unity I = T,
isA=Asi=A. ;

" Following ref. [30], Nishioka defines the action of the algebra ¢ on the
space H, which is characterized by the modular isotopic form A +¢ = ATy,
as well as the linear, Hermitian, adjoint as follows

(A+910) = (BlAt + 9).
Nishioka therefore assumes liftings (1.52) with T = G, in which case

(A.76)

Al = At (A7)
Next, the isotopic, linear, unitary operator is defined by
(0 ¢ 90 +9) = (912) (A78)
which characterizes Eq.s (1.43), i.e.
UteU=0+0"=1. (A.79)

Santilli’s Lie-isotopic lifting G of the compact group G is represented by

the transformation (Sect 2.5)

=09, (A.80)
where U is an isotopic, linear, unitary operator given by
U = fexp[-i0* + Xi] = exp[-i6* + X, (A81)

| 0* is a function of z, X is a matrix representation of the generators of the
group G satisfying

[Xi, X;) = ici;* Xk, (A-82)
and c;;* are the structure constants of the Lie algebra of G. If one sets
e=vi+y (A.83)
it follows from isounitarity
it follows . (A54)
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that is to say o .
pleg =dted (A.85)

Next Nishioka [loc.cit] introduces a Lie-isotopic lifting of the exterior
derivative as follows:

d=di, (A.86)
where d is the ordinary exterior derivative.
The operation of d on ¥ is assumed as follows:
dep=di. (A87)
One can then operate d on ¢ by making use of (A.87)
deo=(de ) s+t (d*eT)P + P« (d+ ). (A.88)
If one assumes . '
d+T=V'«T 4TV, (A.89)
where V is given by )
V = Fi, (A.90)
where F is a 1-form, then it follows that
deo=(D+)t+d+9ts(Ds9), (A.91)
wher D is given by L X
Dayp=deyp+ Vo (A.92)

At this point Nishioka postulates that under tranformations (A.80) and
(A.91) should be invariant. Then

d+o) =dse (A.93)
From Eq. (A.93) one has the transformation law for D * ¢
_ DsUsp=UsDsy (A.94)
from which )
D =d-iAk X1, (A.95)
where, from Eq. (A.90), F is given by'
F=-id* ¢« Xy, (A.96)
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and A* is a 1-form.
From (A.94) one also obtains the transformation rules for A" which are
defined as A* = Akdz# 7
Ais X;=UAL s XU - (B, U)UY, (A.97)
where U = UJ.
» Af, can be identified as a gauge potential. One can then define the
isotopic gauge field strengths f‘,,, for the gauge potentials as follows:

Fusp=iD,eD,-D,+ D,)+ ¥, (A.98)

from Eq. (A.94) and (A.98) Nishioka derives the transformation rule for £},

Fl,=U0sF,+071, (A.99)
where D, are defined from D = D, dz».
The simplifying hypothesis that T is in the centre of the a.lgebra of the

original Lie group G,
X, T]=0 (A.IOO)

does not hold, in general, in the above analysis, because if it holds, formula
(A.89) vanishes provided that the commutator between the gauge poten-
tials and T vanishes. In the discussion reviewed above the vanishing of the
commutator between the gauge potentials and T was tacitly assumed.

* % ¥ =

We now review the research conducted by G. Karayannis and A. Jan-
nussis in ref. [139] (additional research by the same authors will be reviewed
in Appendix C after the introduction of the isofield theory).

Paper [139a] is important for this review inasmuch as it provides a di-
rect connection between the Gasperini-Santilli Gravitation for the interior
problem (reviewed in Section 3.5) and Gasperini’s isogauge theory (reviewed

earlier in this Appendix). The connection is established by studying one of.

the simplest conceivable interior test particles: a charged particle moving m
a physical medium with a velocity-dependent drag force of the type —y v
caused by the medium itself. A semiclassical treatment (which remains es-
sentially valid at the pure classical level), allows the authors to reach the
following results: a) via an essential use of Santilli’s isotopic theory, the
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motion of the charged test particle under drag is isogauge invariant; b) the
electromagnetic field of the test particle, when properly written in the iso-
topic theory, is isogauge invariant in excellent agreement with Gasperini’s
isogauge theory; and c) there is the natural emergence of a torsion produced
precisely by the drag force due to the medium, which is in excellent agree-
ment with the Gasperini-Santilli Gravitation for the interior problem. The
problem of finding the proper Hamiltonian that describes the motion of a
particle in an electromagnetic field with quantum friction has been faced by
many authors [144), [145]. All efforts consist of constructing the classical
Hamiltonian and its canonical quantization. This method usually leads to
ambiguities related to the Heisenberg uncertainty relation, and other prob-
lems. A novel approach was pioneered in memoir [2] and based on the
Lie-isotopic formalism, where the Schrédinger equat:on is generalized in for
(1 45), i.e.

av

iz = HTV. (A.101)

The explicit form of the operator T and the Hamiltonian H which de-
scribe the motion of a particle in an electromagnetic field with quantum |
friction was computed in ref. [146), resulting into

T=e" (A.102)

and -

- 2 L 2
H=HT = —:—"{c"ﬂvz + ﬁl—(AV. + VA.) + (V + e¢ + e—coAz)¢1‘.
(A.103)
In ref. [139a], Karayannis and Ja.nnussns prove that this result is also
established by the isotopic gauge invariance principle. Consider the trans-

formations

A = A+P(g,)VA
PR PN/}
¢ = ¢ Qf(q,t)at
¥ = ey (A.104)

for Eq. [A.101-103], and compute the functions 8,8 and € under the condi-
tions of being a gauge transformation. After simple calucations the results
are

e
€e=—A.

= (A.105)

§=pf=em and
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Then the new gauge transformation takes the form

A = A+e™yA

1 oA

) - -yt

¢ - ¢ c°e 8‘
¥ = Mhw (A.106)

The conservation of probability density is given by the equation

% +vJ=0 (A.107)
where : '
FEX 1 (A.108)
uid : th "t e o4
j=— +_grg¥)e " - — ATV, A.109
= 2m(‘l' v ¥t -¥tg¥)e mee ( )

From this equation we see that the expression for the current density, which
is invariant under the gauge transformation (A.108b) is similar to that of a
frictionless motion except for the factor e~ multiplying the first term of

the second member. o
Gauge transformation (A.106) in compact for is given by
' A=Ay te

and it does not hold for the Ra.iavy’é case [140). The preceeding expressions

for 4 — 0 are reduced to the usual ones.
Next, Karayannis and Jannussis reproduce, under certain conditions, the

gauge transformation (A.106) using the Lie-isotopic formalism.
Let the Lie-isotopic gauge transformation be

V=Ur+¥

(A.110)

(A.111)

where Uy is T-unitary and the symbol (+) denotes Santilli’s isotope product.
Equation (A.101) with the new product is written

ih%‘! =H +¥ (A.112)
and the gauge-transformed equation becomes
re 'y
iha—a'f- =W (A.113)
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From relations (A.111-115) we get

ot ot (A.114)

) -1
m=ﬁﬂn.a,-'+.-h(2'i.a;lﬁ“” .a;l).
It is known from quantum mechanics that operators corresponding to ob-
servables must be Hermitian. Also, there should be a guage invariant such
that its expectation value is independent of the gauge transformation.

By expressing these requirements in the Lie-isotopic generalization of
quantum mechanics we demand the ezpectation value of the operator corre-
sponding to an observable to be invariant under the isotopic gauge transfor-
mation i.e.

(¥,0(A,)+¥) = (¥',0(4,) « ¥') (A.115)
Since the operator Ur of the Eq. (A.111) is T-uhnitary we have
O(A,) = Ur+0(4,)+ U~ = 0'(4,) (A.116)

This means that the T-gauge transformation of the operator which corre-
sponds to an observable, generates a gauge transformation in the fields A,,.
From equation (A.116) for

O = ere™ (A.117)
where :
ed =T 1T = ATT! (A.118)
we have "
p=Ur+PsU'=p+ [ﬁx, ] +.. (A.119)
By taking T = e we get
rop_ 29X
P=p- re (A.120)
Similarly . o
AL =UrsA,sU =4, (A.121)
and for the kinetic momentum one gets
. . axX '
' =Urs(p——A) s U =p— —(A+ — A122
H=Urelo- oA U7 =p- (44, (A122)
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Now since the kinetic momentum is an observable it should be gauge invari-
ant, i.e.

x=p- %A’ (A.123)
and we have the transformation
A=A+yX (A.124)
Equation (A.112) must be form invariant, where
= Lp_L,p
H= Zm A) +V +ed
UT T-leﬂ;TX
U5t = e ie X T
T=e" (A.125)
and from the invariance of the operator (A.114) we get
1 e : 1 X
HI = — _AI 2 v —_ _
B = am P gAY +V +e[@ S X+ 57 (A.126)
Thus 8
¥=d-—(x+5 » (A.127)

We wee that the isotopic extension of the Schrodmger equation yields gauges
t:'ansformatlons (A.124) and (A.122) which coincide with Eq (A.106), if
e"X = A.

Finally if we demand the operator H of Eq. (A.112) to remain T-gauge
invariant, then from Eq. (A.114) we have the relation

oar—!  _ . )
= T (— LY L +igﬁ) T (A.128)

ot ot heg™ Ot heo Ot

which connects the isotopic operator T and the gauge function A.

Next, Karayannis and Jannussis [139a] pass to the study of the Lie-
isotopic formulation of the electromagnetu: field of a charged particle in
dissiputive conditions due to motion in a physical medium.

In conventional cases, one considers the invariance ol' the ﬁelds

B = gyxA
1804

= VE-Tm

ey

(A.129)

289

under the gauge transformation

A-A=A+9A
L= LA
®-d'=9 o Ot (A.130)

as a consequence of the requirement that the fields and not the potential
enter the several physical processes.

If one demands the same to hold in the Lie-isotopic gauge theory, one
must properly modify relations (A.129) in such a way that the invariance
with respect to the new gauge transformation (A.106) is conserved. Indeed
from Gasperini’s work [135] reviewed earlier it follows that

BT = 9X(AT)
_ - 19,
ET = —V(@T) - -c;a(AT) (A.l3l)
For T = ™ we have for the fields
B-yxA
10A v -
E=-gs-_7-1 (A.132)

which, as one can easily see, remain invariance with respect to the new gauge
transformation (A.106).

Note the essential character of Santilli’s Lie-isotopic theory to achieve
the above results. In fact, other conventional approaches such as (145}, do
not allow the achievement of a gauge invariant formulation. '

We now pass to a review of Karayannis and Jannussis’ studies [139a]
on the connection between (quantum) friction and torsion for the interior
problem of gravitation (sec. 3.5). :

S. Hojman et al [140] have developed a formalism making torsion com-
patible with the principles of gauge invariance and of minimal coupling. This
theory leads to the following modified form of the gauge transformation of
the field A,

A=A+ et (A.133)

which depends on a scalar field (the “tlaplon” field) & which serves as a -
potential for torsion

TS, = §70,9 — 650, %. (A.134)
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In the case of the electromagnetic field of a charge particle with friction
we have & = —7t and we can say that the problem of the quantum friction
in the electromagnetic field is equivalent to an interelation of the electro-
magpetic field A,, a complex field ¥, and a scalar field & = —9t, which
generates a constant torsion, :

%)
T = t; | (A.135)
in agreement with the gauge invariance and the minimal coupling principles.

A consequence of the existence of this torsion is the appearance of Am-
pere’s - like equivalent currents [91]

\ je _ l P = 7e
J5 = 4:E vxM
jm = -LB=yxM™ A.136
s “_B VXM ( )
The components of the electromagnetic field tensor F,,/ in case of quantum
friction, are given by

and
Fuv = Ay - 8,As - ATY = 4A, = 0,40 - A

which leads again to relations (A.132). In general, Hojman’s glectromagnetic

tensor is

Fuv = 0,4, — 8,4, — A,(850,8 - 620,9) (A.139)

and corresponds to the special case of Gasperini’s theory if we put

T=e* (A.140)
Also, from Gasperini’s theory [135] it results that
F“yT = au(AyT) ol 8y(A“T)- (A0141)
If we put
B,=A,T (A.142)
and '
H‘w = F,wT (A.143)
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(A.138)

the new gauge invariant fields are derived from B,

Huu = auBu - auBn (A.l“)
and obey the conventional gauge transformation
B,=B,+08,A. (A.145)

Karayannis and Jannussis [139a] conclude by noting that Gasperini’s
theory implies a “lifting” of the field A, to B, which obeys the known gauge
transformation. This conclusion is in agreement with the relations (A.131).

The “lifting” of the field A, to A,T gives an electric and a magnetic
current and thus acts as a part of the source of electromagnetism. Indeed
from the relation '

- 18 -
AVD 4 (BT) = EE(ET) (A_.146) .
we have a density of electric current related to T
- 1.0 . -
2 = %(;EW + B x yT)T! (A.147)
and from the equation
- = 190, - .
v x (ET) = EE(BT) ; (A.148)
one gets the density of magnetic current
- co 1-r - - _ .
™= 47(-;193‘- +Exyr)r! (A.149)

Relations (A.147) and (A.149) coincide exactly with those of Hojman’s
theory [140] for T = e~%, and constitute a particular case of the more
general theories of ref. [153]. Similarly, from the other two “lifted” Maxwell
equations, one finds the relations for the electric charge density and magnetic
charge density respectively,

P} = —(ESTIT, " (A.150)
PP = -Zl;(ia.e'.r)r-'. (A.151)
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For the case of quantum friction in electromagnetic field from (A. 147) and
(A.149) it follows that

- 1 -
e _
Jy=E (A.152)
jn=-Lp (A.153)
: v 4x
and in a region free of charge we have
Jo = yx M
v = gxM™ (A.154)

Thus the currents J¢ and J™ behave like Ampere’s currents [91).

Karayannis and Jannussis conclude the analysis of ref. [139a] by noting
that the invariance of Eq. (A.101) under a gauge transformation leads to a
new gauge transformation for the potentials A, and establishes, in the Lie-
. isotopic theory, the requirement that the expectation value of the operator
corresponding to an observable must be invariant under the isotopic gauge
transformation, Eq. (A.115). The new gauge transformation demends a
“lifting” of the fields from A, to A,T which in the case of quantum friction
takes the forms (A.132). In this way, they reach a new definition of the fields
E and B from the potentials & and A.

In Maxwell’s equations the “lifting” of the fields gives an electric and a
magnetic current where the corresponding relations (A.147) and (A.149) co-
incide exactly with those of Hojman's theory [140]. These studies lead to the
conjecture that the quantum friction in the electromagnetic field generates
a constant torsion between the electromagnetic field and a complex field in
agreement with the gauge invariance and the minimal coupling princliples.
These results are also in remarkable agreement with the Gasperini-Santilli
Gravitation for the interior problem(§3.5).
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APPENDIX B: CALCULATION OF THE MAXIMAL SPEED
OF CAUSAL SIGNALS WITHIN DENSE HADRONIC MAT-
TER.

It is generally believed that massive physical particles (causal signal)
cannot acquire speeds bigger than the speed of light in vacuum ¢p. By using
the Lie-isotopic theory, R.M. Saatilli [12] has disproved this belief by es-
tablishing, apparently for the first time on rigorous theoretical grounds, the
conceivable existence of dynamical conditions under which ordinary massive
particles may indeed surpass the speed of light co. In turn, this result is
of a manifestly fandamental nature for the Lie-isotopic studies, particularly
those of operator nature on Hilbert spaces, because it opens-up possibilities
that are otherwise precluded, such as the achievement of a true confinement
of quarks (with identically null probability of tunnel effect [27]), as we hope
to illustrate in our possible subsequent review of “hadronic mechanics”.

In a courageous paper of 1982, Santilli [12] stressed that the maximal
speed of a causal signal is certainly cq for the conditions originally conceived
by Einstein (point-like particles moving in empty space under long range
action-at- a-distance interactions), but not necessarily for substantially dif-
ferent physical conditions. In fact, he considered extended particles moving
within physical media under action-at-a-distance potential forces as well as
contact resistive forces caused by the medium. He pointed out that the
latter forces are profoundly different than the former one, inasmuch as:

1. the formers admit potential energy, while the notion of potential has
no meaning for the latters; on more technical grounds, the formers
are Hamiltonian, while the latters are not because they violate the
integrability conditions for the existence of a Hamiltonian in the frame
of the observer [63);

2. The formers have infinite range, while the latters have zero range,
being contact forces by conception; and

3. the formers are action-at-a-distance, while the latters are instanta-
neous (evidently from their null range).

Owing to these profound dynamical differences, Santilli [loc.cit.] conjec-
tured that the mazimal speed of massive particles Vinay while moving within
a physical medium is not necessarily co, but can be bigger, equal or smaller
than ¢o depending on the local physical conditions at hand

VMn 2 o (B.l)
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On the basis of his theory that the strong interactions have a compo-
nent precisely of the above contact type due to the necessary condition of
mutual penetration and overlapping of the wavepackets of the particles (2]
(sce Figure 1), Santilli loc.cit.] submitted the following

HYPOTHESIS I: The mazimal speed of nuclear constituents (pro-
tons and neutrons) is smaller than co; and

HYPOTHESIS II: The mazimal speed of the hadronic constituents
or, in general, of a hadron within dense hadronic matter (e.g.,
the core of a collapsing star) can be bigger than co.

The former hypothesis was formulated on the basis of the observation
that nonrelativistic calculations have a truly remarkable degree of accuracy
in nuclear physics. The latter hypothesis was formulated on the basis that
null range, instantaneous, forces are structurally outside the framework of
Einstein’s Special Relativity and, as such, the maximal speed must be re-
computed independently from conventional prescriptions. Besides, since the
forces considered have no potential energy, there is no a priory technical,
experimental, or conceptual informmation precluding the achievement of
speeds beyond co. Needless to say, these speeds higher than ¢ should be
generally conceived as being local, that is, as conceivable at one given point
in space-time inside superdense hadronic matter. .

In the subsequent papers [14],[58], Santilli constructed his Lie-isotopic
covering of Einstein’s Special Relativity (§3.4) which confirmed in full Hy-
potheses LII. In particular, the application of the new relativity to the
Nielsen-Picek metric [70] for the interior of kaons, Eq.s (3.170), i.e.,

(’7}“’) = DiaS(l’ 1, 1, "l) — (gw)
1 1
= Diag(l - %a, 1- 3® 1- 3® -(1+a))
a = (0.6140.17) x 1072 (B.2)

provided a direct confirmation of Hypothesis II (Section 3.4). In fact, by
using Eq.s (3.263), one obtains for the above metric

1+a ‘
1—§a>c° - (B3)

WMax = €0

while the value Viax < co occurs for pions.
These latter papers established the fact that, any modification of the
Minkowski metric in the interior of hadrons as suggested by the cumntly_
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available phenomenology (Section 3.4.3) implies a corresponding necessary
modification of the mazimal speed of causal signals precisely along Eq. (B.1).
In this way, the Lie-isotopic generalization of the conventional Lie’s theory
permitted the rigorous prediction of the possibility of breaking the “barrier”
of the speed of light co by physical massive particles. '

The above findings were confirmed by V. De Sabbata and- M. Gasperini
who published a paper [149] in 1982 following paper [12] providing an explicit
calculation of the maximal causal speed within hadronic matter, via the use
of conventional gauge theories. In the following we review the calculation
by De Sabbata and Gasperini because particularly relevant for the line of
study of this work. :

In a preceding paper [150], De Sabbata and Gasperini had shown that
the breaking of the SU(2) x U(1) gauge symmetry can be related to the pos-
sibility, inside hadrons, that causal signals propagate with a speed ¢ different
than cp, much along the classical case of the Cherenkov light. This result
was obtained by embedding the Yang-Mills Lagrangian in a a space-time
with a constant scalar curvature and allowing the maximal causal speed to
be a local variable. The Higgs field was therefore introduced in a natu-
ral way into the gauge Lagrangian, and the Higgs potential can acquire a
gravitational interpretation.

However, in order to reproduce the negative mass squared term of the
Higgs potential, De Sabbata and Gasperini [150] were forced to introduce a
space-time with a negative scalar curvature. -

Santilli’s hypothesis [12] of maximal causal speeds higher than ¢p al-
lowed the elimination of the negative curvature, thus rendering the model
more realistic. In fact, De Sabbata and Gasperini showed in the subsequent
paper [149] that, by using a metric background with a nonzero cosmological
constant, one can obtain the spontaneous breaking of the internal symme-
try without introducing a negative curvature. This also establishes a quite
intiguing link between the maximal propagation of a causal signal and the
mechanism of symmetry breaking in the presence of interactions on a curved
background. (The reader should note that paper [149] was written prior to
Gasperini’s isotopic generalization of gauge theories [59]. As a consequence,
a conventional gauge theory was used in the calculations. This creates the
intriguing problem, still open to our knowledge, of reinspecting the calcula-
tions via the theory of Appendix A.-

Consider a space with a conformally flat metric tensor, g, = w?(t)7u,
and with a nonvanishing cosmological constant A. The gravitational La-
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- grangian is then given by
(B.4)

- where /=g = w! and Ry = 65/w3c}(& = dw/dt). Suppose that the maximal

causal speed is a variable quantity, co — c(z,t) (this is to be seen only like
a starting formal prescription, as we end up with a constant vacuum light
velocity), and associate to ¢ a scalar multiplet ¢ such that [150]

cz(zt t) = 3_§2|‘P(2$ t)|29

where v is a constant velocity, introduced for dimensional reasons, which
will be interpreted later on.
Putting R = 60w3v?, Lagrangian (B.4) becomes

- L3 (B S
£=XL (Bpp - Sy

Complete it by addixig a kinetic term for the scalar field. Then, the total
Lagrangian, which can be interpreted as the Higgs Lagrangian producing
spontaneous symmetry breaking, is given by

Y3((Dyp) + Do Vo],

(B.5)

(B.6)

Cr= (B.7)

where

V(e) = Siol? + 51l (83)

To preserve invariance under the local gauge transformations of ¢, the au-
thors used the gauge covariant derivative D, = 9, — iaAk0;, where A are
the gauge potentials, @ and 8, are, respectively, the couphng constant a.nd
the generators of the gauge group. Notice that for a positive curvature,
R > 0, potential (B.8) has the right signs to provide a positive real mass for
the scalar field after the application of the Higgs mechanism.

From Lagrangian (B.7) one obtains the following field equations for g,,,
and ¢:

1 1 GA
510G = =5 [T + g amslel’] (89)
(D*O)u = iaA* WD o + :V (B.10)
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where a bar denotes the metric-covariant derivative, Gy, is the Einstein
tensor and T}, (y) is the so-called “improved” energy-momentum tensor of
the scalar field (see for example ref. [151])

Tul#) = (Dup)+ Dup = 19uu(Datp)* D0+ (Il — unlel™ o). (B.11)

The vacuum state is obtained for AX = 0 and () = (p*) = o, where g
is a constant value minimizing V(). The field equations (B.9) and (B.10)
in vacuum are reduced to

GA
(Gw) = "(guv)mﬁz)y (B.12)
%:—;z =0 (B.13)
and they both give
3v' (R
=28 (B.14)

G 3N’

where (R) is the vacuum scalar curvature. Obviously it must be (R) # 0 in
order that spontaneous symmetry breaking may occur.

* Assuming in vacuum a De Sitter metric background, i.e. putting (w) =
/t, where 7 is the “Hubble constant”, we have (R) = 4A = 12/a?, where
a = vr is the constant space-time radius of curvature of the vacuum,; it
follows then, from (B.5) and (B.13), that |po| = v’(3/G)%, and (c) = v.

Therefore, the parameter v may be interpreted as the constant value of
the speed of light in vacuum, and since it depends on (y, its experimental
value is not arbitrary, but is fixed by the spontaneous breaking of some
internal symmetry. It is amusing to notice that in the absence of symmetry
breaking, we have g = 0 and then, according to our model, {¢o) = 0, i.e.
light cannot propagate in vacuum.

In conclusion, De Sabbata and Gasperini [149] evaluated the maximal
speed of causal signals inside hadronic matter, applying their model for the
Higgs Lagrangian to the SUz x U; gauge group of the standard Weinberg-
Salam theory. In this case pp must satisfy the low-energy experimental
condition [150)

52 2

3

- Gr

=7 (B.15)
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where GF is the Fermi conplix'lg constant, and then we obtain

B G

"2_‘__

~ 6V2GF’

Since in the De Sabbata-Gasperini model the curved space-t.ime must
represent the “hadronic medium” {2}, one can identify the De Sitter mf:t-
ric background with the hadronic “microuniverse” governed by .strong in-
teractions (see ref. [152] for an extension review of the possibility of t!ns
identification). By replacing the Newton constant G with the strong gravity
coupling constant k; = (0.85 - 103%)C (as in ref. [152! of De Sabbata and
Gasperini then reach the following value for the maximal speed of causal

signals , )
= (A ke
= (Wiap) :

which is determined by the spontaneous breaking of the weak-interaction
syminetty induced by the presence of Santilli’s “hadronic medium”.

(B.16)

= T5¢o, - (B.17)
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APPENDIX C: ISOTOPIC GENERALIZATIONS OF FIELD
EQUATIONS AND THEIR APPLICATION TO RAUCH’S EX-
PERIMENT ON THE SPINORIAL SYMMETRY.

In this appendix we shall review a generalization of the conventional
Dirac’s equation proposed by P.A.M. Dirac himself (in two of his last pa-
pers, ref.s [94a, 94b]). The generalization implies an alteration of the spin
from the traditional value 4 down to zero, which results to be due precisely
to an isotopic lifting of Santilli’s type. In turn, this deformation of the spin
apparently permits the achievement of a consistent representation of Ruther-
ford’s historical hypothesis according to which the neutron is a bound state
of one proton and one electron, of course not within the context of quantum
mechanics and its point-like approximation of the constituents, but within
the context of the covering hadronic mechanics and its representation of the
extended wavepackets in condition of total mutual immersion (Animalu and
Santilli [155]).

In this appendix we shall also review the isotopic generalization of Dirac’s
equation in Santilli’s formulation for small deviations from Einstenian set-
tings [153]. This topologically different generaliation represents in a rather
naturgl way the deformation of the charge distribution of hadrons under
suffidciently intense external fields and the expected alteration of the mag-
netic moment. In this way, Santilli reached a rather natural and direct
representation of the currently available experimental data by Rauch and
collaborators (see ref. [131] and quoted papers) on the apparent breaking
of the spinorial symmetry of neutrons when under external nuclear fields.
Intriguingly, this latter breaking occurs when the problem is treated via con-
ventional quantum mechanical formulations, while the spinorial symmetry
is recovered exactly at the covering isotopic level. The background work in
the absence of mutation is paper [154] by Nishioka and Santilli on the rep-
resentation of the shape of the charge distribution of a proton and related
anomalous magnetic moment via the use of hadronic mechanics.

In this appendix we shall finally review some important contributions on
isotopic field equations by Nishioka [156], Karayannis and Jannussis [139],
and others.

As a result of these findings, the isotopic lifting of field equations offers
an apparent representation of the old hypothesis (formulated in the early
stages of nuclear theory but subsequently ignored to a considerable extent)
according to which nucleons experience an alteration of their magnetic mo-
ments in the transition from electromagnetic interactions in vacuum, to the
new conditions when bounded in a nuclear structure.
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. More generally, and as we hope to show in a possible subsequent re-
view on hadronic mechanics, the isotopic field equations offer the possibility
of identifying quarks and/or hadronic constituents with physical, already
known particles, although in an altered state due to their condition of total
immersion within the hyperdense medium composed by the wavepackets of
the remaining constituents (the “hadronic medium” of ref. [2]).

In summary, the isotopic lifting of field equations is another topic which,
as we shall see, is mathematically quite simple; yet its conceptual, theoretical
and epistemological implications are rather deep indeed.

/ L I

The central physical notion of this appendix is the concept of mutation
of elementary particles proposed by Santilli in his second memoir of 1978 [2].
This is an alteration of the intinsic characteristics of a particle (rest energy,
spin, magnetic and electric moments, etc.) that is conceivable under the
transition from motion in vacuum (strict Einsteinian conditions), to motion
within an hyperdense hadronic medium (Santilli’s conditions.

Santilli proposed this concept following his isotopic (and Lie-admissible)
generalization of the Galilei relativity (1] (and prior to his generalization
of Einstein’s relativity [14]), precisely as one way to illustrate the physical
implications expected from the Galilei-isotopic (and the Lorentz- isotopic)
symmetries. As well known, field equations are characterized by represen-
tations of the fundamental Lorentz symmetry. If the latter symmetry is
subjected to an isotopic generalization, he expected the characterization of
different field equations which, in turn, render inevitable the alteration of the
characteristics of conventional particles according to the following schematic
view of paper [153].
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CONVENTIONAL LORENTZ |
LORENTZ ISOTOPIC
SYMMETRY SYMMETRY
Conventional - Isotopic
Field field
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conventional — Mutated
physical physical
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in empty within
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_ _ media. |

As a result, the notion of mutations of particles is already implied by
the Galilei-isotopic (or Galilei-admissable) symmetry. As a matter of fact,
the notion can see its mathematical foundations in the isotopic general-
ization of Lie’s First, Second and Third Theorems introduced in memoir [1]
jointly with the consequential notion of Lie-isotopic symmetry. The Lorentz-
isotopic symmetry essentially provides a technical refinement (hadronic me-
chanics provides yet another contribution to mutation that will be indicated
later on).

More specifically, Santilli submitted in memoir [2] the notion of eleton as
a mutated form of the conventional electron which is conceivable when the
wavepacket of the particle is in a state of total immersion within hadronic
matter. He then formulated the hypothesis that eletons are the physical
constituents of hadrons (or of quarks).

The central part of memoir [2], the proposal to construct hadronic me-
chanics via an isotopic lifting of its enveloping algebra, was formulated pre-
cisely to achieve a quantitative representation of the notion of mutation
of elementary particles at large, and of the notion of eleton in particular
(mutations are necessary to achieve a consistent model of quark and/or of
hadronic structure with physical already known constituents).

Also, the construction of the hadronic mechanics was suggested to achieve
a consistent model of structure of quarks as (hadronic) bound states of ele-
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tons. In memoir [2] Santilli presented a consistent model of structure c{f t}xe
light mesons (which is capable of representing all knm total characteristics
of the particle, including their size). Unaware of Dlru.:’s work [94] a.t that
time (1978), he then suggested as a subsequent objective for hadronic me-
chanics the achievement of a consistent formulation of Rutherford’s hypoth-
esis of the neutron as a compressed hydrogen atom (in Rutherford’s words).
Thanks to the resolution of the problem of spin achieved by Dirac himself
(94), the consistency of Rutherford’s hypothesis has beel.! recently indica.ted
by Animalu and Santilli [155], as we shall see in the possible separate review
on hadronic mechanics. : . :

In conclusion, the particle characterized by the Dirac’s new equation [94]
turns out to be ezactly one form of Santilli’s eleton with a finite discrete
mutations of the spin, while intermediary forms of mutation of the eleton
are provided by the isofield equation of ref. [153]. ‘ . o

This appendix is an essential complement of the isotopic genefah?atx?n
of the Lorentz group of Section 3.4, because it provides a fu.lantntatwe il-
lustration of the physical implicationn occuring in the tmamon.- from con-
ventional representations of the Lorentz group to isorepresentations of the

rentz-isotopic .
e To see th:se xi:uelpphysical results, the reader is urged to alter the con-
ventional mental attitude (preservation as much as possible of establis.hed
doctrines), and leave instead freee course to scientific ‘cnriosity b.y seeking,
specifically, the maximal possible alteration of conventional doctrines.

* * * %

We shall now review the foundation of the isofield equations as presented
in ref. [153], i.e. as characterized by t'aone.pnscntatiom of the comple.tc
Lorentz-isotopic (Poincaré-isotopic) group P(3.1) (§3.:1.7). .Let us .begm
by assuming the following formulation of the underlying Minkowski and
Minkowski-isotopic metrics- ,

(uw) = Diag(1,1, 1,-1),

f’ =
9 = (gu)= Diag (911,922,933, ~941),
¥ Diag, (52,63,53 - ) = (¥nu)(No Sum),b, > 0,
z = (z,2')=(%,cot) (C.1)

where the b's are independent of z but can bave dependences of the type
b, = bu(z,p,T...). The central (classical) invariant of the theory is then

211 %03

isoinvariant (3.246) on the Minkowski-isotopic space My = L?,(z, g, l}.)
Pi = pug"pv = P'9up” = P'pu = pup” :

= phobs - ghedblel = -miclh] = -mic’ (C2)
In this way, the (dimensionless) quantities b, represent the mutation of the
conventional Minkowski metric suggested by the specific case at hand, such
as the Nielsen-Picek mutation (3.170) for the medium constituted by the
interior of pions and kaons. :

The reader should be aware that the quantity “c” = cobq of the theory
is not necessarily the speed of light within the physical medium considered,
but can be a geometrical quantity characterizing the contact, zero-range,
instantaneous interactions (§3.4.6). Also, in general, ¢ # co = speed of light
in vacuum. The reader should finally recall that the unit of space My is the
familiar isounit X

, I=971=0")= ()" = (o) (C3)

In order to reach the (semiclassical) isofield equations, Santilli introduces
hadronic mechanics (see the elements reviewed in Section 1.3) according to
structure (1.52) assumed (for simplicity but without loss of generality) for
the particular case in which G = T is a Hermitean and positive-definite
operator, i.e. :

§: A+BY ATB -
€ : {gé=clcec,i=T")
o (G E (dlelv)i=(dTI¥)ieC. (C4)

The modular action of an operator A of an element ¥ of H is then given
(for necessary reasons of consistency) by the isotopic form (1.40), i.e.

AspE ATy (C.5)

The “hadronization” (i.e., the mapping of Birkhoffian into hadronic mechan-
ics, see §1.3) is done according to the isorelativistic extension of rule (1.63),

ie.
0
o (C.6)
For simplicity, the isotopic metric g and the isotopic element T are as- -
sumed to be independent of z (but dependent on velocities £, density u,
etc.), so that they are in the center of §. '

PPsy=-id,h=108,=
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In order to understand the isofield equations, it is important to review the
basic rules for properly writing equations in hadronic mechanics. In fact,
misrepresentations are possible because familiar expressions such as z;p;
or p;p;j, which are fully defined within the context of quantum mechanics,
become intrinsically inconsistent when refered to hadronic mechanics (they
violate the postulate of isolifdearity because the trivial associative product
of operators has no mathematical or physical meaning for isoenvelope £, see
§2.2).

The essential notions of the theory are the following

1.

Units. Whenever confronting generalizations of Lie’s theory it is rec-
ommendable to identify first the underlying unit. In the case under
consideration then, we have two different isounits, for the simple rea-
son that we have two generalized structures, the iso-Minkowsky space
M, with related isounit f = T~! and the isoenvelope { with isounit
1= T-1. These two units are generally different, and we shall write

I=g'¢i=T" (C.7)

although the case T'np = g is not excluded.

Scalars. Ordinary scalars n € R (or ¢ € C) have no mathematical
sense in hadronic mechanics and must be replaced with the isoscalars
of Eq. (C.4b), e.g. & = ni. However, as adopted in Section 3.4, this
way of writing scalars is purely formal and has no practical implication,
because the product of the isoscalars is given by #; * i = nyna =
ninyl. As a result ,

firYp=ny (C.8)

Hereon we shall ignore the above mathematical formality and use or-
dinary scalars for simplicity. Note that the elements g, of the gener-
alized metric g are, strictly speaking, isoscalars and should be written
duv = 1g,,. However, property (C.8) allows the reduction of isotopic
contractions to ordinary ones, e.g.

(C.9)

A v — v
Tu=Gu *T = Gu2

Operators. As stressed earlier, the conventional a.'ssociatige product
are inconsistent within the context of generalized envelope £ and must
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be replaced with the more general is(zproduct. For example, if z; and
pj are operators, their “product” in £ must be written :

]

Ti=1z;+ z;,p? = p; * pj,etc. (no sum). (C.10)

The reader should also keep in mind that, from the assumption T = G
in Eq. (1.52), and from rule (1.51), operators that are conventionally
Hermitean remain isotopically Hermitean. See §1.3 and ref.s [30-32]
for details.

. Vectors. Until now we have been dealing with classical vectors on iso-

topic generalizations of metric spaces, such as three-vectors T on iso-
Euclidean spaces E(?, g, ft.),.or four-vectors z and p on iso-Minkowski
space Mj. Their products are therefore characterized by the general-
ized contractions

3 .. ..
r = r'gyr’ P =pig”pj,
= z' gy z” = Pug"’po (C.11)

But the quantities “z;” and “p;” are now operators, that is, they
acquire the additional meaning of being elements of £ acting on iso-
Hilbert space H. As such, contractions of the type (C.11) are no
longer acceptable after hadronization, and must be replaced with the
expressions

3 . NP S o
Top = Gij*r' *r =gir'Tr P = 3" + pis pj = ¢"piTp
342;,; = GuurzhszV = gnuquzy;ng =§" spu*+p, = 9" pTp,

(C.13)

For simplicity, Santilli [153] also rewrites hadronization rule (C.6) in
the form

pPap=-idp = —id, +p ¥ —ilg, ¢ (C.13)
which allows the substitution rule
pP — —id, = —iid, (C.19)

Thus, the fundamental operator-invariant of the isofield theory can be
written . '

def .
a =g epurp, =9"purp, =p" +p,

9"puTp, = —g*8, %8, = —6" + §,
= —gwa“ayl = —8“8“1

(C.16)
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Similarly, if 4 are matrices, their correct contraction with the opera-
tors p, must be written

P epy =" 2du*pv = 9" %Tpy (C.1%)

as correctly identified for the first time by Karayannis and Jannussis
[139a).

5. Hilbert space. The reader should finally keep in mind that the proper
way of writing the norm in the underlying Hilbert space is.form (C.4c).
j.e. the space is a iso-Hilbert space. Thus, the anventlonal, linear-
action of an operator, say H, on an element ¢ of H has no rfmthemat-
ical or physical meaning and must be replaced with the isolinear form
(C.5). If H is (iso)Hermitean, then the (iso)eigenvalues are real [30]
and we shall write : :

Hep=hpH=H"heR (C.19)

Finally, the correct producfof the element 4 and its dual ¢+ is given
by 'bj" s = 9ptTH. : A

" We are now in a position to point out the contribution provided by hadtoni.c
mechanics to Santilli’s notion of mutation of elementary’ particles. This
latter notion is intrinsic in the very basic eigenvalue equatior.l of the theor.y,
Eq. (C.16). Suppose that the Hermitean operator H has e:genvalm.a ho in
quantum mechanics, H¢ = ho¢. Then the same operator H h.af a different
eigenvalue A in hadronic mechanics, H ¢+ ¢ = hd.:. The transltl?n ho— h
is precisely Santilli’s notion of mutation because it mutates specifically, the
physical characteristic ho {153]. ' . .

By keeping in mind the fact that the isotopy of isospace M is different
than that of isoenvelope &, Eq. (C.7), we have two d{ﬁ:eren.t, mutually
compatible contributions to the notion of mutation, one originating f{om tl{e
fundamental Lorentz-isotopic structure, and one generated by the isotopic
lifting of the enveloping operator algebra. .

Once rules 1-5 above and the physical objectives ol: the 'theory are prop-
erly understood, the formulation of isofield equations is qul.te easy. In fact,
we readily have the following iso- Klein-Gordon field equation [153].

(§‘“’w.np;+m3c’)"l’= (¢ + pu+ mde?) o 9
=-(8- m3e?) 49 = - (6»8,i - mic?) s¥=0. (C1Q)
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The corresponding extension to the case of a charged particle under ;'an ez-
ternal electromagnetic field while in immesion within the hadronic medium
is given by

[ (Pu + fAu) . (pu + fAv) +m3c’]* ¢
=- [(é“‘+ i‘-e:A") . (5..'+ %Au) - m%t’] «¥=0. (CH)

The isofourcurrent is then given by [loc.cit]

.1 )
l‘=2.-mo [¢+‘5”#¢—(8“#¢+)*¢]
+ m:c,A“ (¥ + ) c$n

and it verifies the conventional conservation law

0“.i,.=5“¢f“=o,

(C.24

The isocharge density is then given by

N oy oyt _
"Ej“‘m(*“ﬁ‘w (€2

#1[1)’

and it is indeed conserved,

Q _d

dt ~ dt (C'a)
The mutation of the characteristics of the particle is now evident. To
begin, we have a mutation of the rest energy, from the value m,c3 for Ein-
steinian conditions to the value mqc? for Santilli conditions where the quan-
tity c has been defined in Section 3.4.6. Suppose that p is the charge density
for Einstenian conditions, i.e., for T = 1. Under the presence of contact,
zero-range, instantaneous interactions represented by the operator T # 1 the
charge density assumes value (C.21). The transition p — j is evidently a
form of charge mutation. A similar situation occurs for the fourcurrent. The
mutation of other characteristics will be considered in more details below.
The iso-Klein-Gordon equation (C.18) is invariant under the full Poincaré-
isotopic group P (3.1) [153]. In particular, the wavefunction transforms as

pdv =0.
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an isoscalar. In fact, by keeping in mind rules (3.218-320), it is easy to see

that
(C.2%)

& b d &
g — - 2c’:g“"m‘-wazm—m(’,c2

dz+ ~ Ozv
A plane isowave solution is given by

¥(z) = Neitome"

(C.?g)

and evidently transforms as follows

¥(z) = Neit"oms" = Nei¥*ams™ - y/(2")

(C.28)

thus proving the isoscalar nature of the equation under P (3.1).
The reader should be aware that the iso-Klein-Gordon equation does

not represent a free particle (see the No-No-Interaction Theorem of Section

3.4.15), and, thus, solution (C.25) is not a conventional, free, plane wave
solution. This is evidently due to the fact that the deformation of the metric
1 — g is per 8é a representative of interactions, not of the conventional
Hamiltonian-Lagrangian type, but precisely of Santilli’s non-Hamiltonian
type. )

To put it differently, a relativistic (massive, spin zero) particle that is
truly free must obey Einstein’s Special Relativity ezactly and, as such, must
be characterized by the conventional Klein-Gordon equation. Any deviation
from this established setting caused by motion of the same particle within a
physical medium or other reasons must obey the covering Santilli’s Special
Relativity and, as such, it must be characterized by the covering iso-Klein-
Gordon equation. -

As a final comment, note the way Santilli [loc.cit] writes wavefunction
(C.25) with the exponent given by g, k*z" and not g**k, * z, = g, k*Tz".
This is evidently due to the fact that the quantities “k” and “z” in the
isophase are isoscalars and not isooperators.

The construction of the remaining essential parts of the theory (e.g.,
the iso-Green functions) will be deferred to the possible subsequent review
on hadronic mechanics. It is appropriate here to bring to the attention
of the interested reader the important work by Nishioka [156b] on the so-
called Dirac-Myung-Santilli delta function (which is essentially an isotopic
generalization of the structure of the conventional delta function) and which
plays an essential role for the further development of the isofield theory.

We now pass to the review of the isotopic generalization of Dirac’s equa-
tion as presented in ref. [153]). The origin of the equation is an isotopic
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decomposition of the fundamental second- order isoinvariant operator, Eq.
(C.18). For this purpose, suppose that 4, are 4 X 4 matrices. Then, the
second-order isoinvariant operator can be decomposed into the isoproduct
of the two first-order 4 x 4 operators according to the form

Pu’P”"‘mg
= (§u # p* — imoé) # (5, * p¥ + imoé)

1. ... 3 .
= g{iut} + 9"+ 9" + mic’ (C.28)
which holds iff the 4, matrices verify the laws 7 ‘
{'754;'714} =Yttt *tiu= 29pyi (C.29)

Note that the first law is exactly the isotopic lifting of the conditions on the
conventional vy-matrices of Dirac’s equation

{'Ym’h} =YW + NV = 2001 (029)
The desired isotopic lifting of Dirac’s equation is then given by
(G * " + imo) + = 0
= —(#9, ¢ 8* — imgé) 2+ =0 (C.3p

Introduce now the adjoint wavefunction

b=vt i (cah

then, each and every step of the theory of conventioﬁa.l Dirac’s- equations
(see, e.g., ref. [157]) can be subjected to an isotopic lifting. In fact, the
(iso)adjoint of Eq. (C.30) is given by

(i + §) # 4 — imoétp = 0 (C:39)
The combination of Eq. s (C.30) and (C.32) then yields
(6" s P) 2 aus p+Paus (B +9)=0

thus allowing the introduction of the isocurrent

(c.3)

J.= icy * Fur (C.3%)
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which is evidently conserved

e, =0"du=0 (C.36)
The isocharge density is then given by
p=thi=Pricrb=vtes (can)
with corresponding isocharge -
Q=/ﬁd’z=/¢+t¢d3: (C.38)

that is, it coincides with the isoinner product of the under'lying space-‘ft.
Note that density (C.36) is positive-definite under assump.tlfms (C.4.), ie,
isotopic lifting of a positive- definite inner product via a positive-definite op-

erator T. Along the same lines, it is possible to prove that J, is (iso)Hermitean,

and that its components are real. S
A realization of the §-matrices verifying Eq.s (C.25) has been identified

by Santilli [153] and it is given by

Yup = Ful= buvad (no sum) (C.39)
where the 7’s are any given representation of the conventional v-matrices
[157). Note the non-triviality of the generalization, inasmuch as the quan-
tities b, (representing the deviation from the Minkowski metric caused by
motion within the hadronic medium) enter directly into the structure of the
4-matrices. o o
Santilli [153] then passes to the identification of the mutation of angu-
lar momentum and spin caused by isotopic lifting (C.30). First, t.he EOt?l
angular momentum can be defined as the sum of the orbital and intrinsic

angular momentum inf - .

MT = M; + 5 (C.40)
The orbital part is given by
M; = /y/)"' * (€ijazs * %3,‘) « pd3z (CA41)
while the intrinsic part (spin) is given by
5= [9F ety in) e ves. (C.42)
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The above expressions are nothing but isotopic liftings of the corresponding
equations for the conventional Dirac’s setting (see, e.g., ref. [157], page 142).
The corresponding densities are

14
EijkT;j * 76&

m; =
& = EipTivhe (C43)
with explicit form of the spin matrices
§ = 1, +y3 = P i
1 = 272 3= 2‘72‘73
82 = l' ¥ = l' 5
. 1, . 1__ .
5 = gheia=gHnl (C.44)

By using Eq. (C.27) the isocommutation rules for the spin matrices are
readily computed, resulting in the isotopic rules [153]
[3.';3,'] =8i%8;— 8% 3i = —€;jrgr3

(C.45)
which fdrma.lly coincide with those of the isotopic rotational algebras O (3),

* Eq. (3.30), but characterize instead those of the isotopic SU (2) algebra.

In this way, Santilli loc.cit.] reached the desired mutation of the spin of
Dirac’s equation which can be expressed via the eigenvalue equation

S'it#) = (§|t§1+31#§2+§3¢.§3)t¢1

1
= (992 + 9090 + gugn )¢ (C.46)

Note that 32 is not an iso-Casimir invariant (because it is not propor-
tional to i, which is given by expressionsof type (3.39) after redefinitions
(3.37). Nevertheless, 32 is indeed invariant for metric of Nielsen-Picek type,
Eq. (3.170), i.e., when g3 = g273 = g33(# g44). For infinitesimal muta-
tions these latter conditions can always be assumed. In this case, Santilli
recovered the expression [loc.cit.]

.§=l+c ,

2 )

which is precisely the mutation of spin he submitted at his invited talk
at the 1980 Clausthal’s Conference on Differential Geometric Methods in
Mathematical Physics (see Fig. 1; also Eq. (4.26), p. 1249 of ref. [9]).
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The orbital angular momentum remains formally unaffected by the lift-
ing. In fact, from hadronization rule (C.6), the fundamental isocommutation
rules preserve the quantum mechanical values

[piszi) s ¥ = (piezj — zj ¢ pi) # ¢ = —ib5¢
[zi3zj] » ¥ = [pisps] + ¥ = 0.

As a result, the components of the angular momentum verify the isocom-
mutation rules

(C.48)

[mamilsy = i e =

= €My (C.49)

that is, the structure constants are not modified by the isotopy under con-
sideration [153]. In computing rules (C.47), the reader should be aware of
the validity of the following properties [30]

[A#* BiC]= A+[B;C] +[AC]+ B. (C.50)

Santilli [loc.cit.] then passes to the study of the transformation prop-
erties of the iso-Dirac’s equation (C.30). Essentially he proves that the
equatson is invariant under the full Poincaré- isotopic group P(3.1) (§3.4.7,

Eq. (3.237)) that is, the wavefunction transforms according to

) Y(=') = §+9(z) = S(A)¢¢(A"*(z a)]
PE1):{ ¥(2)=Wz)s 8 A)=PA s (z- a)]+ $-1(A).

Ate A=A+ A== g, detA = ddetl.
(C.5D)
The equations transform according to
(=i7* + 8, + imod) s /(") = O
V(2" # (—id, +4* — imoé) = 0 (C.52)
under the particular rules '
- 7, 4R = §,40" ’
/‘\-i = :74 * A+ * ‘[4. (0.53)

Let us review first the transformations under isotopic rotations. By
following the isotopic lifting of conventional lines (see, again, ref. [157], pp.

A7 By

162-163), it is easy to see that Eq. (C.30) is invariant under the following
realization of the isotopic STU(2) group

SU(2) : R(0) = edniod| dinwnots| dnvines) i (C.53)
which turns out to be precisely an isospinorial covering of Eq. (3.24-25).

The nontriviality of isotopy (C.30) can now be shown in all its depth. In
fact, the invariance of the iso- Dirac equation under isotopic rotations implies
a breaking of the ezact spinorial character of the conventional equation [153].
This is readily proved by nothing that the components of structure (C.53) can
be written in the form

R(85) = enm(™42285) (C.55)
Eq. (C.30) therefore breaks the exact spinorial character of the conventional
Dirac’s equation in view of the factor g;3922. Note also that realization
(C.53) holds irrespective of whether the iso-Casimiz invariant is an expres-
sion of type (C.45) or of type (3.39). This illustrates the irreducible nature
of Santilli’s spin mutation.

The experimental implications are also far reaching. Recall the funda-
mental experiment by Rauch and collaborators [131] on the spinor symmetry
of neutrons when in the vicinity of nuclei. As now well known to experts
of Lie-isotopic theory (see Fig. 6 of §3.2), neutrons are expected to experi-
ence a deformation of their charge distribution caused by external nuclear .
fields. This, in turn, would necessarily imply a mutation of the magnetic
moment of the particle from the conventional value y to a mutated value

Bm # By = p. The current experimental numbers for two complete spin
flips are [131)

a = 715.87 + 3.8Deg; amax = 719.67 Deg < 720 Deg,apmin = 712.07 (C.56)

that is, available data DO NOT prove the exact character of the spinor
symmetry for the case considered, but show a deviation of about 1%. The
isotopy of Dirac’s equation is capable of representing experimental data
exactly. In fact, from Eq. (C.54) and (C.55) Santilli [153] reaches the values
of the deformed metric

g =gn~1+10"12 (C.57)

which essentially shows the deformation of a spherical charge distribution
into an oblate spheroidal ellipsoid.
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At a deeper analysis, one can start with the representation of the shape
of the charge distribution of a proton via hadronic mechanics provided by
Nishioka and Santilli [154]. In this case, one has a shape of the type gn =
gn = 1, ga3 = 0.60, i.e., one has an oblate spheroidal ellipsoid already in
the absence of mutation (because of the anomalous value of the magnetic
mobffnent). The mutation merely increases the oblate nature of the ellipsoid
because of values (C.56),ie.,,gn =gn=1— 1+10-2. Intriguingly, the iso-
Dirac’s equation does indeed reconstruct the exact (iso)spinorial symmetry
[153]). In fact, for measures (C.55) and values (C.56), the total angle of
rotation is exactly 720 deg., i.e. :

%yuyzzﬂlmmm Deg = 720 Deg (C.58)
This is fully in line with all other cases of conventional symmetry breaking
we have encountered throughout our analysis. In fact, as it was the case
for the rotational, Galilean and Lorentz symemtries, when the symmetry is
broken at the conventional level, it is exact at the Lie-isotopic level.

Paper [153] then passes to the study of the invariance of Eq. (C.30)
under iso-Lorentz transformations. In this way Santilli reaches the following
new realization of the orthochronous Lorentz-isotopic group (§3.4.7)

5'(“’1) = e%‘uﬁcwnlei:ciﬁ‘hw;ki
SLEY 3wm) = ebpmewr|d=cdhed
Hws) = edpeiem| ] = dBUw ] (C.59)

where each expression evidently holds for speeds along the directions z;,z2,
and z3, respectively. The proof of the invariance of Eq. (C.28) under trans-
formations (C.58) is an instructive exercise for the interested reader.

Paper [153] then passes to the study of the invariance of Eq. (C.30)
ander discrete transformations, the isoinversions (see Eq.s (3.229)). For the
case of space iso-inversions one has

z' = (;"d') =P+ (3':“) = (" ?’Ct) = P(;’Ct)

where P is the ordinary space-inversion operator. The § quantities verify
the conditions -
Slaqued = -k=123
S‘ -1 * “h * g ‘74
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(C.61)

(C.60)

with a‘solution given by the expected isotopic lifting of the conventional
forms S = 1,74, 7p = £1, %4 where the last value originates from the condi-
tion that two space isoinversions provide the identity transformation.
For the case of the invariance of Eq. (C.30) under time iso-inversions,
one has [153)
z' = (_x‘l,ct') =Tsz= T(z,ct) = (z,-ct)

(C.6h)

The S quantities must then verify the conditions

§Teqse§ = 4, k=123
5145008 = -3, (C.63)
with solutions
§ = mise+i
5 = U*sNn*eTa*T
o= 1,48 (C.64)

In this case too we have a simple generalization of conventional settings.
In fact, the time iso-reversal is equivalent to the operation of complez iso-
conjugation [30] which is formally identical to the conventional complex
conjugation for assumptions (C.4). We can therefore write

-

¥ = (s * T+ 9)" (C.65)

As a final comment, the reader should keep in mind that, as it was the
case for Eq. (C.18), the iso-Dirac’s equation (C.30) DOES NOT represent
a free particle. After all, deformation (C.45) of the conventional spinoral
character is due precisely to interactions which, being represented by the
generalized unit of the theory, is of non-Hamiltonian (or of non-Lagrangian)
type.

Next, paper [153] identifies the mutation of the magnetic and electric
dipole moments characterized by the iso-Dirac’s equation in a way parallel
to the spin mutation (C.45). For this purpose, introduce the extension of Eq.

(C.30) to represent a charged isoparticle under an ezternal electromagnetic
field

[ + (~id, + EA,.) — imoé) + ¥
(5% 57, — imoé) s =0 (C.66)
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which is manifestly invariant under Gasperini’s isogauge theory (Appéndix
A).

The isocurrent remains the same as in Eq. (C.34). In particular, the
isocharge is given by Eq. (C.37).

Eq (C.66) is invariant under the following charge iso-conjugation

¥ = ﬂ:g-i * 9, J" = _ﬂc¢’r * S'c (Cﬁt)
with a solution (for the iso-Pauli’s representation of the 4y-matrices)
Sc=H*i ~ (C.68)

(and similar solutions for other representations). A

In order to understand Eq. (C.66) and its underlying mutation of con-
ventional quantities, one must differentiate between physical quantities that
are isotopically lifted in an essential way, and those that are not. Along these
lines, Santilli points out first that the electromagnetic field is not mutated
in Eq. (C.66). This is an important property, for such a field is external
and, as such, is expected to be conventional. Explicitly, the four-potentials
A, are the conventional ones, and the associated iso-electromagnetic field
coincides with the conventional one owing to the properties

ﬁ‘,‘y = 5“ * Ay - 5.; * A“ = 8“Ay - O,A,‘
= F, (C.69)

In addition, the isotopic commutators of the x-operators coincide with the
conventional commutators owing to the properties-

. e. e
[rum] = ';F:w = ‘C'Fuv
The quantities that are mutated in an intrinsic (non-reducible) way are

the 4- matrices, owing to their new structure (C.28). In fact, they can be
written explicitly by using Eq. (C.1) and (C.38)

. (0 O _ 0 Ok Iio I o
e (% 0 )1=m (2 3 )1re= (7 2 ) =05 %)

e A . s 0 & s 0 o
1,,‘=14¢ak,a,,=(ak ;")1:1:,,(“ 0"),k=1,2,3 (C.1)

A1 57

=[xy, 7)) (C.70)

where the o are the conventional Pauli’s matrices. For the isometric .

g = diag(s?,83,b3,—b,%), b = b = by E b > 0 (C.1d

= 0 v\ A 0 o\
=b - ’ = - .
7 (_0 0)1 a b(a 0)1 (C.13)

For the Nielsen-Picek generalized metric (3.170), one therefore has the
appearance of the term (1 + %u)* (representing the mutation of the space

we can write

part of the Minkowski metric) directly in the structure of the 7- matrices.
The conventional spin tensor is then lifted into the isospin tensor [153]

Ed

1., . . .
O u= E(‘Yu *5 =Y * ) (C.714)

" also in an essential way, as the reader can easlily compute explicitly. Once

the above basic concepts have been understood, the identification of the mu-
tation of the magnetic and electric dipole moments is quite simple. Consider
the isosquare

(3" * 7, + imgé) * (§* * 7, — imqé) ‘
= (7" ¢ 3, + mic )+ —a“" * F,.,, (C.75)

Tlus shows that the second order equations correspondmg to Eq. (C.30) is
Eq. (C.19) plus the term

1

5—0“’ * F,w = 5—’7" Y I:"“,,
2moc(a + H, — ia* + E}) (C.76)

which is precisely the derived isotopic lifting of the conventional term.

In this way, Santilli [153) reaches the important result of identifying the
mutation of the magnetic moment and of the electric dipole moment char-
acterized by Eq. (C.66) which, for the general case, are given respectively
by

- _ el 4 3
™ T 2mge
- . € -
My = 1§ 2 a (C.77)
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and for the particular case of matrices (C.72), can be written

- -e -
| P = 2mocba
. € - .
My = s2m°cba (C.78)

where the mutation is manifestly represented by the b value.

This concludes our review of paper [153]. Additional developments on
isofield equations require a detailed study of the isorepresentations of the
Poincaré-isotopic group P(3.1) (which is essentially lacking at this time),
as well as the construction of the iso-Green functions and related solu-
tions, which is a topic more appropriate to the possible subsequent review
of hadronic mechanics. , ' ‘

On historical grounds, it should be remarked that, by no means, the
hypothesis of the mutation of the magnetic moment is new. In effect it dates
back to the early stages of nuclear physics [158] and emerged immediately
following the availability of experimental data on total nuclear moments in
the 40’s. These data, as well known, show a rather sizable departure from
the expected total values (which are far from being truly explained to this
day). The hypothesis was subsequently abandoned, as soon as it was clear
that it implies significant deviations from orthodox lines of inquiry.

Santilli’s isofield equation (C.30) with its mutated values (C.78) and re-
lated experimental backing [131] offer an intriguing possibility of reinspect-
ing the problem of the total magnetic moments of nuclei on the basis of
the hypothesis that the charge distributions of nucleons and related mag-
netic moments are altered when these particles become members of a nuclear
structure.

It is hoped that such an invesigation is indeed conducted by mterested
physlcxsts in the field.

« o %

We now pass to the review of the last pioneering articles written by
P.A.M. Dirac [94a,94b). These articles were written in 1971 and 1972, re-
spectively, but have remained largely ignored since that time, apparently
because of their manifest lack of alignment with established doctrines of
contemporary physics. In the following we shall first review the essential
aspects of the articles in a way as close as possible to their original presenta-
tion (including the use of the original notation). We shall then point out the
intrinsic isotopic character of the new equation which, as such, results to be
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incompatible with conventional quantum mechanics (because it breaks the
linearity condition), while being a clear realization of the covering hadronic
mechanics.

Consider two harmonic oscillators in one dimension with dynamical vari-
ables

(9) = (%) = (91,71 92,P2),0 = 1,2,3,4

[0+ B8] = 929 — G190 = $Bap (C.78)
where
0 0 10
0 0 01 -
p= -1 0 00O ’pT = _ﬂ’p2 =-1,p 1= pT (C.80) ‘
0 -1 00

The generalized form of the conventional Dirac’s cquations proposed by
Dirac himself at the very begining of paper [94a) (Eq. 1.3) is given by

a b
(8:: +ara '+ﬂ)q¢=0

where ¢ is a scalar (one-dimensional) wavefunction with the dependence
¥ = (2, q), where the z's are the space-time coordinates of a (conventional)
Minkowski space, ¢ is a column matrix with the four elements (C.78), the
a, are 4 X 4 matrices that anticommute with each other and with 3, and the
product is the conventional associative product. One of the various possible
realizations of the a, presented by Dirac is given by '

(C.81)

0 0 -10 0001 100 0
mo| 0001 oo 10 lo1.0 o
=110 0 0|’ o100 '™ |00 -1 0

010 0 \too00 00 0 -1

(C.82)

Assume ap = 1 and 3, = 0/3z*. Then Eq. (C.80) was rewritten by
Dirac in the form
(2u0" + B)q¥ = 0. (C.83)
The second-order equation characterized by the above form was worked out
via the formulae

P, = (auau + ﬁ)cb%; Poyp=0
[Pa, Pe] = i(@,d" + B)abBra(avd — B)ca

= i{(a,8" + £)B(a. 8" — B)}ac (C.84)
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and resulted in the equation (Eq. 2.8 ,loc. cit.) »
(8,0" + 1)y = 0. (C.88)

This allowed Dirac to prove the mathematical consistency of Eq. (C.82).
Next, Dirac identified the main law of the a matrices which resulted to
be of the form

a,fa, + a,fa, = 28y,, (C.86)

where 1, is the conventional Minkowski metric.
The conventional Lorentz covariance of the equation was proved via the
infinitesimal transformations

z,=z,+a, 2, (C.87)
which resulted in the transformed equation
{(ou + @,",)8" + gy = 0. (C.88)
By putting . .
N= 197 bas (C.89)
Eq. (C.87) can be rewritten
A {a,(1-BN)8** +B(1+ N)}qp =0 (C.90)
thus resulting in the final form
(@u3** +B)g"B=0
¢ =(1-pfN). (C.91)

Dirac (loc.cit.) then passes to prove that his new equation (C.80) or
(C.82) has only positive energy (normalizable) solutions. Assume id, = p,
The equation can then be written

{(ro—P3)1 + (i + P1)gs — p2au}¥ = 0,
{(po-P3)2 =233 + (i — )au}¥ =0,
{(po + p3)gs + (P1 — )1 — P2a}¥ =0,
{(ro + P3)as = P2 — (p1 +i)g2}¥ = 0.

By applying a Lorentz transformation to the rest frame with P=0, the above
equations show that po can be either 41 or —1. Of these two possibilities

(C.92)

5 3%

only the first is normalizable because the underlying wave function has the
form

a3) - 2ip2q1 2}/ (po + ps) exp(—ip*z,)}
(C.98)
This established the first significant difference between the new equation
and the conventional one (for which, as the reader knows well, both positive
and negative energies are admitted).
But by far the biggest differences emerged for the spin. Consider the
familiar total angular momentum '

1 .
¥ = kexp{-3la} + ¢} +ip(q] -

M” = t,a, - 2,8, - "8". (0.94)
To identify the explicit form of s,,, Dirac considered the equation
[(a,8” + B)q,a%° (2,8, - z,8,2aﬁ’a“8.q,
[(2u0” + B)g, w] = 2i(a,8" + B)BNq,W = q"Ng. (C.95)
which can be written
[(au8* + B)g,a*(z,00 — 24,) + iW] =
= -2Np(a,d” + B)q (C.96)
thus yielding the form
0”8y = =W = —qTNg= —%a"’ ¢’ a,fa.q (C.97)
As a consequence
1
Spe = 34" (aBs - asBay)g (C.98)
which, via Eq.s (C.85), becomes )
1 1 1 1,
Sps = —quapﬂaoq + zgpoqrﬂq = —quapﬂaaq + 2*7oo (C.99)

For p,0 = 1,2,3,, My, can be interpreted as the angular momentum,
while s,, is the spin. By using expression (C.81) for the o's, the spin
components can be computed explicitly,

1 ' 1 '
83 = E(Qn'lz + qaqs), 3 = "i'(m2 - g+t —q?)
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1
82 = E(m“ = q1q4) (C.80)
and also 1 1
- sq1 = ;(qi"é -3+d) s = 3(9394 — 102)
1
s03 = 5(91‘13 + q4q2) (C.101)

As a consequence,
-2 1, ' 1
s=sptahteh =l +ad+d+a)-7=20+1) (C102)

and, finally,

(n+1n)

N
Do e

1 .
s=7(@+a+a+ad)-
“n,n’' =0,1,2,3,.. (C.103)

In this way, Dirac (loc. cit) reached the remarkable conclusion that
modification (C.82) of his celebrated equation can have only even values of
spin begining with the zero value. ,

The six quantities s,, provide a representation of the Lorentz group. By
introducing the additional four quantities

1
Sup = —85u = 24 g (C.104)
the ten quantities s, = 84,a.b. = 1,2,3,4,5, provide a representation of
the (3 + 2)- dimensional De Sitter Group.
Dirac then passed to the identification of the four-current

Jo= / ¥'ea,qpdl (C-105)
which verifies the usual conservation law | ‘
#J,=0 (C.106)

and transforms correctly under the (conventional) Lorentz transformations
J, = / ¥eT(ay + 0,7 a0 )qvd?q = J, +0,°J,. (C.107)

The charge density

Jo = / VT qud’q (C.108)
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is positive definite while the underlying wavefunction is normalized to unity

according to the rule
' / vlTqud’z = 1. (C.108)

Generalization (C.107) of the charge density of the conventional Dirac’s
equation shows another departure from orthodoz values. In fact, value (C.107)
is manifestly different than the corresponding value for the conventional
equation.

Dirac concluded paper [94a] with the calculation of the Fock representa-
tion of his new equation (which is not reviewed here for brevity) as well as
with the warning that any eztention of Eq. (C.82) to include interactions
is ezpected to result in inconsistencies. In fact, he showed that, by replacing
Pu with the familiar form p, + eA,, the equation is inconsistent ezcept for
the case A, = 35/X* which means the absence of field.

The subsequent paper [94b] was primarily devoted to the physical in-
terpretation of the new equation. It turns out that the theory describes a
collection of random circles covered by the point z on a sphere. This tesults
in a random motion on said sphere. In particular, its radius is not constant
but pulsates in time within given boundaries.

Paper [94b] then concludes with the proof that the particle (in its ground
state) has a zero spin for all possible values of the linear momentum.

* * * % * -

The reinterpretation of Dirac’s pioneering paper [94a,94b] within the con-
text of the Lie-isotopic theory (Santilli [153]) is quite instructive. In short,
Dirac’s new equation (C.82) is characterized by an enveloping associative
algebra with an essential isotopic structure. The underlying Hilbert space is
the conventional Hilbert space without any isotopic generalization (see below
Jor the consistency of such additional lifting). As a consequence, Dirac’s
new equalion constitutes an intriguing realization of hadronic mechanics ac-
cording to structure (1.46). The Minkowski space is kept unchanged in Eq.
(C.82). As a conseguence, we have no isotopic lifting of the Lorentz symme-
try (although, again, a reformulation of the theory that shows a lifting also
of the Lorentz symmetry is possible). Finally, Dirac’s new equation provides
an intriguing realization of Santilli’s notion of mutation of the original con-
ventional equation and related particle [2].

The above results can be easily seen [153]. First, the isotopic element of
the isoenvelope is not q (trivially, because this quantity is a column matrix),
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but B. Thus, all associative products must be formulated in the isotopic
form, say,
E:AsBE 4pB,i=p"". (C.1a9)

It is easy to see that Dirac’s new equaiton (C.82) does indeed verify this
fundamental requirement at all levels.

Introduce the four-component column wavefunction ¢ = qy (as in the
conventional equation). Then, by recalling that 8~! = 8T = —3, Eq. (C.82)
can be readily written in the isotopic form

(0,0" + B)gp = (4, + 5" + 1)+ 4 =0,

a, = a,i, & =941 (C.111)

which, in particular, verifies hadronization rule (C.6) (but not the conven-
tional quantization rule).

To identify the properties of the & matrices, we consider the expression
for the characterization of the second-order equation (C.84)

V(a,,‘5“+1‘).(a,.a"- 1)
= lam) e b el -p
= -(0,0" +1)8 (C.112)
which holds iff

{aga,} =a,+a, +a, #a, = -2q,,1. (C.113)
Note that the above equations coincide with Eq. (C.85) because of the
property g = —1. R

Next, since all operators belong to isoenvelope £, 80 must be the case also
of the angular momentum and spin. Again, it is easy to see that quantity
(C.93) can be readily rewritten in the isotopic form
| (C.114)

My, = 2,8, — 2,0, — i3p6 = 2,48, — 2,48, - i5,4

while the spin is in full isotopic form already as written by Dirac. In fact,
Eq. (C.97) can be written

| (C.115)

a - 1_ i
8p0 = 8p0 = —_za, *0, + Er),,,a, = ayq.

319 129

The underlying Hilbert space can be equipped with the conventional

inner product (C.108), i.e., '

Hi(dio) = [#loa’z =1 (C116)

in a way fully compatible with isoenvelope £ (see Sect.1.3 and ref.s [30-32)).

In this case, the current is given by Dirac’s expression (C.106) without need

of any reformulation. The same happens for other calculations based on
Hilbert space formulations.

The reader should recall that, for structure (1.46) the definition of con-
ventional and iso- Hermiticity are different. These definitions can be made
to coincide with an isotopic lifting of the Hilbert space with the same iso-
topic element 8, as in structure (1.52) with T = G. This reformulation
of Dirac’s new theory can be also readily achieved by introducing the new
wavefunction '

$=p"1¢ (C.117) |

under which the conventional inner product C.115) can be reformulated into
the isotopic form

ﬂ:(¢|¢)=/¢+¢d3=1-»12:(&]&)=/$f.$4%;i (C.118)

The four-current (C.106) must be in this case rewritten in the different form
fp=/$+ta“t¢¢{’q

It is easy to see that the above four-current verifies too all essential require-
ments of J, and it is therefore a fully acceptable expression. In this way,
Dirac’s new theory can be extended to admit the same notion of Hermiticity
as the conventional one (with consequential preservation of the reality of the
eigenvalues). '

Finally, the covariance under Lorentz-isotopic transformations can be
readily reached via the trivial isotopy

(C.119)

(C.l20).

o A v AV _ vi
z, =z, 48, 42,8, =a,"1

as the reader is encouraged to verify. It should be stressed‘ that, in the
theory under consideration here, the trivial lifting a,” — a,"1 is necessary
because the theory is formulated in a conventional Minkowski space without
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any deformation of the space-time metric. On the contrary, such a trivial
isotopy of the Lorentz group would be inconsistent for the content of Section
3.4 owing to the necessary presence there of a nontrivial modification of the
Minkowski metric (see the comments following Eq. (2.163)).

Finally, the isotopic lifting from the conventional to the new Dirac’s equa-
tion

(@, 0" +1)p=0—(G,48" +1)+¢=0 (C.129)

provides a beautiful illustration of Santilli’s hypothesis of the mutation of
spin (see, ref.s [2,9]). More specifically, lifting (C.120) illustrates the pos-
sibility that the ordinary electron can be subjected to a mutation into a
particle with spin zero when passing from motion in empty space to full
immersion within dense hadronic matter.

Lifting (C.120) and underlying mutation of the electron, play a funda-
mental role in the studies by Animalu and Santilli [155] on the apparent
consistency of the original Rutherford’s hypothesis on the structure of the
neutron (as a bound state of one proton and one electron). In fact, when
the old notion of point-like protons and electron (as necessary for quantum
mechanics) are abandoned, and the actual size of the wavepackets of these
particles is truly represented, the electron according to Rutherford is in a
state of total immersion inside the proton. Such a total mutual overlapping
of the wavepackets must result in some sort of dynamical effect. Santilli sug-
gested the construction of the hadronic mechanics in memoir [2] precisely
for the purpose of representing the mutation of the electron when in a state
of total immersion inside the proton. It now appears [155] that such original
proposal is acquiring full technical support.

The reader should be aware of the imlications of these findings. The
construction of hadronic mechanics was suggested for the specific purpose
of achieving a quantitative treatment of the mutation of particles, so that
the constituents of hadrons (or of quarks) can be consistently given by mas-
sive, already known particles. In turn this illustrates the profound physical
implications of Santilli’s Lie-isotopic theory under review in this work. The
alternative of preserving conventional doctrines is well known: new hypo-
thetical particles must be invented again to be the constituents of quarks.
The possibility that particles experience an alteration of their physical char-
acteristics when in conditions of total immersion within hadronic matter
is manifestly more plausible and positively preferable to the invention of a
second generation of unknown hypothetical particles. In the final analysis,
Rauch’s experiment on the spinor symmetry of neutrons under external fields
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(see Fig. 6 and ref. [131]) confirms the mutation of the magnetic moment
of the neutron in its current form, thus providing the possible experimental
foundations to the notion of mutation.

These issues are the central objectives of a review of hadronic mechanics
we hope to conduct at some future time.

* % % =

We now pass to the review of paper [139a] by G. Karayannis and A. Jannus-
sis on one of the first formulations of the isotopic lifting of field equations
that appeared in the literature, that achieved via the lifting of conventional
Lagrangian densities. The quoted article is important for this review be-
cause it establishes a direct link between Gasperini’s isotopic gauge theory
(Appendix A) and the isotopic field equations. For addmona.l papers by the
same authors see ref.s [139b,c,d]

For notational convenience, let us review first some essential aspects of
Gasperini’s theory from Appendix A. Let G be a compact gauge group. Its
isotope G is characterized by the transformations

V=Us¥ (C.129)
where . ) i
U = [e®"*In = ¢~3x*0" | (C.123)
Since IJ is a T-unitary operator, i.e.
Uhe U =F=0+01, (C.124)
where | .
vt = Ttut, (C.125)
the basic invariant is given by
vtew=wta v, (C.126)

The isotopic Yang-Mills field strengths f’,,, are defined as follows:
Fu»¥ = i[f),,;b,] + ¥

= i(i),, «D,-D,+D,)+¥, (C.127)



which transforms cov:riimtly under an isotopic gauge transformation, and
D, is the isotopic covariant derivative. In fact,

ﬁ',',, =0+ F“,., * fl‘i, (C.123)
where ..
Ulsiv-i. (C.129)

Finally, to complete the field theory we can construct dynamical terms
invariant under isotopic gauge transformations.
Karayannis and Jannussis construct in paper [139a] a field theory which

is invariant under Lie-isotopic local gauge transformations. The starting
point is the free Dirac Lagrangian density
= -Vg¥ - m¥ ¥, (C-130)

which is obviously invariant under global gauge transformations. As is well
known, Eq. (C.129) remains invariant under local gauge transformations

¥ = 1AC)y (C.131)

if the conventional derivative, substituted from the covariant derivative, is

transformed as

(D, %) = A=) (D, ¥). (C.132)

If we define )
¥ = [0, - igA,(z))¥,

we obtain the following transformation for the gauge fields:
A:‘ = A“ + 8‘3Ao (C.134)

Introducing the covariant derivative, the Lagrangian density (C.129) takes
the form

(C.133)

L = —Wﬂﬂ—mvw

VIV — mVV¥ + igA, Uy"V¥,
from which it is clear that the local gauge invariance leads to interacting

field theories of a particular structure.
If one works out in a similar manner the Lie-isotopic gauge transforma-

tions,
eipTA (=) v,
e"'“(’)(ﬁ,, + V),

¥ =

(Duswy = (C.136)
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(C.135)

where

Dy+¥ = (8, -igTA,)¥ (Ca13$
is the Lie-isotopic covariant derivative, then one obtains the generalized
gauge transformation for the gauge fields

A:}Ei,. +8,A + Ad,(In T). (C.138)

Thus, the Lie-isotopic lifting of Eq. (C.129), which is invariant under local
Lie-isotopic gauge transformation, must have the form

-

L = —% [ﬁ#‘?“tﬁutw—b“tﬁtﬁ“twl
-m¥ + ¥ (C.139)
where L.
¥ = ¥ty = VI, (C.140)
and
i | (C.141)

is the Lie-isotopic lifting of Dirac matrices, which are assumed to obey rule
[139d]
g +4° 64 = 29", (C.142)

Here it is assumed that we are in a curved space-time with the metric tensor

9 =T ', (C.143)
where 1), is the Minkowski metric.
Writing Eq. (C.138) in terms of Dirac matrices 74, we have
L = -«% (W—,"a,.w - 8,,71“'1’) ‘
-mVUV¥ + igT A, Vy*¥. (C.144)

Thus, we see that by the Lie-isotopic gauge invariance we construct a gauge
theory with an effective coupling constant ¢’ = ¢T which is a function
of the space-time point where the gauge fields A, interact. This physical
interpretation is analogous to that of Gasperini (Appendix A).

As is well know, repeated application of covariant derivatives will always
yield covariant quantities. This fact can be used to construct a new covariant
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object. Thus, if we define the Lie- isotopic Yang-Mills field strengtha F
for the gauge potential as in Eq. (C.126), then we have the curvature tensor

F=0,A,-8,A,+(8,InT)A, - (8, InT)A, (C.14%)

for the Lie-isbtbpic gauge gield U(1).
In the same manner we prove the Lie-isotopic lifting of the Jacobi identity

[DuilDyiD)] + [DuilDyD)]
+ [DaiDsD,)] = 0. (C.146)
Combination of (C.144) with (C.145) leads to the following equation:
DyeFpy4D,oF,y+ D, Fy =0. (C.147)

Since the isotopic field strength is invariant under Lie-isotopic gauge trans-

formations, one may replace covariant by ordinary derivatives,
ou*i'y"*'o‘;“i’p”"'a'*ﬁ“y:o, (00148)

and thus obtain the Lie-isotopic lifting of the Bianchi identity. Equation
(C.147) in four dunenaxona is vmtten as .

f‘“'"o‘c * F” =0. - (C.149)
If we define the dual of the F,, tensor as |
= -%c“"”f‘,,, (C.150)
we obtain the following field equations: -
3,G* = G*d,(In T). (C.151)

This equation gives the Lie;isotopit_: lifting of the second pair of the Maxwell’s
equations, and it entails a magnetic current
. Jm=G™a,(In T), (C.152)

which, for T = e~?, coincides with the magnetic current given by Hojman et
al {140]. Thus, Hojman’s theory is a special case of the general Lie-isotopic
gauge theory.
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The field-strength tensor (C.144) can now be used to write a Lie-isotopic
gauge-invariant Lagrangian density for the gauge field, as follows:
Lo = —%Tr(i““‘ «£.) (C.158)

Here the symbol T'r denotes the Lie-isotopic trace [30]. The Lagrangian
density (C.152) can now be added to the previous one (C.147), so that we

have obtained an interacting system of vector fields and fermion fields which
is invariant under the Lie-isotopic local transformations

L = —% [?ti“tD,,t\I'—[ﬁ,,t?t-‘i”uI!]

—m¥ + ¥ — %f‘r(f“‘” + F,,). (C.154)
This interaction takes place in an effective Riemann-Cartan space, equipped
with an antisymmetric connection
= % [iz0.0m 7) - 838,0m ). (C.155)
From the total Lagrangian density (C.153) we produce the field equation,
under some assumptions

M = —igW¥y, s ¥ — FX9,(In T). (C.156)

This equation constitutes the Lie-isotopic generalization of the first pair of
Maxwell’s equations. The first term in the right side gives the lifting of the
Dirac current, while the second term gives the Lie-isotopic electric current
associated with the isotopic element T.
J¢ = F**9)\(In T). (C.157)
We see that the Lie-isotopic lifting of conventional gauge theories yields
new currents (magnetic and electric) which act as a part of the source of
electromagnetism. :
The other two field equations produced from the Lagrangian denslty
(C.153) are

—ig-\il- + 7' A,,
+ig7 A, ¥
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(5 m) =
(7"0u + m)¥

]

(C.158)



and constitute the Lie-isotopic lifting of the Dirac equation. So, once more
we see that the lifting of the gauge fields is equivalent with the lifting of A,

toTA,orgtoTg. N
Since the tensors F,, and G*¥ are antisymmetric, the total electric and

magnetic currents are conserved:

B“j; = 0,
8,Jr = 0. (C.159)

The explicit forms of the electric charge and current densities are
Pt = g¥te¥ +E.TinT,
- - — 1=0InT
T = ted - -
J = g¥'+qe ¥ valn T c°E T
These relations are those given in ref. [139b] except for the first terms.

In a similar way we obtain, for the magnetic charge and current densities,
the relations

(C.160)

"= ﬁ-gln T, ' (C.161)
T =-ExTinT+ 23:;‘1'. (C.162)

As in conventional quantum mechanics, different formulations exist in
the Lie-admissible theory, i.e. the Heisenberg and the Schrodinger picture.
In 1978 Santilli [2] proposed the Lie-admissible covering of Heisenberg al-
gebra, and in 1982, together with Myung [31] he derived the corresponding
Lie-admissible Schrodinger equations

-d

inde = HT Y,
-.W% = ¥RH (C.163)

for forward and backward motion, respectively. Mignani [22] derived the
same Lie-admissible Schrédinger equations by a different approach. The
Lie-isotopic lifting of the Lagrangian density for a Schrodinger scalar field
proposed by Karayannis and Jannussis [139a] is given by
| | W L
I.: = -E(Wt\rfwtw) —2—mV\I'¢V\I’

V(T ¥ (C.164)
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where + denotes the Lie-isotopic product and W = &¥J. From the above
Lagrangian density and with the assumption that '

(T,8,] =0, (C.16§)

the Lie-isotopic lifting of the Schrodinger equation (C.162) results easily.
Thus we see that, based on the Lie-isotopic generalized gauge invariance
we can construct a Lagrangian density compatible with the Lie-isotopic liftj
ing of Schrodinger equation.
In a similar way, the Lie-isotopic lifting of the conventional Lagrangian
density for a Klein-Gordon scalar field must have the form

- 1 —
L= —z(!llh s U/8 4 KTV o ¥), (C.166)
where |
_\Ii,,, = (8,-19TA,)Y, }
\Il-/-“ = (0,+1igTA,)Y, (C.167)

is the Lie-isotopic covariant derivative in the case of the /(1) Lie-isotopic
group. .Tlus Lagrangian density is invariant under local isotopic gauge trans-
formations and gives the wave equation A .

¥/% +9,(InT)¥, - K*¥ = 0. (C.168)

If we assume the commutativity between T and , as in Eq. (C.164)
and : : ’
InT),=0,InT, (C.169)

then we take, for & = TV,

(b*D,-¥*) @ =0, (C.170)

in agreement with the conclusion in ref. [139b] that the Lie-isotopic lifting
of the U(1) gauge theory is equivalent with the lifting of the fields from A,
to TA,. An explicit form of Eq. (C.169) with

g =efhe, (C.171)
and
k= m/hco
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2ie — = —_ 2ie ad
0% - E(AT) vl E h—czo(VoT)E
e? —\ 2 2 "lz(!2
- [(AT) — (VeT) ] &-Teg =0, (C.178)
In this case, the generalized Lorentz condition
0,(TA)=0 (C.174)

takes the conventional form.

In closing, Karayannis and Jannussis [139a] quote the studies by K.
Cabhill and S. Ozenli [159) for which. g is a metric field, and which provide
gauge theories for arbitrary noncompact groups.

Again, as ik is the case for Gasperini’s theory, the studies by Karayannis
and Jannussis [loc. cit.] characterize the {/(1)-gauge theory as a gauge the-
ory on a curved space-time where the total magnetic charge is null, as proved
in ref.s [139bJand [140]. The magnetic current is therefore not expected to
be observable from an outside observer. However, this does not rule out the
possiblity that magnetic currents could be observed in the interior problem,
e.g., where the torsion is not null, or when future experimental advances
will achieve the capabilities of actual measures under external strong inter-
actions. ’ - ’ :

* 5 5 &

We now pass to the review of some of the articles by Nishioka [156).
In particular, we shall review only representative articles of mainly semi-
classical nature with a direct connection to. the preceding content of this
review. The remaining articles will be outling in a possible subsequent review
on hadronic mechanics owing to their strictly operator character.

Let us begin by reviewing paper [156a] which is directly related to paper
[139a] by Karayannis and Jannussis previously reviewed in this appendix.
As one will recall, the latter paper establishes that the isotopic lifting of
U(1)-gauge fields is equivalent to liftings

A,—-TA,g—gT

where A,(z) are the gauge fields, g is a coupling constant, and T is the
isotopic element. In paper [156a], Nishioka confirms this important result
from a different approach. Again, for notational clarity we shall review the
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(C.175)

basic elements of the theory considered. Consider an invertible and Her-
mitian operator R which may be a function of space-time. The enveloping
algebra of a theory with associative product AB and unit I is generalized by
introducing Santilli’s product A+ B= ARB and a new unity [ = R~! such
that A+« I = I+ A = A. The elements A, B, ... are essentially constituﬁ:'d
by polynomials in the space-time coordinate and momentum operators.

We define the isotopic generalizations of the Hermitian conjugate A' and
inverse A=! of an operator A via the quantities At = R1At], A-1 = fA-1],
respectively.

The Lie-isotopic lifting G of the compact group G is represented by the
following transformation of a wave function ¥:

V=U+¥ (CAT)

where

U = Texp(—i0* + X;) = exp(- X} * ©%)F. (C.a17)

Here ©* is a function of the space-time coordinates, Xj is a matrix repre-

sentation of the generator of group G satisfying

[Xi, X;] = dci* X, (C.178)

and c.:,-" are the structure constants of the Lie algebra G. It is now known

that U is an R-unitary operator, that is,
AT

“f*u:(ﬂtﬁ=i,

(C.179)

with invariant form

vhaw=utey, (C.180)

In analogy with ordinary gauge theory, Nishioka introduces Gasperini’s iso-
topic covariant derivatives D, by imposing the following transformation
rules

DLsUs¥=UsDys¥, * (C.181)
where
D, = (3, - igAL « X\)I (C.182)
and . .
D,=U» D+ U1, (C.183)

in which Af, are gauge fields, and g is as a coupling constant.
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Define the isotopic gauge field strengths F,,, for the gauge fields (poten-
tials) as follows :

Fos¥= -%(D,, «D,—D,+D,) ¥, (C.183)
with transformation rules
F,= fhi‘,,.,*(?". (C.185)
Notice that the minimal coupling term in (C.181) is
A« Xy = AX(RX)). (C.186)
Nishioka [loc. cit.] then assumes that R has the following form
R=TS, (C.187)

where T is a nonsingular function of the space-time coordinates and S is
an invertable and Hermitian operator independent of the space-time coor-
dinates. Represent A“: * X as follows

Al o Xy = AFTY,, (C.188)
where Y; = $X;. ) i
Using the discussion above, define F,, and Fj, as follows
Fou = Fu+l,
Fy = F *X. (C.189)
Then 13",;,, are given by : :
F,=T"'H},, (C.190)
where
Hj, = 0,B,-8,B,+gsix'B.B;,
CBL = AT, [Y,Yj]=is;'Ya. (C.191)
Finally, introduce a “metric tensor” defined as
hy =T, (C.192)

Y

where 1), is the Minkowski metric. Then

Fn‘uv = huphvoi':" = T,’A‘Pq”’}'];‘ = T}.I'."w. (C.l91)
Next rewrite F",.., and F* in terms of Y; as follows:
By=F.TY;= .Y = H,, (C.194)
F# = [, X; = FTY;
= TH™Y;=T*H". (C.195)

The Lagrangian density L for the gauge fields is then given by [156a)
L = —i-\/—hTr(F"“" +F,)

= —%Tr(iI“" +H,,), (C.196)
where h = det(h,, ), the relations (C.193) and (C.194) have been used, and
T'r denotes the Lie-isotopic trace [30).

Before we interpret Lagrangian density (C.195), notice that H,, become
equivalent to the field strengths of ordinary gauge fields on changing A, —
Bu(= B:"Y.-) and X; — Y; and that the right-hand side is represented in the
flat space (the Minkowski space). )

Nishioka [loc.cit.] therefore concludes that the Lie-isotopic lifting of gen-
eral gauge fields can be done via the following steps:

1. construct the Lagrangian density for oi'dinary'gauge fields;

2. change the ordinary gauge fields A, — B, and the Lie-algebra gener-
ators X; = Y;;

3. change the product of two field strengths to the isotopic product;
4. change the trace to the isotopic trace.

We now review Nishioka's paper [156b] on the isotopic lifting of con-
tinuity equations. This paper is important for this review, inasmuch as
it establishes that several familiar dissipative models of quantum mechanics
are, in actuality, particular cases of the covering hadronic mechanics, and its
underlying Lie-isotopic equations. In fact, the concept of isotopy and related
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generalized unit was proposed by Satilli [1] precisely to represent dissipa-
tive conditions. Consider the following Lie-isotopic lifting of the Schrodinger
equation [30]

ihd¥ = HGY = H + ¥, (C.19%)
and its Hermitian conjugate
~in¥! g=V¥ GH= s | (C.198)

whef2the symbol + means Saatilli's product A + B = AGB; H is the total
Hamiltonian of the system, here assumed to be iso-Hermitian; and G is the
Lie-isotopic element also assumed to be Hermitian and invertible, as well as
a function of space-time.
Following Ref. [30], define the G-Hermitian conjugate of ¥ as the quan-
tity .
vt = gtti = geti,

where [ is the new unity, I = G-1. ‘
Define the Lie-isotopic lifting of the probability denslty as follows

(C.200)

(C.199)

p=Wteuw,

Next, the Lie-isotopic lifting of a differential operator - for example, the
time-differential operator 8; — will be defined as

=00 He9=080. (C.201)
The derivative of 5 with respect to the time ¢ is given by
3y + p = B(G¥Y). (C.202)
Also, assume that the Hamiltonian H has the following form:
H——h—2 ? 4V(z,9,2) C.203
= m V WUZ2) ( . )

where V is Hermitian and m is the mass of the particle considered. By mak-
ing use of the prededing formalism, Nishioka [loc.cit] obtains the equation

Op+ 7 -3 = (8:InG)p, (C.204)
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where
p = GUy,
= =G0 v (GY)
-[v(G¥)(GP)). (C.208)

If G is independent of time ¢, Eq. (C.203) is reduced to the conventional
form

dhp+v-J=0 (C.206)
which can be rewritten
dp+v-(G% =0, (C.207)
where N :
J° = —.[w' v ¥ - (v¥hel, (C.208)

and the notation A - B denotes the scalar product Equation (C.206) can
be written

(" h+v-3°= (v In G?)-2°, (C.209)

whére
P =t (C.210)

As applications of (C.203) and (C.208), Nishioka considers two examples:
one is a complex-potential model by Feshbach, Porter, and Weisskopf [160],
the other is a model in which a particle with charge is interacting with an
electromagnetic field.

The complex-potential model is based on the idea that an incident parti-
cle inside a target nucleus effectively moves in a complex potential well; the
real attractive potential simply refracts the incident nucleon, while the pres-
ence of the imaginary term implies absorption of the nuleon. A simplified
Hamiltonian for this case is given by [160]

hz
H=- v’ +V - W, (C.211)
where V, W are assumed to be real, and W is consta.nt

The Schrédinger equation for Hamiltonian (C.210) in conventional quan-

tum mechanics is given by

ihdd = Ho, (C.212)
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and its Hermitian conjugate is

—ingt =gt ' (C.213)
with continuity equation
| W
8ph+v-3% = -5Fh (C.214)
where "
h=#'s, N=itve-(vehel.  (ca5)

Nishioka [loc.cit.] then assumes that the Lie-isotopic element G is a
function of time only, and that the correspondences

pe=py , I 34 (C.216)
hold. He then obtg.ins from (C.203) and (C.213)
ainG = _¥, ) (C.217)
so that : '
¢ e*p'(-?hﬂg) - (C.218)

where one has to keep in mind that Hamiltonian (C.210) is not Hermitian.
Next, Nishioka [loc.t;it.] considers the Hamiltonian

2
H= -23"-' V+iB.-y+V, (C.219)
where B is a vector and is assumed to be Hermitian, and V contains all

interaction terms (except the second term of the right side) and is assumed
to be Hermitian.

The Hamiltonian in this case is Hermitian. The Schrédinger equation is
given by

ihaﬂb =H V’,
and its Hermitian conjugate is

(C.220)

—ihpt Je=y! H (C.221)
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with continuity equation

m 222
0¢p%+V'J°=2,;z-B'J%, (C.222)
where
h t C.223)
rh = v'¥, J%=5—i[¢*v¢—(v¢)¢]- (

Assume that G is independent of time ¢, and that the following correspon-
dences hold GifE P2 3. (C.224)
Then, from (C.208) and (C.223), Nishioka obtains the correspondence

1 2mp (C.225)

o —

- VlnG hg

ment G and the vector po-

The correspondence between the Lie-isotopic ele tablished

tential B of the electromagnetic field can therefore be readily es
be represented as a gradient term. irig the
whetllll th?:ay’ Nighioka ﬂoc,cit.]gi:lentiﬁeé the possi}zilt.)' ?f rep;;s::tcl;‘i:e‘d
electromagnetic interactions themselves via an isotopic h.ftlngl ° lr by Santilli
particles. This property had been established at a clas.snca.l: e‘(;eits operator
in monograph (20}, see Example 4.1, p. 98 and following, an
counterpart has been established in paper [156b]. tional model
As a final remark, note that the reformulation of a convehn lLie—isotOPic
with conserved (Hermitean) Hamiltonian generally leads to t ’etean) .
setting, while the reformulation of a nonconsefvlfd (“°“'H:r$1
tonian generally leads to the broader Lie-admissible appro {tixe imitations
This occurrence is, in the final analysis, a °°“ﬁrmah.o n o the ore
of the Lie-isotopic theory, and of the need to enlarge it into

yet ™4
e e s propos
general Lie-admissible approach, exactly along Santilli's original
(1).

-

* * * * * n
is seco
fi6r] |
o]ogi Ca1
pic str!

: . . . th
NOTE ADDED IN PROOF.Following the comlgler‘?: o:pef‘
version at the IBR, one of the authors maﬂet 1hpaome"
which it is essentially shown that the recen Lli)e-isot
"hadronization models" of ref.s [162] have 22] S e bas
ture of Santilli's type. In fact, models [1 o
neralization of the Dirac equation of the typ

L7/ op +2F-Rfal - m) ¥ =0
| ' 26y L




hich quarks produced in weak decays are described
gccgrglgg ;gv: func%ion damped by a Gauésian of the type Nexp
(!22/x ) where the width %.(% 0.2-0.3F)" is a measure of the di-
d which quarks hadronize and do not appear as asymp-
[162] éssentially shows that Eq. (C.225)can
in Santilli's isotopic form (C.30), where
{sotopes (C.140). In fact, one has the id-

entity =0

(ig»9 —"%)'?’5[.“7"9}'*:6,‘(9/“[) 'MJ‘P(c.zzs)
wggz; ghé‘isotOpic element is given precisely by Gaussian Nexp
Y.
0

(-X /’ e . )
has
fication of the isotopic structure of Eq.(C.225)
:hzu;gzgt;f nontrivial implications, such as: the possibility -
of reconstructing an exact Poincard symmetry; a more accurate .
characterization of the vaccuis and other 1mp11cations presented

. in ref. [163]. 1 o Ueartest
e (C.226) is Lie-isotopic and no e-admissi-
2?§e t?::1§%¥;ftg;ca£se of)the Hermitean character °ﬁ the isoto-
ic’element T. We should recall in this respect the "direct uni-
'Sersality“of Santél1i's Lie-admissible time evolution (1.77), i.
‘e. its capability of representing (identically) all pqssible no-
nanunitary.time evolutions (verifying certain topological restr-
jctions),directly in the frame of the experimenter [4]. As aire-
sult alﬁ possible modifications of conventional field equa% on-
(tim; evolutions) can always be written in the Lie-admissible -
(Lie-isotopic) form whenever the modified Hamiltonian is no?-
Hermitean (Hermitean).In this sense, reformulation (C.226) is
fully in line with that of Eq.s_(C.ZIS) or (C.2224).

stance beyon
- totic states. Paper
be identically written
the /4 are the trivial
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