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Through~\L  century, Lie's theory hu been deve10ped in both 

mathematical and physical literatures with respect to the simplest con­
ceivable unit, say 1 = Diag.(I, 1, ...• 1), and the simplest conceivable 
product AB - BA, where AB is the trivial 88IOciative product. In 
a pioneering memoir written at Harvard University in 1978, Ruggero 
Maria Santilli identified, apparently for the first time, a generalized 
formulation of Lie's theory constructed with respect to the most gen­
eral possible unit i. in which cue the Lie product assumes less trivial 
forms, such as A • B - B • A where A • B. is stiR associative but or 
the more general type A. B =A,B, where, is fixed, sufticie~t1y 

smooth and nonsingular. and i = ,-1. The generalized theory was 
called the "Lie-isotopic theory" for certain historical reuons reviewed 
in the text. The original proposal of 1978 contains the development 
of the Lie-isotopic theory to a rather remarkable extent, including a 
generalization oC: the theory of universal enveloping associative alge­
bru (Poincare-Birkhoft'-Witt Theorem, etc.); Lie's celebrated Firat, 
Second and Third TheoreDl8i Lie's transformation groups; and Lie's 
symmetries. The memoir concluded with the conjecture of a conceiv­
able generalization of Galilei's Relativity in classical mechanics for ex­
tended particles moving within resistive media (which are not only 
Galilei-noninvariant. but also generally nonhamiltonian). This origi­
nal proposal was subjected to a systematic study in subsequent years 
by Santilli 88 well as a number of independent authors, not only for the 
original classical profile, but also for conceivable operator counterpart, 
as well as for relativistic, gravitational and gauge extensions. 

This review is a guide through a considerable and disparate liter­
ature, devoted to: the ideJitification of the state of the mathematical 
studies on the Lie-isotopic leneralization of conventional formulations 
of Lie's theory; their applications, primarily" to classical mechanics; 
and an outline of the propOled fundamental tests. Except for minor 
referrals, the studies on conceivable operator realizations are deferred 
to a possible separate paper. 

We begm with a review of the algebraic notion of isotopy and its 
application to associative and Lie algebras. We then pass to the no­
tion of analytic isotopy in classical mechanics, that realized via the 
Birkhoffian generalization of Hamiltonian mechanics. We also indicate 
the notion of operator iso~py  on Hilbert spaces, that realized via the 
hadronic generalization of quantum mechanics, as well as the methods 
of "hadronization," that is, the mapping of Birlthoffian into hadronic 
mechanics. The notion of isotopy in symplectic geometry concludes 
our introductory part. . T-{' :r:'4' ~  -/.. - ..l D 

The second part is devoted to a del1JlJ:ri"-:o£,uJe.JrbltDat­
ical studies on the Lie-isotopic formulations of: enveloping associative 
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algebr..; Lie'l Theoreflll; Lie algebr..; Lie groupl; and the application
 
of the generaliled theory to Ipace-time Iymmetriea. The lecond part
 
end! with a fundunental theorem by SaDtiUi on the reconltruction of
 
the exact nature of Ipace-time Iymmetriea at the Lie-iaotopic level,
 
when broken at the conventional level.
 

The third part iI devoted to the applicatioDl of the Lie- iIotopic
 
theory. We begin with a review of Santilli'l isotopic generalisation of
 
the group of rotatioDl and ICIIDe of itl propertiea luch u: the capability
 
by the rotational Iymmetry to remain exut at the Lie-iaotopic level
 
when conventionally broken, lay, for Ipherea undergoing deformatioDl,
 
or for any phyaical condition implying a topology-preserving alteration
 
of the Euclidean metric. We then paM to the review of Santilli'l Lie­

iIotopic generalisation of Galilei'l Relativity for IYlteflll of extended­

deformable particles which are nonhamiltonian (but BirkhoffiaD) be­

cauae of motion within a reailtive medium. We review the property
 
that, qun, under certain topological reatridioDl, the Galilei Iymme­

try remuDl exact at the Lie-isotopic level when broken by nonhamilto­

nian foreet. A number of intrigUing implicatioDl aDd open problema are
 
also conlidered. We then paM to the review of Santilli'l Lie-ilotopic
 
generaliJation of Em.tein'l Special Relativity and related properties,
 
IUch u: the capability of incorporating all available Itudiea on Lorentz 
"noninvariance" (univeraality), e.g., the leveral phenomenological cal­
culationa predicting deviationa from Einltein'l behavior on the mean 
life of unatable hadrona at different Ipeeda; the capability of recon­
Itruding the Lorentl Iymmetry u iaotopically exact for all the above 
modell (in which it is conventionally broken); the capability to repre­
sent a disparate ftriety of physical conditiODl outlide the capability 
of the conventional relativity, luch u deformation of charged distribu­
tiODl, motion of electromapetic waftS in 8uida, motion of eledroDl 
in met"', propagation of causal lignala within dense hadronic mat­
ter, etc.; the generalization of. the VarioUi lawl of the conventional 
relativity with intrigUing impHcationa and apparent preliminary con­
firmationa; and a number of other upectl. The third lection then 
p&8lel to a review of the conatruction by Gasperini and Santilli of a 
Lie-isotopic generalization of Einstein'l gravitation which is, locally, 
Lorentl-isotopic aDd Galilei-isotopic, u well u capable of reaolving at 
leait lOme of the numerous problematic upectl of the conventional 
theory available in the literature. The need for the conduction of cer­
tain basic testl on fundunentallpace-time Iymmetriea (that have been 
regrettably ignored for decades) completes the third section. 

In the Appendices we' review a variety of topics that complement 
the main text, luch as: Lie-isOtopic generalization of gauge theories; 
computation of the maximal speed of caUiai lign'" within hadronic 
matter; Lie-isotopic field equations; and other upectl. 
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The lituation emerging &om th. review is euentiaUy u followl. 
From a mathematical viewpoint, there illittle doubt that the Lie­
isotopic theory is mathematically coDliitent and does provide a gen­
uine covering of the conventional formulation of Lie'l theory. The 
undentaDding is that the Itudiea are at the beginning and 10 much 
remaina to be done. From the viewpoint of theoretical physica, the 
cluaical formulatioDl of the Lie- ilOtopic theory have clear applicatioDl 
in Newtonian mechanica, particularly for the physical IYlteflll or our 
everyday life, that is, with nODhamiltonian forces. for which the COD­
ventional formulatioDl are limply inapplicable. In regard to relativistic 
settinp, the iaotopic theoriea are admittedly tentative, conjectural and 
in need of direct teatl. although we are aware of no experimental or 
other information on the novel physical conditionl conaidered capable 
of disproving the predictioDl of the new theory. As a matter of fact, 
all indirect phenomenological evidence currently available appean to 
favor the Lie-iIOtopic Iymmetries over the conventional onea, in 3. way. 
after all, predictable from the neceaary 'compatibility with eatablished 
Newtonian applicationa. A. a reault of all the above, a thrillins poe­
sibility of a new acientific edifice emerges from Santilli'l pioneering 
studies, with predictable implicationa at each and every level or con­
temporary physica, moat of which are Itill unexplored u of now. But, 
by far, the moet important implicationl of Santilli'l Itudiea are from 
an experimental viewpoint. In fact. the studiea focUi the attention 
on considerably overdue, fundamental experiments .hich· have been 
lubmitted in the technical literature for decades, but largely ignored 
until now. We are reCerring to experiments such u the meuure of the 
behavior of the mean liCe of uDltable hadrons at different Ipeedl, or to 
the measure of the expected deformation of the charge distributioDl of 
hadrona under lufficiently intense external fielda, and othen. AU these 
experimentl, in their currently available preliminary form, show clear 
deviationa &om the Einlteinian predictionl, in favor of the prediction 
of Santilli'l relativitiea aDd their exact, isotopic, Lorenu Iymmetry. 
This situation leaves the ultimate foundationa ofcontemporary physicl 
in a Itate of "suspended animation" which will evidently peniat until 
the experimentl are finally done, and the issue of conventional venue 
isot.opic space-time symmetries reaolved one way or the ot.her. 

This work will achieve one of ita most important objectives iC it 
IUcceeds in Itimulatins experimentalists to finally conduct these much 
overdue, fundamental teats. 
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1 INTRODUCTION 

1.1 A Brier Surveyor the Literature 

Despite rather vast mathematical and physical studies, the formulation of 
Lie's theory has been essentially restricted until recently to that via the 
familiar Lie product [A, B) = AB - BA, where AB is the simplest possible 
associative product, e.g., that of matrices. The unit of the theory is then 
the trivial element, e.g., 1= diag(I, 1, .•., 1).. 

An inspection of the physical literature confirms this condition, which 
has its origin with the construction of quantum mec~anics  via the enveloping 
associative algebra of operators A, B, ..., their simplest possible product AB, 
and lIeisenberg's time evolution iliA = AH - H A. An inspection of the 
mathematical literature confirms the same condition which has its origin, 
this. time, in the representation theory of enveloping associative algebras 
also realized via the product AB. 

In a pioneering memoir of 1978 (written while a~ the Lyman Laboratory 
of Physics of Harvard University), Ruggero Maria Santilli (1] identified, ap­
parently for the first time, a generalized formulation of Lie's theory which 
he called Lie- isotopic the0'1l for certain historical reasons reviewed later on. 
The central jdea is that of buDding the theory around the most general pos­
sible unit, say i =(Iii)' where the elements/ij have an arbitrary functional 
or operator dependence subject only to certain topological restrictions. This 
demanded, of course, a: generalization of the enveloping algebra, from the 
form with trivial product AB, into a covering form with product of the type 
A. B =ATB, where i =T-I. The Lie product then takes the more general 
form A • B - B • A. 

Santilli was the first to realize the nontriviality of the theory and to 
develop it to a considerabJ~ extent already in the original proposal [1]. In 
fact, in tlds first memoir one can see several theorems generalizing enveloping 
associative algebras, the celebrated Lie's first, second and third theorems, 
and the conventional notion of Lie group, into forms compatible with the 
most general possible unit i. Under the condition tllat the old unit I is 
contained as a particular case of the generalized unit i, Santilli's theory 
becomes a covering of the conventional one, in the sense of being formulated 
on structurally more general foundations, while admitting the conventional 
formulation as a trivial particular case. 

Remarkably, the Lie-isotopic theory was proposed by Santilli as a par­
ticular case of a structurally yet more general theory based on the so-called 
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Lie-admissible algebms, wbich will not be reviewed in this paper. Neverthe­
less, the point is important for this review because some of the subsequent 
advances made by Santilli and others on the Lie-isotopic theory can be 
identified only as a particular case of the more general Lie- admissible for­
mulations. Perhaps this is the reason why the Lie- isotopic theory has not 
received until now the attention it deserves in both physical and mathemat­
icalliteratures. 

The subsequent memoir also of 1978 [2] and paper [3] were primarily de­
voted to Lie-admissible algebras, although containing advances important 
also for the simpler Lie-isotopic theory such as the foundation of a con­
ceivable operator realization of the algebras, including the generalization of 
Heisenberg's equations of the type iliA = A. B - B. A. Santilli completed 
the year 1978 with the release of the two monographs (63, 64] we shall en­
counter later on our review. In 1979 we see the appearance of the first review 
[4] [again for the Lie-admissible approach] followed by paper (5] on the ini­
tiation of the representation theory of the generalized algebras on suitable 
bimodular vector spaces. Paper [6] presents an intriguing application to 
gauge theories. 

Paper [7] studies the difficulties of conventional quantization, and sug­
gests their reinspection under a broader algebraic structure. Paper [8] stud­
ies the expected existence of a conceivable generalization of quantum me­
chanical laws for the interior of hadrons, with particular reference to Heisen­
berg's uncertainty principle. Paper [9] enters deeper into conceivable phys­
ical implications for particle physics, this time for the notion of particle 
under external strong interactions realized with nonlocal and nonhamilto­
nian terms due to mutual wave overlappings. 

In 1982 we see the appearance of paper (10] which consists of a review of 
the physical implications of the generalized Lie stluctures for nonpotential 
nonhamiltonian interactions in Newtonian, statistical and particle mechan­
ics. Paper [11J studi~8 the conceivable generalization of Heisenberg's and 
Schrodinger's equations that are expected from the broMer realizations of 
Lie's theory. Paper [12] presents another courageous analysis, the possibil­
ity that causal signals can propagate within dense hadronic matter at speed 
higher than Co, the speed of light in vacuum. At the end of 1982 we also 
'see the appearance of monographs (20;21] on the classical realizations of his 
algebraic theories, the so- called Blrkhoffian (20] and Birkhoffian admissible 
[21] mechanics. In these monographs one can see Santilli's extended presen­
tations of the conceivable generalizations of Lie-isotopic and Lie- admissible 
type, respectively, of the classical Galilean relativity for extended particles 
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with action-at-a-distance, potential forces, as well as contact, nonpotential 
and nonhamiltonian forces due to motion within a resistive medium. 

In 1983 we see the appearance of three central contributions. Paper [13] 
preFents a model on the reversibility of strong interactions for center-of-mass 
conditions, with irreversible dynamics for each individual constituent when 
considering the rest of the system as external. Paper [14J is, in our opin­
ion, the most important paper under consideration here after refs. (1,2]. It 
presents the foundations of a conceivable Lie-isotopic covering of Einstein 
special relativity for generalizations of the Minkowski metric caused by mo­
tion of extended particles within physical media. The paper also provides the 
expUcit method for the construction of an infinite class of covering trans­
formations from the origina! Lorentz ones and the given generalized met­
ric. Paper [15] provides a generalization of Wigner's theorem on quantum 
mechanical symmetries within the broader Lie-isotopic setting representing 
nonpotential nonhamili.onian forces caused by mutual wave-overlappings of 
particles. This paper also signals the achievement of mathematical maturity 
of the generalized operator formulation, with· the clear understanding that 
its physical validity is still basically open at this writing. 

In 1984 we see the appearance of another important contribution (16]. 
In the preceding paper (14] SantUli shows that, under certain topological 
restrictions, the continuous part of the Lorentz symmetry can be proved 
to be exact at the abstract, Lie- isotopic level when generally considered 
as "broken" at the simpUstlc level of the product AB - BA. Paper [16] 
complements these results, this time, for the discrete part of the Lorentz 
symmetry. In (act, the paper indicates how parity may well be an exact 
symmetry under weak interactions, provided the theory is r~alized within the 
context o( the covering Lie-Isotopic approach, because all P-breaking terms 
can be incorporated in the generalized unit i [as well as in other degrees 
of freedom]. The exact character of the P-(as well as other] symmetries 
then follows from the property that Lie algebras leave invariant their unit 
element. 

In 1985 we see additional contributions b)' Santilli in the field. The year 
started with the inspiring review [1T] (an invited contribution to the Calcutta
 

. conference). We then see the appearance of final papers [18,19] specifically
 
devoted to Lie-isotopic symmetries. These papers (which had been written
 
prior to paper [14J and presented at a meeting of 1983) essentially provide a
 
rigoro.us mathematical formulation of the process according to which a given 
Lie symmetry, when broken at the simpler level AB - BA, can be "recon­
structed" as exact at the higher Lie-isotopic level A. B - B. A. The papers 

also identify the means of constructing the (generally infini te family of) CQV­

ering, exact, Lie-isotopic transformations via the sole knowledge of the old 
transformations and of the new metric. Papers [18,19] then apply the theory 
to a case of truly central physical relevance: the breaking of the rotational 
symmetry, say, for the deformation of a spherical charge distribution under 
external fields, and the recovering of the exact rotational symmetry for the 
deformed distribution at the covering Lie-isotopic level. 

Additional relevant contributions by SantilU alone are: ref. [58] where he 
completes the constr~ction  of his special relativity initiated in paper [14]; ref. 
[153] where he constructs the isotopic field theory and applies it to available 
experimental data on the apparent deformation of the charge distribution 
of hadrons; and otbers. Additional joint contributions by Santilli and other 
researchers will be indicated later on. 

A number of physicists have studied Santilli's proposal of 1978. 
R. Mignani [22] made seminal contributions in the operator realization 

of Lie-isotopic theories, such as: the independent Identification of the Lle­
isotopic generalization of SchrOdinger's equation; the proposal to construct 
a nonpotential scattering theory; and the proof of the exact character of the 
Lie- isotopic SU(3) symmetry when broken at the simpler level AB - BA. 

M. Gasperini [23] made other equally seminal contributions, such as: the 
computation following hypothesis [12], that, within the context of contempG­
rary gauge theories, the speed of causal signals within hadronic matter could 
indeed exceed co; the foundations of a possible Lie-isotopic generalization of 
gauge theories; and the foundations of a possible Lie-isotopic generalization 
of Einstein gravitation for the interior problem. 

A team headed by A. Jannussis made numerous contributions [24] in 
both classical and operator reaUzations of Santilli's algebras. M. Nishioka 
[25] also made several contributions in the field, such as the expected gen­
eralization of the delta function. A. J. Kalnay [26] succeeded in quantizing 
Nambu's mechanics (or triplets. The algebra emerging at the operator level 
is exactly that of Santilli's type [27]. (This aspect, which we regrettably can~  

not review in this paper, opens the possibility of a true quark confinement 
with an identically null probability of tunnel effects into free states, be­
sides an infinite potential barrier, as indicated by Santilli in an unpublished 

'contribution to a meeting of 1984 [27].) 
Animalu [28J conducted several, additional, independent research, such 

as the study of possible contributions to conventional quark theories of the 
generalized setting offered by hadronic mechanics, and others. 

A. Tellez Arenas, J. Fronteau and R. M. SantilU [29] studied the statis­
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tical profile of a generalized class of physical systems characterized by- the 
Lie-isotopic algebras, the so-called closed variationally nonself-adjoint sys­
tems (thes~  are systems submitted in memoir [2] which verify conventional 
total conservation laws, but the internal forces are of nonlocal, nonhamilto-
Dian type). . . 

The (mathematician) H. C. Myung and R. M. Santilli [30,31J achieved a 
consistent mathematical formulation of the operator realization of the Lie­
isotopic algebras. These studies were then further extended via the addition 
of a suitable form of Hilbert spaces [31J and reached their final form in 
ref. [32J by Mignani Myung an~  Santilli, which is here considered the best 
available presentation on operator versions of Lie-isotopies. 

Additional contributi~ns  were made by A. K. Aringazin [33J such as: the 
application of LIe-isotopic Lorentz transformations to describe an anomalous 
energy dependence of some fundamental parameters of the KO - r system; 
the proof that Pauli's exclusion principle Is valid for the center of mass 
of a composite system under a Lie-isotopic operator mechanics, in a way 
compatible with possible departures from the same principle for each indi­
vidual constituent (a similar occurrence for Heisenberg's principle had been 
established in ref. [32]); the capability of the Lorentz-isotopic symmetry to 
Include as particular cases all available research on Lorentz noDinvariance; 
and others. . ' 

The interested reader can Identify a number of further 'contributions by 
various additional authors in the bibliographies ~f  the above quoted papers. 

The contributions by pure mathematicians specifically devoted to the 
Lie-isotopic formulation of Lie's theory (or their universal enveloping asso­
ciative algebras) are grossly lacking at this time, to our best knowledge. In 
fact, as we shall see later on, the sole mathematical paper of which we are 
aware is ref~ [34) by H. C. MyunS on the Isotensorial product of isorepre­
sentations. Another mathematical paper connected with this review is that 

. by E. B. Lin (41J, devoted to the problem of "hadroDization" (i.e., symplec­
tic mapping of Birkhoman Into hadronic mechanics). The authors of this 
review are aware of several mathematical papers by mathematicians specifi­
cally devoted to the more general Lie- admissible algebras (see bibliography 

. [37» and, as" such, they will be q"uoted and reviewed in a separate review 
of SantiUi's Lie- admissible formulation of classical and operator mechanics. 
Nevertheless, these mathematical works are of difficult specialization to the 
Lie-isotopic context. It is hoped that this review will stimulate contribu­
tions by pure mathematicians, speCifically, on Lie-isotopic algebras so as to 

be readily available for physical applications. 

1.2 The Notion or Algebraic Isotopy 

As limpidly expressed in Santilli's writings, physical theories are a manifesta­
tion of an articulated body of formulations of algebraic, analytic, geometrical 
and other character. A generalized notion in anyone of these formulations, 
to be consistent, must admit corresponding, compatible generalizations in 
the remaining branches of the theory. This is the case of the central notion 
of this review, that of isotopy (ref. [IJ, §2.13, pp. 287 and If.). 

Let U be an (associative or nonassociatlve) algebra with (abstract) el­
ements a, b, c, ... and (abstract) product ab over a field F with elements 
a, p, '1, ••• (hereinafter assumed to have characteristic zero). The product 
ab, by assumption, verifies the basic axioms of U. For instance, if U is as- ' 
sociative, ab verifies the associative law; if U is commutative, it verifies the 
commutative law; if U is a Lie algebra, it verifies the Lie algebras axioms; 
etc. 

DEFINITION 1.1 (Algebraic Isotopy): An isotopic mapping 
(also called image or lifting) 01 an algebra U with product ab is 
any mapping U -+ fJ 01 U into an alge6ra fJ which is the same 
vector lpace al U (i.e., the elementl 01 U and if coincide), 6ut 
il equipped with 0 new product 11 • " which ;, luch to verily the 
original azioml 01 U. 

Note tbat [20J the Greek for "isotopic" is ",,' (T 06 To'", 0 (T" which means 
"same configuration," precisely along the concept of the above definition. 

The central property of the notion of algebraic isotopy is therefore that 
of preserving. the character of the original algebra. Thus, if U is' associative, 
a necessary condition for if to be an isotope of U is that the new product 0." also verifies the associative law, and we shall write: 

U : (a6)c = a(bc) -+ fJ : (a • b) 11K C = 0 • (b • c) (1.1) 

Similarly, if U is a Lie al~ebra, a necessary condition for fJ to be one of 
. its possible isotopes is that U is also Lie, and we shall write 

U • { ab +6a = 0 if . { 0 • " +"•G = 0 
• (a6)e +(be)o +(c4)b =0 ' . (a • 6) • c +(6 • e) • a +(e • 4) • 6=O. 

(1.2) 
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A similar situation occurs for other algebras, such as Jordan algebras, alter­
native algebras, etc. 

Santilli identified three types of associative isotopy, each one with an 
attached Lie algebra isotopy. The first is the trivial one (ref. [1], p. 287) 

U : (a6)e =a(be) ..... iJ :a *6 =aa6; 0 E FiO ;: 0 and fixed (1.3) 

evidently given by the multiplication of the old product a6 by a constant 
(that remains fixed for all multiplications of the new algebra). The attached 
Lie algebra is then given by the trivial mapping 

[a,6]u =a6 - 6a ..... [a, b]O =o[a, b]u. . (1.4) 

The second realization of associative isotopy, which plays a central role 
throughout Santilli's analysis, is given by (ref. [1], p. 352) 

U : (ab)e = a(be) ..... iJ :a *b~ aTb, T. E U, invertible and fixed. (1.5) 

It is simple (but instructive) to verify that indeed 

(a *b) *e = (aTb)Te = aT(bTe) = a *(b *e). (1.6) 

Thus, iJ is an isotope of U, 

U : (ab)e = a(be) ..... iJ : (a *b) *c = a *(b *c). (1.7) 

Evidently, isotope (1.5) is not trivial. Equally non trivial is the attached 
Lie algebra isotopy 

[a,b]u =ab - ba ..... [a,bJu= a *b- b*a = aTb - bTa. (1.8) 

Since the element T does not necessarily commute with the generic elements 
a, b, •••, of the algebra, the nontriviality of mapping (1.7) follows. The inter­
ested reader is encouraged to verify that, if [a, b]u if Lie, [a, b](} is also Lie, 
i.e., it verifies the laws 

[a,6](} +[b, a]O = 6 
[[a,b]o,e]o +Ub,e]o,a]o + [[e,a]o,b]o =O. (1.9) .	 . 

Isotopies (1.5) and (1.8) were assumed by Santilli at the basis of his formu­
lation of Lie algebra isotopy, and we shall do the same in this paper. In fact, 
the isotopic element T is' sufficient to represent a generalized metric. Iso­
topies (1.5) and (1.8) are then amply sufficient to illustrate the mathematical 
and physical nontriviality of the generalized theory. 

One additional algebraic isotopy was identified by Santilli [9]. It is given 
by 

U : (ab)e =a(be) -+ fJ : a *b=WaWbW, 

W E U, idenpotent(W2 =W), and fixed. (1.10) 

It is again an instructive exercise for the interested reader to verify that 
the above product a *b is stiJI associative. The attached anticommutative 
product then remains Lie, ie., the mapping 

[a,b]u =ab - ba ..... [a,b]O =a *b- b*a =WaWbW - WbWaW (1.11) 

constitutes another example of Lie algebra isotopy. 
The reader may be interested in knowing that no investigation on iso­

topies (1.10) and (1.11) has been conducted until now, to our best knowl­
edge, in both mathematical and physical literatures. AU available studies 
are reCerred to isotopies (1.5) and (1.8). 

Also, a private communication by Santilli indicates that, according to 
preliminary research, isotopies (1.3), (1.5) and (1.10) are expected to exhaust 
aU possible associative isotopies, but no rigorous study has been conducted 
on this problem until now. 

The classification of all possible associative (and therefore Lie) isotopies 
is evidently important because different isotopies are expected to character­
ize different physical theories. 

As one can see, the notion of algebraic isotopy essentially represents a 
sort of "degree ojJreedom oj the product" for given algebra axioms. As San­
tiJIi recalls [1], the notion is rather old, and actually dates back to the early 
stages of the set theory [35]. In fact, the notion apparently originates within 
the context of Latin square, (two Latin squares were called "isotopically re­
lated" if they could be made to coincide via permutations). Appropriately, 
Santilli quotes Bruck statement (35) to the effect that the notion is "so nat­
um' to ereep in unnoticed." And in fact, the notion had not been applied 
to Lie algebras until Santilli's proposal [1] (even though some application to 
other nonassociative algebras. e.g., the Jordan algebras, can be identified in 
the specialized mathematical literature [36,37]). 

1.3	 The Notion of Analytic Isotopy in its Classical and Op­
erator Realizations 

Let us pass now to the analytic counterpart of the concept of isotopy. It was 
introduced, also Cor the first time to our best knowledge, in memoir [I} and 
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developed in detail In monograph [20J. By following Santilli, let us write 
the conventional Hamilton'. equatlon8 (those without external terms) in the 
unified notation 

." ",,8R 123 '2a =w 8a"'P= , , , ..., 71; 

a =(r'",),k ~  1,2, ...,R;H =H(t,a) (1.12) 

with Poi".>n bracket. between functions A and B in phase space (r, if) 

[A B) ~ lJA w""!!!. = lJA lJB _ 8B DA .(1.13) , - 8a" Da" - 8r. Dp, 8r' 8p, 

and canonical commutation rule. characterizing the Jundamental Lie tensor 

([a", a"» = ([r" ~])([ri,Pj))) =(w"") 
.	 «(Pi, rJ])«(pi,Pj» 

O,uua l"x" ) (1.14)(= -1"x" O"X" •
 

The canonical action principle can be written
 

6A(t,;) =6 /t[R:a" - H]dt =0
1'0 

RO =(i,O), (1.15) 

yielding lIamilton's equations in their covariant form 

•., lJH 0 
WIllIG - -8 =,	 (1.16)

G" 

where w"" is the covariant (symplectic) counterpart ofw"" with explicit local 
realization in phase space 

8RO 8Ro
w"" =__II - =.e.

86" Dall ' 

(w",,) = (Ol"Xft -0 l"x,,) = (wClp)-l. (1.17) 
"X" "X" 

Finally, the Hamilton-JGcobi equations can be written in the unified form 

8A RO	 (
8a" = ,,;	 1.18) 

where the second set of equations can be explicitly written in the familiar 
form 

8A 
8r' =Ptr 

8A 
-8 = 0	 (1.19)

Ptr 

showing the lack of dependence of the canonical action functional' in the 
linear momentum (a property with important implications for·quantization). 

DEFINITION 1.B {lJ, {20J (Classical-analytic Isotopy): An 
isotopic mapping (or image or lifting) oj Hamilton'. equations i. 
given by any generalized Jorm oj the equations which presertJe,: 
0) the derivabilitll Jrom a (fir,'- order) variational principle; 6) 
the Lie character oj the underlying bracket,; and c) the ezi,tence 
oj a generalized, but consistent, Hamilton-Jacobi theory. 

The generalization of lIamiitonian mechanics originating from the above 
definition was called by Santilli Birhkhoffian mechanics for certain historical 
reasons (see ref. [1], p. 259 for the first appearance of these terms, and 
monograph [20] for a comprehensive presentation). 

Under the above definition, principle (1.15) is generalized into the most 
general possible PJaffian variational principle (hel'e restricted to the semi­
autonomous case for simplicity) 

6A(t,a).. =6l'
'0

[Rp(o)o" - H(t,a)Jdt =:= 0 

_R = R(a) =R(r,p) ~  RO	 (1.20) 

with fundamental equatIons given by BirkhoJJ's equations in their covariant 
form 

n ()." 8B(t,a) 0 • 
Up" a a - 8 =;1' =1,2, ... , 2ni ,	 a" 

8R" OR" (1.21)Up ... =8a" - 8a"; 

with contravariant version 

·8A +8 =0 iJP _ Op"(a) 8B(t, 0)8t 8a" =0 
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noP =1(8R" _ 8R,,)-1Iolf. (1.22) 
8a" 8a" 

The algebraic brackets of' the theory are given by the so-called generalized 
Poi,son brackets 

(A" B) ~ 8A O""(a) 8B 
, 8a" 8a" 

(1.23) 

with fundamental Birkhoffian brackets 

[a";a"] =0""(a) (1.24) 

which do verify the Lie algebra axioms (see the analytic, algebraic and geo­

metrical proofs of ref. (20» 

[A;B) +[B;A] = 0 

[[A;B];C] +[[B;C);A] +[[C;A];B) =O. (1.25) 

Finally, Eqs. (1.18) are lifted into the Birkhoffian form of the Hamilton­
Jacobi equations 

ali
8i+ H =O 

81i (1.26)-8 =R".a" 
Note that, unlike Eqs.(1.18), the generalized action functional does depend, 
in general, on the linear momentum, thus resulting in nontrivial generaliza­
tions of Eqs. (1.19b) (for simpler versions see below). 

In summary, the notion of analytic isotopy gives rise, not to one partic­
ular algorithm, but to an entire new mechanic, generalizing each and every 
aspect of the conventional Hamiltonian mechanics. It is hoped that, in this 
way, the reader begins to see the rather intriguing implications of Santilli's 

research. 
Of course, the algebraic isotopy is a particular case of Definition 1.2, this 

time in its classical realizations in' the local coordinates a =(F, i) 

[A,B] = 8A w"" 8B .-. [A;B] = 8A O""{a) 8B . (1.27)
8a" 8a" 8a" 8a" 

This proves the compatibility of the notion of isotopy at the algebraic and 
analytic levels (see the next section for the geometrical aspect). 

From the above property we also see another seminal result achieved in 
memoir [1], that Birkhoffian mechanic, is a realization in classical mechanics 

.'
 

oJ the Lie-isotopic algebras. The reader interested in acquiring an expertise 
in Lie-isotopy is therefore urged to study monograph [20]. This point must 
be stressed here because this review can only serve as a guide to the existing 
literature. 

Unlike the conventional Hamiltonian mechanics, the Birkhoffian mechan­
ic' is directly universal, in the sense of being able to represent all possible 
systems of the class admitted (essentially nonself-adjoint/nonhamiltonian 
systems verifying certain topological restrictions) in the frame of the exper­
imenter. This property has nontrivial implications (particularly for quan­
tization) because the mathematical algorithms of the theory can now be 
assured to have a direct physical significance, e.g.,: "F" represents tile 
actual local coordinates of the experimenter; " p" represents the physical 
linear momentum mF; "F1\;" therefore represents the angular momentum; 
"H" represents the actual physical energy T +V; etc. (see ref. [20), §4.5). 
By comparison, the algorithm "Y' in Hamiltonian mechanics coincides with 
the physical linear momentum m'1only in very special cases; nevertheless, 
upon quantization, its operator image is rather universally assumed to be 
the physical linear momentum (with consequential results of equivocal cha.r­
acter). 

Let us also recall that each formulation of Birkhoffian mechanics can be 
constructed via noncononicol transformations 0/ the corresponding Hamilto­
nian counterpart. In fact, Hamilton's equations do not preserve their form 
under noncanical transformations, as well known. What has been identified 
by Santilli (ref. [20), §5.3) is that, under noncanonical transformations, all 
essential properties persist (derivability from a first-order principle; verifi­
cation of Lie algebras axioms; existence of a Hamilton-Jacobi theory; etc.). 

As a further aspect, the function H of Birkhofl"s Eqs. (1.21) does not 
represent, in general, the total physical energy T +V (although', as men­
tioned earlier, a representation of any given system always exists under the 
restriction H =T +V). In order to avoid confusions, Santilli introduced 
the name Birkhoffian for this function. The term Hamiltonian within the 
context of Birkhofl"s equations is used only wlfen the function represents the 
total energy. In the following, whenever referring to this function, we shall· 

. use the lIamiitoriian H to denote specifically the restriction to the physical 
total physical energy T +V (which is not necessarily conserved), and the 
Birkhoffian B to stress its departures .from the total physical energy H. 

As a final point, the classical Birkhoffian realization of the Lie-isotopic 
theory is fully esta.blished on physical grounds. Birkhofl' [38] introduced his 
equations fora better study of the stability of the planetary orbits, although 

1817 



his use of Eqs. (1.21) was restricted to conservative systems. Santilli [1] 
rediscovered these equations (after some 51 years) and proved not only their 
applicability to a much larger class of Newtonian systems, but also their 
direct universality. For numerous physical applications along these latter 
lines, we refer the reader to the examples of Ref. [20], as well as to the 
quoted literature. 

The restriction of this review only to et&$sical realizations of the Lie­
isotopy would however be a gross disservice to the reader, because, as well 
known, the abstract formulation of Lie's theory is directly Interpretable via 
operator realizations. 

This renders unavoidable a brief review of the operator realization. In the 
fonowing we .hall review the apparent generalization of quantum mechanics 
which emerges from these studies, with the clear understanding that, unlike 
its classical counterpart, the physical validity of the generalized operator 
Cormalism is not established &8 of this writing. 

Let 1t be a Hilbert space (hereinafter assumed to be finite-dimensional) 
with elements la), Ib), ••. alld norm over the field C of complex numbers 

1t.: (clb) = e ec. (1.28) 

Let ebe an enveloping associative algebra of operators A, B, ... on 1t 
with trivial associative product AS .and unit 1= diag(I, I, ..., I), 

( : IA =Al = A,AV(. (1.29) 

The Lie algebra L attached to ( Is then characterized by the familiar 
product 

L: IA,B]~  =AB- BA (1.30) 

which provides the structure of the first fundamental equation of quantum 
mechanics, Heisenberg " equation 

. iii = [A,Blt = AH":" BA,A = 1. (1.31) 

Let the homomorphism ( x 11. -+ 1t be characterized by the (right) 
.modular action of, say, ~ operator H e ( on an element la) e 1t according 
to the familiar eigenvalue equation 

Hla) =cla)~c e C. (1.32) 

This provides the structure of the second fundamental equation of quantum 
mechanics, the familiar Schrodinger', equation

.8,
•8t a) =Hla) (1.33) 

with corresponding well known additional aspects (such as unitary transfor­
mation theory, various physical laws, etc.). 

DEFINITION 1.3 I!}, {IO}, {3D}, {31} (Operator-analytic Iso. 
topy): An isotopic mapping (or image or lifting) of Heisenberg" 
and Schrodinger'.equatioRl is given b1l compatible generalized 
form. that pre,erve: a) the e%i,tence of an underlying Hilbert 
,,ace; b) the Lie character of the bracket, of the time evolution; 
and c) the linearity of the operutiORl on the Hilbert ,pace, ,uch 
G8 transpo,e, hermiticit,l, unitarit,l, etc. 

A realization of the above operator isotopy was identified by Santilli in 
1978 [1], (2J apparently for the first time. Let e. be an isotope of ( with 
product 

• del 
( : A • B =ATB, (1.34) 

where T is a generic, lIermitian, invertible and fixed, but otherwise arbitrary 
operator. The lifting AB -+ A.B evidently implies the underlying mapping 
of the unit, from the ori6inal trivial unit of (,1 =diag(l t 1, ..., 1), into the 
nontrivial operator unit 1 =T-l, c:alled i,ounit, according to the rule 

e:i • A =A • i =At AVe. (1.35) 

The antisymmetric algebra L attached to the isotope eis evidently a Lie­
isotopic: algebra with now familiar form 

L: [A, BJi =A • B - B • A. (1.36) 

The above generalized structures allowed Santilli to propose the following 
.Lie-isotopic generalization of Heisenberg', equation (ref. [2J, p. 752) 

itt =[AtH]t = A. H - H. A =ATH - HTA,T = T+. (1.37) 

The remaining realization of Definition 1.3 was accomplished in subse­
quent years. First, Santilli [5J pointed out the need for a fun bimodular 
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(left and right) generalization of the conventional (uni)modular represen­
tation theory. These studies lead to the proposal in 1982 by Myung and 
Santilli (30] of the foHowing genera.lizationof Schrodinger's representation 
(other attempts, see ref. (l1J, produced generalized equations not manifestly 
compatible with isotopy (1.37». 

The analysis was conducted by' providing, apparently for the first time, 
a comprehensive isotopic generalization of conventional operations on a 
lIi1bert space which, along Definition 1.3, were compatible with the iso­
lIeisenberg's equations. 

In order to preserve linearity, the following isotopic generalization 0/ the 
field C (called isofield) refu!ts to be'nee4ed (see ref. [30), pp. 1307-1309) 

't t ."-, • 

C:{qc =ci;ceC; i e l}. (1.38) 

The ~Iements  cof Care then called·isonumbers. 
Note that C is still a field. Also, the sum in Cis the conventional one, 

although the multiplication is isotopic, according to the rule 

Cl • C2 =,.Clc2J; Cl,C2 e ~.  (1.39) 

The achievement of compatibility with the Iso-Heisenberg's equations 
requires the lifting of the conventioJ;1al modular/eigenvalue action on 'H into 
the isomodular/iioeigenvalue form 

.. delex 1t -+ 'H : H .Ia) = HTla)'= c.Ia) = cia). (1.40) 

Note that the "numbers" of the theory, i.e., the last numbers in the above 
identities, remain the conventional ones as in Eqs. (1.32). 

With these prelimin'aries;'Myung and Santilli presented a generalization 
of all familiar operations on a conventional Hilbert space (see below for 
generalization of the Hilbert space itself) (Ioc. cit. §II, pp. 1281-1315). 

. Evidently, we can review here only some of the most relevant operations. 
Let 1t be a conventional lIilbert space with elements la), Ib), ... and nonD 
(1.28). A linear operator H e ton 'H is called isohermite4n iff it verifies the 
identity 

H+ ~ T+ H+T-1 == H. (1.41) 

The eigenvalues of isohermitean operators results to be isoreal, i.e., the num­
ber at the end of equalities (1.40) is real as in the conventional case. 

A linear operator U e t on 1t is isounitary when it verifies the rule 

(al. U+ • U • ib) =(alb), (1.42) 

which holds iff 

u+. U=u. U+ =iiU+ =ri-i . (1.43) 

Along similar lines, the following generalized properties hold, where con­
ventional symbols denote conventional operations and symbols with a su­
perscript "hat" denote generalized operations 

TrA =(TrA)i; 

fi(A • B) = fi(B • A) 

ddA = det(AT)i 

dei(A. B) = (adA). (d;iB) 

ddA-f =(d;iA)-i. (1.44) 

After these preliminary results, Myung and Santilli proposed the follow­
ing isotopic li/ting 0/ Schrodinger'. equation (also called iso-Schrodinger" 
equation) (ref. (30), p. 1332) . . 

i :t la) = H .'a) ~  HTla). (1.45) 

The equivalence with Eq. (1.37) was proved in loco cit §3.7. It should be 
indicated here that Eq.(1.45) was jointly but independently proposed by 
Mignanj (ref. (39), p. 1128), although without the isotopic generalization of 
linear operations on Hilbert spaces worked out by Myung and Santilli (also, 
Mignani presented his generalized equations for the broader Lie-admissible 
level in which the T operator is nonhermitean, thus resulting in different, 
nonequivalent, left and right isomodular actions. See in this respect also 
paper [31) by Myung and Santilli). 

The above results essentially established the mathematical consistency 
of the generalized operator theory, under the isotopic generalization of the 
enveloping associative algebra i, the attached Lie-isotopic algebra i, and 
the underlying isofield C, while keeping the c~nventional  Hilbert space 1t 
unchanged. 

The above operator realization of Definition 1.3 shall be symbolically 
referred to hereon with the isotopies 

e~ iT,
{C ~ CT,T =T+ (1.46) 

'H -+ 'H, ' 
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where evidently the last mapping Is the identitJl isotoPJl. We should' stress 
that generalized formulations (1.46) are fully consistent on mathematical 
grounds, even though based on a conventional Hilbert space (see below for 
physical aspects). Also, we should stress that the Lie character of the for­
mulation i. centra1ly dependent on the (conventional) hermiticity of H on 
'It. In fact, in case T i. not HermJtean we have the following pair of iso-

SchrOdinger'. equations 

i :'Ia) =H .'a) =HTla) 

(11IT+H· = (altH = (al :, i 

T -; r. (1.47) 

The generalized form of Heisenberg's equations cOlTesponding to the above 
equations is then given by 

• • clefiA = (A,B) = ARB - BSA 

R =r -; S =T (1.48) 

which is precisely the yet broader Lie-admiuible generalization 0/ Heisen­
be,,', equation proposed by Santilli (ref. [2J, p. 746). 

In summary, operator isotopy (1.46) i. centered on the isotopic element T 
as one additional operator, besides the Huniltonian, for the characterization 
of the time evolution laws (1.37) and (1.45), thus broadening substantially 
the arena of physical applicability of the theory. 

Further studies revealed that the new "degree of freedom" characterized 
by T is still partial, and that an additional degree of freedom exists in the 
structure of the Hilbert space, with a corresponding further broadening of 
the representational capabilities of the theory (see §3). 

In fact, subsequent studies by Mignanl, Myung and Santilli [32J iden­
tified the followinfS isotopic generalization oj the HUbert space itself (ca1led 
isohilbert space), 'Ito as the linear vector space with elements la), 16), ••• and 
the isoinner product 

.. .. del .. .. (1.49)'Ito : (aI6) := (aIGI6)1 =eeC 

where the new operator G is hermltean and positive definite, but otherwise 
arbitrary. It represents an additional "hidden" degree of freedom of the 
theory besides that provided by the isotopic element T. 

. It is easy to check that the inner product (1.48) of the isoJli1bert 1Ipace
ita obeys all conditions which are used to define an abstract lIi1bert space. 
So the isohilbert space Ho may be thought of 88 an extended realization of 
the conventional Hilbert space 'It of quantum mechanics, with a being an 
integration measure~  The two spaces are isometric to each other. 

It is instructive also to verify that the following generalized Schwan 
inequality holdsl(a;6)1 S lIalloll6110, where we have 'denoted the uonorm of 
a as lIallG =(aia)1/2• 

Generalization (1.48) demands a further enlargement of linear opera- . 
tions. For instance, the condition of isohermlticity now becomes 

H+ =T-1GH+TG-1 == H. (1.50) 

The above· results are intriguing. In fact, one can see that for T ~ a 
the generalization notion oj isohenniticitJl coincide' with Uae conventional 
hermiticitJl 

B+ =T-1TH+7T-1 == n+. (1.51) 

. In turn, this has the direct consequence that the o6,erva61e, 0/ quantum me­
chanic, (Hamiltonian, linear and angular momenta, etc.) remain 06sena61e 
under a general isotop1l 0/ enveloping 488ociatitH! alge6nu, fields and Hilbert 
space. characterized 6J1 the IGme isotopic element T = G. 

In summary, the most general known isotopic formulation of operator
 
algebras is characterized by the following liftings
 

e-. eT, 
A +C -. CT,T = T , (1.52){ .. +1{-.llo,G=G ,G>O, 

where, in general, T -; G. In the following we shall however often refer to 
formulations (1.52) under the specialization T = a, owing to their capability 
to preserve the operation of lIermiticityof quantum mechanics (as well as 

.other operations, see ref. [32]). 
The above rudimentary review is sufficient for our purpose here: to show 

the mathematiool consistency of the generalization of quantum mechanics 
'characterized by isotopes (1.46) and (1.52). In tum, this implies the ex­
istence of a consistent operator realization of Santilli's Lie-isotopic theory. 
Still, in turn, this property results invaluable for the study of the theory 
because, 'as mentioned earlier, isotopes (1.46) or (1.52) provide the most 
direct possible interpretation of the generalized Lie theory. . 
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A few words on the physical profile are in order here. The generalization FIGURE 1. A reproduction o( the .lide preeented by Santilli durins hi.of quantum mechanics characterized by isotopies (1.46) and (1.52) was called invited talk at the Conference on Differential Geome,ric Me,hod. in Ma'h­by Santilli hadronic mechanics (ref. (2), p.756) to emphasize the restriction ema'ical Phl/.ic. held in Clau.thal, Weet Germany, in 1980. The .lide wuof the intended applicability of the theory only to the interior of hadrons, intended to illustrate, (or the distinsui.hed seometen and theoretician. at­or to the interior of strong interactions at large. tendins the con(eren~e, the incontrovertible experimental evidence on theThe physical foundations of the proposal are the experimental evidence nonlocal nature o( the etrong interaction. u pointed out by the (oundingof the existence, under strong interactions, of necessary conditions of mutual (athell of the theory. In fact, aD hadrons are not point-like, but have aoverlapping of the wavepackets of particles (which are generally ignorable charge distribution of the order o( IF (= IO-13em) which coincide. withunder electromagnetic interactions aa in the atomic structure). In turn, the range of the .trong interaction.. AIIO, all known (musive) particlesthese interactions are known at the classical level to be: have a wavepacket which, again, i. o( the order o( 1F. Thu., a necessary 
• a) of tlOntact type, in the sense of zero runge, i.e., not being repre­

condition to activate the .trong interaction. i. that ·the particles enter into 

sentable via action-at-a-distance .interactions;	 
a state of mutual penetration of their charge di.tribution and wavepacleet•.
Thi. characterizes interaction. which cannot be reduced to a finite number

• b) of nonlocol type, in the sense of occurring throughout a volull;le, o( ilOlated pointe, because they occur throughout the volume olmutual.pen­
and not being reducible to a finite number of isolated points; and etration/overlapping. AlIo, the interaction. are of contact nalure, that i.,

the nonlocality cannot be represented via a potential of integral type be­• c) of nonhamiltonian type, in the sense of being, not only of nonpa­ cau.e the integrability condition. for the existence of a Hamiltonian are vi­tential type, but actually of being beyond the representational capa­ olated without, of course, precluding the exi.tence of conventional potentialbilities of a Hamiltonian in the frame of the observer (see monograph term.. By keeping in mind that aligeometriee conventionally used nowaday.[20) for the violation of the integrability conditions for the existence in theoretical phy.iea are of .tridly local/differential nature, the elide wuof a Hamiltonian). intended to .timulate the .tudy of more general, nonlocal (e.g., integrodill'er­
The same properties are evidently expected to remain for particle wavepack­

entiaJ) geometries for a more adequate repreeentation o( the interior .trong
problem. The Lie-ilOtopic theory and ite varion. application. reviewed inets (see Fig. 1)•. 
thi. work are intended precisely u a fillt .tep toward a quantitative rep­
res~ntation of the nonlocal/nonhamiltonian character of interior dynamical
problem., in which the conventional, potential, local interaction. are repre­
sented by conventional Hamiltonian., and the nonlocal, integrodill'erential,
and nonhamiltonian interaction. are represented via the generalized unit o(
thf! theory. The .ymbol o( overlapping.pheree wu subsequently Ulumed by
Santilli u the logo of The In.'i'u'e for SOlie Re.earch, at it. inauguration
ceremony the rollowing August 1981. . 

As stressed earlier, hadronic mechanics is not physically established as oj
this writing because a large number of theoretical and experimental studies
remain to be done. Nevertheless, hadronic mechanics may be applied also
to account for a number of conventional applications, such as: quark con­
finement, hadronization processes and other cases where the perturbative
techniques of QeD are known to fail to achieve a consistent description.

An apparent reason for the current resiliency toward hadronic mechaniCs 
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is due to the inevitable existence of certain generalizations' of basic quan­
tum mechanics laws, such as: lIeisenberg's uncertainty principle; Pauli's 
exclusion principle; the very notion of "particle"; etc. 

The reader should however be aware that, as stressed in the literature, 
these devialionl from conventional quantum mechanical laws are ezpected 
only in the interior of hadrons, or in the interior of systems of strongly 
intemcting particles, while conventional quantum mechanical laws are re­
covered in full for the center-of-ma,. motion. 

For instance, Mignani, Myung and Santilli [32] proved the validity of 
the conventional uncertainty relations for the center-of-mass motion of a 
composite system characterized by hadronle mechanics, in a way fully com­
patible with genemlized uncertainty relations for each individual constituent. 
A similar situation has been proved by Santilli [13] for the time reversal, or 
by Arigazin [33] for Pauli's principle. 

These results are important because they establish the fact that es­
sentially no valid ezperimental evidence ezists at this time for disproving 
hadronic mechanics, for the simple reason that all available direct tests for 
strong interactions are essentially center-of-mass tests. To put it differently, 
In order to establish experimentally the validity or invalidity of hadronic me­
chanics, we have to repeat the historical process that lead to the establishing 
of quantum mechanics. The historical experimental measures conducted for 
charged particles under eztemol electromagnetic interactions, must be re­
peated, this time, for hadrons under eztemal strong interaction. No direct 
experimental study along the latter lines evidently exists as of this writing. 

In the final analysis, readers"with an open mind to potentially fundamen­
tal advances should notice the evident plausibility of the ,occurrence: conven­
tional quantum mechanical laws for the center-of-mass motion of hadrons, 
and generalized hadronic laws for their internal structure. 

The physical foundations for this plausibility is provided by another 
seminal contribution by Santilli, the notion of closed e,sentially nonself­
adjoint systems, introduced in -1978 jointly with his algebraic and classi­
cal/operational studies [I], [2]. In a few simple words, it is generally be­
lieved that the stability of a system is provided by the stability of the orbits 
,of each individual constituent. This is essentially the case of the stability of 
the solar system as well as of the atomic structure. 

Santilli pointed out the existence in Nature of a class of more general 
systems which verify all total conventional conservation laws for their center­
of-mass motion, but the internal equations of motions are nonhamiltonian. 
(See Fig. 2.) 

These broader systems are essentially provided by composite sys~ems  

with each individual constituent in unstable conditions due to exchanges 
of energy, linear momentum and other physical quantities with the rest of 
the systems. The point is that these nonconservations are merely inter­
nal exchanges under total conserved quantities, the system being, after all, 
isolated. 
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FIGURE 2. A reproduction of Figure 1, p~e 1208 of ref. [11], depicting 

a dychotomy of central releVUlce for the studies under review: the compati­

bility of the conventional symmetries and physical laws for the center-of-mus 

motion of celestial bodies (such u Jupiter), with muifest deviations. from 

the same symmetries and physical laws in the interior dynamics. Iii fact, 

on one side, we have clear evidence on the stability of Jupiter'. orbit in 
the Solar .ystem with consequential manifest validity of the rotational sym­

metry for the exterior dynamics; on the other side, we have equally dear 

evidence for the existence in the interior motion of vortices with continu­

ou.ly varying angular momentum, with consequential internal violation of 

the rotational symmetry. Similarly, we have a manifestly revenible, center­

of- maa trajectory, u compared to a manifestly irrevenible interior dynam­

ia. A similar .ituation occurs for aU other upectl at all level. of study, 

u we shall lee, including the relativistic ud the gravitational level. The 
dychotomy reviewed here waS quantitatively interpreted by Santilli via the 
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notion of c108ed- ilOlated .y.tem. with nonhamiltonian internal force. (.ee 

later on). The above dychotomy a110 provide. the conceptual foundations 
of the fundamental experimentl propoaed later on in 13.5.18 resardins clear 
phenomenolosical predictionl of apparent violation of Ein.tein's Special Rel­
ativity in the interior of (unltable) hadron. in tlisht, while the relativity il 
preaerved for center-of- mag motionl of the lame hadionl. lay, when movins 

in a particle accelerator. 

The mathematical consistency of these broader systems at the classical 
·and the operator level was also shown in the original proposals [1,2]. 

At the classical level, closed nonhamiltonian systems are characterized 
by the Birkhoffian equations (ref. [2], p. 624; see also monograph [20], pp. 
234-237) 

:. FtSA( F) + FtNSA(, -:. )miri = I" r 1-" " r, r, ... , 

'. d 
H =d,(T +V} =0, 

P· eoe =dt 
d"(E"m"p,,) = 0, 

. 1 

Ai101 =:<2: r, " pt ) =0, 
. "
 

(J.oe = dd <LmJr" - tp,,) = 0, (1.53) 
, t" 

. . 
where the symbols "SA" .("NSA") indicate verification (violation) of the 
integrability conditions for the existence of a potential, those of variational 
self-adjointness. 

An intriguing point is that the conventional total conservation laws are 
not necessarily subsidiary constraints to the equations of motion. In fad, 
Eqs. (1.52b)-(1.52e) are verified when 

" EIeFl'SA =0, 
.1 

"Ller. 1\ Fl'SA =0, 
1 

"E Pie •i:'SA =0, (1.54) 
1e=1 

which consist of seven conditions on 3n unknown quantities, the components 
of the nonhamiltonian forces f(lSA. Infinite varieties of unconstrahied s0­

lutions therefore.exist for n ~ 3. The case n = 2 has been proved to be 
consistent, even though with very special features (e.g., only circular orbits 
are possible). The case n =1 is impossible for the evident reason that an 
isolate particle cannot be under nonhamiltonian external forces (see Fig. 3). 
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FIGURE 3. A reproduction of Figure 5.1, page 529 of ref. [21], pre­
Benting a echematic view of the notion of -dosed non·ie!f- adjoint Iyltema" 

orisinally proposed in ref. [IJ, [2J and then investigated at BeveralJevels 
of Itudy by a nu~ber of authon (see §l.I). Conventionally, closed-isolated 

.ystems are represented by assuming that total, conaerved, quantities (such 

u energy H. angular momentum M, etc.) are the seneraton of space-time 
.ymmetries (translationa, rotatioDl, etc.). The assumption of the .implest 

conceivable Lie product AB - BA then requires the Hamiltoaiu H to rep­
resent all acting internal forces. Additional technical arsumentl restrict all 

internal forces to be action-at-a-dietance potential/Hamiltonian. Santilli'l 
proposal is to Ulume the .ame total, conBerved phy.ical quutities H, M, 
etc., u the seneratorl of ilOtopically lifted space- time .ymmetries, in which 
the product is Ie.. trivial, e.s., A • B - B • A = ATB - BTA. Thil yield. 
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an additional element T, besides tlie Hamiltonian H.. to represent internal 

forces that are beyond the repre8entational capability of the Hamiltonian 
(FiS. I). Thi. result. into the coverins nolion of closed nonhamiltonian 

Iyltem. which are at the foundation of the Itudies of Lie-isotopy at all lev­
el.: Newtonian, relativi.tic, Iravitational, Itatiltical, etc. Remarkably, the 
•pace-time .ymmetries are Dot broken under the presence of Internal non­

hamiltonian forCe8, but merel, tealiled in a Itrudurall, more leneral, but 

ilOmorphic way. Thil h~portant  findins wu onl, empiricall, known in the 

earl,ltases of the Lie- i80topic tlleor" aDd lubeequenU, formalized in ref. 
[18] (see later on Theorem 2.9). The implication. of the8e resulta are far 

reacronl at all level. of .tud,. To belin, Santilli tau dilproved Itatementa 
lOch ~ -breakins of the Lorents .ymmetr,· or -Lorents noninvariance,· 

which are technically corred oal, when .pecificaIJ, referred to the -limplest 
pos.ible realization of the Lie produd AS - SA.· In fact, Theorem 2.9 

allow. the recon.trudion of the .ame Iymmetr, u exact at the Lie-isotopic 

level when broken at the conventional level. Furthermore, the notion under 
con.ideration and ita underlyinl Lie-ilOtopic method., allow the poaibility 

of conltrudinllenuine coverinl of contemporary relativities, U we .hall .ee 
in S3, with far reachinl implication. in clu.ical u well u particle mechaniCi. 

AU the above consideration. refer to the -exterior problem,· here intended 
u the description of the .y.leme from the exterior with the emphuil on 

total con.ervation law.~  alonl the line of monosraphl [63], [20J. A comple­
mentary uped i. the -interior problem- intended u the Itudy of only one 

conltituent of the 'Yltem when aU other con,titaen" are considered u exter­
nal. The emphui. i. now .hifted to the maximal p08lible Donconservation 

of the physical quantities of eada conltitaent (of course in a way compatible 
with total conservation lawI), u the best way to maximize internal dynam­
ical condition.. This. complementary approacll i. aloDI tile Lie-admiaible 

line of .tud, of mODolraph. [64J, [21J which is not reviewed here. 

The operator image of systems (1.53) WaB also identified by Santilli in his 
second memoirs of 1978. In fact, the operator H in his Eqs. (1.37) represents 
the total physical energy of the system and it i8 evidently conserved because 
of the Lie character of the underlying algebra. We can therefore write the 

. following operator version of systems (1.53) 

iH =[H,H]l =H. H - H. H == 0 

(1.55)[ftohllJl =(MrohHJl =[G'ohHJi =o. 
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Notice that the observability of physical quantities persists because,. as re­
called earlier, one can select isotopes (1.52) with T = G, under which a total 
Hamiltonian H which is conventionally hermitian in quantum mechanics, 
remains hermitian in hadronic mechanics. Also, its eigenvalues remain real 
(although different!) [32J• 

This confirms the point touched earlier, that the center-of- mass motion 
of a composite system obeying hadronic mechanics, when inspected from the 
outside, verifies conventional physical laws. Nevertheless, the system admits 
in its interior a generalized integrodifferential unit j for which conventional 
physical laws are inapplicable, in favor of suitable covering law8. 

In Santilli's words, the solar system is a closed Hamiltonian system 
whereby total stability is provided by the stability of each orbit. The plan­
ets, however, possess structures considerably more complex than that. For 
instance, Jupiter is an example ofa closed nonhamiltonian system because, 
when assumed as isolated from the rest of the solar system, it verifies to­
tal conservation laws; yet its internal structure is highly nonconservative, 
nonha.miltonian (and irreversible). 

In the transition to the particle setting, the atomic structure is analyti­
cally equivalent to that of the solar system because, again, total stability is 
provided by the stability of each orbit. Santilli's view is that the hadronic 

. structure is equivalent to that of Jupiter [2J, in the sense that each isolated 
hadron evidently verifies total conservation laws; nevertheless, the internal 
orbits are expected to be highly nonconservative due to the deep mutual 
overlapping of the wave packets of the constituents. (See Fig. 4.) 
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FIGURE 4. A reproduction of Figure 9.1, pase 1945 of ref. [32), signal­

iDS the achievemeDt of mathematical maturity in the operator formulatioR 
of d~  Donhamiltonian .ysteml on Hilbert .paces. Ref. [32) established 

the operator counterpart of the d,chotom, of Figs. 2, 3, that is, tbe validity 
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of conventional quanlum mechanical law. for the center-of-mua motion of 
lhe .late, in a way compatible witla .tructurally more seneral law. for the 
interior dynamia. The analy•• wu preaented for the cue of Heiaenbers'. 
uncertainty principle, witla suideline. for the expected edension to all other 
phy.icallaw. and prindpaJa of quantum mechania. In fact, Arinsuin (see 
later on ref. [130» hu recenUy proved the .ame occurrence for Pauli'. exclu­
sion principle. Theae operator. raults are merely indicated for the purpoee 
of informins the reader o,n the emtence of mathematicall, consistent opera­
tor counterpart. of the cl_cal mode" reviewed in thY work, with the hope 
of reyiewins them ia detail in a future paper. 

To summarize our viewpoint, the classical analytical realization of San­
tilli's isotopies (Birkhoman mechanics [20» is nowadays established on both 
mathematical and physical grounds. The corresponding operator counter­
part (hadronic mechanics [32]) is clearly consistent on pure mathematical 
grounds, but far from being established .on physical grounds, although no 
exper~mental  evidence can be moved agalnst the generalized mechanics at 
this moment. In the final analysis, the central physical notion of the theory 
(that ofdosed nonhamiltonian system) is manifestly plausible for the repre­
sentation.of hadrons, as we shall see better in the final part of this analysis, 
and, more technically, in a possible subsequent review. 

We now briefly review the process of naive hodroniZldion, i.e., the sim­
plest possible mopping of BirkhoJJion into hodronic mechanics. This aspect 
is important for our analysis because it throws a deeper light in the notion 
of isounit of the Lie-isotopic theory (besides indicating how diversified the 
studies of ~ompatibility  and consistency have been conducted until now). 

The conventional naive quantization, i.e., the mapping of classical Hamil­
tonian into quantum mechanics, can be characterized by the mapping of the 
action functional A into & ronstan' unit, Planck's ~nit  Ii =1, time -Hog "', 
I.e., 

A -+ -illog '" (1.56). 

which under Hamilton-Jacobi Eqs. (1.18) ass~me  the form 

8A .1 8
-Iii =H -+ liat" =Ho~;  

8A .1~J...- = p.. -+ -I-V" = Po, (1.57) 
8r " 
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thus becoming Schrodinger's equations 

i :, tP =HtPi 

- iVtP =Pt/J. (1.58) 

AnimaJu and Santilli [40J pointed out that mapping (1.56) is expected 
to be insufficient, for Pfaffian action principles, because of its inabHity to 
provide a representation of the contact/nonlocal/flonhamiltonian forces of 
the broader systems considered. The authors proposed instead, as naive rule 
of hadronization, 'he mapping oj the PJaffian action Junctional A inlo Ihe 
operator unit of the theory, the isounit of hadronic mechanics i, time- i log tP, 
i.e., 

A-+ -i110g tP. (1.59) 

For our needs we now consider the following particularized Pfaman action 

A=l.'[M£(r,p)p,,:' - H(t,r,i>Jdt
'0 

det(Mi) #- 0 (1.60) 

with Hamilton-Jacobi equations (which are still of genuine generalized na­
ture, yet of the simpler form) 

8A=H 
(Jt 

IJA . 
1Jr' = Mlpii 

lJA 
-8- = O. (1.61)p, 

The application of mapping (1.59) to Eqs. (1.61) then yields the (orms [40] 

- ali =H -+ i(~)logt/1 +it!!"" =HOPat at '" at 
IJ"J .. ..1- .~  =-i(V,I)logt/1 - il;;.V,tP =M,pa" (1.62)IJr, - ". 

which can be rewritten 

. lJ .1. [H .oi 1 del-­I-IJ 'I' = - 1--log"'J ." - Hal • •1. , IJt tP - 'I' 
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.. . .... 1 del i'" ,IT .1. (1 63)
- iV"tP = (Mlii + i(V"I)~log.,].1/J  = M"PA; ." . 

yielding precisely the isoschrodinger's Eqs. (1.45), plus corresponding equa­
tions for the linear momentum. 

A mathematically rigorous formulation of hadronization was achieved 
by (the mathematician) E. B~ Lin [41] via the methods of symplectic quan­

. tization. Recall that the Birkhoffian mechanics can be constructed via 
noncononical transformations of Hamiltonian mechanics (and remains form­
invariant under these general transformations). Along parallel Unes, hadronic 
mechanics can be constructed via nonunitary transformations of quantum 
mechanics (and also remains form-Invariant under the most general possible 
transformations) [4J. Lin essentially shows that the lifting of conventional, 
symplectic quantization technique. (e.g., prequantization) characterize~  by 
noncanonical (nonunitary) transformations provides predsely the desued 
hadronization, as expected. 

This completes the objective of this section, tf) show that the c1assi~al  

and operator realizations of the notion of analytic isotopy, not only are 10­

dividuaUy consistent, but admit a consistent mapping of the former int? the 
latter, the entire process constituting a true generalization of conventlOnal 
theories. 

A few comments are now in order. Evidently, the assumption of the sim­

pler Pfaffian form (1.60) has the objective of rendering the generalized action
 
functional independent of the linear momentum. This, in turn, allows the
 
construction of an operator image in which the wavefunction has tile familiar
 

functional dependence 1/J(I, r) without a dependence on the momentum. 
A personal communication by Santilli c?nfi~s ~he rat~er vast capa­

bilities of action (1.60) to represent nonhamdt~man Interac~lons, on~e the
 
several degrees of freedom of Bllkhoffian me~a~lcs are taken IOto conslde~a-
tion (ref. (20), pp. 54-67). Nevertheless, Santilli stresses the fact that, unlike
 
the case for general action (1.20). the direct universality of the reduced form 
(1.60) has not been proved as of today. In ca:se action (1.60) do~s ~ot ~e-
suIt to be directly universal, the construction of a "wave mechaniCS WIth
 
"wavefunction" dependent also in the momentum, 1/J(t, F,P), is inevitable.
 

. Second, hadronization (1.62) indicates the intrinsic nonlinearity 0/hadronic 
mechanics, where the nonlinearity is referred also to the dependence of .the 
equations of motion in the wavefunctions. As a matter of fact, the ISO­
Schrodinger's equation in Its original formulation by Santilli, that in term of
 
the Birkhoffian operator B, is the most general nonlinear equation of motion
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in operator form know until now. We shall write It in the explicit for~ 

i:'., =B*7/J =B(t,a,1/J,f/J+, •..)D(t,a,f/J,.,+, ...).,. (1.64) 

AU known equations, llonlinear in the wavefunctions as well as in other 
quantities, are evidently a particular case of the above equation. 

We are referring here to the direct universality 0/ hadronic mechanic" 
I.e., the capability of representing all conceivable nonlinear equations verify­
ing certain topological restrictions (universality) in the frame of the observer 
(direct universality). This is merely the operator counterpart of the classical 
direct universality of Birkhoffian mechanics [20]. . 

The proofof this important property is quite easy. Recall that the univer­
sality of Birkhoff's equations ultimately results from the form-invariance of 
the theory under the most general possible (noncanonical) transformations. 
The direct universality of the iso-Heisenberg's or the iso-Schrooinger's equa­
tions then follows from their form-invariance under the most general possible 
(evidently nonunitary) transformations. 

As an example, it is an instructive exercise for the interested reader to 
show that certain nonlinear wave equations currently under investigation 
by Weinberg [42] and others (to explore a possible nonlinearity of quantum 
mechanics) of the type 

.0.p 8
'Ot =8.,+H(.,.,+, ...) (1.65) 

are in fact a particular case of hadronic mechanics, i.e., they can always be 
rewritten into an equivalent isomodular form (1.64). 

But there is more. The direct universality of the theory, co~bined with 
its isotopic structure, have rather profound epistemological implications for 
the very notion of nonlinearity. 

This is another central aspect of the Lie-isotopic theory we shall consider 
in more detail later on, when reviewing the isotransformation theory (§2). 
At this point we can limit ourselves to the remark that the isotopic element 
D of Eq. (1.64) is arbitrary. As a result, all nonlinear terms, whether in the 

. wavefunctions or in the other quantities, can be Incorporated in the isotopic 
element, in which case the (nonlinear) Birkhoman operator B is replaced by 
a linear Hamiltonian H and we shall write 

' 
.0 

B(I, a, f/J, f/J+ ••• )D(t, a, f/J, f/J', •••).,'Olf/J = 
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WI 

== H(t, a)T(t, a, tP, tP', ...)tP 
'We now close these analytic comments with the indication of the -fact 

== H. tP. (1.66) that the Birkhoffian and hadronic mechanic. constitute genuine coverings oj 
their original counterparts, the Hamiltonian and quantum mechanic., in the The implications of the above results are rather deep. They essentially
 
sense that:
 establish that, not only we have a direct universality for all possible non­


linear th~ries,  but in -addition an, po••i6Ie nonlinear theo,., can alway. be
 1. the generalized theories are conceived for physical conditions intrin­
rewriUen in an equivalent isolinear Joma. sically more general than those of the original theories (essentially 

It is regrettable that the authors of studies [42] do not appear to be nonhamiltonian interactions); 
aware of the Lie-isotopic theory, because the intrinsic isolinear structure of 
Weinberg's equation (1.64) may evidently void most of their ~umentations.  2. the generalized theories are constructed with mathematical methods 

essentially more general than those of conventional theories (Lie-isotopic This is the technical reason why Santilli (private communication) does
 
methods)i and .
not consider nonlinearity a structure characterizing feature. Instead, he con­

siders structurally fundamental the nonlocalitJl and nonhamiltonian charac­ 3. the generalized theories are capable of approximating the conventional 
ter caused by the deep mutual overlapping of the wave packets of strongly ones as close as desired, e.g., for
interacting particles. 

Regrettably, we cannot enter Into a detailed analysis of the implication n~ w or j ~ ta (1.68) 
of the isotransformatiQn th4!9ry for Weinberg's work because this is substan­

and they recover the conventional theories identically when all the tially outside the scope of this review. Nevertheless, the above occurrence 
nonhamiltonian interactions are null, e.g., for Is important to point out the rather deep implications of the Lie-isotopic 

theory for a virtually endless variety of frameworks in classical, operator n == w or j == tao (1.69)
and other branches of physics. 

Next, we want to point out a fundamental feature of hadronization 1.4 "The Notion or Geometrical Isotopy 
(1.59), according to which the i.otopic lilting oj quantum mechanic. is es­

We now briefly touch upon another notion of isotopy, this time at the geo­.entiall, centered on the replacement oj Plonci'. co",tant unit ta = 1 with 
metrical level.the operator isounit j 

Let M be an n-dimensional Coo-manifold with local coordinates ri, k = 
.. +ta(= 1) -+ l(t,a,tP,tP , •••). (1.67) 1,2, ..., n, and let T* M be its cotangent bundle with local coordinates a", 

In turn this provides another illustration of the intriguing physical implica- P = 1,2, ..:,2n, a = (r,p). The familiar canonical one-/onn o~ T*M can 
tions of the Lie-isotopic theory in general, and of Santilli's notion of gener- then be wrItten 

81 = Pidria1ized unit [1,2], in particular. . == R:(a)da" (1.70) 
The ep!stemological implications of concept {1.67) are self-evident. They where one recognizes the same Rtl as that of Eqs. (1.15). 

are essentIally centered on the expectation that the quantum of energy, The Jundamentalsymplectic two-Jonn on T* M can then be written 
while so effective for the area of its original conception (discrete energy . 
states of the individual" electrons of the atomic structure), is expected to 82 = d8. =dPi Adr

i =!w""da" " da" (1.71) 
be insufficient for the representation of the nonlocal and nonhamiltonian . 2 
conditions of wavepackets iOn deep mutual immersion. where WI''' is the covariant tensor of Eqs. (1.17). 

This is one of the reasons" why Santilli carefully avoids the us~  of the Form (1.71) is nowhere degenerate and "closed" (in the geometrical sense 
terms "quantization" or "quantum mechanics" when referring to the opera- that d82 =. o. Th~ sp~e T* M, when eq?ipped wi~h  the form 82, becomes 
tor mechanics characterized by the Lie-isotopic theory. a symplectIC mamfold In the local canomcal coordmates a =(r,p). All the 

several aspects of the symplectic geometry then follow (see, e.g., ref. [43]). 
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DEFINITION 1.-1 {!OJ(Geometric Isotopy): An isotopic map­
ping (or image or lifting) oj a .ymplectic mani/old with /unda­
menta' two-/onn (1.71) i, any mapping that pre.erve. the 8ym­
plectic character 0/ the two-/onn, i.e., it. clo,ed and nowhere 
degenerate character, but remains otherwise arbitmry. 

Evidently, Birkhoff's equations characterize, not only a Lie- algebra iso­
topy (in their contravariant form), but also a corresponding symplectic iso­

topy (in their covariant form). 
In fact, the canonical one form (1.70) is replaced by the Pfaffian one-form 

;1 = R,,(a)da". (1.72) 

The associates two form 

• 1'2 = 20".,(a)da" " do" (1.73) 

where the tensor 0"., Is given by Eqs.'(1.21b), is also closed and nondegen­
erate (20). As such, the Birkhoflian two- form (1.73) characterizes the most 
general possible symplectic two- form in local coordinates. 

The direct universality ofthe symplectic geometry In classical mechanics 
then follows from that of Birkhoff's equations. This is another important 

result of monograph [20]. 
The implications of the above geometrical aspects are far reaching. 
Recall that, at the abstract, coordinate-free level, all symplectic two­

forma coincide. The differentiations merely emerge in local realizations, the 
canonical two-form being the simplest conceivable one, while the Birkhoffian 

two-form being the most general possible one. 
Exactly the same results oc~ur  at the analytic level. In fact, Hamil­

tonian and Birkhoman mechanics coincide at the abstract, coordinate-free 
level (20]. As a matter of fact, the latter has been constructed by Santilli 
precisely under the condition ~f  coinciding with Hamiltonian mechanic8 at 

the abstract coordinate-free level. 
We can therefore expect a simoar occurreflce at the algebraic level too. 

In fact, the Lie-isotopic theory has been proposed and constructed precisely 
in such a way to coincide with the conventional formulation at the abstract 

.coordinate-free level. The differences merely occur in local charts: the con­
ventional formulation of Lie'. theory is the simplest conceivable one, ulti­
mately equivalent to the canonical, analytic-geometrical counterpart. San­
tUli's Lie-isotopic realization is the most general possible form, which is 
ultimately equivalent to the Birkhoffian analytic-geometrical counterpart. 

This final unity of vision is, in turn, fundamental for understanding 
Santilli's capability of reconstructing at the higher Lie-isotopic level, ex­
act space-time symmetries (e.g., the rotational, Galilean and Lorentz sym­
metries) when conventionally broken within the context of their simplest 
possible realizations. The review of this occurrence is, after all, a central 
objective of this presentation. 

1.5 Final Introductory Remarks 

A few final remarks appear to be recommendable to prevent possible mis­
representations of this review. 

Recall that a.U simple Lie algebras (over a field of characteristic zero) 
have been classified by Cartan a long time ago and are today well known. 
Thus, the reader should not expect new simple algebras from the Lie-isotopic. 
lifting of the conventional Lie's theory. 

Rather than looking for new algebras (or groups), the scope of the Lie­
isotopic theory is that of identifying new, structurally more general realiza­
tions of known algebras (or groups). 

As we shall see, tbe Lie-isotopic theory permits in fact the identification 
of a generally infinite family 'of physically different transformations which 
are all representations of the same simple, abstract, algebra. 

Also, readers may tend to expeet that all conventional methods currently 
available for Lie algebras (such as the representation theory) are directly 
applicable to any Lie theory, thus including the Lie-isotopic one. 

This second, rather natural expectation can be readily disproved by not­
ing that a compact Lie algebra (or group) can be turned into a noncompact 
form under isotopic lifting, evidently depending on the topology of the as­
sumed isounit J. Available methods, such as the representatio~  theory for 
compact algebras (groups), are known not to be directly applicable for non­
compact structures. A reinspection of the representation theory is then in 
order. 

Rather than having preconceived assumptions, the reader is encouraged 
to enter into the study of Lie-isotopic algebras with an open mind, and the 
expectation that a.U the various methodological aspects worked out for Lie's 

. theory must be reinspected and eventually reformulated for the .;:overing 
Lie-isotopic theory. 

Our final introductory remark is that SantiUPs Lie-isotopic theory, de­
spite its beauty, is far from being the ultimate Lie theory, as stressed by 
the author himself. This point is illustrated quite vividly by the classical 
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lIamiltonian mechanics, because the conventional Poisson brackets have the 
structure [1] 

8A 8B 8B 8A der • 
L: [A,B]u =8='-8 - P-8 = (A,B) - (B,A) =Lie 

r PII r PII 

8B
U : (A, B) =881 8 = Nonassociative Lie-admissible (1.74) 

r PII 

namely, the Lie algebra L of. the Poisson brackets i8 the anticommutative 
algebra attached to a notlGuocicative algebra U evidently because 

j 

U : {{A, Bl,C) ; (A,{B,C». (1.75) 

In particular the algebra U result. to be a nonGllOCiative Lie-admu,ible 
algebra precisely -because (as per definition of these algebras) Its attached 
algebra [A, B]u is Lie. The 8ame result evidently peniste at the Birkhoffian 
level (ref. [20], p. 152). 

By comparison, the algebraic structure of the conventionallleisenberg's 
brackets is given by 

L : [A,B]. = AB - BA = Lie 

t : AB = Auociatlve Lie-admissible (1.76) 

namely, the Lie algebra L of conventional quantum mechanics is the anti­
commutative algebra attached to an GI,ociative algebra t which, u such, Is 
also Lie-admissible. 

The physical and mathematical implications of the above findings are 
predictably deep. On physical grounds, we have to expect problematic as­
pect. in the quantization of conventional Hamiltonian mechanics, for the 
evident reason that a mapping of a nonusociative envelope U into an uso­
ciative form E simp.y cannot be formulated In a consistent way (see ref. [4] 
for a study of this aspect). This problematic t8peet.can be readily avoided 
in hadronic mechanics because Santilli's Lie-isotopic brackets can always be 
formulated according to the structure [2] 

L: (A,B]u =ATB - BTA t' (A,B) - (B,A) =Lie- isotopic 

U : (A, B) =ARB - BSA = Nonu80ciative Lie-admissible 

T=R+S (1.77) 
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namely, a Lie-isotopic algebra, owing to its nontriviality, can always b~ re­
formulated as the antisymmetric algebra attached to a nonassaciative Lie­
admissible algebra. Consistency of algebraic structures with the classical 
counterpart (1.74) is then regained. 

On mathematical grounds, the above findings ~tablish. the fact that the 
most general po"ible formulation of Lie', theo'1/ is that via nona8,ociative 
envelope" along the conceptual lines so clearly expressed by the Poisson 
bracket, Eq. (1.74). 

This is the reason why Santilli provided his primary efforts for the tormu­
. lation of the theory at the nonassoclatlve Lie-admlGslble level, and presented. 
his Lie-isotopic studies only as a simpler particularization. It is remarkable 
that these so fundamental .tructures, 10 clearly embedded in the structure 
of the conventional Poisson brackets, had escaped attention In the mathe­
matical and physical literatures until the appearance In 1978 of ref. [1,2,3]. 

This review Is restricted to G8,ociatiue Lie-admusi61e formulaUonB, al­
though in their most general known form. The covering nona"ociative Lie­
admissible formulation, shall be ignored hereon, and deferred to a poSsible 
future review. 
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2	 THE MATHEMATICAL FOUNDATIONS OF 
THE THEORY .. ­

2.1 Central Role of the Universal Enveloping Algebra 

Let u. begin by recalling the central role for Lie's theory of the universal 
enveloping algebra. This role is somewhat de- emphasized in the contempo­
rary physical literature, but not in the mathematical one. We shall closely 
follow in this review the presentation of monograph [20], pp. 148-154. 

The terms "Lie's theory" are referred today to an articulated body of 
sophisticated mathemati~al  tools encompassing several disciplines. Whether 
in functional analysis or in the theory of linear operaton, the structure of 
the contemporary formulation of Lie'. theory can be reduced to the following 

three parts: 

Univelsal enveloping 
associative elgebres .If 

Lie Lie 
elgebres G groups G 

',' 

it. 

FIGURE 5. The .t~ture  of the CODYeDtioDu formuiatioD of Lie'. the­

ory with the emphuis OD i&8 ceDtral muhematical .trudure, the ulliYenai 
eavelopinl UIOciative ulebra. ne LiH.otopic theorJ follow. exactl, the 

.ame linel, beginDiDI with tJa. leneraliJauon of the envelope ud then 101­
lowinl with the coneequentiuleneralilation of aD remaininl uped8 of the 

theorJ. 

As duly emphasized in the mathematical literature (see, for instance, 
Jacobson [44], Dixmier [45], and others), a truly fundamental part of Lie's 
theory is the enveloping algebra e. In fact, the algebra eprovides a symbiotic 
characterization of both the Lie algebras and the Lie groups. This is due to 
the fact that the basis of e(which is constructed via the Poincare- Birkhofl'­
Witt Theorem, to be reviewed in the next section) is given by an infinite 

number of suitable polynomial power. of the generator. X, of G such u 

( : I,E FiXiiXiXj(i S j);XiXiX,(i S j S i);... (2.1) 

where the product. Xi Xj, etc., are associative. It· theD: follows that the Lie 
algebra G 

G : [Xit Xj] =XiXj - XjXj =ChX" (2.2) 

is (homomllrphic to) the attached algebras e- of e. The Lie group G of G 
is then the infinite power series , . . ,·x , "tp , ,

G : e • = 1+11X, +TXiXj +... (2.3) 

which, evidently,'can be properly defined and treated only in the enveloping 
algebra (note that all terms from XiXj on are outside the Lie algebra). 
One can then see why fundamental aspect. of Lie algebra' (such as the 
representation theory) are treated by mathematicians within the context of 
its enveloping algebra. 

On physical grounds, the role of the enveloping algebra is equally cru­
cial. For instance, a frequent physical problem Is the computation of the 
magnitude of physical quantities IUch as the angular momentum operator 
M2. While the components Mi of M are elements of the Lie algebra 80(3), 
the quantity M 2 is ou',ide 80(3) and can only be defined in the (center 
of) the enveloping algebra (80(3». Thus, while the Lie algebra 80(3) es­
sentially characterizes the components of the angular momentum and their 
commutation rules, the envelope ((80(3» characterizes: 1) the components 
Me; 2) their commutations relation. via the attached rule (- ~  80(3); 3) 
the magnitude of the angular momentum M2; 4) the exponentiation to the 
Lie group of rotations; 5) the representation theory, etc. Also' enveloping 
algebras playa central role In quantization at large and, specifically, in the 
quantization of Lie algebra and Lie groups. In short, we can state that a 
'ru/y primitive par' 0/ 'he con'empora'1l /ormultdion 0/ Lie', 'heo'll it it, 
universal enveloping a88ociati"e algebra. · 

Once the mathematical and pbysical origins of this occurrence are un­
o derstood in full, one can easily see how any consistent generalization of the 
enveloping associative algebra ultimately provides a generalization of the 
conventional formulation of Lie's theory. 

The physical motivations for this study have been pointed out In SI, 
and are provided by the fact that Lie algebras characterize the fundamental 
equations of physical theories, their time evolution. Any generalization 'of 
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Lie's theory then Illevitably implies the achievement of broader physical 
capabilities. 

The mathematical motivations of the study are equally evident. In the 
mathematical tradition, the efforts are devoted to the formulation of the­

. ories in their most general possible form. This is typically the case for 
mathematical formulations such as'the symplectic geometry [43], which has 
indeed achieved its broadest possible formulation. It is a truism to say that 
a similar situation within the context of Lie's theory was not in existence 
prior to Santilli's studies of 1978, owing to the rather general referral of the 
enveloping algebra, not only to its associative form, bu~  actually to such 
form in its simplest possible formulation. 

In the next section we shall review Santilli's studies toward a broader for­
mulation of Lie's theory, b'eginning with the isotopic lifting of its enveloping 
algebra (with the understanding that the still broader nonassociative en­
velopes [1] will not be considered.) The reader should be aware that we 
shall follow Santilli's original presentation 88 close 88 possible. 

2.2	 Isotopic Lifting of the Universal Enveloping Associative 
Algebra [1], [20] 

In this section we shall first review the definition of universal enveloping 
associative algebra and the methods for the construction of its basis ac­
cording to the Poincare-Birkhofl'-Witt theorem [44J. We shall then present 
their i,otopic liftings, that is, generalizations which preserve the associative 
character of the product. By keeping In mind the primitive character of 
the enveloping algebra in Lie's theory, the generalization presented in this 
section renders inevitable a correSponding reinspeCtion of Lie algebras and 
of Lie groups. 

DEFINITION !.1: The univenal enveloping associative al­
gebra 0/a Lie algebra G is the ,et (e, r) where ei, on alSociative 
algebra and r a homomorphism 0/ G into the attached algebro 
e- 0/e,atis/ging the following propertie,. 1/ e' i, another asso­
ciative algebro and r' a homomorphism 0/ G into e', a unique. 
homomorphism -, 0/einto e' e%ist, ,uch that r' = r-,; i.e., the 
/ollowing diagrom ('..1) it commutative. 

Whenever an algebra ebelongs to the content of the definition above, we 
shall write e(G). All Lie algebras are assumed, for simplicity, to be finite-

dimensional. Also, all algebras and fields are assumed to have characteristic 
zero, and the basis of all Lie algebras is ordered. 

e-~  e'- . 
\1 

G 

(2.4) 

The construction of the enveloping algebra «G) is conducted as follows. 
Consider the algebra G as a (linear) vector space with basis given by the 
(ordered set of) generators X" i = 1,2, ..., m. The tensonal product G ~ G 
is the ordinary Kronecker (or direct) Pt:Oduct of G with itself as a vector 
space. Such a tensoria.l product constitutes an algebra because it satisfies 
the distributive and scalar laws. Also, the algebra is associative because 
the Kronecker product is associative. A general form of associative, tensor 
algebra which can be constructed on G as vector space is given by 

F =Fl E9 G E9 G @ G E9 G @ G @ G E9 ... , (2.5) 

where F is the base field and E9 denotes the direct sum. Let 1l be the ideal 

generated by all elements of the form 

(2.6)[X"Xj] - (X, ~  Xj - Xj ~ X,) 

where [X"XiJ is the product of G. Then, th~  universal enveloping algebra 
{(G) of G is given (or, equivalently, can be defined) by the quotient 

(2.7)(G) = FI1l. 

It is possible to prove that the algebra (2.7) satisfies all the conditions of 
Definition 2.1 (see, for instance, Jacobson [44]). 

Of utmost importance for mathematical and physical considerations is 

the identification of the basis of (G). The quantities 

(2.8). M, = X,. @ X'2 @ ••• @ X,. 

are called standard (nonstandard) monomials oforder $ depending on whether 

the ordering 
(2.9)it ~  i2 ~ ..• ~ i, 
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is verified (not verified). It is possible to prove that every element of (G) 
can be reduced to a linear combination of standard monomials and (cosets 
of) 1. This yields the following fundamental theorem on enveloping associa­
tive algebras. 

Theorem 2.1 (Poincare-Birk!aoJ1- Witt Theorem U4J): The coset, oj 1 and 
'he ,tandard monomia" Jorm a 60IiI oj the univer,a' enveloping aB80ciative 
algebra e(G} oj a Lie algebra G. 

The associative envelope e(G), as presented, is still abstract in the sense 
that the product of e(G) is the tensorial product Xiti!)Xj, while the product 
used in physical (e.g., quantum mechanical) applications is the conventional 
associative product XiXj- Consider then the algebra 

A(G) = Fl ED ~(1) Q) A(') Q) ••• 

A(·) =Xii ,Xi, ... Xi" il S i, S ... S i,. (2.10) 

It is possible 'to prove that e(G) is homomorphic to A(G), in line with 
Definition 2.1. Thus, the algebra A(G) can be assumed as the universal 
enveloping associative algebra of G with basis 

I,Xi,XiIXi"XiIXi2Xia,··· , 

(2.11)il S i"ll S 12 S i3' 

and arbitrary elements
 
X'IX'2 X" (2.12)


il i2· • • i, 

where the X's are the generators of G. Notice that A{G) is infinite-dimensional. 
The center of A{G) is the set of all polynomials P{X) verifying the property 

[P(X}, Xe]A =0. (2.13) 

for all elements Xi e G. Most Important elementR of the center are the so­
. called Casimir invariant. of G. For additional study, we refer the interested 
reader to the mathematical literature on the topic [44],[45]. We move now 
to the identification of the desired associative- isotopic generalization 

DEFINITION !.! {1}, {!OJ: The isotopically mapped univer­
841 enveloping associative algebra oj a Lie algebra G is the set 

{(e, T), (i, i, f» where (1) «(, r) is the universal enveloping a88O­
ciative algebra as per Definition !.1; (!) i is an isotopic mapping 
oj G, iG = G; (3) l is an tJ8sociative algebra generally noniso­
morphic to ei and (4) f is a homomorphism of G into l- such 
that the following properties are verified. Ifl' il still another as­
sociative algebra and f' a homomorphism of G into i', a unique 
homomorphism i ofl into l' emt, Buch that f' = if, and two 
unique isotopie, i and i' emt for which ie = land i'(' = {', i.e., 
the Jollowing diagram is commutative. 

"" iJ·:---L-.+ fI..­

,1\·)1,·
I,G:
 
(\i!e~ 
 

,. G 

(2.14) 

Whenever an algebra i verifies the conditions· of the definition above, 
we write i(G). Again, for simplicity, we assume that all Lie algebras are 
finite-dimensional, all algebras and fields have characteristic zero, and all 
Lie algebra bases are ordered. 

We are now in a position to elaborate on the insufficiency of Definition 
2.1, and the need of Definition 2.2. We shall indicate first the mathematical 
aspect and then point out the physical profile. 

The main idea of Definition 2.1 is, beginning with the basis of a Lie 
algebra G, to construct an enveloping algebra (G) such that [(G)]- ~  G. 
The more general idea of Definition 2.2 is, beginning also with the basis 

. of a Lie algebra G, to construct an enveloping algebra leG) such that the 
attached algebra [(G)]- is not, in general, isomorphic to G but rather is 
isomorphic to an isotope G. of G, and we write [48J 

[{(G)t ~  G¢ G. (2.15) 

The lack of unique association of a given basis with the envelope then ensures 
freedom in the realization of the associative product. Equivalently, we can 
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say that within the context of Definition 2.1, a given basis essentially yields 
a single unique enveloping algebra and thus a single unique attached Lie 
algebra. On the contrary, within the context of Definition 2.2, a given basis 
yields all possible enveloping algebras and thus all possible Lie algebras of 
the same dimension, as we shall see. Still equivalently, we can say that, as is 
conventional in the contemporary formulation of Lie'. theory, nonisomorphic 
Lie algebras are expressed via the use of different ·generator. and the Borne 
Lie product. On the contrary, within the context of the isotopic formulation 
of Lie'. theory, nonisomorphic Lie algebrasca.n be obtained via the use of 
the .ame basi. and dijferent Lie productl. We can therefore state that all 
possible enveloping associative algebras can indeed be introduced according 
to Definition 2.1, which is therefore suitable for the Cartan classification of 
Lie algebras. Definition 2.2 is more general inasmuch &8, besides permitting 
the' introduction of all possible enveloping algebras, it also permits us to· 
construct nonisomorphic algebras via the same basis, by therefore rendering 
necessary the use of the .most general possible realizations of the associative 
product. 

On physical grounds, these mathematical mechanisms are at the founda­
tion of the Lie-isotopic generalization of Hamilton's and lIeisenberg's equa­
tions for closed nonself-adjoint interactions (S1.3)." 

As familiar, the definition of physical quantities is independent of whether 
or not the systems posses. nonpotential interaction.. When these interac­
tions are admitted by the theory, they are represented via an alteration of 
the Lie algebra product. As a result, when the Hamiltonian description of 
a closed self- adjoint system 

.I 8A ,,8EIo,
Jl(a) =[A,E,oc) =8 f'w" -0" , (2.16) 

. a a 

is generalizE'd into a Birkhoman form (1.22) to represent the additional pres­
ence oC internal, contact, nonpotentla1, interactions, i.e., 

· • 8A· 8EA(a) = [A,Ecocl = -O'W(a)--!!! (2.17)
80" 80" ' 

-the basis of the original Lie algebra remains unchanged, together with the 
underlying carrier space (R X T·M) and the field, and only the realization 
of the Lie algebra product (that ie, the realization of the envelope) is per­
mitted to change. As a result, the original Lie algebra G with basis Xi,{a) 
over T·M equipped with conventional Poisson brackets is mapped into the 

isotope G. which preserves the original basis X.(o) in the same local'coor­
dinates of T·M. although it is now equipped with the generalized Poisson 
brackets, i.e., 

G : [Xi,Xj] = (Xi.Xj) - (Xj, Xi) -+ G:[Xi;Xj] =(X.;Xj) - (Xj;Xd. 
(2.18) 

In the transition to the case of Heisenberg's equation, the situation il 
essentially the same and actually turns out to be more directly compatible 
with Definition 2.2. In fact, for consistency of the theory with its classical 
image, during the generalization of Heisenberg's equation (now expressed 
Cor operators), 

iA(o) =[A,H] =AH - HA, (2.19) 
into the Lie-isotopic form (1.37), i.e., 

iA(o) =[A;H] =ATH - HTA, (2.20) 

the nonpotential forces due to charge overlapping are expressed via the Lie­
isotopic generalization of the product 

G: (Xi,Xj] =XiXj - XjX. -+ G: [X.;Xj] =X.TXj - XjTXi. (2.21) 

Mechanism (2.21) is clearly along Definition 2.2 rather than 2.1. 
The alternative 'approach would be that of preserving the original sim­

plest possible product and changing the basis in order to reach direct com­
patibility with Definition 2.1. However, this approach has a number of prob­
lematic aspects. First of all. it is centered on the 1018 of the direct p~Y8icai  

meaning oC the generators (e.g., the physical linear momentum in one di­
mension" =mi, is replaced by abstract objects of the type, =oexpprr). 
Secondly, the approach does not permit the achievement of the direct univer­
sality, as recalled by the preceding section. The removal of the unnecessary 
restrictions on the realization of the enveloping algebras is clearly preferable, 
both mathematically and physically. 

Owing to the relevance of mechanisms (2.18) and (2.21) for this review, 
. it is important to give an explicit example. To stress the fact that the ideas 

are not necessarily restricted to non potential Interactions, we review one of 
_the first examples of isotopy identified. by Santilli, that Cor the harmonic 
oscillator in a three-dimensional Euclidean space [I], [20J. 

The nonisomorphic groups 80(3) and 80(2.1) are isotopic 81/mmetrie. 
of the corresponding Hamlltonians 

1 1 
H(o) =2'(,: +':+,:)+2'(%2 +1/2 +z2), 
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a =(r,,), m =k =1, 

B(a) = 4(,: -': +,:) ~ 4(%2 - fl2 + z2) (2.22) 

that is, they are symmetries leading to the same conservation laws of the 
components M., 6 = %,fI,Z, of the angular momentum via the use of Noether's 
theorem. Let us review the cue again and reinterpret it in light of Defini­
tions 2.1 and 2.2. 

The lIamUtonian realization 01 tbe symmetry 80(3) of H(a) is based on 
the Lie algebra of couserved quantities . 

80(3) : [Ms,M,] =M., [M" M.] = Ms' [M., Ms] = M,' (2.23) 

which is defined in terms of the conventional PoisSOD brackets 

[M., Me] = (M"Me) - (Mc,M.) 

+1 0
lJM, ·lJMc • (2.24)(M" Me) =-8i 1)-lJ. ; (I}) = . +1( +1) · r JI, 0 

In the transition to the equivalent Hamiltonian H(a), the conserved 
quantities M, clearly remain .conserved~  but the 80(3) symmetry is bro­
ken and Is replaced by the nonisoIPorphic symmetry 80(2.1). The problem 
now is the construction of a realization of the 80(2.1) algebra (the Lorentz 
algebra in (2 +1)-dimensions) whOle generators aie those of the nonisomor­
phic 80(3) algebra (the rotational algebra in three-dimensions). This can 
clearly be achieved if v.nd only if one alter. the Lie algebra product. An 
explicit realization has been Identified by Santilli [1], [6] and is given by the 
commutation rules . 

80(2.1) : [Ms;M,] = M.,[M,;M.] =-Ms', (M.;Ms ] =M" (2.25) 

which are now expressed in terms of the gen.erolized Poisson (Birkhoffian) 

brackets 
[M,;Mc] =(M.;Mc) - (Mc;M.) 

, (+1 0 ).. 8M. ilJMc i (2.26)(M.,Mc) = -lJi OJ-lJ. ,(OJ) = -1 . 
r p, 0 +1 

Note that the insistence in the preservation of the same 'realization of the 
Lie algebra product, in' this case, would prohibit the representation of the 

conservation of the angular momentum via a symmetry of the Hamiltonian 
bed). 

The example considered therefore establishes that one given basis (the 
components of the angular momentum M = r X p" = mY.) can define a 
hierarchy of enveloping algebras and attached Lie algebras, depending on 
the selected realizations of the products, which is fully in line with diagram 
(2.4) and Definition 2.2. The example actually establishes not only the in­
sufficiency of Definition 2.1 but also that of Definition 2.2 itself. In fact, the 
algebras (M.,Mc ) and (M,;Mc) are nonassociative, therefore demanding a 
further generalization of Definition 2.1 for nonassociative enveloping alge­
bras, even though the existence of a realization within the context of the 
Lie-isotopic generalization is expected to exist (§1.5). 

Stated in different terms, the above example by Santilli establishes the 
generalization of the conventional definition of the envelope of the Lie alge­
bra of t~e  group pf rotations as per diagram (2.4).

.-\/'­
SO(3) (2.27) 

into the Lie-isotopic form as per diagram (2.14) 

A • ~ 

JJl\ ---;L---)~"',­
I '-\ ,. 

1
I 80(2.1) 

"'\t"'·­
SO(3) 

(2.28) 

which is expected for operator-type realizations (2.21). 
Note that by no means does diagram (2.28) exhaust all possible isotopies 

of the group of rotations. See §3.2 for details. ' 
With a clear understanding of the new capabilities (as well as limita­

tions) of the Lie-isotopic generalization, we pass now to the review of the 
generalization of Theorem 2.1 achieved by Santilli (loc. cit.). 
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The construction of an isotope e(O) can be conducted as follows. Per­
form an isotopic mapping oj the tensorial product Xi 0 Xj of (G), 

Xi ~ Xj -+ Xi • Xj (2-lgl 

that iI, any invertible modification of the product ~ via elements 'of (G), 
of the base manifold, and of the field, which preserves the distributive and 
scalar lawl (to qualify as an algebra), as well 88 the associativity of the 
product (to qualify 88 an isotopy), i.e., 

(Xi. Xj). X" = Xi. (Xj • X,,). (2.31» 

The product of two elements Xi • Xj and X r • X. is then given by 

(Xi. Xj). (Xr • X.) =Xi. Xj. X r • X.,' (2.3t) 

and no ordering ambiguity arises because of the preservation of the associa­
tive character of the original product. 

The isotope of the associative tensorial algebra F can then be written 
• G G G G (2~) 

F =Fl ED G ED G ED • ED • • ED •• •• •.,'" 

Let il, be the ideal of j generated by 

[X,;Xj] - (Xi. Xj - Xj • Xe), (2.3J) 

where [Xi;Xj] is the product lnG. An yotopfcoll,l mapped universal en­
veloping G880ciative algebra ,( G). of a Lie algebra G can then be written 

t(O) =Jtk. (2.~  
Structure (2.34) is, by construction, the universal enveloping associative 
algebra of G realized via an isotopic mapping G -+ iG. 

The remaining aspects of the theory of (a) are essentially given by an 
isotopic mapping of the corresponding steps for (G) outlined above. 

The quantities 
M. = Xi•• Xi, •...• Xi., (2.3~  

are called ilotopically mapped standard (nonstandard) monomials depending 
on whether the following ordering condition 

il S i2 S ... S i. (2.3') 

is verified (not verified). In the reduction of an arbitrary element of e(G) 

Xt.
1 

• xt: •... •xt:, (2.31) 

to standard monomials, a new feature arises, due to the fact that the emerg­
ing combinations of these latter monomials may occur via functions on the 
base manifold. This, in turn, occurs because the isotopy 0 -+ • can be 
realized via functions of this type. We call these combinations F*-linear, 
to differentiate them from the F-linear combinations for the conventional 
case, that is, combinations only via elements of the field. As we shall see in 
the next section, these F-linear combinations have a precise interpretation 
within the context of the isotopic Lie'. theory. Despite this generalization, 
the construction of the basis of leG) parallels that for (G), because leG) 
is a conventional envelope for G. The (inverse) isotopy then simply reduces 
G toG. 

Theorem 2.2(ref. {IJ, p. 359 and ref. (20J, p. 161; Isotopic Gen­
erotization oj the Poincare-BirkholJ- Witt Theorem): The cosets of 1 and 
the standard isotopically mapped monomials form a basis of the isotopically 
mapped universal enveloping associative algebra teG) oj a Lie algebra G. 

Tile basis is thus given by 

I,Xi,Xi•• X., ,X.. • Xi, • Xi" .•. 

it S i2, i1 S i2 S i3• (2.31) 

The distinction between the tensorial realization and that used in practical 
applications is now lost. Indeed the mapping Xi @ Xj -+ XiX; can be 
considered, in the final analysis, a particular form of isotopy. 

The explicit form of the basis depends on the assumed type of isotopy 
~ -+ •• In turn, this depends on the realization of the basis Xi of G, 
whether via matrices, quantum mechanical operators, classical functions on 
phase space, etc. 

Suppose that the X'I are realized via matrices. Then an isotopy is 
provided by Eq. (2.21). Let T be a polynomial on the X's (not necessarily 
on the center of (G).) Then the explicit form of basis (2.38) is given·by 

I,Xj,X•• TX." Xii TXi2TX., , •.. 

il S i2, il S i2 S i3, T = fixed and invertible. (2aJ)· 
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Needless to say, the isotopy X,Xi ~  X.TXj is only one example of possi­
ble associativity-preserving modifications of the product. Other associative 
180topies are given by Eqs. (1.4) and (1.10). 

A comment on the quantity 1 of Theorem 2.2 is in order here. As an­
ticipated in §1, the element 1 e F iI no longer the unit element 0/ the 
enveloping algebm under an isotopic mapping 0/ the product. In fact, for 
Isotopic envelope (2.39) the unit element (when it exists) Is given by 

i =T-1	 (2.4~  

because only this quantity lterifies the (left and right) rules i.x. =X•• i = 
X•. Nevertheless, Theorem 2.2 has been formulated for the element 1 of 
e. This is to preserve the general rule of isotopy according to which the 
basis of the original algebra is preserved. including its unit element. The 
new mathematical (and physical) structure is represented via an isotopic 
alteration of the product. A reformulation of Theorem 2.2 In terms of the 

"unit i is, of course, expected to 'exist, but its study has not been done 
until now. For additional studies (within the context of the Lie-admissible 
generalization of Theorem 2.2) we refer the reader to Myung and Santilli 
[30], where the unit 1 is called the tDe4k unit of the algebra. (See also §1.4.) 

An important mathematical aspect reviewed in this section is that the 
knowledge 0/ a given .et 0/ genemtor. doe. not uniquely chamcterize a Lie 
alge6m because of the freedom In the selection of the enveloping algebra 
(product). The physical aspect treated I. that the knowledge 0/ a Hamil­
tonian doe' not uniquely claamcterize thephy.icol .y.tem because such a 
characterization also depends on the explicit form of the brackets of the 
time evolution. As we shall. see, the Implications are rather intriguing. For 
instance, the assumption of a Hermitian Hamiltonian H contrary to popular 
belief, does not ensure that the time evolution is unitary and thus does not 
guarantee that if i. observable unless one specifically identifies the assumed 
realization of the envelope, i.e., of the assigned Lie product in lIeisenberg's 

time evolution. 

2.3	 Isotopic Lifting of Lie'. First, Second, and Third Theo­
rems [1], [20] 

As is well-known, an effective historical, and technical way of presenting 
Lie groups and Lie algebras is aCcording to their original derivation by So­
phus Lie [46] via his celebrated First, Second, and Third Theorems. In this 
section we shall first present these theorems, review Santilli's Lie isotopic 
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generalization, and then show its compatibity with the isotopic generaliza­
tion of the enveloping algebra of the preceding section. More specifically, the 
objective is to show that the notion of connected Lie transformation group 
admits a generalization such that, when reduced in the neighborhood of the 
identity, admits Lie algebras with the most general possible realization of 
the product. 

The emerging isotopic generalization of Lie's theory (that is, of the en­
veloping algebra, the Lie algebras, and the Lie groups) was used for the 
construction of the isotopic generalization of Galilei's relativity for closed 
non-self-adjoint systems [1], [20] with corresponding relativistic and grav- ' 
Itational extensions [14], [58]. Since the theory also admit. operator-type 
realizations, its abstract formulation is expected to permit the joint treat­
ment of closed, classical and quantum mechanical, nonpotential interactions, 
in much of the same way as the cpnventional abstract formulation of Lie's 
theory permits a joint treatment of closed classical and quantum mechanical 
interactions of potential- lIamiltonian type. Santilli's ultimate objective is 
to lay the foundations for achieving, in due time, a generalization of the 
contemporary notion of interactions, with corresponding generalization of 
relativities and physica.llaws. 

DEFINITION I.S: Let M be CI Hausdorff, second-countable, 
analytic, N-dimensional mani/old with locol coordinates "a'" ,JJ =:= 
1,2, ••. ,N (e.g., T·M or R xrM). The.et 0/ transformations 
on M depending on r-independent parameter. I', i =1,2, ..., r.· 

0-+ a' =/(0;1) ={/"'(aO;Ijn (2.d) 

is called a Lie transformation group /-I6} when the following con­
dition. are verified. 

1. All/unction. /'" are analytic in their variables. 

I. For any given two transformations 

a' =/(ail),a" =/(o'il'), (2.41) 

a set 0/ parumeter. ezist. 

1'" = g'(I,I')	 (2.43) 

chamcterized by analytic Junctions g' called group compo­
sition laws, .uch that 

a" = /(a; I").	 (2.4~ 
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3.	 7mnsformatioRl (!.~ 1) recover the identity transformation 
at the· null value 0/ the parameters, i.e., 

0= /(0; 0).	 (2.49 

~.	 Corresponding to each tmns/ormation (!.~1),  there is a 
unique inverse tmns/ormation 

0= /(0,;,-1),	 (2.4') 

and thu, the tmns/ormations' are regular. 

5.	 The combination 0/ an" tmns/ormation (!.~1) with its in­
verse ,ields the identity tmf18jormatiofl;. 

The number r of independent parameters is called the dimension of the 
Lie group. . 

A central property of Lie transformation groups is that they are con­
nected; that is, they ~an'  be continuously connected to the identity. The 
primary idea of Lie's theorems is that, under the conditions indicated, the 
groups can be studied via their infinitesimal traniformations, because a fi­
nite transformation can be recovered via infinite successions of infinitesimal 
transformations. 

Santilli [1] first reviewed these ideas by following as closely as possi­
ble their original derivation {46], as we shall do in the following. Consider 
transformations (2.41) with their identity 

a' =I(ai'),a =1(0;0),	 (2.4J) 

and perform the infinitesimal variations 

a' = a + do = 1(0;1 +d');a +60 = f(a;6'), (2.48) 

where dO and 60 represent two independ~nt variations of the parameters. 
We can then write 

d4 - 8/(0;8) dl' 
,- 81 ' 

6	 _(8/(0;1» 61 (2(0) 
a - 01 '=0· .,~  

The transformation' +d' can be interpreted as the product of transform. 
tions relative to' and 6', i.e., 

B' +dO' =Vi(I,61),	 (2.5~ 

for which
 

' dO' i(O) (8vi(B,o» ~O; 
B + =V' ,0 + 8' 0=00 +.... (2.51). a'
 
Thus we can write
 

dl i :;: pj(8)6tP ,
 

i 8V'i(8,o)
Pj = ( 80; )0=0. (2.51) 

The formula above represents a relation between dl and 60 which can also 
be written 

68; = ~: (I)dl i ,>.ipt = pt~{ = 6t· (2;5J) 

By putting 
P 8/P(a;8)

u;(a) =( n~i )'=0,	 (2.54) 

and by using Eq. (2.53), Eq~  (2.49) can be written 

daP =u:(a)~}(8)d8j.	 (2.51) 

In this way we reach Lie'8 first theorem. 

Theorem 2.3 When trons/ormations (e.~l) form a connected, m-dirnensional, 
Lie group, then 

Ba'" Ie
88; = u=(a)~;(O),	 (2.51) 

where the Junctions uz are analytic. 

Let A(a) be an (analytic) function of the a variables. The infinitesimal 
Lie transformation a -+ a + do induces a variation of A(a) which can be 
written 

8A . ~ /r P 8dA =-u'!6BJ = 08.u/r-8A 
8aP J a'" 

= 61Ie X,A. (2.5') 
. 
The m-independent quantities 

8 811'(0;0) ..!­
X,	 =X/r(a) =uZ(a) 8aP =[ 88' J,=o Bop (2.~)  
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are called the infinitesimal genendors of the transformations (or of the 
group). For our later needs, we refer to the X's defined by Eqs. (2.58) 

as the standard generato'r,. 
We are now interested in the (necessary and sufficient) conditions for 

transformations (2.41) to constitute a Lie group. By using the converse of 
the Poincare lemma, they can be written 

82a'lA 
8IJi8IJi 

82a'lA 
= 81J; 8IJi ' 

(2·1"9) 

that is 
8u.. ,,8~t  8u.. ,,8~t'  

81J' >.; +u. 81J; = 81J;~'  +u~ 81J; • 
(2.6~  

Thus 

8~1£  

u"(~  ­
• 8IJi 

8~~  

-')
81J; 

= 

= 

(2.6~  

~~8u. _ ~~8u; =~~8u,  80" _ ~~8u, 80" 
J 81Ji • 8IJj J 80" 8IJi • 8a" 81J; 

~r 1I~,8u~ ~. 1I~,8u, 

jU" lJa" - •U, j /Jail 

Therefore 
8u~  , 8u'! 

II - - t II - -. C'" (2.61)u.~- •. -= "UL• 8a" J 8a" 'J 15 , 

where c' .(IJ~~  8~~) ( ftI)r 
'j =P'Pj IJIJ' - 8IJr • 2.'7 

The m3 quantities Cb are independent from IJ. This can be seen by 
differentiating Eq. (2.62) with respect to 8. After some simple calculations, 

one then sees that 80• .. 
:..:.!L °81J' = , 

i,j,k,' = l,2, ...,m. (2.6~)  

In this' way we reach Lie', second theorem. 

.Theorem 2.41/ X.,i = 1,2, ...,'11, are the generators 0/ an m-dimensional 
Lie group, they satisfy the clo,ure relation, 

[Xi,Xj]i = X.Xj - XjX. =C~X., (2.6JJ 

where the quantities ct are called structure constant,. 

The symbol ein Eq. (2.65) denotes an associative algebra with a ~on­
ventional, associative product of operators XiXj. At closer inspection, this 
algebra emerges as being the universal enveloping associative algebra of the 
Lie algebra. 

The fundamental Lie's rule (2.65) can be explicitly written 

[Xi, Xj]( =[Ur a:,., Ui 8:11 ]( =e.~ur 8~Q" (2.6~) 

where the product [X.,Xj]A is Lie; that is, It satisfies the identities 

[X.,XjJ( +[Xj,Xa]( =0, 

[[X., Xj](, X.]( +[[Xi, X.](, XaJ( +[[X., Xa]Et Xj]( =O. (2.6') 

By substituting into these expressions the explicit form of the Lie product 
in terms of the structure constant", Lie ~ third theorem is reached. 

Theorem 2.5 The structure constants 0/ a Lie group in standard realization 
obey the relation, 

Cf; +ct = 0, 

etc" +ct,C" + C,~C'j =o. (2.6f? 

Theorems 2.3, 2.4, and 2.5 essentially provide the correspondence be­
tween a given (connected) Lie group G and its Lie algebra G. In particular, 
they allow the characterization of a Lie group in the neighborhood of the 
identity via the structure constants. We have here tacitly implied that dif­
ferent Lie groups may exist all admitting the same Lie algebra, that is, the 
same structure constants. However, among all Lie groups with the same Lie 
algebra only one is simply connected, called the univer8al covering group. 

The inverse transition from a Lie algebra to a corresponding Lie group 
can be characterized via the inverses of Lie's first, second, and third theo­
rems..We suggest the interested reader to study the specialized literature on 
this topic, such as Gilmore [47] and quoted references. We here outline one 
of the simplest approaches, known as the ezponentiol mapping [20]. Write 
Eqs. (2.56) in the form 

8a" "( i •80' = u. a)~l (IJ) = >'dO)X.(a)0", (2i,> 
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and Introduce the one-dlmensional'parametrlzation 

Ii =ro', O/fj '= O/fj(I(r» = a"fj(r). (2.711) 

Then we write 
o""(r) = T:(r)ol',GI' = [G''''(r)].,.=o. (2.7~ 

To compute the elements T:(r), consider the equations 

fj fj
da 8a dlJi • \r(~)x  ( ) "fj(O)
dr = 8(Ji dr =a "i" r G a , 

:rTt'(r)ol' = Q' '\i(I)Xr(a)Tt'(')a''''(O). , (2.1~  

However, the a''''(O) are arbitrary Initial values. Thus the solutions of the 
total differential equations 

d 
drTt'(r) ~  a'"t(,)Xr(o(r»Tt'(r) (2.7J) 

with Initial conditions 

d ' 
Tt'(O) =I:, drT:(~)If'=o  =o',\t('~Xr(a(O»I: (2.7"> 

can be written 

Tt'(r) =f: l,[I'X,(a(O»cS:Jn (2.7J) 
. n=O fa 

yielding the exponential mapping 

a'fj =: efAXtlto". (2.7') 

If,instead of the variables of the base manifold, we have a function of the 
same variables, the procedure above also applies, and we can write 

A(o') =e'·X·I(A(~).  (2.7f} 

, In particular, the infinitesimal ,(standard) generators can be recovered via 
the rule 

,ix'iX, = [ 8 (2.71)a,le d,=o. . 
Notice that the standard realization (2.76) of the group of transformations 
(2.41) is manifestly connected. The verification of the conditions to qualify 

as a Lie group is simple. Here we restrict ourselves to recalling that the 
product of two elements of group (2.76) 

eX.eX_ =eXp, (2"9) 

is characterized by the so-called Baker-Campbell-Hausdorff formula: 

1 1 
X p =Xo +Xp +2[Xo ,Xp]( +12[(Xo - Xp), [Xo,XpJdt +.... (2.8~ 

It is significant for our review to recall that a Lie algebra does not neces­
sari!y admit a corresponding Lie group. For specific examples of Lie algebras 
of this type, the reader may consult, for instance, Hurst (48]. In essence, the 
applicability of the exponential mapping in general, or the "integration" of 
a Lie algebra to a Lie group must satisfy certain (convergence) conditioDs 
of the underlying infinite series, known as integrability conditions. We also 
refer the reader in this respect to the specialized literature in the subject 
and, in particular, to Nelson (49J. 

We pass noW to the review of Santilli's Lie-isotopic generalization of Lie's 
theorems. The prior review of the main objective may be useful here. Lie's 
crucial result is fundamental rule (2.65). This rule essentially characterizes 
Lie algebras via the conventional associative product XiXj of vector fields 
Xi =u'1(a)8/8a" on a manifold M. Santilli's main objective is to generalize 
Definition 2.3 and Lie's theorems in such a way as to characterize a Lie 
algebra via the most general possible associative product Xi. Xj of vector 
fields on a manifold. 

Of utmost importance is the condition that the base manifold M with 
locol coordinate. 0", the parameter. 'i, and the generator. Xi of the conven­
tional/omaulotion 0/ Lie'. theorem. ore not changed in their i.otopic gen­
eralization. This is due to physical requirements for the description under 
consideration. As we recalled earlier, the local coordinates of M custom­
arily have a direct physical meaning such as the coordinates of tile frame 
of the experimental setup; the parameters carry a direct physical mean­
ing as measurable quantities such as time, a.ngle, etc., and the generators 
directly represent physical quantities such as energy, angular momentum, 
,etc. When the conventional description of self-adjoint interactions via The­
orems 2.3, 2.4, and 2.5 is broadened to permit the additional presence of the 
nonself-adjoint interactions, the frame of the experimental observer must be 
preserved; measurable quantities such as time and angles must be preserved; 
and physical quantities such as energy and angular momentum must also be· 
preserved unaltered. 
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These objectives were ~hieved by Santilli as follows. Note that the other possibility u: = 9Cut, even though conc~ivable  (and
 
actually more in line with Eq. (2.83», is excluded here because it would im­


DEFINITION '.4 (re/. {I}, pp. 3'9-368. S~  also ref· {!O}, ply the redefinition of the generators X. = u:(8/80IJ) -+ X. = gCut(8/8a")
 
pp. 169-173): Le' .' which is contmry to the notion of isotoy. The analyticity of the transfor­


mations then implies the following Santilli's generaUzation of Lie's First
 
G : a" ..:... a'" = /"(ai 8) (2.8{) Theorem. 

be on r-dimensiona' Lie trans/ormation group G (J8 pe~  De/­
inition '.3. A Lie isotopic image or, ,imp'Y an isotope (; 0/ G Theorem 2.8 {1}, {!O}: 1/ tran'formation, (J.8!) characterize on isotopic 
i, a ,et 0/ transformations characteriZtJble via a regu'ar (N X N) image G 0/ the Lie group G 0/ tronsformationl ('.81), then onalytic func­
matriz 0/ ana'ytic /unctionl (g:(ai8» acting on ('.81)	 tion' 91(0) ezut such that 

8lJIJ 
• IJ i

(; : alJ -+ alJ = g:(ai ')/"(ca, 8) = jlJ(ai 8)	 88j =9i (ez)u.(ez)~j,det9 ~ 0 (2.8Q 

det(g:> ~  0,9:1,=0 =I: (2.81-) on~ the u:(a) functions ezre onezll/tic. 
",hich verify the fo'lo",ing propertie,. (ca) The trans/ormca­

tions a = j(cai 8) constitute a Lie transformation group, 6y there­This theorem, though analytically trivial, has nontrivial implications. 
fore verifying condition' 1-5 0/ DeJinition !.3. (6) The grouP. G Indeed, it implies a modification of the structure of the group in the neigh­
u rea'ized via the ,ame. bole mani/o'd, the same pCImmeter, and borhood of the identity, i.e.,
 
the ,ame generator, 0/G. (c) When reduced in the neighborhood
 
0/ 'he identity transformation, the group Gcon be chamcterized G : ca'lJ ~ calJ +8iur{ez) -+ G: alJ ~ olJ + ,igf(a)uj(ez), (2.86)
 

6, ca Lie 0lge6m isotope G 0/ G.	 which is precisely the desired situation. We must now identify the integrabil­
ity conditions under which such a behavior II Itill Lie in algebraic character, 

Condition (c) is introduced to avoid non-Lie, Lie-admissable algebras in the 
when expressed in terms of the generators and parameters of the original 

neighborhood of the Identity transformations [1). As a matter of fact, it 
group. Under· these conditions, we say that the quantities gj of Eqs.(2.85) 

is precisely this possibility that permits the further generalization of Lie's 
or (2.86) are isotopic functions with resped to G.

theory of Lie-admissible type. .	 . 
The group Gis Lie and thus admits the standard realization w~rked  outSince the group of transformations jlJ(cai 8) is a conventional, connected
 

earlier,
Lie group by assumption, it can be studied in the neighborhood of the 
identity as in the conventional case. The repetition of the analysis of /(cai') ulf..!LuI! - u~  ..!LuI!' =C~.u~  1)0

• 8ez" J J 80'" 'J .. 8ez" ' 
then yields the expressions c. r' .(8~~  8'\~)  

ij =PiPj 89' - 1)8r 'dcalJ =':(ca)~t(8)d8i 

[Xi,Xj]E =XiXj - XjXi =C~X.,84:(11) = 18I.~(lIi/l)r(lIi/l)I,=o. (2.8) .	 .1) 
X. =u:(a)-8. (2.8') 

In order to realize the isotopy, we then introduce the following reformulation 01J 

in terms of the quantities of G for given g1(ca) functions The group G is also Lie and thus can be realized in the standard form 

.. " 8"1J .. ., 8 .." C....." I)u:(o) = 91(a)ur(o),det(g1) ~  o. (2.~)	 Ui 80" Uj - Uj lJez" Uj = ijU. lJezlJ ' 
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., 

t' .. r ",(8~~  8~~)ij =P,lIj 89' - 8Br '
 

[Xit XjK = XiXj - XjXi = cf;X.,
 
" " 8
X. =u'lJa • (2.81')

P 

1I0wever, as Indicated earller, this realization generally implies a change of 

the generators in the iransiUon from G to G: 
8 .." 8

G : X. =u:- -+ G : Xle = i:-aaP .(2·89)
8a" 

and, as such, does not verify the conditions for isotopy. To achieve the 
objective under consideration, Santilli introduced the following isotopy of 
the universal enveloping associative algebra, according to §2.2, this time 
realized via [undion, on the bale mani[old [1], [20]. 

(G): X.Xj -+ t(G): Xi. Xj ="Xr9jX,. (2.9f) 

Notice that this mapping does verify the conditions of isotopy, in the sense 
that it is realized via the generator. of the original algebra, while preserves 

the associativity of the product, 

(9rX 9jX,),lXc=gfXr(9jX,91Xt). (2.91)r

The fundamental Lie rule (2.87c) can DOW be rewritten 

,,8 P ,,8 " C"1e Pu.-.u.-u.-.u.= "1&L 
I 80" J J 80" I IJ If 

C~  =Crjg~(a). (2.9~  
The integrability condition. for the functions g1(a) to be isotopic, that is to 
yield rule (2.92), can then be readily computed. Thus we reach the following 
Santilli'. generalization of Lie'. second theorem. " 

Theorem 2.T{1}, {!O}: Under the in'egrability conditioRl 

r, ".JL' • "...!!.- ,- r 'c' +C , (2.~)  g, u. 8a"gj - 9j u, aa,,9, - 'j9, r. 'i9• 

the generator, Xi o[ an uotope G oJ a Lie 9rouP G ,ati'IY the isotopic rule 

o[ associatie Lie admi"ibilitJl 

[X"Xj]t = X, • Xj - Xj. X, = tt;(a)X., 
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leG) :Xi. Xj =gfXrgjX., 

8 
X. =u~(a) 8a lA ' (2.9~  

where the quantities' c~(  a), here called strudure [undion8, are generally 
dependent on the (local) coordinate, oj the base maniJold of the original 
group. 

In this way San.tilli reached an interpretation of the F-linear combina­
tion of the isotopically mapped standard monomials of §2.2. While in the 
standard realization (2.87c) the quantities Cb are constants (the structure 
cORltant, of a Lie group), the corresponding quantities which emerge after 
the reCormulation of the same group (; In terms of the base manifold, the 
parameters, and the generators of G, acquire an explicit dependence on the 
local coordinates (the strudure/unctioRlCb(a». This ,situation has numer­
"ous technical implications (e.g., from the viewpoints of the representation 
and classification theory) which are not reviewed here. 

The use of the Lie algebra laws for the isotopically mapped product 
(2.94a) yields Santilli'. generalization of Lie's third theorem. 

Theorem 2.8 {1}, {!O}: The ,tructure Junctions Cb(a) oj the isotopic real­
izatio"n oj a Lie group Gverily the identitie, 

A" _"Cij +Gji =0, 

Ale "r _" "r ". Ar -r A, "',CUC'" +Cj'C"i +CIiClej +[C,j,Xllt +[Cj"Xdl +[CIi,Xjll =o. (2.96) 

The exponentiation from the Lie algbra to the Lie group can now be 
formulated in terms of the isotopic image 0/ the ezponentiallaw (2.77), i.e., 

G : e,iXi It -+ G: e,i.yi Ii' (2.9~ 

which is based on the following rule 0/ Lie isotoPJI 

k A _"

G : [Xi,Xj]( =CijX. -+ G : [Xi,Xj]i =Cij(a)X" (2.9'> 

with consequential isotopically mapped Baker-Campbell- Hausdorff [onnula 
[1), [20] 

eXaex" =eXp,X =9X , 
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..	 .. All 
X, =Xo +XIJ +2[xo,Xp]i + 12[(XO - Xp),[Xo,Xp]i]i +... , (2.98> 

whose existence is ensured by that of the standard realization. The reader 
can now see the emergence of the t -linear combination of the basis directly 
In the group composition law. Clearly, the enveloping algebra underlying 
expressions (2.98) is the Isotope (G) of e(G). 

A simple example may be useful In illustrating the above analysis [1], 
(20]. Consider the one-parameter group of dilations 

r' = /(ri') = e'r.	 (2.0,> 

The standard generator for this group is given by 

a 
(2.10~x =r 8r. 

Indeed
 

, a 82 a
 
e'r(8/Br)r =(1 + 1I(rar) + 21(r8r)2 +...]r =e're (2.1ot) 

The group composition law is, in this case, trivial, i.e., 

r" =/(r'il') =e" r' =e"+'r. (2.101) 

Consider now the one-parameter connected Lie group of nonlinear trans­
formations . 

A Are' (2.10~)r =/(ri') =~.= 9(r, ')/(r, '),9 =~,  

with composition law 

A' _ AA. , _ r _ r /(1 - 'r) _ r (2. lOs,) 
r - J(r.') - 1- "r -1- "(l/r - 'rJ -.1- (I' +')r 

We are interested in realizing this group, as a necessary condition of iso­
. topy. via the generator (2.100) of the different group (2.99). This implies
 

the search for an isotopic function, that is. a function which multiplies gen­

erator (2.100) to yield the correct transformation law of i as a solution of
 
Integrability conditions (2.94). Such a solution. in .the case at hand, is simple
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and is given by r. Indeed. the isotopically mapped exponential law (2.96) 
yields the correct result . . 

, 8 ,2 2 lJ 2
e'r(r(8/8r)) = [1 +_(r2_) +-(r -8) +...]r 

. 11 8r 2! r 
r 

(2.10§)
= 1-'" 

TitUS group (2.103) can be realized as an isotopic image of group (2.99). 
The case considered above is trivial in the sense that all connected one­

dimensional Lie groups are (locally) isomorphic. Thus. to activate the truly 
nonisomorphic character of the isotope with respect to the original group. 
one needs more than one dimension. Such a case is already provided by 
the realization of SO{2.1) as an isotope of 80(3). in Eqs. (2.26). More 
examples will be provided in §3. 

2.4	 Isotopic Lifting of Space-Time Symmetry Groups on Met­
ric Spaces [18] 

After achieving the generalization of Lie's theory reviewed in the preceding 
sections. Santilli specialized it to metric spaces. so as to facilitate the direct 
application to cases of physical relevance. 

In this way. he achieved a result of truly important value (Theorem 2.9 
below) which provides the reconstruction of an exact space-time symmetry 
when conventionally broken. 

In the following we shall review Santilli's original presentation as close 
as possible. 

We shall use the term metric spaces for the n-dimensional topological 
spaces M over the field F of real numbers R. or complex numbers C or 
quanternions Q. equipped with a nonsingular. sesquilinear. and Hermitian 
composition (z. r), Z.1I EM. characterizing the mapping 

(z.1I) : M X M ~ F.	 (2.10~) 

Let e =(el •...• en) be a basis of M, and define the metric 'ensor via the 
familiar rules 

(ei,e;) =9ij. . (2.10l) 

Then, the condition of nonsingularity is intended to ensure the existence of 
the inverse 

1 =9-1,9 =(9ij), (2.1Qt) 
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with the consequent characterization or covariant and contravariant quanti­

ties 
, (2.1")%, = li;%i ,%' =r;%;. 

The condition or sesquilinearity 

(2.11~(%,0' + fjz) =0(%,,) + fj(%,z), 

or 
(Q% + fj"z) = o(%,z) +jJ("z), (2.11~  

where the overbar represents complex conjugation in F, permit the realiza­

tion of the composition 

(2.112.)(%,,) =%tg, =%'g,;%;, 

where the dagger represents Hermitian conjugation in M.
 
Finally, the condition of Hermiticity can be formulated via the rules
 

(%,g,) =(gt %,,) =(g%, ,), (2.11') 

and is introduced for reasons to be identified below. 
Additional conditions, IUch as the positive-definite character of the met­

ric, are not recommendable for a general view of the Lie- isotopic theory, 

and they will not be considered at this time. 
Metric spaces were then indicated In Ref. (18] with the notation 

M == M(n,g,F),F = R,C,Q. (2.11") 

which is aiso adopted hereon. Some of the metric spaces admitted for F = R
 
are: the Euclidean space E(3,'6,R), 6 = diag(+l,+I,+I); the Minkowski
 
space M(3 + l,g,R), 9 = diag(+l,+I,+l,-I); the Riemannian space
 
R(n,g(%),R), with g(%), % e M-. being symmetric and positive definite;
 
the Finsler space F(n,g(%,%),R), where g(%,%)'= i(82 f(%,%)/8%'8%i) is
 
positive definite (for non-null %) and or rank 'I; and others with correspond­

ing spaces for the fields F or complex Dumbers and quaternioDs. Thus, we
 
shall assume that the metric g is Donsingular, Hermitian, and verifies the
 

. needed continuity conditions (e.g., analyticity) in all variables, and we write
 

(2.11g}detg ~  O,gt = g,g = g(t,%,%, •.. ). 

As one can see, thfl above definition of a metric is as general as possi­
ble, and doe' not coincide with the more restrictive definition conventionally 

used in specific geometries, such as the symplectic or the Riemannian ones. 
This situation is permitted by the Lie-isotopic theory because it does not 
require restrictions on 9 beyond those considered here. The formalization 
of the metric and its restriction to specific cases would then imply particu­
larizations (such as the removal of the dependence on the velocities) which 
are not warranted or recommendable for a general study in Lie isotopy. 

We consider now a special case of Definition 2.3, an m-parameter, con­
tinuous Lie transformation group G(m) on M(n,g,F), i.e., a topological 
space G(m) equipped ",ith a binary mapping, e.g., 

'P: G(m) x G(m) -+ G(m) (2.11~  

verifying the conditions Cor G(m) to be a topological group, and an addi· 
tional mapping 

f: G(m) x M -+ M (2.11J) 

characterized by n analytic Cunctions I( w; %) depending on m parameters w 
and the local coordinates % EM, which verify the conditions Cor G(m) to 
be a Lie transCormation group (closure, associativity, identity, and inverse). 

We shall Curthermore assume that the group G(m) acts linearly on M, 
i.e.• 

%' ~  f(w;%) = A(w)%, (2.11" 

under which the group conditions can be realized in the form 

A(O) = 1, 

A(w)A(w') = A(w"), w" = w +w'. 
A(w)A(w-1) = A(w-1)A(w) =I,w-1 =-w, (2.119) 

where 1 is tbe unit matrix in n dimensions. 
Among the ratber large numer of aspects of the theory of linear, contin­

uous, m-parameter Lie transformation group~,  we now consider Cor clarity 
the specialization of the Collowing aspects oC §2.2 and §2.3 to metric spaces: 

(1) The universal enveloping associative algebra £ of G(m), which we 
.shall indicate with tbe symbolic expression of the basis 

£: l,Xr,X,X.~XrX.Xh  

r ~ I,r ~'  ~  t,r,','•... = 1,2, ... n, (2.120) 
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where 11. now the n x n Identity of £,	 basis (2.120)i the Baker-CampbeU-Jlousdorff theorem for the composition
of the exponentials (2.124) and (2.126}i Lie's first, second,and third theo­IX, = X,l = X,.	 (2.12f) rems for the charaCterization of the closure rules (2.127) the representation
theorYi etc~The X'. are the generators of G(m) in their fundamental (n x n) represen­


tation verifying the skew-Uermitidty property 
The idea of the Lie-uotopic theo,." [1] is that ofgeneralizing the structure


of the enveloping algebra e, of the Lie group G(m), and of the Lie algebraxl =-x,; (2.122) G(m) in such a way to preserve the Lie character of the theory (in order to
qualify for isotopy). The generalization is done via the replaceme~t of thethe product X,X, is the conventional assoclative product of matrices; and simplest possible, associative, Lie-admissible product X,X, of the conven­the attached Lie algebra is given by the familiar rUle tional theory into a form denoted by X,.X. which Is still associative and Lie
admissible (i.e., its attached product X,. X. - X,. X, is Lie); nevertheless,£- : [Pr,P,]e = PrP, - P,P" (2.17:J) it is given by the structurally more general form

where the pt. are polynomials In the X's. (2) The Lie', group G(m} of
transformations on M for the case of the action to the right as in Eq. (2.118), 

Xr • X, =X,gX,. (2.121'
It is evident that the generalization of the product of ( implies a step-by-stepwhich we shall write In the symbolic exponentiated form for continuous generalization of the entire Cormul~tlon of Lie's theory, Crom basis (2.120) totransformatioDs	 . groups (2.124) and (2.126) to algebra (2.127), etc.

G(m}: A(w) = eXltuleX2U12 •••eX",,,,,,, In paper [18) Santilli investigates not the Lie-isotopic theory per se, but 
m its action on a metric space. He therefore identified the genereralization

= IT eXttu
' (2.1~ of the structure of the metric space permitting a consistent action of the

i.l	 Lie-isotopic theory.
For this· purpose, we shall first review the notion of metric uotoPlJ, thatand which will be reduced to the aPpropriate exponential form whenever we is, a generalization of a given metric space which preserves its metric charac­consider specific cases. The corresponding action to the left, ter. We shall then review the corresponding Lie-isotopic theory. Finally, we

xt' ~ xtAt(w), (2.126} shall apply the results to the case when the considered Lie and Lie-isotopic
groups constitute symmetries of the metric and its isotope, respectively.can be characterized by the operation of Hermitian conjugation, which we This latter result will be presented via Theorem 2.9 below on the symmetry

shall write In the .ymbolic form properties of isotopy which is at the foundatioD of the applications of §3 to 
. m· 

rotations, Galilei and Lorentz trauformations.
G(m): At(w} = (II ex..... )t (2.12~) Conside.· the simplest possible metric spaces, the Euclidean space E(n, 6t F), 

i.l .	 F = R,C,Q, with composition law 

and whose explicit form wiD be computed whenever the reduced form of Eq.	 (z,IJ) = zi6i;%1.· (2. 139>
(2.124) is known (see the case of rotations of 53.2). Suppose that the metric 6 has to he modified into a Corm of the generic type. (3) The Lie algebnJ G(m) of G(m), characterized by the closure rules '(2.115). The emerging generalized space can be expressed via the notion of

metric isotopy as follows.G(m): [X"X~]e = XrX, - X,X, = C:,X,. (2.12J) Let J=g-1 be the inverse of the new metric tensor according to (2.108).
The underlying methodology we shall tacitly imply is the familiar one con­

Introduce the isotopic lifting of the field (1.38), i.e.,
sisting of the Poincare-Birkhoff-Witt theorem for the characterization of the I' = {NilV' =Ni,N E F =R,C,Q}. (2.13q 
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The composition of element, of the field wit~ elements of the metric 
space is now done according to the redefinition of the product 

N.s=N,s=Ni,s=Ns.	 (2.13~ 

Thus, the Ufting F of F essentially permits the use of a generalized compo­
.sition N•s which, while being characterized by the new metric " preserves 

the old values Ns. ' 
Next, Santilli generalizes the metric space E(n, 6, F) into a form E that 

accommodates the new metric, under a mapping of the type 

m: Ex E -+ F.	 (2.131) 

This impUes that the generalized composition law must have v.a1ue in F. A 
realization i, given by the form patterned along the isotopic lifting of the 

Hilbert ,paces, Eq. (1.49), I.e., 

(s;,)	 = i(s",) =iSi'ijsj 
= (z",)1 =(,s, ,)i. (2.1~  

Ref. (18] defines as isotopic lifting. 0/ the Euclidean space all possi­
ble spaces t(n,'tF) over the field F =R,C,CI, equipped with mappings 
(2.132) realized via composition (2.132), where, I, the new metric tensor. 

It is evident that, by construction, 011 po..ib'e nomingulor metric. 0/ 
the .ome dimen.ion o~  isotope. 0/ t'.e Euclidmn metric. This includes the 
Minkowskian, RJemannlan, Finslerian, and other metrics. 

Note that, strictly speaking, the metric spaces M(n",F) cannot be 
considered as isotopes of E(n,6,F), owing to the lack of lifting of the field. 
Nevertheless, this technical point can be ignored in practical applications 
owing to the identity N • z = Nz. We can then assume that all possible. 
metric spaces of n dimensions over the field F are isotopes of the Euclidean 

space. 
Note that, since F is still a field, E(n", F) is also a metric space in the 

sense indicated earlier. 
It i' evident that the original Lie group G(m) cannot act consistently 

on the new spaces. In fact, to begin, the action of the group on the space 
cannot be formulated according to the ,old composition (2.118) and must be 

modified into the form 

z' =A(w). s =A(w),s	 (2.13~  

(where the quantities A(w) will be identified shortly]. In turn, this implies 
that the old composition laws (2.118) cannot be consistently preserved, and 
must be generalized into the form 

A(O) =i, 

A(w). A(w,') =A(w +w'), 

A(w). A{-w) =A(-w). ACw) =i, (2.135) 

which are precisely the defining conditions of a Lie-ilotopic lrans/ormation 
group [1], (20]. 

The most important property of generalized laws (2.135) is the replace­
ment of the old unit 1 with the new unit i = ,-I. Thus, the dominant 
feature of Santilli', isotopy under consideration is the assumption of the in­
verse i	 of the new metric, as the generalized identity of the group. Since 
the original identity 1 can be interpreted as the inverse of the metric 6 ~f  

the Euclidean space, when the original group G(m) Is a symmetry of', we 
expect its isotopic image G{m) to constitute a symmetry of ,. 

To achieve this result, Santilli uses the following main lines of the Lie­
isotopic theory reviewed in §2.2 and §2.3: 

(1) I,otopic lifting 0/ the univer,al enveloping tJI,ociaUve algebra. The 
Poincare-Birkhofl'-Witt theorem admits a consistent isotopic generalization, 
resulting in the new basis 

t: i,x"x,. X"X, • X,. X" ... , 

r S ',r S' S', 
r,",', ... =l,2, .••,n. . (2.1:!d) 

now expressed not in the term of the weak unit .1, but instead in term of the 
identity i, which is the same as that of the group composition laws (2.134). 
The generators Xr are here the same as those of £. The atached Lie algebra 
is now given by the isotope . 

t';' : (Pr,P']l = Pr • P, - P,. Pr 
. = P"P, - P,gP, ~ (Pr;P,], (2.13'> 

The algebra t is still "universal" and "envelopping" - not, of course, with 
respect to the algebra £-, but with respect to t-. We see in this way that 
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the generalized metric 9 enters into the very structure of the Lie product, 
Eq. (2.137), as expected. 

(2) 160topic lifting 0/ the Lie group. The new basis (2.136) permits the 
construction of the new group elements A(10) via the so-called isotopic e~­
ponentiation [1), [20]. For one-parameter actions to the right, this exponen­
tiation Is charactejzed by the old generator X of G(m) but now expanded 
in the new envelope according 'to the rule 

G(I) : j(w) = J+ ~(Xw)  + ft(xw)' +:,(xw)5 +... 
• 1 .2	 1= 1 +U(Xw) +2!(Xw)g(Xw) +3!(Xw)g(Xw)g(Xw) + 

= eX·lt ~ i X.,	 (2.13') 

which, Cor clarity of pradical computation, can be reexpressed via the fol­
lowing expansion in the old envelop~ 

•• 1" 1	 1 
G(l) : A(w) = [1 + U(Xgw) +2!(Xg'O)(Xg'O) +3!(Xg'O) 

(Xg'O)(Xgw) +.. .li 
= (eX'·lt)i = eX.wi 
= i(eW,X1t) = ie"x • - (2.t1g) 

It is evident that the elements A('0) 80 constructed veriCy all the rules 
(2.135), and thus they constitute the desired Lie- Isotopic lifting of G(l). 
The generalization to more than o,,~  dimension Is permitted by the Lie­
isotopic generalization oj the Campbell-Baker-Hausdorff theorem 

i Oi 
• efJ =i", 

1 =0+ (J + jla;tJJ + 1~(a  - (J);(a;{J)) +... (2.141) 

under which we ha.ve the desired Lie-isotopic lifting of the Lie transformation 
group (2.124), here written, again, in the sym~olic  form 

G(m) : A(w) = i~ltul.  i X2U12 ••••• i X 
"'.'" 

-. '" = II .ix.",. 
'=1 

= (ex•••• eX2 • U12 ••• eX"'·"'''')i 

'" = (II eX•••• )i. (2.14.) 
k=1 
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The action of the Lie-isotopic group to the left, 

%t' =%t • Jit(w),	 (2.141) 

is ~iven, for the one-pa.rameter case, by the expansion of the old generator 
Xf in the new envelope £, according to the rule . 

G(l) : At(1O) = 1+ :!(1Oxt) + :!(1Oxt)t + :!(1OXt)3 

= 1+ :!(wxt)+ :!(wxt)g(wxt) +... 
= e",xt Il =e",xt = i-tuX, (2.14j) 

with reCormulation in £ for practical calculations' 

··t . 1 tit tG(l) : A (w) = 1[1 + l!(wgX ) +2l(wgX )(wgX ) +...J 

= J(eUl,xt It) = iew,xt 

= ext,U/i	 = ie-"'·x, (2.14J) 

and m-parameter expression here symbolically written 

, '" G(m)At('0) =I(n eX••w.)., (2.145) 
'=1 

whose explicit form will be computed in specific cases (see, e.g., the case 
of the isotopic rotations in §3). It remains to prove that the operation 
of Hermitian conjugation, as conventionally defined, also acts consistently 
under isotopy in t(n",F). The fad that this is not the case in general is 
known [30]. Nevertheless, as for case (1.50), the operation of Hermiticity 
persists for the particular case under consideration here, that for which the 
isotopic element of the envelope coincides with thai of the composition [32], 
as is readily seen by using the property (2.115) and definition (2.133) 

(X;Ji ",)	 = J(X, gAg,) 

= i«gA)t :I:,g1/) =i(jtgz,g1/) 

= i(At. %, u), (2.14t) 

for which 
(eX,W)' =ew,t xt =e-""x.	 (2.14~) 
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(3) l.otopic 'il'ing oJ 'h~ Lie algebra. This is characterized by the is&­
topic generalization of Lie's first, second, and third theorems here expressed 
according to the rules . 

G(m) : [X,;X.]	 = X,. X. - X, • X, 
= X;gX, - X.gX, 

- O:.(s). Xi,	 . (2.141) 

c;. = 0:.1, 
where the C's are the .tructure !unctionl. As is the case for the expansion 
(2.138), rules (2.148) can al,a be reformulated in £ according to either one 
of the fonowing expressions, uSeful for practical calculations 

[X,;X.]	 = X,gX,- X.gX, 
= lX,g, X~g]1  
= [X"X~]g +X,[g,X.] +x.[X"gi 

= i[gx"gX,] 
= g[X"X,] +lX"g]X, +[g,X.]X" (2.1_9) 

, .... 

each one derivable from the other via the Jacobllaw. 
The primary lines of the Lie-i80to~ic  theory as outlined above are suf­

ficient for the main task of this section, that dealing with symmetries of 

arbitrary metric g. 
Suppose that the original (conventional) Lie transformation group G(m) 

is a symmetry group of the compoiition (s,,) in E(n,6,F), or, equivalently, 
of the metric 6, according to the familiar conditions 

sf's':i sf'6s' = ztAt6As = st6s :iSfS, (2.151) 

which can hold identically iff 

At~A == At A =AAt == A6At =.1 =6-1
, (2.1H) 

i.e.,
 
At = A-I,
 

(detA)' = (detI)' = 1.	 (2.15~ 

As is well known, when conditions (2.152) are verified, we have the orthogo­
nal group. O(n,R), the unitary group. U(n,C), and others. When realiza­
tions of the continuous type are considered, we h~ve the special orthogonal 

group. SO(n, R) or the .~ial  unitary group. SU(n, C). In this latter case, 
the determinant of the transformation is 1, and the discrete transformations 
(e.g., inversions) are excluded. 

Santilli [18} investigated the behavior of the symmetry (2.150) under an 
isotopic lifting of the Euclidean space E(n, 6, F) and of the group G(m) to 
a form characterized by an arbitrary metric (2.115). For this purpose, we 
recall that the composition law of E(n,g,F) is .based on the term 

st • s=stgs.	 (2.1~) 

We therefore have a symmetry when the following conditions are identically 
verified 

sf'. s' = st • At • A. % =sf.• s, (2.1~~ 

which can hold iff 
AtgA =AgAt =1, (2.151) 

i.e., iff 
At = A-I, 

(detA)' = (det/)',	 (2.15~ 

where the inverse is computed, of course, with respect to J. 
It· is easy to see that, when the original transformations verlfy condi­

tions (2.150), their images under lifting necessarily verify the new conditions 
(2.154). In fact, for the case of coptinuous transformations, we have, from 
Eqs. (2.142) and (2.143), 

At(w) =A(-w).	 (2.151) 

Therefore, conditions (2.154) are reduced to one of the conditions for the 
very existence of a Lie-isotopic group, Eq. (2.135). 

The rules (2.155) can be expressed in a form particularly suitable for 
practical applications. Redefine the elements of G(m) according to the forms 

"' WlA(w) =B(w)l,B(w) =II eXl
• , 

. '=1 

"' At(w) =lBt(w),Bt(w) =(II eX'."'l)t. (2.15') 
'=1 
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Then, conditions (2.145) can be equivalently expressed 88 . Note also that all Lie algebr88 admit the following trivial ~ie isotopl/ 

G(m): [Xr;X.] = X•• Xr - X•• XrBtgB =g, 

(detB)' = I, (2.1§9) 

which hold identically under the Lie-isotopic Iiftings of continuous transfor­
mations owing to the identity 

1e-UJ,X gex,UJ = 9 - w(gXg - gXg) +-",'(gXgXg - gXgXg) +... 
J 2 

= g. (2.16t) 

For·the case of discrete transformations, Santilli introduces the following 
Lie-isotopic lifting oj inver,ion.t 

P. ~  =('Pl)g~ ='P~  =-~,  (2.1ft) 

where 'P is the conventional total Inversion. The preservation of the sym­
metry then results from known expressions of the type 

'PgP = I, {2.162} 

whose validity is trivial. . 
We reach In this way Santilli's main result, which can be formulated as 

follows. 

Theorem 2.9 {18}. Let G(m) be an m-ptJrameter "Lie ,ymmet,." group 
oj the composition z t6z oj an n- dimensional Euclidmn space E(n, 6, F) 
over the field F oj real number, R, oj complez number, 0, or oj quar­
temion, Q. Then the ilotopic IfJting G(m) oj G(m) characterized b1/ a 
non,ingular, Hermitian, and ,ufficiently ,mooth metric 9 in the locaI'vari­
able, leave' invariant the generalized composilion ~ tgz oj the ilotopic space 

,. "A A A 

E(n,g,F),F =FI,I =9 
-1 

• 

All physical applications of §3 can be considered as specializations of the 
above theorem to specific cases of physical relevance.. 

Note that the explicit construction of the Lie-isotopic transformations 
(as well as ~f  the entire theory) can be done following the knowledge only 
of the original symmetry· and of the new metric. 

= (XrX. - x.xr)1 = C~.X., (2.16J) 

X = xl,x e G(m), 

with a self-evident isomorphism G(m) $::$ G(m). The above trivial isotopy 
should be excluded from the content of Theorem 2.9 because It does not pro- . 
vide the invariance of the generalized composition law. This can be readily 
seen from the fact that the exponentials (2.141) and (2.144), when realized 
for the generators X" coincide with the original exponentials (except for the 
factorization of the new unit), and no genuine lifting has actually occurred. 

Theorem 2.9 has clearly far reaching mathematical and physical impli­
cations, which can be only partially reviewed here. To begin, Theorem 2.9 
provides a new concept of covering Lie-isotopic SJlmmet,." under the sole . 
condition that the original metric 6 is contained 88 a particular case .of the 
new metric g. . 

But Theorem 2.9 applies for an infinite variety of possible new metrics. 
As a result, a given, conventional, Lie ,ymmet,." G(m) admit' an infinite 
cltUB oj covering Lie-uotopic ,ymmetriu G(m). The implications of these 
findings wilt become transparent In the next section when we shall show 
that' the ezplicit Jorm oj the Lie-isotopic 'JIflImet,., '",nsJormation.t evidentl, 
oorie, with the varl/ing oj g. 

Furthermore, under certain topological conditions on the new metric' 
(identified in the next section), the ori,inal Lie "mmet,." G(m) and itl 
infinite clu, oj Lie-i,otopic covering, G(m), not only become 100001l,iso­
morphic, but they actually CDincide at the ab,tract realization-Jree leveL 

This is evidently permitted by the abstract formulation of the symmetry, 
that in terms of an abstract enveloping algebra with abstract product, say, 
a6, and its realization, first in terms of the trivial &8sociative product AB, 
resulting into the familiar notion of symmetry G(m) as commonly available 
in the mathematical and physical literature, lnd then its isotopic liftings 
A • B = aAB or AgB, or WAWBW (W' = W) resulting in Santilli's 
potion of infinite covering symmetries G(m). 

Yet in turn, the above properties of Theorem 2.9 are at the foundation 
of the capabilities by Santilli to "reconstruct" an exact Lie symmetry when 
conventionally broken (see the next section for specific cases). 

Still another property of Theorem 2.9 of considerable mathematical and 
physical importance is the intri,.,ic nonlinear character oj Santilli', Lie­
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i80topic theory, even though ezpre8ud in alormall1llinearlorm, the isolinear 

form. 
In fact, the transformations underlying Theorem 2.9, Eqs. (2.134), have 

an intrin.ica1ly nonlinear structure in the coordinates z, their derivatives % 
with respect to independent parameters, etc., and we shall write 

z' =B(w; z,i, .. .)z (2.1*) 

where the nonlinearity evidently emerges from the arbitrary dependence of 
the metric in expansion (2.139), i.e., 

B =exp(zg(z,i, ..•)wl(· (2.1~1 

Nevertheless, nonlinear trons/ormation8 (1.164) con alwqys be written in 

the equivalent isolineor form 

z' = A(w). z. (2.161) 

The mathematical implications of the above result are evident, and 
linked to the possibility (not yet explored so far) of turning complex non­
linear problems into more manage.ble, equivalent, isolinear forms. 

The physical impUcations are equally far reaching. In fact, the intrin­
sic isolinear character of the Lie-isotopic theory is the technical reason un­
derlying SantilU's view that the expected nonlinearity of the strong inter­
actions is not a strudure characterizing feature; only their expected con­
tact/nonlocal/nonhuniltonian character il. 

In particular, the capability of turning all poslible nonlinear models, such 
18 Weinberg's valuable attempt (1.65), into an equivalent isollnear form, is 
expected to void most of the argumentations currently presented on nonlin­

earity. 
As a further comment, the isotopic liftings of Euclidean spaces reviewed 

here are expected to be extendable to accommodate antisymmetric metrics 
and their symplectic symmetry groups. In fad, liftings (2.138) and (2.144) 
are possible also for antisymmetric metrics. The restriction to Hermitian 

.metrics WI8 done by Santilli because of compatibility condition (2.147), 
having in mid operator-type applications based on the completion of the 

Euclidean spaces into Hilbert spaces. 
This completes our review of Santilli's mathematical studies on his Lie-

isotopic theory which, with thesote exception of paper (34] known to us, 
constitute all mathematical studie. on the topic available at this time. 

2.5 Some Open Mathematical Problems 

It is clearly remarkable for one single individual to work out the generalized 
formulation of Lie's theory to the extent reviewed.in the preceding sedions 
(as well as its applications reviewed in the final part of this presentation). 

Nevertheless, the mathematical research on the Lie-isotopic theory is 
only at a beginning, and so much remains to be done. The number of open 
mathematical problems is 80 large to prevent their comprehensive identifica­
tion. We merely limit ourselves here to Identify open mathematical problems 
that are relevant for the physical applications considered in the next section. 

To begin, the virtual entirety of basic definitions of Lie's theory need a 
suitable reinspection and reformulation into corresponding covering notions 
that are directly applicable to the Lie-isotopic theory. This is the case for 
the notions of: compact and noncompad algebra8; .imple and ,emi,imple· 
algebrus; Carlon's decomposition; Killing lonn; etc. 

All these notions in their familiar presentation have an unequivocal 
meaning because referred to one specific realization of the Lie product, the 
simplest possible one AB - BA. The same notions, unless properly re­
defined, become ambiguous when referred to Santilli's product A.B-B.A = 
AgB - BgA because of the infinite family of possible isotopic elements g aU 
with potentially different topologies. 

Once these fundamental notions of Lie's theory have been properly re­
viewed, one can pass to the study of basic methodological aspects which 
have remained untouched 18 of now. 

A central open mathematical problem is the representation theo,., 0/ 
Lie-isotopic algebras and groups. Santilli's studies reviewed here, e.g., §2.4, 
essentially provide the fundamental representation, 18 we shall see in §3. 
But, again, a general study of the representation theory isladdng as of now 
(Spring 1990) to our best knowledge. 

The mathematical relevance of the problem is expressed by the fact that 
the exclusion of the trivial isotopy (2.163) prevents a simplistic lifting of 
the conventional theory. Also, the infinite variety of isotopic transforma­
tions (§2.4) demands a reinspection of the representation theory from its 
foundations. 
. The physical relevance of the representation theory is also self-evident. 
It can be best expressed 18 essential to characterize the notion of "particle" 
within the arena of physical applicability of the Lie-isotopic theory, i.e., the 
notion of "hadron" under contact/nonlocal/nonhamiltonian strong interac­
tions (§1.3). . 
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Of particular relevance are studies of the representation theory 0/ San­
3 THE CLASSICAL FOUNDATIONS OF .THEtilli's isotopic group 0/ rotations (S3.2), and 0/ Lorentz tmnsfonnations
 

(§3.4), which are evidently essenti~  for possible basic advances, e.g., on the THEORY
 
notion of intrinsic angular momentum (spin) oC one hadron under eztemal
 

3.1 Introductory Aspectsstrong interactions oC the considered type.
 
Another mathematical aspect in need of a comprehensive study is that
 The Lie-isotopic theory was conceived by Santilli for the specific purpose 

of the product of the above representation, i.e., tAe isotensorial product 0/ of attempting a generalization of conventional space-time symmetries and 
Lie-isotopic ~p~senttJtior&l. Studies on this aspect were initiated in the related relativities [lJ.' 
only pure mathematical contribution to Lie-isotopy known to these authors, In this section we shall review the state oC the research in classical me­
Ref. (34), but so much remains to b~  done. chanics (we hope to review the operator counterpart in a subsequent pap~r).  

The physical relevance of the i'Qtensorial products of isorepresentations In particular, we shall review the isotopic lifting of: 
is evidently provided by the need, reviewed in Sl.3, of recovering conven­

a) the rotation group [19];tional, total, quantum mechanical quantities for an isolated bound system 
oC strongly interaction particles, while admitting generalized internal laws. 

b) the Galilei group and related relativity [1, 20]; and
A further mathematical problem deserving specific studies Is the contmc- . 

tion and ezpansion 0/ Santilli'. Lie-isotopic·groups. Recall Crom §1.3 that c) the Poincare group and related special relativity [14, 58, 153]. 
the "hadronization" of the classical Birkhoffian mechanics Into the operator 
form, hadronic mechanics, proved to be particularly valuable for the under­ For completeness, we shall also review Santilli's [14J, (21) and Gasperini's 
standing of. both new mechanics. A quite similar situation occun for Lie­ (50), (61], (62) research on a conceivable isotopic generalization of Einstein's 

isotopic groups. As we shall review in the next sections, Santilli appUed his gravitation. Gasperini's [23] lifting of gauge theories shall be reviewed in the 

theory to the isotopic Ufting of the Galilei and Lorentz symmetries. While Appendices, jointly with a number of other aspects. All known applications 

the contraction oC the Lorentz .ymmetry into the Galilean one (and the in­ shall be either reviewed or indicated to the interested reader, provided that 

verse expansion) is well known, DO .tudy has beeD conducted until DOW on they are oC classical character. This section shall end with a review of much 
overdue experiments.its covering Lie-Isotopic setting. Its value for a deeper understanding oC the 

Galilel- isotopic ~d  Lorentz-isotopic symmetries (see the next section) is Regrettably, we are unable to review numerous intriguing applications 

evident. of the Lie-isotopic theory because of their intrinsic operator character, such 

The educated reader can easily identify numerous, additional, mathe­ as: Kalnay'. [26] hadronization of Nambu's mechanics; Santilli's [27] true 
matical problems of fundamental, yet open character. confinement of quarks with null probability of tunnel effects; Mignani's [22] 

It is hoped in this way the reader can see the need, anticipated earlier, nonpotentiaJ scattering theory; Nishioka's (25J studies; Animalu's (28] re­
for a re-inspection of the entire Lie's theory and Its reformulation into a search; the studies by Janunsh's and collabora.tors [24]; and others. 
covering form directly applicable to Lie-isotopic algebras and groups. A few introductory comments appear to be recommendable, not only 

This review would have achieved a primary objective, if it succeeds in	 because of the manifestly delicate nature oC tl\e review, but also in order to 
prevent unnecessary misrepresentations. stimulating this much needed, independent mathematical research. 

The authors of this review would be grateful to all mathematicians who The best way to present the material Is that along the spirit oC the 
·original proposals: can send to their attention (at the address of The Institute Cor Basic Re­

search, 96 Prescott Street, Camb~idge,  MA 02138 USA) any mathemati­
1. The Lie-isotopic theory provides true, mathematically consistent gen-'

cal research directly or indirecctly related to associative-isotopic and Lie­
eralizations of conventional space-time symmetries. As such, they are 

isotopic algebras or groups. intriguing on pure mathematical grounds alone [1).' 
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2. The nonrelativistic, isotopic, space-time symmetries have clear appli­ physical medium in which motion 01 extended object, occur, which i., in gen­

cations in classical mechanic. (20]. eral, inhomogeneO,u. and anisotropic. To put it differently, tbe Lie-isotopic 

symmetries were not conceived for treating the conventional space. After all, 
3. The relativistic [14] and gravitational (58], (62], isotopic, space-time 

by ignoring certain galactic indications, there is no available evidence dis­
symmetries are conjectural ~t this time because of the lack of certain 

proving the homogeneity and isotropy of space in our Earthly environment.
fundamental tests recommended since quite some time. 

Conventional space-time symmetries are then the only ones applicable, as 

As reviewed in §2, the' single lIlost dominant mathematical concept in stressed by SantilU himself (1]. 

The inhomogeneity and anisotropy of physical.media (whether classical
Santilli'. Lie-isotopic theory i8 the generalized notion oj unit, the Isonnit 

i =g-l. The single, most dominaat phl/.im' concept in the applications of or operational), leads to the inevitable breaking of conventional space-time 

symmetries beginning with the rotational symmetry (§3.2); and then pusing
the Lie-Isotopic theory is the notion o[ eztended particlu moving within a 

to the Galilei symmetry (§3.3); the Lorentz symmetry (§3.4) and, inevitably,
phy,ical medium, IUch as: propagation of light In gaseous or liquid media; 

motion of a satellite in Earth's atmosphere; 1Il0tion of the wave-packet of a Einstein's gravitation (§3.5). 

Admittedly, Santilli'. Lie-Isotopic theory Is only tentative at this time,
hadronlc constituent within the "hadronic medium" (2J (the medium com-" 

posed by the wavepackets of the remaining constituenta); and other cases. and recommended as a co~ceivable first step for a future more adequate 

If the particles considered are assumed &8 being point-like, the Lie­ treatment. But the breaking of conventional space-time symmetries under 

isotopic theory has no relevance known at this time and none of the struc­ the physical conditions considered Is simply out of any question. The in­

terested reader is urged to study the classification of the various forma of
tures reviewed below has a known physical meaning. 

In fact, syst~ms of point-like particles can only admit ution-at-a-distance breaking of conventional' space-time symmetries provided by the variational 

interactions of potential-Hamiltonian type without collisions. The conven­ se1f-adjointness, as originally presented in ref. {lJ, and subsequently reviewed 

tional Lie's theory then applies in full without need for any generalization. in detail in monographs [63J, {64). 

Another important concept in Santilli's studies Is the experimental en­
This 1a the case irrespective of whether the particles move in empty space or 

in a physical medium, for that medium too becomes composed.of isolated, den~ 0/ the de[ormabilitl/ 0/ eztended particle,. Again, conventional space­

time theories are strictly reCerred io rigid bodie.. This is typically the case
point-like constituents. A similar aituation occurs also for an extended par­


ticle moving in vacuum under long range, external, potential forces. In fact, of the theory of rotations, as well known. But absolutely rigid objects do
 

under these conditions, the size of the particle can be effectively ignored. not exist in Nature. When the deformability of objects is admitted, CORven­


(This is the case, e.g., for the wave-packet of an electron when a member of tional space-time symmetries are IDapplicable, as stressed again by Santilli

. .(1), [18J, (20].

an atomic cloud.) . 

The. physical arena changei significantly when the size of the particles As an example, the conventional rotational symmetry is manifestly in­

applicable to a spher~ which is jointly experiencing a rotation and a defor­
must be specifically taken into account, e.g., when the particles move within 

a physical medium and/or experience a deformation of their shape. In these mation. The inapplicability of the GaJ.i1ei and Lorentz symmetries Is then 

latter conditions the particles eXperience interactions which are generally of consequential, owing to the central role of the rotational symmetry (as well 

as for additional reasons). ·
nohamiltonian, and therefore non-Lie character (§1.3). It is at this point 

that SantilU's Lie-isotopic theory offers intriguing p088ibilities for a quanti- The deformation of extended particles moving in vacuum but under sulli­

, tative treatment. In fact, &8 now familiar, all nonhamiltonian forces can be ,ciently intense external forces is therefore another arena of possible physical 

applications for which the Lie-isotopic theory was conceived. Again, the ef­
incorporated in the generalized unit of the theory, while the Hamiltonian 

can represent conventional interactions. fectiveness of Santilli's approach is unknown at this time, for it was merely 

proposed as a first quantitative step. Nevertheless, the breaking of conven­
A second fundamental physical concept in Santilli's studies is that empty 

'pa~ (vacuum) ~mGinl conventionalll/ homogen«)u8 Gnd isotropic. It i, the tional space-time symmetries under this second dass of physical conditions 

is simply out of any question. 
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Note the independence of the breakings caused by deformation from 
those caused by the Inhomogeneous uad anisotropic character of the physical 
medium. 

A third class of breakings is given by the ultimate essence of con'act 
.interadiotU, that of being irutantaneou. no matter whether in "nonrel. 
tivistic" or "relativistic" mechanic.. After all, these interactions have a null 
runge by their essential nature. We are here referring to the evidence that 
motion of & particle within a physical medium results in interactions between 
the particle and the medium which, by nature, are of "contact," that is, "in­
stantaneoul" and "null range" character, as well known in classical (but 
not yet in particle) mechanica. These are novel interactions, tor which the 
notion of action-at-a-distance, potential-Hamiltonian torces has no physical 
meaning. The need for a suitable generalization of conventional relativities 
Is then evident. 

This leads to a third physical origin of the breakings of conventional 
space-time symmetries, which is Independent from the preceding two (re­
garding the inhomogeneous/anisotropic character of physical media, and 
the deformability of extended objects). 

A final concept should be re-called here, the rather remarkable capability 
offered by Theorem 2.9 of recotUtructing 01 ezoct the .,mmetrie. that are 
6roken at the conventional Lie leveL This is the case in general, not only 
for the rotational Iymmetry, but also for the Galilei symmetry, the Lorentz 
symmetries, or any other continuous or discrete symmetry. 

In summary, this section shall deal with three establis~ed  classes of 
breakings of conventional space-time symmetries, those characterized by: 

A: the inhomogeneous and ani80tfopic character of physical media; 

B: the deformabllity of extended physical objects; and 

c: the instantaneous null range character of the contact nonhamiltoman 
interactions experienced by .~tended objecti moving within physical 
media. • 

Santilli conceived and developed his Lie-isotopic theory for the specific 
'purpose of attempting a generalization of Galilei's and Einstein's relativities 
capable of providing a first quantitative treatment of conventional symme­
tries, when broken according to. classes A, B and C above. One of the 
aspects of the studies i8 that the broken symmetries are not left mathemati­
cally undefined, as in the conventional literature, but they are replaced with 

covering, exact, Lie-isotopic symmetries. In this way, Santilli put.the math­
ematical and physical foundations for the construction of a conceivable new 
generation of true covering relativities, as we shall see. 

3.2	 Lie-isotopic Generalization of the Group of Rotations [1], 
(18],[19] 

3.2.1 Introduction 

As is well known, when absolute rigidity is relaxed to admit the deformations 
of the real world [51J, [52J, perfectly spherical objects in Euclidean space, 

re'r =%% +" +zz =1,	 (3.1) 

. can be deformed in ellipsoids 

rtgr =%61% + ,6~, +z6~z = 1,	 (3.2) 

with the consequent manifest 108s of the symmetry under rotations. 
Similarly, when the motion of extended objects occurs within inhomo­

geneous and unisotropic material media, the Euclidean invariant [3.1] is 
generalized to a form of the type 

t' . 
r gr =r"ij(', r, rt •••)rJ,	 (3.3) 

where, in general, the metric tensor has a dependence on time, coordinates, 
velocities, and a number of additional physical quantities (such as temper­
ature, density, pressure, etc.). 

In this section we shall review Santilli's generalization of the special 
orthogonal rotation group 50(3) which provides the invariance of ali possible 
deformations of the sphere, Eq. (3.2), while recovering the conventional 
theorf identically whenever the original structure (3.1). is resumed. We 
shaUthen show that the generalized theory also provides the invariance 
of the generalized metric get, r, r" ..). The g~neralization  of the covering, 
special unitary group SU(2) will be reviewed in Appendix C. 

These objectives are achieved via the use of the Lie-isotopic lifting of Lie 
symmetries presented in §2, with particular reference to Theorem 2.9. 
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o 
!elaIJ, = J,I =Jit 

DE 

1 = diag(+l,+l,+l). (3.9) UJ 

The attached Lie algebra is characterized by the familiar commutation 

3.2.2 Foundations or the Conventional Rotational Symmetry 

The basic space is the conventional Euclidean space in three dimensions, 
E(r,6,R), with local coordinates 

(3.4)r =... = (D ,k =1,2,3, 

and composition 
r'r =r i 6,;"; = ~% + fiJI + zz. (3.5) 

The continuous component 50(3) of the metric-preserving group 0(3) is 
given by the familiar form 

R(8) =eJI'II£eJ2~I£eJ3'31£, 	 (3.6) 

verifying the conditions 
R'R= RR' = 1, 

R' = R-', 

detR = +1, (3.7) 

where the 8's are Euler's angles; the skew-Hermitian generators are given 
by	 

0 0 0) 
~ 

J1 =J23 = (0 0 1 , 
o -1 0 

(00-1)'
J2 = J31::;:0 0 0 , 

1 0 0 

0 10)
J3 =J12 =	 -1 0 0 t( o 0 "0 . .. 

J: = -JIe;	 (3.8) 

and the infinite series leading to the exponentiations (3.6) are computed in 
the universal enveloping algebra £ with conventional associative product of 
matrices and unit 

£ : JiJj = associative product, 

rules 
50(3) : [Jit Jj]( = J,J; - JjJ, = -EijIeJIc, 

i,j,k = 1,2,3, 

while the second-order Casimir invaria.nt is given by 

3 

J2 =E JIeJIe =-21. 
Ie::d 

The discrete part of 0(3) is characterized by the inversion 

Pr = -r, 

P = diag(-1, -1, -1), 

detP = -1, 

which, as well known, commutes with all elements of 50(3). We shall keep in 
mind that 0(3) is not connected and that, since the reflections do not contain 
the identity, they constitute a group only when combined with 50(3). g3:; 

an
3.2.3 Lie-Isotopic Generalization of the Group of Rotations ar4 

We now introduce arbitrary, nonsingular, symmetric, and sufficiently smooth 01 

metrics over R: all 

g =(gij) ~ (gij (t, r, r, ...» (3.13) tl 
101 

with composition law tri 
rr *r =r'gr =r'gij';	 (3.14) ,ula 

characterizing the isotopic Iiftings B(r, g, R) of E(r, 6, R), according to the ~ gj 

specifications of §2.4. . lre~ 

We are interested in identifying the Lie-isotopic liftings 0(3) oj the group 
oj rotations 0(3), that is, the set of transformations 

.. def .. 
r' =R('). r	 = R(8)gr, (3.15) 

b~  

al 

(3.10)	 iOI 

(3 
t 11 

(3.11) 

(3.12) (l 
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whleh verify the con 
the isotopic rules 

while leaving invari 

As indicated in 
0(3) verify the isot 

which can be expres 
new unit i (§1.3) 

or equivalently (b 

The desired liftl 
given metric 9 via 
the isotopic lifting 
associativity-preser 
isotopy), 

with consequent ge 

and of the methodo. 
orem, etc.) now f: 

The Lie-isotopic 
the inverse of the m 

It Is then easy to see that the only compact Lie-isotopic algebras are the 
following two: 

501(3) : signg =(+, +, +), 
502(3) : signg =(-, -, -), (3.35) 

while all the remaining six algebras are noncompact, according to th~  clas­
sification 

803(3) : signg =(+, +, -), 
50.(3) : signg =(+, -, +), 
806(3): signg = (-,+,+), 
808(3) : signg =(-, -, +), 
801(3): slgng = (-,+,-), 
808(3) : slgng = (+, -, -). (3.36) 

To identify the type of algebras, we introduce the folJowing redefinition 
of the generators 

6-16-11 J'" 6-1,.-IJ J 6-16-1JJ1 = 2 3 It 2 = 1 "3 2, 3 = 1 2 3· (3.37) 

The Lie-isotopic commutation rules for. ~he compact algebras (3.35) then 
become 

SOl : [i1;J2] = J3 , [J2;i3) = ii, [J3;i1] =J2, 

802(3) : [i1;i2) =-i3 , [i2;J3) =-ii, [i3;i1) = -i2• (3.38) 

The second-order isotopic Casimir invariants are the~  given by 

3 
"'~ " f '" '"1(0) ::: LJ J"g(o)/" =-21(0)' Q =1,2. (3.39) 

"=1 
Comparison of Eqs. (3.38) and (3.39) w~th (3.10) and (3.11), respec­

tively, then leads to the following result. 

.Proposition 3.tlll]: All compact isotopes SO(3) are locally isomorphic to 
the 80(3) algebra, and they occur Jor positive or negative definite metrics. 

Under the assumed topological restrictions on the metric, the Lie-isotopic 
algebras are integrable to their corresponding groups. The exponentials 
(3.24) therefore exist and characterize well- defined, finite isotopic rotations. 
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Numerous examples can be explicitly computtd 
consider a compact isotopic rotation around the U 
the isotope 0(3). Trivial calculations then yIeld the 

R(83 ) = S,(83 )i 
COS83 t sin83 

= -t~inIl3 cos83( o 
with underlying transformations 

r' = R(83 ). r =S,(B3 )r 

:rCOS83 +yt:-sin83 J 
= ( -zt,inll; +IIco,1I3 

which leave invariant the hyperboloids 

r 
C
'g(l)r' = :r'bl:r' +y'b~y' +z'l 

= :rbl:r +yb~y + zbJz 
= rfg(l)r, 

as the reader is encouraged to verify. 
Note that the isotopic commutation rules of s< 

conventional algebra 80(3) coincide at the abstract 
treatment of rotations. The same situation occurs j 

the theory, such as enveloping algebra, Casimir inva 
formal unification can also be reached between the f 
group 6;(3) and the conventional one 0(3). 

A main result of ref. [19J is then expressed as foU 

Theorem 3.t The groups oj isometries oj all pass: 
mations oj the sphere, 

rCg(l)r =:rbIs +yb~y +zbJz =1 

b" =b,,(t,r,r, ...), 

here denoted 0';(3), verily the Jollowing properties: 
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(a> The group, 6;(3) are aillocall, ilomorphic to 0(3) when isotopically 
. reolized in ,ucla a wa, that their i,ounit, 1(t) are the inver,e oJ the 

metric, g(t) oJ ellipsoid, (3.43). 

(b> The groups 6;(3) consilt oJ infin~telJl man, different (but isomorphic) 
reolizotioRl, corresponding to the: infinite 'po88ibilitie, oJ ezplicit, load 
Jorm, oJ the iIounit,1(t) (or, equioolen"" oJ the metric, 9(t)}. 

(e)	 The groups 0'i(3} constitute -ilotopic coverings" oJ 0(3), in the sense 
that 

(c-I) the groups 0;(3) are constructed via methods structumlly 
more geneml than those oJ 0(3); 

(c-I) the groups 6;(3) appl, Jor physico' conditions brooder than 
those oJ 0(3); and 

(c-3) all groups Ch(3) recover 0(3) identiCdlly whenever ellipsoids 
(3.43) reduce to the ,phere. 

The nontriviality of the notion of isotopic covering can be illustrated via 
the following important property. 

Corollary 3.1.1 1I9}: While the action 0/ 0(3) on load coordinates iI 
lanear, i.e., . 

r' =R(')r, (3.44) 

that oJ its isotopic covering, 0;(3) iI genemlly nonlinear, i.e., 

r' =. R(8). r = S,(8)r 
= Set, r,;, ...;8)r. (3.45) 

An illustration of this occurrence is given by transformations (3.41). 
In fact, the nonlinearity occurs because the·elem~nts  bit entering into the 
transformations are generally dependent on the local coordinates (see Fig. 

. 6 for some of the implications). 
We pass now to the review of the noncompact forms, which, besides 

being useful for achieving a classification of all possible isotopic images of 
rotations, constitute the foundations of the Lie-isotopic lifting of special 
relativity (§3.4). 

For the case of the noncompact algebras (3.35), isotopic rules (3.30) 
become 

502(3): [it ;i2] = -i3,[i2;i3 ] =i,,[i3;it ] =i 2 , 

504(3) : [i2;i2] =i 3 • [i2;i3] =i" [i3;it ] =-i2 , 

805(3) : [it ;i2] = i 3 , [i2;i3] =-i" [i3;it ] =i 2 , 

506(3): [it ;i2] =i 3 ,[i2;i3 ] =-i,,[i3;it ] =-i2 , 

507(3): [it ;i2] = -i3,li2;i3] =-itt li3;it ] =.i2, 

8Os(3): [it ;i2] = -i3,[i2;i3] =ii, [i3;i1] =-i2 , (3.46) 

while the second-order Casimir invariants preserve (orm (3.39), i.e., 

ito) =Ei.9(o)i. =-2i(o),a =3,4, ...,8. (3;47) 
•	 I 
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FIGURE 8. A fundamental application of the Lie-isotopic theory: the 

deformation/rotational-uYRametry of neutrona under intense external fields, 

ud the exact charader 01 isotopic rotations [19, 153j. As weD known, nea­

trons are not point particles, I)ut extended chUle distributions with a ra­

dius of aboat IF (= 10 -II cm).SUPpoH that such distributions are 

perfectly spherical (an ...mpUoD already questionable [154]). nen, UD­

der suIRcien"y intenle exteraal fieldl, the partides are expected to experi­

ence a deformation 01 their shape prec~ly  alonl the fundamentalinyariut 

(3.2) of the isotopic rotatiou. Tllii deformation of shape hu a number of 

truly fundamental, theoretical and experimental implications. On theoreti­

calsrounds, it impHes 'he breakinl of the conventional rotational Iymmetry, 

u muifest in the deformation of in.ariant (3.1) into ellipsoids (3.2). Out 

the abstract rotational symmetry II not brokn. In fact, Santilli's isotopic 

sroup 6(3) provides .. exact symmetry for the deformed neutron while 

beinS isomorphic to 0(3). Fa,rthermore, the deformation of the charse di.. 

tribution implies an alteration (-mutation- in the lusuaae of ref. (2]) of 

the masnetic moment of the particle, u clearly established already at the 

cI_cal lev,el. One reco~en  in thil way u hypothesis formulated since the 

early stases of nudear phyaiCi (b.' oddly isnored ia more recent treatises 

in the field), that protons andaeatroDI experience' a delormation of their 

maSDetic moments WheD DIemben of a nuclear structare, e.s., under intense, 

Ihort ruse, nadear interactiona. Finally, and Itill oa theoretical sroande, 

the rotational-asymmetry of the 'Iare implies a neceaaary breUins of the 

conventional Galilei'l and Eiutein's Relativities, th•• creatins the need for 

laitable seneraHlationlof Lie-isotopic type u we Ihall re.iew in the next 

seetio... On experimentalsrollnds, the phylical occurrence depicted ia the 

fisure has a number of fundamental implicationl, for inltuce, in the COD­

trolled IUlion. In fact, protons and neutrons are expected to experience u al­

teraliOD of their iDtriDlic maanetic momeDts exacUy at the time of initiation 

of the fueion procell, with evident implications ,,, confinement. The defor­

mation/rotational uymmetry/maanetic- moment-mutation depicted in the 

figure hu already been the sabject of fundamental experiments by H. Raach 

ud coDaboraton (see later OD ref. [131J and quoted papen) via neutroll iD­

terferometric techniqaes. Theexperimenten tested the Ipinorial charader of 

the neatron'l SU(2) symmetry .i, the symmetry of the wavefanctioD under 

two complete spin-lipi caused by aD external maanetic field. The calcula­

tions are evidently bued on the conventional value of the masnetic moment 

of the DeutroD. As a result, deviationl caased by the deformationl under 

conlideration evidently result in deviations from the SU(2) symmetry. The 

lut experimental namben (datinl back to 1982) are 715.'7 ± 3.ldel. Thai, 

the 720 del needed to verify the exact, conventional, rotational symmetrt 

ARE NOT contained within the minimal value 112.97 and the maximal value 

719.87 of the experimental error. A qaantitative representation of Rauch's 

data (131] hu been provided by SantiUi [153J via his isotopic liftinl of Dirac'l 

equation and it will be reviewed in Appendix C. Raach's fundamental exper­

iment will be conlidered in detailla the Rparate revie~  we hope to complete . 

on the operator venion of Lle-liotopic techniqaes OD Hilbert spaces. SaD­

tilli hu been a stronl proponent (for over a decade now) of the repetition 

of Rauch's experiment by other independeDt experimeDtalilts, owlnl to Us 

manifestly fundamental character (see, e.I., ref. [9J. It is resreUable that 

the experiment hu contin.ed to be ilDored by experimentalists In the field. 

In fact, the lut available experimental n.mben date back to 1982 ud, mOlt 

unreau.rins, show a violation, 'h.s rendedns even more compellinl the need 

for an experimental resol.tioa of .he ....e. The clear, unq.estionable plau­

libiBty of the deformation; the ready ayailability of all needed eqaipment 

at aamero.s (low enerl1) nadeu laboratories throDlho.t the world; the 

q.ite moderate cost of the ex~riments  u compared to other lesser relevant, 

yet much more expenlive experiment. preferred .ntilnow by ex~dmenters 

in the field; the manifestly r.ndamental character of the experiment for all 

of theoretical physiCl; the equally sllable finucial-adminiltrative Implica­

tions, e.s., for the investments in attemptinl controDed f.sion via masnetlc 

confinement; and leveral other upeets, have forced Santilli to ralse serious 

luues ollcientific ethici in relard to the lack of independent repetitioD of 

Ra.ch's experiment whid are not addreaaed in thil review. 

The following result then holds: 

Proposition 3.2 (l9): All noncompact isotopes SO(3) are locally isomor­
. phic to the SO{2.1) algebra, and they occur for (diagonal) metric, whose 
elements have different sign,. 

Under the assumed restrictions, the noncompact isotopic algebras are 
also integrable to their corresponding groups. The exponentials (3.25) there­
fore exist, although the range of the parameters now becomes infinite. 

Again, numerous examples of "noncompact isotopic rotations" can be 
explicitly constructed for all cases (3.36). As an illustration, we consider a 
"rotation" around the third axis for the case of the isotope 504(3). Then, 
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trivial calculations yield the group element [19) 

'( co,hB3 -f,inhB3 0) I 
R(I3) = -g.'inhl3 c~,hl3 0 (3.48) 

o 0 1, 

with underlying isotopic transformations 

zco,hl3 - ye,inhB3 ) 
r' = R(1I3)r = S.(~)r  = 

( 
-stain",:+,coahll3 (3.49)I 

which, this time, leave inv:ariant tile hyperbolic form 

reIg(3)r' = z'b~z'  - y'b~,'  +z'~z'  

= ~b~ z - ,b~y +zb~z
 

= or'g(3)r. (3.50)
 

Again, the noncompact isotopes ale indistinguishable from 50(2.1) at 
the level of abstract, realization-free formulations. 

In summary, the isotopic lifting of Lie algebras does not produce new 
Lie algebras, because (as stressed in §1.5) all Lie algebras over a field of 
characteristic zero ale already known. Santilli's Lie-isotopic' theory merely 
provides infinitely new covering realizations of known algebras. The results 
of Propositions 3.1 and 3.2 are therefore predictable from the simplicity of 
algebra (3.30). In fact, all simple, three- dimensional Lie algebras over the 
reals are known and are given either bySO(3) or by 80(2.1) (or by algebras 
isomorphic to them.) 

To complete our classification, we need additional information on Lie­
isotopic algebras whose metrics have opposite signs. 

DEFINITION 3.1 {19}:Let G be an uotopic algebra char­
acterized by (diagonal) mdriC$ with element, 91t". The isotopic 
dual Gel oj G u the algebra characterized b, the (diagonal) met­
ric with elemenl6 gt" = -glele, k = 1,2, ..., n. 

It is then easy to prove the following result. 

Proposition 3.3 {19}: Isolopically dual Lie algebras are locally isomorphic. 

Note tbat· tile proposition above includes the case when one of the, al­
gebras is conventional. We discover in this way that 50(3) has' an image 
that cannot be identified via the simplest possible Lie product AB - BA of 
current use, but demands instead the use of a more general product, such 
as AgB - BgA.' 

In fact, besides its conventional form, 80(3) can be realized via the 
isotopic dual, according to the expressions 

80(3) : [Ji;J] = JigJj - JjgJi 

= -fij"J", 
9 = diag(+1,+1,+1),

J: = -J". 

80cl(3) : [Ji;Jj] = JigJj - JjgJi 

= +fij"JIe, 
9 = diag(-l,-I,-I), 

Jt = -J". (3.51) 

At the level of the full orthogonal group 0(3), this essentially implies the 
interchange of the Identity I with the total inversion J = -1, the latter 
becoming the identity of the isotopic dual. It is then easy to see that the 
basic algebras (3.51) and the eight Isotopes (3.38) and (3.46) can be divided 
into two sets interconnected by isotopic duality. 

Until now we have considered isotopes characterized by metrics with 
locally definite topological characters, resulting in locally definite ,compact 
or noncompact groups. To complete his classification, Santilli indicated the 
existence of isotopes' that can smoothly transform compact algebras Into 
noncompact ones, and vice versa. Evidently, this topic is technically Involved 
(and yet unexplored); it therefore demands specific, detailed investigations; 
We shall thus content ourselves with the mere indication of the existence of 
this ad'ditional class of i80topies. 

For this purpose it is more effective to return to the original basis J" of 
Eqs. (3.8), to the original'i80topic rules (3.30), and to the generic separation 
(3.28), with diagonal metric elements guo An isotopic rotation alound the 
third axis can be readily compute~.  from the exponentiations (3.25), resulting, 
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in the expression 

1/2 1/ 2)co.,( 93911 922 922(91J922)t/2"in(939:'29~'2)	 FIGURE 7. A reproduction of Table I of ref. [19] presenting a pre­
1/2 1/ 2)S,(') '"' -gn(gngu )1/2:in('39:[2g~2) CO.9(93911 922	 liminary clu8ification of all p088ible ilolopes of the conventional sroup of 

( o rotationl denoted with 6.(3).	 o. the left hand lide we have the mOlt no­D· 
(3.52) 

It is easy to see that the above transformations do not have, in general, a 
globally defined compact or noncompact character. In particular, they can 
be isomorphic to 50(3) for given values of the local variables and to 50(2.1) 
for others. Thus they can continuously interconnect compact and noncom­
pact structures. Evidently, this is the most general possible isotopic lifting 
of rotations, which includes as particular cases all other forms considered so 
far. 

To illustrate this occurrence, aaume that the elements 911 and !/33 have 
the value +1, while the element 922 is given by a function of the local 
variables I, r, r, ... that interconnects smoothly the values +1 and -1. It 
is then easy to see that, for the case 911 =. 922 = 933 = +1, transformations 
(3.52) reduce to the familiar, compact rotations 

C0.993 .,in93 0) 
5,((3) = -,in93 CO.,93 0 (3.53)

( 
001 

while, for 911 =-922 =933 =1, transformations (3.52) reduce to the equally 
familiar, but this time noncompact,Lorentz transformations 

co.,h93 -,inh9i 0) 
5,(93 ) = -,inh93 co,h93 0 . (3.54)

( o . 0 1 

The generalization to metries (3.34) is self-evident. Note the lack of 
consideration in this review of the trivial isotopy 

- .... .... 1 
50(3) : [J.;Ji) = -lii,J", J" = J"9- ,J" E 50(3), (3.55) 

~3)  ,- (+1. +1. +1)	 ~1(3)  

0; (3)0;(3) ,- (+6f. +14. +"f) _I 

0;(3) ,- (+6:. +14. -6f) 0'2(3) 

~(3)0:(3) ,- (+6f. -6f. +bf) 
"3 - 3 

table ilOtopea characteriled by different topologiea of the metric, while on 

the right hand tide we have their imagea under the notion of duality of 

Definition 3.1. The ilOtope 6(3) at the boUom of ,the diagram Iymbolilel 

Santilli'. conception of ODe 'insle Lie-iIOlopic sroup which uDifiea all poe­

lible Lie Iroupl of the .ame dimenlion via a metric of Yaryinllopolosical 

.tructure. 

which does not provide the invariance of the ellipsoldical deformations 
of the sphere, as indicated in the closing remarks of §2.4. On the contrary, 
the.realization 

80(3) : (/(i, Kj] = -l'j"K" 

0 0 0)
Kl = ( 0 0 t ' 

-I: 0 0 

( 
-f)0 0 1 

/(2 = 0 0 0 , 

t o .O 

0 ~ 0)
K3 = -~ 0 0 ,	 (3.56)( 

000 

even though conventional in structure (that is, realized via the conventional 
associative envelope .without any isotopy), verifies the basic invariance prop­
erty (3.26), as the reader is encouraged to verify. 

Here it is important to understand that, by no means, can the results 
under consideration be uniquely derived via the Lie- isotopic theory. In fact, 
structure (3.56) indicates the possibility or recovering the form invarance of 
the ellipsoidical deformations of the sphere via the conventionally realized 
0(3) or other ways~  Tile Lie-isotopic liftings of Lie symmetries have been 
merely submitted by Santilli on grounds of their pragmatic effectiveness in 
constructing the covering symmetry when a given, conventionally realized 
Lie symmetry is broken, wllile admitting the latter as a particular case 
whenever the original physical conditions are regained. 
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3.2.5 Physical Applications 

In order to identify physical applications, it is desirable to identify first its 
dynamical foundations. This, in turn, can be done more effectively in the 
arena of our best intuitions, Newtonian mechanics. Applications to particle 
physics shall be considered in a possible subsequent review. 

The Birkhollian generalization of (c1usical) Hamiltonian mechanics (§1.3) 
evidently provides the desired dynuWcal setting. A knowledge of mono­
graph [20] is therefore essential for a deep understanding of the physical 
applications of isotopic rotations. 

For simplicity but without lOIS of generality, Santilli [19] first considered 
the case of one, free, extended particle in Euclidean space E(F, 6, R), and 
the trivial canonical action 

1'2 1
A(',r) = d,[p. r - -p · pJ

tl. 2. 

= l
tl 

dt(p,;, - HJ, m = 1. (3.57) 
b 

Suppose that, at a given value of time, the particle experiences only contact 
nonhamiltonian forces due to its extended character (e.g., because of pene­
tration within a resistive, generally anisotropic and inhomogeneous, material 
medium). Suppose that these physical conditions can be represented via the 
isotopic lifting t(F,g, R) of the Euclidean space, i.e., via the generalization 
of the action into the form' of 

l
t2 

Alen(,. r) = h dt(p. r - 21P • p) 

/'2 1= ltl dt[pig'jrj - 21'.9ijl'j], (3.58) 

9 =g(', r,;, ...), 

which is manifestly of Birkhoffian nonhamiltonian type with identifica­

tions 1 
P,(" r,I') = 'igi', B = 2Pi9ijPi. (3.59) 

The nonhamiltonian character of the theory can be technicaUy estab­
lished via the property that the equations of motion underlying action (3.57) 
generally violate the integrability conditions for the existence of a lIamil­
tonlan in the r-frame cOnsidered [20]. The inapplicability of Hamiltonian 

mechanics implies, in particular, the inapplicability of the Poisson brackets 
for the Lie characterization of both the time evolution and the theory of 
rotations. 

The direct applicability of Birkhoflian mechanics has the immediate ad­
vantage of permitting the identification of the generalized Lie product for 
both the time evolution and the applicable theory of rotations. It is suffi­
cient to restrict ourselves to the case of a diagonal metric 9 with constant 
elements 

g = diag(b~,bl,b~),b  = const.. (3.60) 

Use of Eqs. (1.21b) and (l.22b) then readily yields the Lie- isotopic tensor 

(O,w) = 

= 

(~ 

(g~1 

-~rl  

-r ') (3.61) 

with generalized brackets 

[A-B) = 
• . 

8A :-;1 8B 
0" ga, Bpi 

_ DB :-;1 8A 
Ori ga, 81';" (3.62) 

Simple calculations then establish the following Newtonian realization oj 
the isotope 801(3) of rotationl [19] 

801(3) : [Ji;Jj] =(ijlcb,2J" (3.63) 

with redefinition according to Eq. (3.38) 

501(3) : [i;ij ] =Eijleilc , 
" 

i l =6-Jb3Jl,i2=b1baJ2,ia =blb2J3. (3.64) 

and group form of the symbolic type 

3 ­- IT ,,8J, 8 )] (3.65)501(3) : 4' =[ exp(81e.fi" 8a" 84" (I, 

Ie:;! 

with a corresponding reduction to a form of type (3.25). 
The achievement of the desired objective is then confirmed by illustra­

tive examples. For instance, an isotopic rotation around the third axis with . 
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generator J3 can be computed via exponentials (3.65), yielding the ·trans­

formations 

( 
 

ZCO"(93bl~)  - ,t:"in(93'b1~») 
 

,'= stain(t/3~~)s+  ,eoa(t/3bl~)  , (3.66)
 

with additional transformations ~f  the type (3.40) for the generator J3• 

The achievement of the form invariance of the Pfaftian action (3.57) is 
then consequential. Adion-at-a-distance forces can be trivially Incorporated 
in the theory via additive potentials in the Birkhoffian B = Ip!, provided 
that they are properly written hi t(r,g, R), e.g., with "squares" of the type 

(3.2). 
As a further application, Santilll [19] presented a generalization of Euler's 

theorem (on the displacement of rigid bodies) to the case of elastic bodies. 
As the reader recalls [53J, Euler's theorem essentially states that 'he general· 
displacemen' of a rigid bod, wi'h 'one poin' fized is 0 con'inuous rotation 

around some azis. 
Suppose that the object i8 an elastic sphere of radius 1, and that the fixed
 

point is the origin of the reference frame. In the absence of deformation, the
 
displacements of the object are given by time-dependent transformations
 
R = R(t) e 50(3). At time t = 0 one can assume
 

R(O) = 1 = diag(+I,+l,+I). (3.67) 

At subsequent times t, the rotations are such that their eigenvalues are the 
elements of the conventiona13 )( 3 unit 1, i.e., there exists an eigenvector a 
of R(I) which preserves its components in the rotated system: 

0' =R(I)o = a, (3.68) 

or, equivalently, rotations verify the eigenvalue equations 

[R(t) - 1]0 =0 (3.69) 

with secular determinant d (R -1) ::: 0 (3.70)' 
et. 

Suppose now that at time t = '0 the sphere experiences a small defor­
mation into the ellipsoid 

r'gr = %(1 +El)~ + ,(1 + (2)' + z(l + (3)Z =1. (3.71) 

It is easy to see that the displacement can now be described via a compact 
isotopic rotation R(t) e 501(3), beginning with the identification 

R(E) =J=,-I. (3.72) 

It is also easy to prove that the eigenvalue equation for the rigid motion, 
Eq. (3.69), admits the isotopic generalization 

[R(t) - i] • G = [5,(,) - IJo= 0 (3.73) 

with isotopic-secular determinant (§1.3) 

a;t(k - i) = a;t(S - I) = 0, (3.74) 

where we have used the decomposition of Eq. (3.25), R=s,i, and Theorem 
2.19. of ref. [30], p. 1310. 

In fact, from Eq. (3.20), det R(t) =det i. A step- by-step generalization 
.of tlte conventional proof (see, e.g., ref. [53], pp. 119-123) then leads to the 
following resul t. 

Lemma 3.1 (I9]: The iso'opic eigenvalues o/the compact-isotopic rotations 
0/ t,pe 1 are the elements 0/ the (diagonal) generalized unit j.= g-I. 

Thus, much as in the conventional case, the compact-isotopic rotations 
admit an eigenvector that preserves its components in the transformed sys­
tem. By recalling that the transformations considered here can only be 
continuous, the extensions to the case of finite deformations and to non­
spherical objects are straightforward, yielding the following result. 

Theorem 3.2 {I9}: (Isotopic Lilling 0/ Euler's Theorem) The general dis­
placement of an elastic body with one poin' fizm is 0 compact isotopic rota­
tion 0/ 'ype 1 around some JUed ~zis. . 

Numerous additional applications to the dynamics of extended, elastic, 
and deformable bodies are possible. Here, we limit ourselves to the indica­
tion that the isotopes of 0(3) seem to be naturally set for the description 
of deformations, with the understanding that the theory generally demands 
the use ofnondiagonal metrics. In fact, all metrics of the theory of elasticity 
are permitted by the isotopic theory of rotations. 
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An additional class of physical applications is the motion of extended 
objects within generally inhomogeneous and anisotropic material media. In 
effect, the ~escription  of the displacement of elastic bodies (Theorem 3.2) 
and that of the motion within material media are complementary to each 
other, in the sense that they ~  both be reduced to suitable isotopit: Iiftings 
of the Euclidean space. 

To illustrate this possibility [19], consider a (classical) particle moving in 
a region of empty space for which the Euclidean .geometry applies. Suppose 
now that the region considered is filled with intense radiation originating 
from a distant and constant Bource, assumed to be at infinity. It is evident 
that, under these novel physical conditions, the particle cannot be consid­
ered as moving in empty space. The new medium of propagation is space 
filled with radiation. Depending on the physical characteristi~ of the parti­
cle (size, charge, electric and magnetic moments, etc.), the new medium will 
directly affect the trajectory of the particle, that is, its dynamical evolution. 
In particular, the new medium is homogeneous but manifestly anisotropic, 
in the sense that the distribution of radiative energy is uniform, but the 
medium has a preferred orientation in space given by the direction of prop­
agation of the background radiation. 

Clearly, the Euclidean geometry is merely approximated for these broader 
physical conditions. The selection of an appropriate isotopic lifting is then 
relevant. We select the Finaler space with composition [19] 

I· • 
r gr =r'/(r, U)6ijr',. 

.. (r. u)2
I(r,u) = '- _\'}, (3.75) 

where u is a unit vector (u2 =U'U, =1), here assumed along the direction 
of the radiation. 

The Finsler space with composition (3.74) charaCterizes an isotope t(r,9, Ii) 
of E(r,6, R). As a result, the symmetry 0(3) applies (including isotopic 
reflections). The reader should be aware that the symmetry 0(3) is bro­
ken for composition (3.74a) because of its inability to preserve the preferred 
direction in -space. The achievement of this preservation via the covering 
symmetry 0(3) is instead ensured by the invariance of the metric under 
isotopic rotations, i.e., 

e-"JgeJ" =g. (3.76) 

It is also clear that, in the transition from the Euclidean to the Finsler 
space, we have the transition from a flat, homogeneous, and isotropic geom­
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etry to a curved, homogeneous, and anisotropic one. Numerous intriguing 
properties then follow. Owing to the particular metric of Eq. (3.74), the 
conventional Casimir J2 =J"J, is preserved by the isotopic rotations, 

3 

J2I =i.<EJ,J,). i' =J 2, (3.77)
'=1 

as the interested reader is encouraged to verify. This result indicates that 
the angular momentum can be conserved also for motion within anisotropic 
media in which the conventional rotational symmetry is broken. 

We recover in this way a result already known in analytic mechanics [1]. 
We are referring to the fact that the conservation of the angular momen­
tum, by no means, necessarily implies the symmetry under the conventional 
rotation group. In fact, angular momentum conservation can be also char" 
actem.ed by isotopic symmetries. 

I~T"IIL!£dS  " crIIIiOll-IIMltWAil SYSTDI"~4'JW.  iliL JA!JLlnft' oun Or
jj tv • 

COIIIUVID t'O'rAL AllGUUa 
IUIIII7WI Ulloa --.MIL 
tall.. 111ft..... roaca 
LII-JsoroP1C covtllllG
 
or aorane- GIlOUP
 

~1IYn  NICU~.  

~  0' EACII eollST' EI!! 

U'-AIIIlIIIIIU COVIIIIIG or 
LII-lsoroflC lIDT"nOll GIlOU•• 

FIGURE 8. A reproductioa 01 Fig. 5.4, p. 560 01 reI. [21) repre­

Beatiag the physical charlderizatioa 01 the complemeatary Lie-isotopic &ad 

Lie-admiuible geaeralizatioa. 01 the coaveatioaal group 01 rotatioal. Coa­

yeationally, ~obal  Itability 01 a 'yltem is achieved via the Itability 01 the 
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orbib 01 each con.tituent, e.I., u In the Solar .,.tem. C101ed nonhamil­
tonian .,.tem., however, have identified a .tructurally more seneralsiobal 
.tability under maximal pollible aoncon.ervatioD and in.tabUity of the or­

bib of each con.tituent, e.I., .. in Jupiter (lee Fip. 2, 3). The Lie-ilOtopic 

liflinS of rotation. reviewed i~ th. IeCtion reprelenb the fir.t pad 01 San­

tilli'. prolram, the characterisation 01 total, con.erved, anlular momentum 

via the collection 01 the ululu momenta 01 the coDltituenb each, individu­

ally, noncouerved. The completion of the .tudy requires the representation 

01 one individual noncon.erved ulular momentum when all other particle. 
are con.idered u external. Thi. requires U al&ebra with non-antisymmetric 

product. The a1sebru lelected by SantiUi are the coverinl 01 the Lie-ilOtopic 

a1lebru known AI Lie-admiuihle al&ebru. Thi. lead. to the pouibility of 

con.tructinl • Iecond claM of leneralised relativities, .pedficaBy conceived 
for nonconlerv.live condition., wlaicla con.litute coverinl' 01 the Lie-iIOtopic 

ones [21J. 

The generalization of the model to an inhomogeneous form is possible, 
and occurs, for instance, when the energy distribution of the background 
sea of radiation ~s  not homogeneous. This is the case when the intensity of 
the radiation varies in space and time, in which case the metric (3.74) is 
generalized to forms of the ,type . 

lij = /(r, u)dij(', r, r, ...),	 (3.78) 

where the inhomogeneity and anisotropy are differentiated and represented 
by the respective terms/(u,r) uad dij(t,r,r, •..).. 

Note that, with sufficient care., the applications of model (3.77) can also 
be extended to treat the motion of syslems within a resistive medium with 
density varying in space and time, and with a preferred direction in space. 
Numerous additional applications are conceivable, as the reader can easily 
see. 

As a concluding remark, we would like to indicate that, by no means, 
the Lie-isotopic theory of rotations is the only possibility of representing 
extended particles. Iii fad, a number of additional possibilities have been 

.	 identified in the literaturt!, most notably, KQnay's approach via the use of 
intervals [54] and Prugovecld's studies via stochastic techniques [55]. Each 
of these approaches has its own preferred features. For instance, the Lie­
isotopic approach has been conceived to achieve a covering unity of thought; 
K81nay's approach is particularly tailored for certain quantum-mechanical 

measures; Prugovecki's approach Is particularly suited for extended (per­
fectly spherical) particles under electromagnetic interactions. 

Despite these differences, a central property of Santilli's Lie-isotopy is 
its "direct universality" which, for the case of classical mechanics, can be 
inferred frOID the theorem of Direct Universality of Birkhoman mechanics 
(Ref. [20], Theorem 4.5.1). As a result, all possible approaches to rotations 
are expected to be a particular case of Santilli's isotopic group 0(3). 

3.3 Lie-isotopic Generalization of Galilei's Relativity [1], [19], 
[20] 

3.3.1 Introduction 

The Lie-isotopic generalization of the classical Galilei's Relativity was a first 
central objective of Santilli's studies, evidently 'conceived as a necessary step 
toward a compatible generalization of Einstein's Special Relativity (reviewed 
in the next section). 

The mathematical foundations of the generalized relativity, hereinafter 
referred to as Santilli', Galilean Relativity, were achieved in the first memoin 
of 1978 [1], [2], as reviewed in §2.2 and 2.3. These foundations were then 
complemented with studies [18J reviewed in §2.4. 

The physical foundations of the generalized relativity were identified 
also in t~e  original memoir of 1978 which contains the proposal of a still 
more general covering of GaJilei's Relativity of Lie-admissible type, Studies 
specifically devoted to the Lie- Isotopic subcase under consideration here 
were continued during the period 1979-1981. The covering relativity was 
formally submitted in 1982 in Chapter 6 of ref.(20) entitled precisely: "Gen­
eralization of Galilei 's Relativity." The cenbal part of the covering relativity, 
that of the isotopic theory of rotations, was presented in the subsequent pa­
per (19], as reviewed in the preceding section. From here on we shall tacitly 
assume a sufficient knowledge of the isotope 0(3) and, particularly, of its 
applications. 

Evidently, we cannot review here in details such rather vast research. 
We shall therefore review only the central aspects of the covering relativity. 

For notational convenience, we shall first review the rudiments of Galilel's 
Relativity in classicaillamiltonian mechanics, and then pass to a review of 
Santilli's covering. 

111	 112 

'. '. 



3.3.2 Foundations of Galilei'. Relativity 

Galilei's Relativity is a body of methodological tools for the form-invariant 
characterization of closed-isolated .ystems of 

1.	 particles which can be effectively aproximated as being point-like; 

2.	 when moving in vacuum (empty space) assumed as homogeneous and 
isotropici 

3.	 under the conditions that possible speeds are much smaller than that 
of light (i.e., " < co), quantum mechanical aspects are ignorables (i.e., 
A :> Ii), and gravitational effects are absent (i.e., all spaces have null 
curvature). 

The mathematical formulation of the relativity can be summarized as 
follows. 

Let E(3) be the Euclidean space in three dimension. Let a system of 
N particles in E(3) have the local coordinates F" k = 1.2, ...,N, which are 
the physical cordinates with respect to the observer. Let the phase space be 
represented via the cotangent bundle T·E(3) with local coordinates F,.;;" 
where i, =m,F, are the physical linear momenta of the particles considered. 
Let R represent the physical time I of the observer. The basic manifold of 
Galilei's Relativity is then given by the (6N + 1) dimensional space R x 
T·E(3). Its local coordinates shall be written in the unified notation 

R x T·E(3) : (Ii F.i) ~  (Ii a) 

o = (0") = ('i,;;,).I' = 1.2, ...•6N (3.79) 

when emphasis is needed on the symplectic geometry on T·E(3). and in the 
still more general notation 

R x T·E(3) : (Ii F.P) ~ (6) 

6 = (6") =(tiF.i),I' = 0,1.2, ... •6N (3.80) 

when emphasis is needed on the contact geometry of the entire space 1l x 
·T·E(3). 

The celebrated Galilei'. b"Onsformations can be written 

t -+ I' ::= t +to, 
G(3.1) : ~ -+ ~  =R(II)~ + iio.t...+Fo" (3.81)

{ 
p, -+ Pi =R(II)p, +m,vok, 
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and they characterize the Galilei group G(3.1), with ten parameters (i; v ; ~; too
and related subgroups: rotations O;{3); Galilei's boosts Tvo(3); translations 
in space Tro (3); and translations in time 7;0(1). The Lie algebra G(3.1) of 
G(3.1) is then given by 

G(3.1) =(O;{3) ED Tv.(3)] ED (Tr.(3) +Ta.(I)] . (3.82) 

where +(ED) represents the direct 8um (semidirect sum). 
The following Definition is presented in ref. (20] to focus attention on 

some of the central methodological tools of Galilel's Relativity. For a com­
prehensive list of references, including some of Galilei's historical work, see 
ref. [20], §I.A.a. 

DEFINITION 3.2 (Galilei's Relativity): Consider a 10001, 
analytic, regular, unconstrained, conservative, Newtonian system 
0/ N particles in the un"ique, normal, first-order (vector field) 
form expre.sed in the locol variable. 0/ it. eXPerimental observa­

." l' _II Ph m, tion 

(.'a) ( / ) 
(a ) = Pia == (=- (a» = ffaA(r) 

I' = 1,2,. ..• 2n = 6Ni k =1,2•... ,Nia = X,II.z;P = mr 
(3.83) 

(where SA .tands for varational,el/-adjointness), with the ten 
total conserved quantities 

Eaoa =T(p) +V(r) =Xlt 

N N 

P aoa = E p, =E mkPk = {X2.X3 ,X..}, 
1:=1 'al . 

N 

Maoa "= E r, Xp, = {Xs,Xe,X7 }, 

1:=1 

N 

Gaoa =L(ml:r, - tP.) ={XS,X9 ,XIO }. (3.84) 
1:=1 

7'hen, Galilei'sRelativity Can be defined as a form- invariant de­
scription of closed self-adjoint systems, that is, as the symmetry 
of the equations of motion under the ten-parameter Lie buns/or­
mation group G(3.1) (form-invariance): 

G(3.1): 6" -+ 6'''(b),6 =(t,a) 
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:(b) = :"(b)..!- =="(o)~  +' !!.	 ,Ie = {to; ro;60; vol, (3.89)... ..- ab" - ao" 8t 
and related Lie', theory (representation theory, etc.).= :"(b(b,»ab'o ~  = ='O(b')~ -	 . abP allo - avo III.	 Geometric formulations. The, essentially consist oj the 
charact~rization oj the (autonomous) equations oj motion- SO(6')1I~ =SO(/I~)  1I~" +:" =S(6') (3.85) 
as a Hamiltonian vedor}ield 

whose ten generators X. represen; conservation laws (9.89) (closed 
Sl.w2 = -dH (3.90)

selJ-odjoint chorocter): 
with resp«t to the Jundamental symplectic structure. 8X...

X.(b) = W="(b) =O,i = 1,2, ...,10. (3.86) 
1 ano aRo . 

W2 = -2( ~ 11 - .:.::e. )da" " do" = dl'1co " drio (3.91)The	 relativity is charocterizeJ by the Jollowing Jormulations. uO" 8a" 
I. Analytic formulations. 'They essentially consist oj the repre­and related symplectic and contact geometric Jormuations 

sentation oj the equations oj motion via the ronventioJIGI (Lie's derivatives, etc.).
 
Hamilton's equations
 

Note that the "time component" of canonical realization (3.89) of GaJilei 's . 
[8R:(0) _ 8R:(0)jo" _ 8B(0) = 0 relativity a' =exp(twOP S i!a )a characterizes the time evolution of the sys­

80" 80" 80'" tem and should not be confused with the time translation. In particular, 
the latter acts on time, t -+ I' = I +to, while the former acts on the a vari­

) _ (8R:, 8lle)_(0")(" -1,,)(,,)(	 ables, aCt) -+ aCt + to). Also, the latter is unique, while the former depends w""	 -' -ao" - 80" - l,,)(ft O,,)(ft , 
explicitly on the Hamiltonian, and therefore its explicit form is different for 

JlO ~. (p,O)	 (3.87) different systems. 

and related CGnonic41 Jormulation, (CGnoniCGI tronsJorma­A few comments are in order. First, we sould stress the restriction of the 
tion theory; mnoniml perturbation theory; Hamilton-Jacobi applicability of Galilei's relativity onlJl to closed self-adjoint systems. This 

.equations; NoetAer', theorem; etc.);	 restriction is based on the notion of (physically) ezad symmetry applied 
to the case at hand. In fact, we have the combination of the mathematicalII. Algebraic formulations. The, essentially ronsist oj the uni­
condition of lIamiltonian form-invariance and related first integrals, with the versal enveletping GSsociative algebro £(G(3.1» oj Galilei', 
physical condition that the first integrals directly represent laws of nature. 

algebro The conservative character of the forces is then a consequence. :F 
£(G(3.1» = ll' . We can say in different terms that Definition 3.2 applies only for systems 

of Newtonian particles verifying the following conditions. :F= FEDGEDGEDGED ... , 

1l: [Xi, Xi] - (Xi ~ Xi - Xi ~  Xi), 1.	 Closure condition: The system can be considered as isolated from the 
rest of the universe in order to permit the conservation laws of theG(3.1) ~ [£(G(3.1»]- : [Xi, Xi] = ct;X., (3.88) 
total mechanical energy, the total physical linear momentum, the total 

the canonical realization oj Galilei', group (here ezpressed physical angular momentum, and the uniform motion of the center of 
in symbolic Jorm prior '0 a scalar eztension) mass. 

.	 8X 8 2. SelJ-adjointness condition: The particles can be well approximated as G(3.9 : 0" .-+ 0'" = exp(,iw°J' aa: Bao )a", 
massive points moving in vacuum along stable orbits without collisions, 
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In order to restrict all possible forces to those of action-at-'a-distance, 
potential type. 

3.	 Fonn-invariance: The ten conservation laws follow from the Galilean 
symmetry of the system. 

The existence of physical systems obeying these conditions is unequiv~ 

cal. For instance, our BOlar system in Newtonian approximation is indeed a 
system of this type, and, as such, obeys all conditions for the appllcabillty 
of Galilei's relativity. 

-, 

3.3.3 Arena oC Applicability oC Santilli'. Covering Relativity 

The applicability of Galilei's relativity is the exception, and its violation is 
the rule in Newtonian mechanics for several reasons. The most important 
is that Newtonian "particles" can be well approximated as "massive points" 
only under very special conditions. In fact, Newtonian systems generally 
imply motions of extended objects (e.g., a satellite) in a 'resistive medium 
(e.g., Earth's atmosphere), in wbleh case their reduction to massive points 
would imply excessive approximations (e.g., the approximation of the satel­
lite orbiting in our atmosphere with a conserved angular momentum). When 
the extended character of the objects is represented together with their gen­
eral motion within physical media, the dynamic conditions become unre­
stricted. As a result, the equation. of motion break the Galllei's symmetry 
according to one of the mechanisms of the classification of ref. (20), §A.12 
(ilOtopic, .elf-adjoint, semicanonical, mnoniml, and e"entiall,l self-adjoint 
6rmang,).	 . 

Equivalently, we can say that, if Galilei's relativity Is imposed in its exact 
meaning, it generally implies an excessive restriction of the acting forces, 
with consequentially excessive approximations of the perpetual-motion type. 

In view of these and other considerations, SantilU constructed a gener­
alization of the analytic, algebraic and geometrical foundation of Galilei's 
Relativity to attempt a covering relativity for the form-invariant description 
of closed- isolated systems of: 

'1'. extended-deformable particles which cannot be effectively approximated 
as being point-like; 

2'. wben moving in physical media which are generally inhomogeneous and 
unisotropic; 
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3'. under the condition that the dynamical evolution is still "nonrelativistic" 
(i.e., v < Co), "classical" (i.e., A ~ A), and "nongravitational" (i~e.,  

null curvature). 

It should be stressed that the above arena is specifically restricted to 
closed-isolated systems in which case the medium is evidently a part of the 
system (see Fig. 9). 

PaMII 0' aI-IUI'I 1!9BLLDiM '2 Iii ilff8 

...........
 
COSnTVm t!W!F 

C!!T!--o'-MAII rw...: 

OMP!'p··'MM 

FIGURE 9. A reproduction of Fig. 5.2, p. 532 of ref. [21] depictins the 
three moet import&Dt reference frame. for d08ed nonhamiltoniaD ly.telM: 

the frame of the o_ner, the cenw-of- mau frame of the .yatem u a whole, 
aDd the center-of-mau frame of each individual coutitaent. In conventional 

dyaamicU 'yltema (witla acuon-u-a-distuce interadiou of point-like con­
autaen") these framel represent aU atable orbitl, ud result to be equivalent. 

The correaponding situatioD for doeed Donhamiltoni"" aYltemail diJferenl. 
To begiD, the orbit of one individual cou&ituenl ia anltable and, therefore, 

it is generally noninertial. Secondly, the center-of-mua frame of the ay.tem 

~ a whole generally represent atable conditionl. A. lach, it CaDDOt be linked 

to the center-of-mua frame of each coutitueDl via linear trauformalioDI, 
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luch u the conventional Galilean (or Lorentz) transformations, but requirea 

.uitable generalization•. The Lie-ilOtopic generalization of Galilei'. Relatiy­
ity [I), [20J deal. only with the oblener'. and center-of-mus frame of the 
.y.tem u a whole. The inchllion of the center-of-mus frame of each con­
.Utuent requirea a .tUl more general Lie-admissible seneralization of Galnei'. 

relativity [1], [21] which i. Dot con.idered here. 

The covering relativity Is also applicable to other systems, e.g., when the 
medium is considered as external. In this case, however, the emerging "co~­
served quantitestt are only first integral, without in general dired physical 
significance. In fact, the total energy, the total linear momentum and other 
physical quantities are generally nonconserved for open systems. 

Also, the reader should be aware that conditions 1'), 2') and 3') were 
conceived as a sort of classical Image of the structure model of hadrons 
[2] whos~ constituents have extended wave-packet. moving in the hadronic 
medium made up of other constituents. However, c:lassical mechanics offers 
numerous systems verifyng the above generalized conditions (e.g., Jupiter) 
in a way independent from possible operator-counterparts. 

Our review shall therefore be purely c:lassical. In order to have the 
appropriate perspective, the recommended research attitude is the oppo­
site of the conventional one. Customarily, one first assumes an established 
relativitgy, and then restricts the dynamics to that compatible with the as­
sumed relativity. On the contrary, Santilli advocates first the assumption 
of dynamical conditions as identifiable in nature, and then the search for a 
compatible relativity. This research attitude can be implemented according 
to the following three steps: the identification of the largest possible class 
of systems with unrestricted dynamics; the Identification of the methods for 
their treatment; and the hlentifica.tion of the covering relativity. 

3.3.4 Closed Non-Self-Adjoint Systems 

When a system of particles is isolated from the rest of the universe, it must 
necessarily obey the ten conservation laws (3.84); that Is, it must be closed. ' 
1I0wever, this does not necessarily Imply that all internal forces are of the 
potential, action-at-a-distance type. In fact, c:l08ure conditions (3.84) are 
'compatible with internal forces of contact, nonpotential, non-self- adjoint 
type due to internal collisions andlor motion within resistive media. This 
leads in a natural way to the notion of closed non-self-odjoint systems [2] 
reviewed in §1.3 in their second-order Corm. Their formulation for first-order 
systems can be presented as follows. 

Implement closed self-adjoint .ystems (3.83) with an unrestricted col­
lection of local and analytic forces. These additive forces can be classified 
into self-adjoint (SA) and non- self-adjoint (NSA), resulting in the following 
systems 

( .'ca)(0") = ~ =(f"(t,o» =(="(0» +(F"(t,o»
"ca 

("calm,) ( 0 )= SA + SA NSA • (3.92)f,ca (r) Fica (t,r,p) +F,., (t,r,p,p, ... 

where one can recoginze: the conservative forces ff!(r') verifying Galilei's 
Relativity; plus additional forces Ff!( t, r, p) that are also self-adjoint and 
Newtonian, but not necessarily Galilei-form-invariant; plus additional forces 
Ff.SA(t, i, p, ii, ...)that are, in general, Galilei-form-noninvariant, non- self­
adjoint, as well as non-Newtonian (that is, they can also depend on the 
8.c:celeration and other non-Newtonian terms). 

It should be indicated here that the original presentation [1], [20] put 
the emphasis on Newtonian forces. Nevertheless, following a private com­
munication by Santilli, we have added here non-Newtonian forces, not only 
because the results of refs. [1], [20] are readily applicable to these (orces 
without any modifications, but also because the inclusion of accleration­
dependent forces has truly intriguing implications in the operator- images 
of the theory for particle physics, e.g., the capability of achieving consis­
tent nonrelativistic bound state models in which the total energy is higher 
than the sum of the rest energies of the constituents (a possibility which is 
precluded in conventional quantummechanic:s). Also, explicit examples of 
the generalized relativity have indicated the existence of these acceleration­
dependent forces, as we shall review below. Finally, acceleration., dependent 
forces appear, quite independently, in recent studies by A.K.T. Assis [56] 
and others in ordinary (nongravitational) mechanics via the postulate that 
the total acting forces on an individual body is null and the use of Mach's 
principle. The total enegy is modified in the above implementation, trivially, 
because of the additional presence of potential forces, 

Eeoc =T(p +V(r) +U(t,r,p), 

N 1 
T(p) =E -2-Pi . Pi, 

6=1 m, 
SA p au d au 

F, (t,r,;;) =~ar'c +dt ar" (3.93) 
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All the other total quantities (3.84b)-(3.84d) remain unchanged. In fact, 
physical quantities such as the total linear momentum P coc are defined in a 
way independent from the acting forces which, clearly, can only affect their 
behavior in time. 

DEFINITION 3.3 {!},{!O}: The most general possible class 
of local, analytic, closed, discrete, and non-self-adjoint systems 
is given b1/ the cltJ88 of all possible, ronsistent, generally overde­
temaine.d and constrained systeru 

('i.)(aP) = ~ =(fP(t,a» = 
Pi. 

'Pi./mi )
( ff.A(r) +Ff.A(t, r, p) + ~SA(t, r, I1P,...) , 

. 8X· 8X· 
X,(t,a) =8a;aP 

- 81' =0, 

Xl =Eeoc ='T(p) +VCr) +U(t,r,p), 
N N 

{X2,X3,X.. } = PeDe = E miPi,{Xs,Xe,X1} = Mcoe = ErixPi, 
i=l i=1 

N 

{Xa,Xg,XIO} =G cot =E(mir, - tPi), 
i=l 

p =2,1, ...,6N,k =1,2, •..,N,a =%,1/,%,i =1,2, .•.,10. (3.94) 

The primary difference between closed self-adjoint and non- self-adjoint 
systems is that the conservation laws of totalquantities are first integrals of 
the equations of motion for the former~  while they are, in general, subsidiary 
constraints for the latter. 

The physical ezistence of closed non-self-adjoint systems is established 
by a simple observation of nature. For instance, the Earth, when considered 
as isolated from the rest of the universe and inclusive of its atmosphere, 
is precisely a closed system with unrestricted internal forces, rudimentary 
approximated by Eqs. (3.94). 

The mathematical ezistence of the systems is established by the existence 
theory of overdetermined systems.. In fact, the following hierarchy exists of 
classes.of consistent systems (3.94) with a dynamics of increasing complexity 
.and methodological needs [20]: 

121 

Class 0: when the conserved. total physical quantities are first integrals of 
ihe vector field; . 

Class /3: when the conserved total physical quantities cons.titute invariant 
relations of the vector field; 

Class 7: when the conserved total quantities constitute bona fide subsidiary 
constraints of the vector field. 

For brevity, we limit ourse1vesto the illustration of class o. The existence 
of the more general classes /3 and 7 will be only indicated. 

Assume for simplicity that the additive self-adjoint forces in Eqs. (3.93) 
are null. This implies that the original total energy (3.83) persists during 
the implementation of the systems with internal contact forces. We now 
impose the conservation laws to be the first integrals of the new systems 
according to the (strong) equality 

X.(t a) - 8X, f" +8X,
" - 8a" 8t 

= (8X,:::p +ax,) +8X, FP == O. (3.95)
8ap at 8ap 

But the original Eqs. (3.84) are verified by assumption. Thus conditions 
(3.95) reduce to 

8X, FP = 8X'RNSA == O' (3.96)
aaP 8Pi. i. , 

that is, the non-self-adjoint forces must be null eigenvectors of the matrix 
(8X,18pi.)' When all ten conservation laws are worked out in detail, they 
imply the following conditions 

N

E Pi . F~SA == 0, 
i=1 

N 

EF~SA  =0, 
i=1 

N

E ri X F~SA =0. (3.97) 
. i=1 

Note that these are conditions on non-self-adjoint forces for total phys­
.ical quantities to be first integrals. As a result, conditions (3.97) are only 
sufficient for the consistency of systems (3.93) and not necessary. 
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It is now trivial to see that consistent systems of class a do indeed 
exist. In fact, th~  consistency of systems (3.94) has been reduced to that 
of systems (3.97). These are Junctional systems of seven equations in 3N 
unknown functions Fr.-SA. Solutio~s in the functions Fl{.SA exist beginning 
with N =3. The case N =2 is a special one, inasmuch as the closure forces 
the orbit to be in a plane. The number of Eqs. (3.97) therefore reduces 
to five, while the number of fundion. F:'SA i. four. Despite the lack of 
sufficient degrees of freedom,· a solution still exists, and it i. reviewed later 
on. . 

The N -bod", clo.f!d, non-6eIJ-adjoint q.tem6 oj clu. a (N ~  3) are also 
instructive at all levels of study. For instance, conditions (3.97) might con­
ceivably be derived via arguments of global .tabilit" oj the ,,,,tem achieved 
via unstable orbits oj the con.tituents. . 

In fact, condition (3.97a) (which ensures the conservation of the total 
energy) is clearly a first condition for global stability via unrestricted inter­
nal exchanges of energy; condition. (3.97b) (which ensure the conservation 
of the total linear momentum and the unf'orm motion of' the center of mass) 
are a clear expression of additional conditions of global stability via un­
restricted action and reaction effects with null total value; and conditions 
(3.97c) (which ensure the conservation of the total angular momentum) are 
clearly the last expectable condition for global stability. (A first statisti­
cal study of closed non-self-adjoint systems has been conducted by TeIlez-
Arenas, Fronteau, and Santilli [29].)· .. 

However, as indicated earlier, condition. (3.97) are only sufficient for the 
systems considered. When the bJ'(jader class (J is admitted, Eqs. (3.95) are 
generalized into the weak equality for invariant relations 

X.(t,oo) = '\1(t,00)1';(t,00) = 0; (3.98) 

that is, they hold along the 8Olutio~s  of the systems. In turn, conditions 
(3.98) themselves are only sufficient, inasmuch as the most general class of 
the systems (class 7) is that f'or which the conservation laws are bona fide 
subsidiary constraints of the equations of motion. The study of these latter 
systems is left here to the interested researcher. 

3.3.&	 Symmet~ies, First Integrals, and Conservation Laws in Birkhof­
flan Mechanics 

As is well-known, Galilei's relativity in.its contemporary interpretation is an 
expression of some of the most advanced analytic, algebraic, and geometric 
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techniques ofHamiltonian Mechanics. But a necessary condition Cor a closed 
system to be non-self-adjoint is that the vector field is not Hamiltonian 
in the	 variables (t,r,p),p = mr, of its experimental observation. This 
implies	 that, for systems (3.94), not only do we have the general lack of' 
Galilei form-invariance, but we actually have the lack of' applicability of'the 
methodological foundations of the relativity. In tum, this creates the need 
to identify covering methods before any attempt at the cOBstruction of a 
covering relativity can acquire scientific value. 

The direct universality of Birkhofl"s equations for the representation of 
oil closed non-self-adjoint systems was established in Chapter 4 of ref. [20], 
together with the methods for the construction of the Birkhoffian repre­
sentation from the equations of motion, as well as the identification of the 
underlying degrees of freedom. The representation can be constructed ac­
cording to the equations 

({JR" _ {JR")r"(t 0) = {JB +DR" 
Da'" {Ja" , {Jo'" at' 

p =1,2, ••. ,6N,	 (3.99) 

where the Birkhoflian can be the Hamiltonian H, i.e., the total energy, 

B =H	 =T(p) +VCr) +U(t,r,p), (3.100) 

and the R-functions are obtained via one of the three methods of Corollary 
4.5.1d, loco cit. In this way, while all self- adjoint f'orces ar~ represented by 
the Hamiltonian, all non-self- adjoint forces are represented via the general­
ization of the canonical tensor w,,~  into the Birkhoflian.form n"" (which is 
not possible in Hamiltonian formulations). . 

The transformation theory of Birkhoff's equations is worked out in detail 
in Chapter 5 of ref. [20]. Regrettably, we cannot possibly review it here for 
brevity. The theory emerges as being a true covering of the transformation 
theory of' 'Hamilton's equations. This allows the use of' the Birkhoflian me­
chanics and its Lie-isotopic/symplectic-isotopic structure for the construc­
tion of the desired generalization of GaIilei's relativity. 

In the f'ollowing, we shaJ.l review, for brevity, only the most essential as­
pects. To begin, Santilli formulated his covering theory in its broadest pos­
sible form, that of'the contact geometry in unified local coordinates (3.80). 
For this purpose, Birkhofl"s Eqs. (1.21) should be writt~n  in the unified 
notation 

n",,,(b)db" =O,p =0,1,2, ...,6N 
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(0 (6)d6") -	 ·(3.101){(-S + !Hr )da" = 0"" -	 (e- - ::S)da" - (-S + 8'l)dt =0 

where the first equation holds in view of the trivial identity 

(8B 8R,,)do" = (IJB + 8R")O,,0(a)( 8B + IJRo)dt =0 (3.102)
8a" + 8t 8a" 8t 8ao 8t 

and where, as assumed in §1.3, we use the Birkhoffian B for the case of 
its generic functional dependence, and the Hamiltonian H when specifically 
restricted to be the total energy.. 

The reader should be aware that (Chapter 5, ref. [20» all possible 
smoothness and regularity preserving, but otherwise arbitrary transforma­
tions 

6 = {6"} = {t:F,P} ..... 6'(6) = {6'I'(6)r= {t'(t,F,P)ir'(t,F,p),p(t,F,P)} 
(3.103) 

are contact-iaotopic, i.e., they preserve the contact nature of the underlying 
two forma 

02(6) = ~0l',,(6)d!l' 1\ db" = ~0:"'(6')d6'I' 1\ db'" = 0~(6') 

- , , 81P - , 811 
Sl",,(b) = 8111' Oot'(6(6 »86'."· (3.104) 

To understand this property in more explicit terms, recall that Hamil­
ton's equations preserve their canonical form only under a special class of 
transformations, the canonical ones. As indicated in §1.2, when Hamilton's 
equations are submitted to a general, noncanonical transformation, they are 
transformed precisely into Birkhoff"s equations. Unlike the simpler case of 
Hamilton's equations, the covering Birkhoff's equations preserve their form 
under the most general possible transformations. 

This point is important for the covering relativi*y. In fact, in the con­
ventional Hamiltonian case,symmetries must be first canonical, and then 
form-invariant transformations. In the covering Birkhoffian setting the first 
condition is unnecessary. 

We reach in this way the following definition (ref. [20], p. 238) 

DEFINITION 3.-1 (Symmetries in Birkhoffian Mechanic8): 
The most general po88i61e 8mootlane88 and regularity pre8ennng 

transformations (3.109) on R x T· E(3) are 8aid to be symme­
tries of Birkhoff"s Eqs. (9.101) when they are identity contac:t­
isotopic, i.e., theyle4ve form-inmriant the contact tensor 

0 o (b)db" = 811 fi' (b')db'{J
""	 8"" a {J 

8110 
- , '{J _ (3.105)-- 8"" {lot'(b)db - 0, 

or, more ezplicitly, when the following particularization of truns­
formation rules (.'.104) holth 

_ ,,_ ( (I!!- + ~)da" ) 
(O",,(6)db)	 - (~ _ ~)da" - (MJ,;,+ !Gf)dt 

_ (811
0 

fi (I")db'{J)
- 8"" ot' 

8110 
( (a + ifJ )da'P ) 

= (8"") (~-& )da'{J - (I.l +~ }dt' 

= 0,	 (3.106) 

or
 
( ' ') ( 80" B 8t )(' ')
Ro t ,a = R" 8a'0 - 8a'0 .t ,a , 

( ' ') (8t 8a")( ,. ,
B t ,a = B at' - R" at t, a). 

Equivalently, we have a symmetry when the primitive one-form 
of BirkholJ's equation8 (the integrand of the PfalJ's actio~) U 
form- inoonant up to Birkhoffian gauges, 

R,,(a)da"-B(t,a)dt ~  R,,(b)dbl& = R~(b')db'OI == [ROI(b')+ 8~~~)]db'0, 

R~(b') = (R" ::: )(b'). (3.107) 

Clearly, the symmetries of Hamilton~8  equations are a particular case 
of the symmetries of Birkhoff's equations,in exactly the same way as the 
transformation theory of Hamilton's equations is a particular case of that of 
Birkhoff's equations. 
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Most important is the property that the new time t', in general, can be 
not only a function of all old variables ,'(t,r,p), but also the image of any 
old variable (Corollaries 5.3.3a and 5.3.3c, loco cit.). 

We move now to the review of the generalized methods for the construc­
tion of first integrals from known symmetries of Birkhoff's equations. For 
this purpose we suppose that given Birkhofl"s equations POSle88 the following 
Lie symmetry group of infinitesimal transformations 

G. : (6") =(:") -+ (II") =(;,,) = (6" + 66") =(6" +VI'or(6» 

= (t +wip:(t,a) ) (3.108)
a" +w';;r(t, a) , 

where the w's are the infinitesimal paruneters. 
Then, via the direct use of variational techniques, the Pfafliu action 

transforms according to 

".sA = f R,,(h)db" - f it,,(h')dll" =- f d(.sG(b»), (3.109)JDI JD., JD., 

where De is the original (dosed) interval of time, and De' is its image under 
the transformations. 

By recalling the Pfaflian variational principle (equations (5.3.50), loco 
cit.), we can write along a possible or actual path.Eo 

.s f dtR,,(b)bIIiD, . = 

= 

f. dtsl".,(h)6"6l1'
JD. 
- L. tit :'lii,,(6)66" +6G(6»)(E") 

= _wi f dt 
d 
d 

[R,,(h)ar(b) +G.(6)J(EO)JD, , 
= _wi r. dt 

d 
d 

[R,,(t, a)iir(t, a) ­JD. t 
B(t,a)pi(t,a) 

Gi(t,a»)(I:'). (3.110) 

In this way we reach the following important result of refs. [I), [20]: 

Theorem 3.3 (Noether's Theorem for Birkhoff's Equations) II Birkhoff's 
equatioR6 odmit a 81/mmet'll under on r-dimensionol connected Lie Group 
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Gr of infinitesimal translormatioR6, then r linear combinotioh 0/ Birl:hoJ!', 
equations ezist along an admis,ible path which ore ezoct differentials, i.e., 

:'1.(6) =sl",,(6)6"ar, 

I.(h)	 = il,,(6)ar(h) +G.(b) 
= R,,(t,a)iir(t,a) - B(t,a)p.(t,a) +G.(t,a),· 

i=I,2, ...,r.	 (3.111) 

A quite simple, alternative proof can be formUlated via (a) the prop­
erty that Noether's theorem also applies to first-order totally degenerate 
Lagrangians L(t, a, a); (b) the property that Birkhofl"s equations coincide 
with Lagrange's equations in L(t, o,a); and (c) the specialization of the the­
ory to the case at hand. This alternative approach gives rise to the quantities 

L(t,a,a) =R,,(t,a)a" - B(t,a), 

lJL .. 81, .... 
I =	 ~60P. - (-8' tip. - L)6t +6G(t,a) 

vop. a" 
= R,,6o" - (R"a" - R"aP. +B)6t +6G 
= -wi[R,,(t,o)qr(t,a) - B(t,a)pi(t,O) +G.(t,a)], (3.112) 

Corollary 3.3.1. The quantities (9.111) are first integrals of Birl:hoff's 
equations 

:'Ii(6)IEO = O",,(h)6"of(6)IEo =O. (3.113) 

The covering character of Theorem 3.3 over the corresponding Hamil­
tonian formulations is expressed by the fact that, when the Pfaffian form 
becomes the canonical one (i.e., for R =RO =(p,O) and B =H), we have 

I. = PleaiJta- HPi +G. 
_ 8L -lea (8L .lea .. (3.114)- 8;lco fli - 8;lca r 7" L)p, +G. 

which is the formulation of the conventional Noether's theorem in Hamil­
tonian mechanics. Additional properties (such as the lack of necessary inde­
pendence of the r first integrals, the lack of their necessary direct physical 
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meaning, etc.) can be obtained via the extension t~  a Birkhoffian context 
of the analysis of Chart A.9, ref. [20J. 

We now pass to the review of the Lie algebra stmcture ofan r-dimensional 
symmetry Gr of Birkhofl"s equations. By recalling the lack of algebraic 
structure of the general nonautonomous case (Chart 4.1, loco cit., we must 
restrict ourselves for this purpose to semi-autonomous equations (1.21). 
(The capability of reducing all nonautonomous equations to this form is 
proved in §4.5, loco cit.) Also, we assume the reader is familiar with the 
problematic aspects related to the physical meaning of the Birkhoffian· un­
der the reduction considered. Finally, we shall assume that Theorem 3.3 
is applied to the reduced semi-autonomous form (rather than the original 
nonautonomous form), because symmetries are not necessarily preserved 
under the reduction considered. 

An inspection of the notion of symmetries of Birkhoff's equations soon 
reveals that they are not canonical transformations. The necessary and 
sufficient condition for infinitesimal transformations to be contact-isotopic 
transformations is that they have the form 

.' ax,
a'lA =alA +WiOIA"(a)-(t a)80," , , 

OIA" =(liaR" _ 8Rell- I)IA"	 (3.115)
8.1A 8a" , 

where the w's are, again, the infinitesimal parameters and the X's the gen­
eraton of Gr. 

The nece88ary and sufficient condition for a transformation of this type 
to be a sYmmetry is therefore that it leaves the Birkhoffian invariant, i.e., 

B'(t,a') = B(a) + ~B win""~X,  =' B(a) +w'[B;.Ktl 
ualA . ua" =B(a). (3.116) 

Thus we reach the following additional result of refs. [1], [20]: 

Theorem 3.4. (Integrability Conditions f'or BirkhofBan Symme­
tries) Nece8sary and suJlicient conditionB lor infinitesimal, contact- iso­
topic translormationB to be symmetriu 01 the autonomous BirkhoJf's equa­
tions are that the generalized Poisson bracket. 01 the Biri:holfian with all the 
generators X,(a) 01 the transJormation6 are identically null, i.e., 

[B;.K,)'= 0, i = 1,2, ..., r.	 (3.117) 
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The use of the isotopic generalization of Lie's theory reviewed in §2 then 
yields the following Corollary (see, in particular, the generalization of Lie's 
stmcture constant. Cb into the structure Junctions C~(a) of (§1.3). 

Corollary 3.4.1. The Lie algebra Gr 01 an r-dimensional Lie symmetry 
group Gr oj BirkhoJf'8 equations is given by the vector space (over the field 
F 0/ reol numberlj oj the generatOri X, verifying Eq,. (3.117) equipped 
with the generalized Poisson bracket. tJ8 the applicable realization 01 the Lie 
product, and veriJying the Jollowing closure rules upres,ed in terms 01 the 
st",cture Junctions Cb (a) 

.. Ak
[X,;Xj] =C'j(a)X..	 (3.118) 

In closing this topic, we can therefore say that each and every aspect of 
the Hamiltonian formulation of symmetries, first integrals, and conservation 
laws has been consistently generalized into a Birkhoflian form. 

3.3.8 Construction of' the Covering Relativity 

At this point we review the definition of the covering relativity and then 
identify methods useful for itl coBstruction. We shall then review a few 
ex~ples. 

DEFINITION 9.5 {1}, {IO}: Santilli's Galilean Relativity is 
a description oj physicalsystem8 veriJying the /ollotDing primary 
coMUwns: . 

1.	 the relativity provide8 a form-invariant de,cnption ojclosed 
systems ojedended particles under action-at-a-distaRCe 8el/­
adjoint interactions tJ8 well as contact non-sell-adjoint in­
tenmctions; . 

I.	 the relativity is based on the isotopic generalization 0/ the 
methodological/ormulations 01 Galilei's Relativity, that is, 
on the Birkhoffian genenmlization 0/ Hamiltonian mechan­
ics, on the isotopic generalization 01 Lie theory, and on 
the symplectic aM contact geometrie8 in their most general 
possible local and ezact realizations; and 

3.	 the generalized relativity recovera the conventional one iden­
ticallywhen the "'8tems are reduced to pointlike constituents 
with consequential lack oj contact non-sel/-adjoint interac­
tions. 
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B, keeping in mind 'he condi'iorvfor a nt!w thf!Ory to qualif, 
u the cotJt!ring of an eNting ont! (11.3), propt!rt, 1 ensurt!' that 
thl! Rt!W rt!lotivit, appliu to a ph"ictJl art!RCI brooder than that of 
the oonVt!ntional ont!; propt!rt,1 eRlu~,  that the new ~lativit, 

i, bo.tl on a genenJliza'ion of the method, of the conVt!ntional 
one; and propt!f1, 3 ervure. the compatibilit, of the new relativit, 
with the conVentional ont!. 

On mo~  Ipt!Cific grouradl, JIf"Opt!rt, 1 if clulically realiZt!tl via 
the coRltruction 0/ a ten-paramder Lie-ifotopic transformation 
group G(3.1) which tJt!ri~. th~ foma invorionce of'lI,teml (3.94) 

G(3.1) : b .... b'(b),b = (',a) 

IG 

r(b) = r"(b).!.. =r"(b(b'»8b ..!LIJI,I' . abl' 86'0 

= f'o(b')..!L =rO(6')-!-
8I/Gr . 8110 ' 

t.= (l,f"(',o», (3.119) 

and who.e gent!ra'or, Xi(6) ~pre,ent  dir«tly the coRlt!M1Otion 
law, 0/ total quan,itiu (3.94c)-(S.94f), ~.e., 

Xi(b) = O,i = 1,2, ...,10. (3.120) 

Propt!rt,1 if clouicallJl realized via the folloVnng /ormulotiorv. 

I. Isotopic generalization of HamiltoniUl formulations; which e,­
IIt!ntioll, conBiB" 0/ the rt!pre,enta,ion 0/ the quation of 
motion via the ,emiau'onomoUl BirkhoJl', quatiorv 

{[aR.,(a) _ BR,.(a)]ti" _ BB(t,a)} = 0 (3.121) 
8a" ~a"  8a" SA 

and ~loted  BirkhoJfian coVt!ring of Hamiltonian formula- . 
tiOnB (generalized canonical transfomaations; generalized Ham 
Jat»bi equationB, de.). 

II. Isotopic generalization of Lie's theory j whicJa eBBentiall, con­
BiB" of the iBotopic lifting of the uniVt!r.al enVt!loping tJI­

BOCiative algebra t(G(3.1» of Galilei', algebra G(3.1) and 
attachell iBotopic algebra G(3.1) 

j 
t(G(3.1» = 1i' 

F=FEBGEBG.GEB···, 

1i = [Xi;Xj) - (Xi. Xj - Xj • Xi), 

G(3.1)••
~ [(G(3.1»]- : [Xi;Xj] = C.j(a)X, (3.122) 

the Lie iBotopic realization of the '1Immetry group 0(3.1) 
(he~ 'umbolictJll" written prior to iBo-,aJlar eztenBiorv) 

G(3 1) · a" .... a'" - exp(rOolJ(a)8X• ...!..)al'.. - 8aIJ 8ao ' 

o~ =(U 8R/J _ 8Ra 11-1 )oIJ
800 8aIJ ' 

{s·} = {'o;io;;";vo}, (3.123) 

and reloted theo,., (generaliZt!tl rt!prt!,entotion tht!O,." etc.). 

III; Isotopic generalization of canonical geometries; which e.­
8t!ntioll, conBiBtB of the cJaaracterization of the (autonomou.) 
f?quotioRl of motion u a Birk~oJ1ian I1t!Ctor field 

r J. O2 = -dB (3.124) 

with reBpt!Ct to the e%Oct but othenDiBe unre.tricted 8flmpkc­
tic .tructure 

O2 = !(8R" _ 8R" )do" " da" (3.125)2 80" aa" , 

and relatetl '"mpkctic tJB well a, contact geometric formu­
lotiorv (Birkhoffion realization of Lie', deri11O'ive" etc.). 

Finally, propt!rt, 3 iB clGBBimll, rmliZt!d via the additional 
condition thot, togdher with the reduction 0/ '1I~temB {3.94a} to 
the .elf-adjoint and Galilei form-invarian' form 

(f")1 ( p••/m,) (P.a/mlt) (_I')FNSA=o = /SA + rtNSA = ,SA =.:, 
r It. FNSA=o I It. 

(3.126) 
we have the reduction of the group G(3.1) to Galilei'. group 
G(3.1), i.e., 

0(3.1)IFNSA=o =G(3.1), 
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. 1 01J )8Xl ·8 , _ 1 01J8Xl 8 
exp(S n (0 801J 800 )IF~$A=O = exp(S W I)xfJ 800)· 

. (3.127) 
When all the6e conditioR6 are met, group G(3.1) is the iso­

topic covering of Ga.lllei's group, herein after called the Galllei­
isotopic group. 

A rather direct way of arriving at the covering relativity is the Collowing 
(20). When conCronted with equations of motion violating Galilei's form­
invariance, a frequent attitude is that of transforming the equations in a 
new coordinate system in which the applicability of familiar notions is recov­
ered. It is intriguing to know that this is always possible. In fact,Theorem 
6.2.1 of ref. [20] on the Indirect Universality of Hamilton's equations has 
the following consequence (which can be proved via the superposition oC a 
Daurboux's and a canonical transformation). 

Lemma 3.2. Coruider a non-Mlf-adjoint and Galilei form-non-inlHJriant 
6ystem (3.93). 77&en a traR6formatioh altDGfl6 ui8t6 under which the trans­
formed system is Galilei form- .invonant. 

In particular, a transCormation 

0- ~  0*"(0) (3.128) 

altDGy6 exists under which the new system acqUires the "free" structure 

(l"'''(~'»  = (p'~m),  

["-I'. = (fO I)1)0*- )(G*), (3.129)Go. 
with consequential Corm-invariance under GaIilei's group in the new coordi­
nates 

G(3.1): G*- -+ 0*'- = exp(9'wolJ I)Xi 1)1) )0*-. (3.130)aG*'" 0*0. 
However, this way of recovering GaIilei's relativity is mathematically 

consistent but physically illusory. In fact, one of the uncompromisable con­
ditions for the physical meaning of abstract mathematical algorithms is that 
they admit a realization in the frame oC the experimental observation. It is 
easy to see that the waria6le6 r*(r, p) and p*(r, p) in which 6ymmet'll (3.130) 
holtU are generally nonreoliZG6le ezperimentally. In fact, the functional de­
pendence of the new variables in the old is generally nonlinear, therefore 

implying the inability of setting meuuring apparata along trajectories of 
the type r· =oexpfJr . p, etc. 

This deficiency can be bypassed by transforming symmetry (3.130) rrom 
the mathematical coordinates r*, p* to the original ones r, p via the invene 
0* -+ 0(0*) of transCormations (3.128). However, these transformations 
must be necessarily noncanonical, trivially, because the original vector field 
is non-Hamiltonian by 3Bsumption. One can then prove that·, under such 
an inverse transformation, the conventional relativity (3.130) in mathemat­
ical coordinates transforms into the isotopic covering relativity in physica1 
coordinates. In Cact, under noncanonical transformations, Hamilton'. equa­
tions transCorm into Birkhoff's equations; the conventional Poisson brackets 
transform into the generalized ones; and the conventional canonical realiza­
tion oC GaIllei's group transforms exactly into form (3.123) according to the 
rules 

s'wo.fJ I)X' ...!.- == ,lno.fJ(o)8X• ..!.. 
1)0*fJ 1)0*0. 8a1l 800. 

no.fJ(G) _ 80° Willi 80~  

- 80*- 80*" , 

X. = Xi(t,o*(o». (3.131) 

We can thereCore conclude by saying that Santilli's covering relativ­
ity emerges rather naturally, provided that excessive approximations of 
perpetual-motion-type are avoided, and the local. variables permitted are 
restricted to be those of the experimenter.

o 

3.3.1 Examples 

We would like to review now a few specific examples. 
The intriguing clusical case of two particles was first identified in the 

original proposal Cor closed non-self-adjoint systems (ref. [2], pp. 622 ff), and 
submitted as a Newtonian limit ofconceivable structure model or the neutral 
pion under deep mutual penetrations of the W&vepackets or the constituents. 
The case was then studied again in additional papen (see, e.g., ref. [4]). The 
two-particle case was however put in a Birkhoflian/Lie- isotopic form only 
recently by A. Jannu8sis, M. Mijatovic' and B. Veljan08ki [57] who worked 
out also a constrained version or the three-body case. In the following we 
shall therefore review the main results of ref. [57). 

It should be indicated that Relativity 3.5 was called in ref. [57] the . 
"Galilei-Santilli Relativity." We have submitted here the terms "Santilli's 
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Galilean Relativity" to stress the truly profound mathematical, physical 
and epistemological (see below) differences between GaJ.Uei's and SantWi's 

relativities. 
Consider the case of a closed non-self-adjoint twa.pU'ticles for which Eqs. 

(3.94a) become _ 
Mil = 0, 

fn;= J-SA(;f) +f NSA (F,F,f1, (3.132) 

where 
M =mt +m2, 

m.m2 m= ,
ml+m2 

- m. Fl + m2F2 d - - - (3.133)R = an r = rl- r2 
ml+m2 

with the closedne88 conditions (3.97) 

~NSA  _ r.NSA c!!f 'F-NSA 
I'i~  - -£2 - , 

F. fNSA =0, 

Fx fNSA =o. (3.134) 

The general solution of the above conditions is 

fNSA =,[~2")  _ ~2A)],  

n = 0,1,2, •.• , (3.135) 

where 9 = const. and ;:<2") is 2n-th derivative of the relati~e  coordinate. We 

shall take n = 1, i.e., 
-NSA - ..F = g(FI - F2). (3.136) 

Note that force (3.136) is non-Newtonian and that the only admissible orbit 
is the circle (think of gears turning one inside the other in which case the 
mutual 9rbit is circulU' indeed and no elliptic orbit is possible) [2]. The 
motion is then contained in a plane, as in the conventional Kepler case. 

Further, we shall work in the Laboratory Frame. If we choose the 

Coulomb force FA = _ k _ (F. - 'i), (3.137)
Ir l - r213 

where Ie is a constant of proportionality, the generalized twa. body Kepler 
problem can be written 

:. m If: (_ _)
mt'l = --1_ -13 rt- r2,

m - 9 '1 - r2 

:. m Ie (_ _)
m2'2 = 1_ - 1 rl - '2 · (3.138)

m-g '2-r2 3 

We can reduce equations (3.138) to the normal first-order form 

FI ml 
. .:. ( AA )

';.2 - ..!!l- m2 _ _ =0(~ ) -.._.~~1 -_~) 

P2 ~~(rl-r2) 

,. =(Zi,'i),;' = (p~"p,,),k  = 1,2 (3.139) 

where the last expression represent8 the planarity of the motion. 
We can ident~fy the Birkhoffiaa ~presentation if we assume 

B=m-g'l +m- g i2 _ k· 
m 2ml m 2m2 Iii - fil' 

m-g_ m-g_ - ih
{R,,} = {-Plt--P2,O,O/, (3.140)

m m 
. with 

(- - - -)· (3.141)• = rlt r2,PltP2
 

The Lie-isotopic tensor is then given by the simple, scalar isotopy
 

m-g
• (0".,) = m-{w",,). (3.142) 

By u8ing the Birkhoffian gauge transformation (ref. [20], p. 62) 

aG(',.)
R" -+ ~(t,G)  = B,,(t,o) + lJ ' 
. G" 

B' E "B( ) 8G(t, o)B -+ = CoC = t,o - 8t ' (3.143) 

we have 
- - IePI +..1!... _ _I'EcB' = oC =2m. 2m2 Ii" - r2 
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G = gt (PI + i2 ) (3.144)
m 2ml 2m2 

and 
I {R'} {m - 9 _ m - 9 _ gt Pt gt P2 }= --Pl,--P2,---,--- (3.145)

" m m mml mm2 
Le., 

n ." BB' 8R~ )
u",,4 = Ba" +1ft. (3.146 

We can now obtain the contravariant Lie-isotopic tensor, which results to 
be, in tWs case, of the simple form 

(n"") = (0",,)-1 = -.!!!......(w'"'). (3.147)
m-g 

The time component of the Santilli's Galilean Relativity is 'then given 
by ,'-III.. ,3(~)2

F +tA +-=.:&..L + m-..Q. +1 mt 2! mt 3! ml ... 
,'--" ,1( )'... +tA. _ ~..4. _ m-..Q. +

r2 m, . 2! m, 3! m, ...(4''') = (3.148) . 
... +t...JLA+ '(~)'C+'1 m-, 21 ... 
- t...JLA '(~)'C12 - m-, - 2! - ... 

where 

A= -._ k -13 ('I-fi)
rt- r2 . 

C = ._ k _1(Pi _ Pi )+ ,_ 3k- C'1-'2)[(i't-fiX Pi _ Pi »). (3.149)
3rt - r2 mt m2 rt - r213 mt m2 

The form-invariance of the equation of motion can then be easily verified. 
The Lie-isotopic rotation group 50(2) can be constructed via the tech­

niques of §3.2. Note that, since the term m/(m - g) in generalized tensor 
(3.147) has a definite signature, 50(2) is isomorphic or anti-isomorphic to 
50(2). 

We should recall.for the reader's convenience that, while the conventional 
rotational symmetry 50(2) in a plane leaves invariant the familiar form 
%% +Jl7I = inv.., the isotopic symmetry 50(2) leaves invariant the form 

. m 
%q% + 1JqJl = anv·,f =--. (3.150)

m-g 

The isomorphism between the rotational symmetry and its isotopic covering 
is threfore trivial in the two-body case (but not 80 from the three-body case 

on). The construction of the remaining "components" of the Galilei-isotopic 
relativity is trivial for the two-body case and shall be left to the interested 
reader, jointly with the proof of its local isomorphism with the conventional 
components. 

We consider now the three-body Kepler problem in the presence of non­
self-adjoint internal forces which has been treated for the first time in ref. 
[57]. 

The equations of motion are: 

:. m t m2(_ -) m t m3 (_ ... ) ~NSAmlrl =---;r- rl - r2 - -3- rl - r3 +1'1 , 
12 r l3 

:. m2m l (_ -) m2m3 (_ -) p,-NSAm2r 2 =--- rl - r2 - -3- r2 - r3 + 2 ,rf2 r 23 
:. m3m t (- ... ) m3m2 (- ... ) i!tNSAm3r :, = --3- r3 - rl -.,...... r3 - r2 + c3 , (3.151)r l3 r 23 

where 

rl2 = Iii - r21, r13 =Iii - ral, and r23 = Iii - ral. (3.152) 

From closedness conditions (3.97) we obtain for the components of the 
non-self-adjoint forces: 

~ _ D%3 - %2 ~  

r~  - rls 
%1- %3 

%2- %3
F3s = (D - I)Fts

%1 - %3 

, J/3 - J/J
FI , = F1s 

%3- %1 

D J/3 - J/2F2, = Fls 
%1 - %3 

F3' =(D J/2 - Y3 + Y3 - J/I )F
ls 

%1 - %3 %1 - %3 

Z3 - ZI
Fh = F1s 

%3 - %1 

I:l _ D Z3 - Z2 I:l
 
C~  -- CIs
 

%1 - %3 

F =(D Z2 -- Z3 + Z3 - ZI )F3s Is (3.153)
%1 - %3 %1 -- %3 

137 138 



where 
D =:Ii[('l - f3)2) (3.154)

1;[('2 - f3)2) 
and Fl~  is arbitrary. Under the aa8umption that 

Fl~  =~(ZI - z3)(:'(r2 - r3)2)F (3.155) 

where F is an arbitrary function, formulae (3.153) take the following sym­
metrical expressions: 

I:' (I. a.)(:. :. )(- .. )FEI. = r - r r2 - r3 r2 _. r3 

F2• =(r3a - r2a)('1 - ;3)(ii - Fa)F 

Fa. =-FI.- F2. 

ria = (z"r"z,),o =z,r,z. (3.156) 

However, it is computationally quite eiaborate to obtain the components 
of the Lie-isotopic tensor from this general form of non-self-adjointness. For 
this reason Jannullis, Mijatorie' and Veljan08ki choose the following special 
case: 

"NSA • •
FI = 7('2 - '3) 

NSA • • 
/:2 =7('3 - 'I) 

!fSA = 7('1 - '2) (3.157) 

where 7 is a resistive coefficient. . 
We can see that the above forces are Newtonian and non-self- adjoint 

and obey the dosedness condition~  (3.97a) and (3.97b). However, condition 
(3.97c) leads to the 8ubsidio'1l constraint 

'I X ii'+ ;; X~ +'Fax fi =c, (3.158) 

where cis a constant vector. According to a definition given above, we are 
therefore dealing with a closed non-self- adjoint system of class 7· 

The normal first-order form is 
b. 
ml

ft ·A 
m2f2 A­

f3
 mi
 

_m"mZ(fi _ ii) _ mjm;S('l _ '3) +7(A _.iL) I =O. (3.159) 
r 13 m2 m,it l2 

_m'l"J ('2 - 't) - m~m;S(F2  - Fa) +7(A - A)f2 r n 23 "'I "'I
i3 -~(i3  - 'I) - !!W!!1('3 - '2) +7(A - A)13 "'I m2r ll 

Hwe choose 

~  :tl :tl 
B =...lL +..l!L +...1!L _ mt m 2 _ ~ _ m2m3 =E 

COh2mt 2m2 2m3 r12 rt3 r23 

{RII } ={il +7f3,Pi +7'1,i3 +7r2,O,O,0} 
a = (ii, ii, f3,Pt,ii2,i3), (3.160) 

the Lie-isotopic tensor is given by 

(0)9)(9 (1)9)(9 .)
03)(3 7(1)3)(3 -7(1)a)(3 

(3.161)(nlW)~ (-1}g)(9 -7(1)3)(3 03)(3 7(1)3)(3 .( 
7(1)3)(3 -7(1)3)(3 03)(3 

The various components of Santilli's Galilean Relativity can then be com­
puted explicitly (see ref. [57] for details). . 

The (local) isomorphism between the "time components" of the conven­
tional and generalized relativities is, again, trivial. The isotope 50(3) of 
the full rotation group can again be constructed from the knowledge of the 
generalized tensor, Eq. (3.161), and the techniques of §3.2. 

Since the elements of the tensor have a topologically defined character 
(constants for each fixed -,), one can prove again the (local) isomorphism be­
tween 50(3) and 50(3). The nontriviality of the generalization, however, is 
now more transparent than in the simpler two-particle case. Unlike "50(3), 
its covering 50(3) leaves form-invariant an infinite- family of ellipsoi~s  char­
acterized by all possible values of -,. The form-invariance of the equation 
of motion under 50(3) also holds, and its proof is left to the interested 
reader. The (local) isomorphism between the remaining components [those 
of "acceleration type"] is then expected from similar arguments.· 

These results illustrate the nontriviality of Santilli's covering relativity 
over the conventional one. In fact, the generators and, therefore, the physical 
conserved quantities remain the same. Nevertheless, in the transition from 
the conventional to the covering relativity we see the emergence of internal, 
non-self- adjoint nonhamiltonian forces which are rendered representable by 
structurally more general analytic, algebraic and geometrical formulations. 

3.3.8 The Covering Lie-Admissible Formulations 

The reader should be aware that the covering relativity reviewed here is 
only a particular C4Se of that· proposed in memoir [1], and worked out in 
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more details in monograph [21], which is of the more general Lie-admissible 
t,pe. The primary conceptual difference between these two relativities is 
the following. While the Lie-iso~pic  relativity is specifically constructed to 
represent total co,*mation lau,s 0/closed/isoltded s,stem8, the still broader 
relativity of Lie- admiuible character is conceived to represent time rate.. 0/ 
voriation 0/ physictJl quantities lor open system8 of extended particles under 
external contact, nonlocal and nonhamiltonian forces. In particular, while 
Lie-isotopic symmetries are used to represent conservation laws, the still 
more general Lie-admissible symmetries are used to represent time-rate-of­
variations of physical quantities. The (mathematical and physical) covering 
nature of the latter over the former notions is evident. Regrettably, we 
cannot possibly review this still brOader approach here (although we hope 
to do so in a separate review at lOme future time). The existence of the 
broader Lie-admissible relativity wu used· by Santilli to illustrate a central 
point: the lack of terminal character of physical theories, beginning with his 
own theories, no matter how broad they appear to be (see the hierarchy of 
conceivable relativities depicted in. Fig. 15 of §3.5). 

3.3.9 Epistemological Comments 

We now pus to the review of certain epistemological aspects. At this point 
it becomes essential to avoid precoaceived ideas, merely establiehed because 
of their eXtended use rather than on true technical grounds. 

The epistemological differences between Galilei's and Santilli's relativi­
ties are several and quite deep. We can consider here only a few. To begin, 
we must streu again the differencelln physical attitudes. When dealing tDith 
Galilei's Relativity, one customaril, G88Umes first a 6tuic 8J/mmet'1l, and 
then sttJrches lor physiml system8 that are compatible "'ith that particular 
symmet'1l. In Santilli's Relativit, this attitude m....t be reversed: one must 
first 'elect a system 0/ equatioR8 0/ motion G8 established by e%perimental 
or other in/ormation, and onl, then construct'a relativit, that is compatible 
tDith it. The insistence in the former approach is 80 questionable, to have im­
plications of scientific ethics, as it is the case when exceuive approximations 
of physical reality are involved. In fact, the insistence on GaliIei's Relativity 
as the sole possible relativity literally implies the acceptance of the perpet­
ual motion in our environment. Santilli's position is quite firm on this [1]: 
any proposed generalization of Galllei's Relativity is evidently debatable as 
part of the essential scientific process of trial and error., but the need for a 
suitable generalization of Galilei's Relativity in Newtonian Mechanics must 

" be simply out of the question. 
A second aspect. deserving a specific comment is the contemporary atti­

tude of associating only one ,ymmet,., with each given relativity. This is cer­
tainly correct for the arena of applicabillty of conventional relativities (dosed 
self-adjoint systems), but it is definitely erroneous for structurally more gen­
eral systems (closed non-self-adjoint systems). In fact, the nonhamiltonian 
forces result in a generalization of the Lie product, and, in particular, of the 
basic tensor 0'"' which characterizes the structure of the Lie-isotop~c  trans­
formation group. Different nonhamiltonian forces then result into different 
tensor~ 0"" and, thus, different Lie- isotopic transformations. 

It follows that, ",hile Galilei'. relativity 9.! characterizes only one sym­
met'1l, Santilli's covering relativity 9.5 characteri%u an infinite .family 0/ 
covering svmmetrie. all admitting Golilei'. sJlfRmetry G8 particular ClI.te. 
This is another uncompromisable point, for the evident reason that, again, if 
one insists in selecting only one Lie-isotopic symmetry, excessive restrictions 
on the physical systems follow, with the consequential problems related to 
excessive approximations as recalled earlier. 

A further aspect where preconceived ideas may lead to misconceptions 
is the customary linear structure of relativity transformations in contempo­
rary physics. The abandonment 0/ linearity in faoor 0/ nonlinear relativity 
transfonnotioR8 is another uncom,romisable point lor a more adequate rep­
resentation 0/ Nature. In -fact, the insistence in preserving linearity for all 
pOssible relativities of Newtonian mechanics directly implies, again, the ac­
ceptance of the perpetual motion in our environment. An inspection of the 
various examples of Lie-isotopic groups [1], [20] reveal that they are in fact, 
generally nonlinear. Santilli's Relativity 3.5 therefore characterizes generally 
nonlinear symmetry transformations. A most intriguing aspect is that all 
these nonlinear transformations ClIn' be Cdst into an isoto,iool'y li~etJr form 
(§2.4), which is essentially achieved by incorporating all nonlinear terms in 
the isotopic unit, thus 'Ieaving the structure of the theory formally linear. 
The physical and mathematical implications of this property are also in­
triguing although they are more transparent in the operator formulation of 
the theory. 

Still another aspect deserving a comment is the routine tendency to 
characterize relativities via the so-called maniJut symmetrie. [20], i.e., sym­
metries that can be essentially identified with a visual inspection. This is of 
course the case for the simple systems of Galllei's Relativity. When consider­
ing physically more complex systems, this attitude too must be abandoned·, 
again, as a condition for a more adequate representation of physical reality. 
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In fact the Lie-uotopic ."mmetrie8 are, in general, nonmanife.t. This point 
was illuatrated in the original proPOlal [1) by showing that some of the rel.. 
tivity traoaformationa are 10 complex, to be characterized by transcendental 
functions. 

The reader should keep in mind that the convergence of power- series 
expansions is established (under the assumed topological restrictions) for 
the isotopically lifted Poincare-Birkhofr-Witt theorem (S2.2). As a result, 
all possible Lie-isotopic groups (3.123) admit convergent and explicitly com­
putable, fioite, tranaformationa. Thus, Santilli'. methob ollllay. permit the 
eqlicit computation 01 the covering .",.met,., traufomlatiou, /rom the 
.ole 1m000ktlge 0/ the old trau/omaotiou and 01 the generalized Lie te,..,. 
0"" repre.enting the nonhamiltoniGn lorc.e.. The point is that the reader 
Ihould not expect simple, easily computable symmetry traoaformations for 
rather complex physicallystema. 

Still another point deserving an epistemological comment is the vexing 
problem of inertial reference &ames. As well known, contemporary relativ­
ities are specifically restricted to inertial frames. But these &ames do not 
exist in our Earthly environment, Dor are they expected to be available in 
the future, owing to the lack of inertial character of our Solar system as well 
as our Galaxy. Owing to this occurrence, Santilli'. &lativit, u .pecijiaJlly 
conceived lor noninertial reference frame., a .tru.ed 8ince the original pro­
po,ol {l}. More specifically, Relativity 3.5 is restricted, by construction, to 
the actual reference frame , of the observer which is essentially noninertial. 
The covering relativity then maps nonioertiaJ. frames into noninertial &ames. 
This is another uncompromisable point for attempting a better represent.. 
tion of physical reality. In fact, the insistence in preserving inertial frames 
would imply, as a consequence, the admiuion of only linear transform.. 
tions. In tum, this would imply again the acceptance of perpetual-motion 
approximations, thus preventing a. more adequate representation of physical 
reality. 

Numerous epistemological aspects (such as the apparent characterization 
of a privilege reference frame, that at reat with the medium in which motion 
occun) will not be considered here because not yet sufficiently investigated 
in the current literature, to our best knowledge. 

In summary, the assumption of the equations of motion as the funda­
mental quantities of the theory implies all the epistemological consequences 
considered here, such as: the need for an infinite family of relativity trans­
formations one per each individual system; the intrinsic nonlinearity of the 
relativity transformations, although expressible in a fQrmally isotopic-linear 

form; the general nonmanifest character of the relativity symmetries; and 
the intrinsically noninertial character of the covering theory. 

It is remarkable that, despite all these profound differences, Galiki', and 
Santilli', Relativitie, CDincide at the ab,tract, coordinate-free level. In fact, 
under the assumed topological restrictions, the Galilei group (3.89) and its 
covering (3.123) are locally isomorphic. 

. 3.4	 Lie-Isotopic Generalization of Einstein's Special Relativ­
ity [21], [14], [58] 

3.4.1	 Introductory Remarb 

The construction of the Lie-isotopic generalization of Einstein'. Special Rei. 
ativit, is another central objective of Santilll's studies under the following 
major structural conditions: 

•	 The generalized relativity should recover the Galilei- isotopic relatiVity 
(S3.3) under the nonrelativistic limit (or group contraction); 

•	 The generalized relatil1ty should be a covering of the conventional one 
in the sense identified earlier (see the end of §1.3); and, last but not 
least, 

•	 The generalized relativity should be admitted, locally, by a conceivable 
Lie-isotopic generalization of Einstein's Gravitation (see next section). 

The generalized relativity verifying the above conditions shall be called 
hereon Santilli'. Special &lotivit,. Its mathematical foundations are thOle 
submitted in memoir [1] of 1978, as reviewed in S2. The physical foundations 
are essentially a relativistic generalization of the Galilean one, also-submitted 
in memoir [1]. The generalized relativity was formally submitted in a paper 
of 1983 [14], following the completion of the studies on: the space-time 
formulation of the Lie-isotopic symmetries (S2.4); the isotopic generalization . 
of the group of rotations (S3.2); and the isotopic generalization of the Galilei 
Relativity (S3.3). 

Important fQundations of the generalized relativity are also submitted in 
- paper [12] and monograph [21] which preceded ref. [14]. Finally, important 

complementary aspects are ,ubmitted in the last available paper on the 
topic, refs. [58J, [153]. . 

Of utmOlt importance for the new relativity is Theorem 2.9 (which is 
indeed quoted in page 549 pf ref. [14]). In fact, the generalized relativity is 
ultimately a realization of this theorem, as the reader will see. 
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To emphasize the speculative nature of the studies, the reader should be 
aware that the physical departures ofSantilli's from Einstein's Special Rela,­
tivity are rather deep, inasmuch as each and every law of the old relativity is 
replaced with a covering law. As an illustration, the new relativity predicts 
the existence of physical conditions (within hyperden&e hadronic matter) 
under which massive, physical, ordinary particles can (locally) attain speeds 
higher than that of light in vacuum (hereinafter indicated with co). 

To emphasize the thrilling aspect of the covering relativity, the reader 
should be equally aware that, after careful examination, we have found no 
experimental, phenomenological or other evidence capable of disproving the 
novel predictions. On the contrary, all available phenomenological informa,­
tion (e.g., that on the anomalous dependence of the mean life of unstable 
hadrons with speed) appear to confirm the novel predictions quite clearly, 
including that of causal physical speeds higher than co. The predictions had 
simply escaped other research on Lorentz Doninvariance because of the lack 
of rigorpus mathematical tools capable ~f  constructing a covering relativity. 

Needless to say, the resolution of the validity or invalidity of the new rel­
ativity will occur at some future time via direct experiments on fundamental 
space-time symmetries. The need for conducting these crucial tests, which 
have been proposed since quite some time but essentially ignored until now, 
will be stressed at the end of the next section on gravitation (§3.5.18). 

A true undentanding and appraisal of the new relativity requires the 
mind to be free of preconceived ideas, essentially established by prolonged 
use, rather than real physical support. In approaching Santilli's Special 
Relativity, tJae reader is urged to abandon the central physical arena of 
Einstein's Special Relativity (motion of point-like particles in vacuum), in 
favor of a much more complex physical reality (e.g., extended wavepackets 
moving within hyperdense media composed of wavepaaets of other parti ­
cles). No experimental, theoretical or epistemological information accumu­
lated throughout this century on Einstein's Special Relativity is therefore 
applicable to Santilli's much more complex physical setting. New studies, 
specifically tailored for the new relativity, must therefore be conducted. 

During the preparation of this review, we had access to the files of the 
Institute for Basic Research in Cambridge, Massachusetts, which include a 
number of virtually completed, yet unsubmitted manuscripts by Santilli fol­
lowing works [12], [14]. In fact, manuscripts [58], [153], available since 1985, 
were released for printing in conjunction with this review. It is appropriate 
here to stress that this section contains no new results besides those already 
published in the quoted literature. We were authorized to use the unpub-

Iished manuscripts only to gain iuights for a more mature presentation of 
published material. 

Owing to the novelty of the new relati\'ity, and despite a number of inde­
pendent contributions that have already appeared in the literature (reviewed 
later on), a number of truly intriguing and fundamental problems remain 
open to this writing at the classical level (let alone the corresponding op­
erator level for particle physics), IUch as: the proof that Santilli's Special 
Relativity recoven the Galilei-i80topic relativity under the nonrelativistic 
limit; the construction of the representation theory of the LorentZ-isotopic 
group (only the fundamental representation has been achieved untll now)i 
the i~teD80rial  products of these isorepresentations for the treatment of 
composite systems; etc. 

This review will achieve a primary objective if it succeeds in stimulating 
this much needed independent research. 

3.4.2 Foundations of Einstein'. Special Relativity 

As clearly stated in the historical contributions by Lorentz, Poincare, Ein­
stein, Minkowski, and othen (see, e.g., ref. [65J and quoted historical Iitera­
ture), the body of formulations today known as Eirutein'. Special Relativity 
was conceived for the description of: 

1.	 particles which can be effectively considered.as being point-like, 

2. while moving in vacuum (empty space) conceived as homogeneous and 
isotropic; and 

3.	 under the conditions that the setting is classical (Le., the action A > 
Ii) and gravitational effects are ignorable(i.e., the space has null cur­
vature). 

The above conditions clearly include the electromagnetic interactions of 
charged particles in vacuum, as well as a vast number of other cases of 
physical. relevance. 

The relativity is based on the fonn-invariance of the following separation 
in Minkowski space M (%, 'I, R) 

'I =('I,",) =diag(l, 1, 1, -1) 

Z2 =z''1z =z"'1""Z" =zlzl + z2z2 +z3z3 - %"c~%",
 

Co = speed of light in vacuum,
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Z4"= eo',1', II = 1,2,3,4, (3.162) 

under the. largest pOIsible group or linear transformations. This yields the 
celebrated Lorentz traruformatio,.., e.g., for motion along the third space 
component 

.1' _ .1
• - ·1' 
.21_ .2
• - ·1'
 

z31 = ,.(z - V,),,. = (1- fJ2)-1/2,fJ = v/eo,
 

z41 = ,.(z4 - fJz3/eo). (3.163) 

The relativity c:onstruded via Lorentz transformations characterizes well 
~nown physic:allaws, such 88: the relativistic composition of speeds 

vt+V2 , (3.164)l'tot=I+T' 

with consequential impossibility for causal physical signal and/or processes 
to exceed the speed of light in. vacuum (under conditions 1, 2, 3 above); the 
constancy of Co for all observers; the time dilatation 

, z~ - z10 • 
d, =z~' - zf =,.11'0 =(1 _ (J2)1/2 ' (3.165) 

the Lorentz contraction 

dl = z~ - zl = Vl- (Jll1lo =Vl- (J2(z~ - z~o);  (3.166) 

the Doppler's effect and related aberration 

w' =W7(I- (JCOlO); 

cos a' =(cos a - (J)( 1 - (J COl a) (3.167) 

and other laws. 
Owing to incontrovertible experimental confirmations, Santilli {l-1J as­

Bumed that Eirutein'. Special RelativitJl U ezact under conditions 1, !, and 
9 above. The same assumption is evidently embraced in this review. 

3.4.3 Survey of Lorentz Noninvariance Research 

Ref. [14] begins with a review of independent researc:h on conceivable con­
ditions under which the conventional Lorentz symmetry is not expected to 
be ezact. The understanding tacitly aasumed hereon is that its approzimate 
character remains out of the question. 

Authoritative doubts on the exact validity of the Lorentz symmetry un­
der physical conditions different than those conceived by Lorentz, Poincare, 
and Einstein have been expressed since the early part of this century. For 
ipstance, in regard to the interior of strongly interacting particles, Fermi 
[66] clearly expressed in 1949 

-doubts fU to whether the usual concepts of geomet,." hold for 
such .mall region of'pace.· 

The legacy of Fermi and other Fathers of contemporary physics was based on 
the expected nonlocGlnature of the strong interactions (§1.3) which implies a 
breakdown of the mathematical foundations of the Lorentz symmetry (e.g., 
its topology), let alone its physical properties. 

The above legacy remained unanswered for decades, until systematic and 
quantitative studies were initiated in the '60s. 

Consider an unstable hadron moving in a particle accelerator. Its center­
of-mus motion must strictly obey Einstein Special Relativity because mo­
tion occurs in vacuum under long range electromagnetic interactions. The 
actual size of the hadron is therefore ignorable and all Einsteinean conditions 
1, 2 and 3 (§3.4.2) are met. 

Deviations from the special relativity (and the Lorentz symmetry) are 
conceivable only in the Interior of the particle. One of the most ~red  ways 
in which such possible interior deviations can manifest themselves to the 
outside is via deviations from the prediction of Einstein Special Relativity 
regarding the behavior of the mean life T with the speed of the hadron, i.e., 
via deviation from the Einsteinian law originating from Eq. (3.165) 

T =T0 7;7 ={1- t12/C~.  (3.168) 

The initiation of quantitative phenomenological studies on the above 
"Lorentz noninvoriance" are usually aSsociated in the literature with the 
research by Blockhintsev [67], Redei [68], and others who suggested a mod­
ification of law (3.168) of the type 

T =T0 7(1 +1025720:), (3.169) 
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where Go is a fundamental length. 
Numerous additional studies followed along similar lines in various branches 

of physics. For instance, Kim (69) provided, via the use of quantum field 
theory, specific percentage prediction of deviations from law (3.168) at a 
number of different speeds. 

A considerable phenomenological study was conducted by Nielsen and 
collaboraton (see ref. (70) and quoted papers) for the weak decay of hadrons 
within the context of unified gauge theories. In these studies deviations from 
the Lorentz symmetry occur in the Higgs sector of spontaneous symmetry 
breaking. The use of available experimental information then leans to the 
following modification of the Minkowski metric [loc. cit] 

'I"" -+ 9"" ='I"" - X"", 

(3.170) 

Q = (-3.79 ± 1.37) X 10-3
, (3.172) 

and for iGons 
o = (0.61.* 0.17) X 10-3

, (3.173) 

with weighted average 

Q = (0.54 ±0.17) X 10-3
• (3.174) 

Subsequent work by Huerta-Quintranilla and Lucio (71) confirmed a de­
formation of the Minkowski metric of type (3.170), but reached different 
values of the Lorentz asymmetry parameter Q =(3.6 ± 5.2) X 10-3 

• 

A further phenomenological study regarding the anomalous energy-dependen. 
of the mean-life as well as of other parameters of the KO - Jr system 
was conducted' by Aronson et at (72). The data which wer:e obtained 
from a series of regeneration experiments at Fermilab (in the energy range 
EK =30 - 130GeV) specifically indicate that the values of the mass differ­
ence 4m =mL - ms, the lifetime TS, the CP-violation parameters 1'1+-1 
and tan q,+_ as determined in the KO - 1C'-system rest frame, depend on 

the velocity of this rest frame with respect to the laboratory. The .authon 
arrived at the conclusion that the experimental results, if correct, cannot be 
ascribed to an interaction of kaons with an electromagnetic, hypercharge, 
or gravitational field, or to the scattering of bons from stray charges or 
cosmic neutrinos. In order to describe the anomalous behavior of these four 
parameten, denoted by X, they introduced the slope parameters br) defined 
by 

x=Xo(l +br)QN), 

0= EKlm,N =1,2, (3.175) 

and presented an elaborated analysis of the origin of these b<:!). We note 
that Eq. (3.175) exhibits in fact, up to a factor 0, Blokhintsev-Redei-like 
behavior as it was described earlier for the lifetimes of unstable particles, 
Eq. (3.169). 

In regard to theoretical studies on Lorentz asymmetry, the literature 
is rather vast indeed and only a few representative contributions can be 
indicated here. Gasperini has conducted a number of investigations such as: 
the ultrarelativistic particle motion within the context of gauge theories, 
with local broken gauge symmetry (73]; the possible breaking of the Lorentz 
symmetry in the very early stages of the universe [74]; the possible origin of 
Lorentz asymmetry from strong gravity (75) (see also papers [76]); besides 
specific studies via Santilli's Lie-isotopic (and Lie-admissible) techniques we 
shall review later on. ,. 

The conceivable Lorentz noninvanance of the primordial fluid was also 
studied by Rosen (77). 

Ellis et at [78], Zee [79] and others have studied the hypothesis of a 
possible decay of the proton from the viewpoint of Lorentz noninvariance 
within the context of grand unified theories. In particular, these authors 
have essentially confirmed Fermi's Itatement of some four decades earlier to 
the effect that in the small region in the interior of the proton "anything" 
can happen. 

Aringazin and ASaDOV [80] have studied the gravitational and other COD­

sequences for a possible, local, Lorentz noninvariance from the viewpoint of 
the FinsleriaR geometry (81), (82). 

In regards to efforts for the construction of a possible generalization of 
Einstein S'pecial Relativity besides those of ref. [14], the most notable theory 
is provided by BogoslotJski'. Special Relativity [83], which is based. on the 
following Finslerian generalization of the Minkowski metric for homogeneous 
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but anisotropic spaces 

I %"g""z" =%"(11°'106%6/%'''ptlZ")",/2"",,z''. (3.176) 

where ,,0 is a vector along the direction of anisotopy and r is a scalar pa­
rameter. Bog08lowsky's generalization of the Lorentz transformations are 
given by expressions of the type 

ZII = Z', 

z2J = z2, 

z31 =;(z3 _ vz4), 

vz3 
%41 = ;(z4 - _). (3.177) 

Co 

where the new parameter 

; ='7[(1- v/co)/(l +v/co)]",/2 (3.178) 

characterizes the Lorentz asymmetry. 
In this way. Bogoslovski constructed a bona-fide generalization of the 

Lorentz group. although the methods were those of the conventional Lie's 
theory. and the relationship to the Lorentz group remained unknown. 

Yet another generalization of the. Lorentz trati,.formations is that pro­
vided by Edwards [84] and. independently, by Strel'tsov [85]. which can' be 

written 
zll =z2, 

Z21 =z2. 

s31 =7Ul +~(;.  _~).,p:3 _ vs4}, 

41 11·1 4 v 3Z = 7{[1 +-(- - - )v]z - -z ) z4 = t (3.179)
2 eIf·~ coco'1 ~ 1 2 

with related invariant 

. . ~ elf %3 
%"g %" _ %1%1 +%2%2 +%3%3'_ %4 [COlc02 _ (~ _ ..1)_]%4 (3.180)"" - .' ct ~ %4 ' 

where 7 has the conventional value. and ct. c; represent the speeds of light 
in opposite space directions. 
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The EdlDGnU-Strel't,or transformations are clearly based on a p088ible 
anisotopy of time and recover the convent~onal  Lorentz transformations for 
ct =c; =Co. 

A comprehensive presentation of the above (and other) topics can be 
found in a recent monograph by Lagunov [86]. More recent research by 
Strel'tsov can be found in ref. [87]. which include an extension of the aniso­
topy to the space components. Further work on anisotropy deserving a 
mention is that by Ikeda [88]. 

The above outline of research on Lorent non-invariance (outside Lie­
isotopic studies), even though far from complete. is sufficient for the scope 
of this paper. In fact. as we shall Bee, all the mode" reviewd in thu section 
(and more) ,hall relUlt to be particulGr ctJ8e, of Santilli's Special Relativ­
ity [14]. trivially. because of the arbitrariness of the generalized metric 9 
appearing in the isounit i =g-l. as shown by Aringazin [33]. . 

The objective of ref. [14] was, however. not limited to the construction 
of a covering relativity that could unify all available research. An addi­
tional objective was to prove that, under suitable topological rutrictioru, 
the Lorentz srmmet,., can be proved to be ,till ezact, of course, when rt!41­
ized at the mvering isotopic leveL 

We shall now begin our presentation of the new relativity beginning with 
the arena of its physical applicability. We shall then review the generaliz.. 
tions of the Minkowski space identified in ref. [14] and subdivide them into 
three classes owing to the variety of physical pOllibilities. A review of the 
new relativity will then follow. 

3.4.4 Arena of Applicability of the Generalized Relativity 

The earlier, well written, treatises on Einstein's Special Relativity stressed 
explicitly its conception and limited applicability to point-like particles (see. 
e.g., the title of Chapter VI of ref. [90». Unfortunately,this sound scien­
tific attitude was terminated in more recent times. perhaps because of the 
overwhelming successes of the relativity for electromagnetic interactions. 

In a series of articles [1], [2]. [3], [4] (as well as in monograph [64]), 
Santilli brought back to the attention of the physical community the intrinsic 
limitations 1 and 2 of §3.4.2 of Einstein's Special Relativity. and the existence 
of physical conditions beyond those of the original conceptions. under which 
the applicability of the relativity is questionable. 

By continuing his studies on the Galilean setting, Santilli [14] submitted' 
a generalization of Einstein Special Relativity for the description of closed­
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It 

isolated iystems of: 

19 extended-deformable particles which cannot be effectively approximated 
as being point-like; 

29 when moving in a physical medium which is generally inhomogeneous 
and anisotropic; 

3 9 under the condition that quantum mechanical effects are ignorable (A ::> 
A), and gravitational profiles are absent (null curvature); 

under the further condition that the generalized relativity is a covering 
of the conventional one, i.e., it recovers the latter identic:ally when physical 
conditions 1'), 2') and 3') above recover 1), 2) and 3) of §3.4.2. 

AR the reader can see and as expected, conditions 1'), 2') and 3') above 
are a relativistic: generalization of conditions 1'), 2') and 3') of §3.3.3 for the 
Galilean framework. They have been. specifically and primarily conceived 
for the representation of hadrons as· closed-isolated systems of extended­
deformable particles whose constituents possess extended wavepackets mov­
ing within a medium composed ofother wavepackets (the "hadronic medium" 
[2]). Nevertheless, conditions 1'), 2') and 3') above apply also to a variety 
of classical eases such as: motion of light in liquids (Cherenkov light); mo­
tion of charged particles in metals (e.g., the motion of electrons in metals, 
possibly along Graueau's [91] formulation of the Ampere-Newman electro­
dynamic:s); interior problems of planets (e.g., Jupiter) with loc:ally varying 

. anguJar momentum and other physical quantities; etc. . 
The reader should be aware that Santilli conceived his Lie- isotopic: rela­

tivity specifically for clo.ed-isolotetl systems. This is a consequence, on one 
side, of assuming the total physical energy H as the generator of the time 
evolution (as in Einstein's case) and, on the other side, of the Lie character 
of the theory, that is, of the anticommutativity of the Lie-isotopic: product. 
[A;B] = -[B;A]. Under these conditions, the only possibility for the total 
energy is that of being conserved according to the familiar rule 

if = [H;H) =0, H = T +V. (3.181) 

For the case of systems that are open, for which iI = let) ~ 0, Santilli 
submitted in the final part of monograph [21] a further generalization of his 
Lie-isotopic relativity, this time of Lie-admissible character with product 
(A;B) which is neither symmetric nor antisymmetric, (A;B) ~  ±(B;A). In 

this case the total energy c:an indeed be the generator of the time evolution 
as well as be nonconserved 

iI = (H;H) = let) ~ 0. (3.182) 

The covering Lie-admissible relativity reduces to the Lie-isotopic one under 
the condition 

(A;B)iI=o :: [A;B]. (3.183) 

This review is restricted to the Lie-isotopic case. The reader should be 
aware that, as it is the case for the Birkhoffian mechanics [20], the Lie­
uotopic them., aan also represent open .,.tems. In this case the generator 
of the time evolution is the BirilaojJitJn B ~ H with rule 

if = [H;B] = let) ~ o. (3.184)I 

A knowledge of these structural foundations is essential for a true un­
dentanding of the following review, and will be tacitly assumed hereon•. 

Notice, u stressed earlier, that the space (empty space) remains perfectly 
homogeneous and isotropic. The fundamental inhomogeneity and anisotropy 
ofSantilli's Relativities originates from the physical medium in which motion 
occun. 

3.4.1 Isotopic Generalizations of the Minkowski Space 

The next step of ref. [14] is the construction of suitable generalizations 
of the Minkowski space capable of: a) representing the generally inhomoge­
neous and anisotropic character of the theory; b) admitting the conventional 
Minkowski space as a particular case; and c) allowing a formally isollnear 
theory while the underlying transformations are intrinsically nonliJlear. 

Flom hereon, we shall c:aIl Santilli'••pace. all generalizations of the 
Minkowski space obeying conditioll8 a), b) and c) above. Due to the large 
variety of admitted cases, these .paces will be divided below into three 
classes of increasing complexity aDd methodological needs. The main idea 
of ref. [14] is that, in the transition from empty space to a physical medium, 
the Minkowski metric ",.." is generalized ("mutated" [21]) in a form glAII 
verifying conditions a) and b) above. The generalized metric g,.." is assumed 
to be Hermitean, nonsingular and sufficiently smooth but otherwise with 
an arbitrary dependence in all needed local quantities, such as: space-time 
coordinates z and velocities i (see below); index of refraction fa; density p; . 
temperature T; etc. 

glAII =g,..,,(X; i; R; p; T; ...). (3.185) 
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The Hermiticity and smoothnea of g"" implies the existence of its re­
duction to the canonical (diagonal) form 

g"" =diag('n,!h2,!I33, -g... ), (3.186) 

which is the only one considerecl in ref. [14J as well as in this review. 
The condition of nonsingularity implies the existence everywhere of the 

invene g-I which, as now familiar, is the generalized unit 1 =g-1 of the 
theory. 

We remain with the central condition c) of achieving i80linearity. This is 
achieved in ref. [14J via the techniques of "hadronic mechanics" (§1.3). Let 
R be the field of real numb~s  ~d  let M(%, 'I, R) be the Minkowski space. 

DEFINITION 3.6[141: Santilli's spaces M(%,g,R) are given 
6y all poui6le isotope, 0/ Me Minto""ii lptJoe M(%, '1,R) where: 
the .pace-time coordinatu % remain unchanged; ·the metric 'I if 
generalized into HermitetJn, ROuingular and ,ujficiently ,mooth, 
but otherwise arbitrurvlorrM g tDitla a dependence on all needed 
IoctJI quantitiu 9 =g(z;:i; n;p;T; •••); and Ii II the lIotO,e oJR 
characterizetl 6J1 (.ee Eq. (1.38) lor the mmple% aJle) 

Ii = {NIN = Nl,N E a,1 = g-I}. (3.187) 

The lifting R -+ Ii allows the achievement of ~solinearity,  as per condi­
tion c) above (§2.4). In fact, the linear transformatio~s  

M(%,'f],R) : s' =A%, (3.188) 

are now lifted into the i80transfonnations 

.. .. I del
M(s,g,R): s =A. s =. Ags, (3.189) 

which are formally linear, yet intrinsically nonlinear because of the general 
dependence 

A. % =Ag(%;z; , •••)s (3.190) 

Scalar values on M(S,fI,R) are in R, 

M(z, '1, R) : z2 =Z#l'1""Z" e R, (3.191) 

while scalar values on M(z,g,R) are in Ii 
.. .. .... 

M(z, '1, R) : z 
~ 

= z"g",,%"Ie R. (3.192) 

It is this interplay between the isotopic transformation theory and i80scalars 
that ensures isolinearity. For details, the reader is recommended to consult 
Myung and Santilli [3D). 

It is intriguing to note that, without a lifting 0/ the field R -. R (joint 
with that 0/ the MinkolD.1ri .pace and oj the Lie product), the genem/izetl 
relativitJl 01 ref. [141 would halle ~n mathematimllJl inanuutent 

In practical calculations, the Ufting R -+ Ii. can be ignored, u it i. the
 
case for hadronic mechaaics, because of a property similar to Eq. (1.40)
 
where the measured numben are the conventional ones. In fact, by keeping
 
into account the multiplication in Ii
 

,. ... clef..,. ...........
 
Nt • N2 = NI ,N2 = N t N21 =NtN2' (3.193) 

the scalar action Ii. it coincided with the conventional one R )( M 

N. z == Hz. (3.194) 

Alter clarifying the above mathematical structures, ref. [14] makes cer­

tain assumptions that are embraced hereon. In essence, we shall deal with
 
three quantities:
 

A-Fourvector•• Their component. are the same as those in M, but their
 
scalar value is given by the contraction in it, i.e., %2 = %"g,.,,%", with
 
the clear understanding that the correct form is (3.192). The terms
 
is%urvector or i8ocoordinatu shall be sometimes used to prevent con­

fusion with the conventional case.
 

D-Threevector,. Their components are the same as those in the isotope 
E(~g,li.)  of the Euclidean space E(r,6,R) used for the i80rotation 
theory (§3.2) and the generalized Galilean relativity (§3.3). Thl! con­
traction ("square") of three vector is then given by ;:i = rigijrj with 
the undentanding that a law of type (1.187) is more rigorous. Again 
the term uovector may be occasionally used to stress the departure 
from conventional Euclidean space. 

C-Scalar.. These are ordinary numbers N e R, with the understanding 
that a more rigorous form is that of Equation (3.187). We shall at times 
call an onlinary number an isosm/or to stress the tacit assumption of 
structure (3.187). 

Santilli's spaces as per Definition 3.6 above are rather numerous indeed. 
We shall therefore introduce the following classification. 
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DEFINITION 3.7: Santilli', ,ptJt%' M(x~9,  Ii) Gre clG81ijietl 
into 

•	 Space. orClu. I, denoted M,(z, 9, il), when the metric 9 
prelervu the topologiCtJ' propertiu 0/ the MinkotD,1ri 8pt1t%, 

i.e., it U 0/ the particular twe 

,= diag(hf,hl,h~,	 -h~), 

'pp=h: > O,p'= 1,2,3,4, (3.195) 

Gnd the IptJCe ~,  null eumJtu~, i.e., the Christoffel sym­
bols 0/ the .",~ and CI~ identictJll, null 

r~ ~ i".(g"..., +''''''_ - '",p) == 0, 

'fUI." =8,." ,P,II,P =1,2,3,4; {3.1OO}ax" 

• Spaces' or clu. II, denoted Mll(x",it) tDhen the, G~  

,till /lat,	 i.e., ' 
r~" == 0, P = 1,2,3,4, {3.197} 

hut the generalized metric, loose" in genera~  the topolog­
iaJl properties 0/ the M'nko-a metric;, and 

• Spaces of Clu.III, denoted Mlll(Z",R) when theJI a~ 

cuMJed, ..e., , 
r:"1: o. (3.198) 

For the purpose of achieving a covering of Einstein's Special Relativity, 
Santilli restricted the presentation of ref. [14] to spaces of the first class, 
MI{x", it). In fact, the reader now familiar with the Lie-isotopic theory can 
expect that the assumption of spaces M,(z",R) assures the admission of 
the conventional theory as a particular case, while the Lie-isotopic covering 
of the Lorentz symmetry is isomorphic to the conventional one (see below). 

Intriguingly, the spaces MI(z", Ii) are sufficient to unify all research on 
Lorentz noninvariance reviewed in 13.4.3, as we shall see. 

The reader should be aware that the Lie-isotopic generalization of the 
Lorentz symmetry holds also for an unrestricted metric" including the case 
when , is Riemannian or of more general gravitational nature. 

An advance knowledge of this point is essential for the reader,'s under­
standing of the continuity of thought in the transition from the relativistic 
framework of this section to the gravitational context of the next section. 

Note that the contact interactions due to motion in resistive media are 
generally independent of the coordinates :i, but dependent on the velocities 
i and other quantities. A considerable class of physical conditions under 
consideration in this paper therefore verifies the condition of null curvature, 
e.g., (3.196), via the stronger conditions 

8gp" _
-0 =O,P =1,2,3,4.	 (3.199)zP 

Unless otherwise specified, metrics of this latter type are assumed hereon. 
Notice also the enclosure properties 

Al, C Mil C'MIlI'	 (3.200) 

which illustrate the possibilities of increasing generalizations offered by the 
Lie-isotopic theory. 

3.4.8 Physical Interpretation or the Generalized Metric 

Before passing to the review of the generalized relativity, it may be rec­
ommendable to point-out the physical meaning of the generalized metrics 
of Santilli's spaces. Stated differently, our problem is to clarify the fate of 
light 'when dealing wiih physical media because, after all, these media are 
generally opaque to light. The space components of metric (3.186) 

('i;) =diag(,u, 922,933)	 (3.201) 

is the metric of the isotope B(,.", il) of the Euclidean space E(r, g, R), Eq. 
(3.28) hereinafter assumed as being dimensionless. It remains fundamen­
tally unchanged in the transition to Santilli's (3 + I)-dimensional isotopi~  

spaces. All the physical consideration on metric (3.201) of §3.2 therefore 
apply for this section. For example metric (3.201) can represent a deforma­
tion of the particle considered cauted by external forces, the inhomogeneity 
and anisotropy of the medium coBsidered, etc. (See Appendix C for appli­
cations.) 

Almost needless to say, the Lie-isotopic generalization 0(3) of the group 
of rotations 0(3) reviewed in §3.2 is a central part of the new relativity, and 
its knowledge'shall be tacitly implied hereon. 
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The remaining component '44 of metric (3.186) must evidently have the 
dimension of the square of the velocity, and we shall put for i808Paces MI 

'44 1t c2(i; niP;T; •••), z4 =c. (3.202) 

Our problem is the physical interpretation of the "velocity" c. 
The simplest p088ible caaeI are those of luids transparent to light, such 

aa water. In these cases c clearly represents the speed of light in that par­
ticular medium, according to the familiar law c = coin < Co, where n is the 
index of refraction. Note th~t,  at a deeper study, n is not a constant, but 
p08le&&eI a rather complex functional dependence precisely of type (3.202). 

At times, 8uids may ,be opaque to Ught but not to other wavelengths. 
In this case Santilli [loc. cit.] sugests the replacement of light with any 
electromagnetic wave that can propagate within the physical medium con­
sidered. 

Nevertheless, physical media are generally opaque to all electromagnetic 
waves•.This is the case of metals .(whether solid or liquid), or more complex 
media such as the structure of nuclei, of hadrons or of collapsing stars. 
Evidently, .no electromagnetic wave can classically propagate within these 
media in a conventional sense (the propagation ofvirtual or physical photons 
i8 excluded here because of quantum mechanical nature). 

In these more general caaeI, Uae quantit, c = ,~2 ,enerUll, represents a' 
purel, geometriCdl object tDiUaout fleCe88tJril, representing a physiml, actual 
speed. The above conclusion can be best reached by ~onsidering  sp~  £1",. 
In this case we are dealing with curved spaces in which each element of the 
metric, including 944, has a purely geometrical interpretation, as familiar in 
the theory of gravitation. This situation is merely extended by the notion 
of isotopy al$O to lat spaces of type M,. 

The occurrence can be illustrated by considering the medium composed 
by one bon, and Nielsen-Picek's generalization (3.170) of the Minkowski 
metric, i.e., . 

1 1 1 2( 49=(1-3o,I-3o,1-30,-co 1+0»,% =t, (3.203) 

in which case 
'44 =c2 = c:(l +0) > c:, 
o =(0.54 :I: 0.17) x 10-3• (3.204) 

The best conceivable interpretation of component (3.204) is that it is a 
purely geometrical quantity. In fact, we know at this time of no electromag­
netic wave or other causal signal that can classically propagate through a 
bon. 

Note that value (3.104) characterizes a s~d c higher than the speed 0/ 
light in vacuum CO. But, G8 correctly stated in refs. {I!], (14], UaiB does 
not nece88arily mean the eziBtence 0/phJlBictJI speetls within the kaoru higher 
than Co. The latter problem can only be investigated later on when reviewing 
the characterization provided by the generalized relativity of the maximal 
speed of massive, physical particles within the bon structure. 

A~  a further comment, note that the explicit form of the generalized 
metric must be obtained from experimental, phenomenological, or other 
considerations, but it cannot possibly be predicted by the generalized rela­
tivity owing to the endless variety of p088ible media. This can be illustrated 
by comparing Nielsen-Picek's metric for the bons, Eq. (3.204), with that 
of the pions,.Eq. (3.172), in which case 

'44 =C:(1 +0) < c:, 
o = (-3.79 ± 1.37) x 10-3• (3.205) 

Thus, in the transition from bons to pions, the Lorentz asymmetry pa­
rameter 0 changes not only in value, but also in sign. With the advancement 
of our knowledge, one should therefore ezpect in general different metrics/or 
different hod"'ru, with a complexity predictably increasing with mass (evi­
dently because the size of hadrons does not increase with mass thus resulting 
in an increase of density with mass). Highly complex metrics for superdense 
hadronic matter as occurring, say, in the core of collapsi~g  stars, are then 
conceivable as limit cases. 

3.4.1 Lie-isotopic Generalization of the Lorentz Group 

We shall now review a central part of refs. [14],[58], the Lie-isotopic gener­
alization of the conventional Lorentz group, in its broadest applicable form, 
that for spaces of ,ravitational types MIll(%", Ii) with diagonal separation 

z2 = %1',1'"%" =zl'l1Z1 +z2'22Z2 +z3'33Z3 - %4'44Z4,Z4 = " 

r~II = '21 
glH'(g".,II +'tlII,p - 'pIIP) ~  o. (3.206) 
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R.egrettably, we have ~ot  been authorized to present unpublished ex­
tensions of the Lorentz isotopy available in Santilli's manuscripts, e.g., for 
non-diagonal metrics which are applicable to gravitational theories more 
readily than separation (3.206). 

Nevertheless, spaces Mill are sufficient for our objective: show that the 
Lie.isotopic theory allows the construction, apparently for the first time, of 
the symmetry transformations in their explicit form for arbitrary gravita­
tional theories, let alone for arbitrary flat deformations of the Minkowski 
metric [58). 

For cla.rity of notations, let us first review the structural foundations of 
the Lorentz group. Consider the linear transformations in Minkowski space 
M 

z' =Az,z" =z'A'. (3.207) 

Under the condition that they leave invariant the conventional separation 
(3.162), one obtains the famillar rules 

AIJ4f1,..,A"# = 'Ia#, 

det(A) = ±1, (3.208) 

which characterize the Biz-parameter Lorentz group on M, usually denoted 
0(3.1),.with familiar components 01(3.1) and 01(3.1) of which 0~(3.1)  

forma a connected Lie transfonnation group, i.e., i~.  verifies the conditions 

A(u)A(-u) =I =diag(I,I,I,I), 

A(u)A(u') = A(u +u'), 

A(O) = 1, (3.209) 

where the six parameters u = {i, ti} represents the three Euler angles i and 
the three parameters ti of the Lorentz boosts. 

. The remaining components form a group only when combined to 0.\.(3.1) 
owing to the presence of the discrete tranlformations (inversions) 

pz =P(',t) = (-r,t), 

Tz =T(r,t) =(r, -t), 

PTz =PT(',t) =(-r, -t). (3.210) 

Let j and Mbe the generators of 0.\.(3.1) in their fundamental repre­
sentation, e.g., that of ref. [92], p. 40 (see also Eqs. (3.8) for the space 
generators) 

0 0 o 
o 0 1 

J1 = J23 = 0 -1
( o 
o 0 o D· 
0 0 -1 
o 0 o 

J2 =J31 = 1 0 o( o 0 o D· 
0 1 0 

. -1 o 0 

D·J3 =J12 = ~ o 0( 
o 0 

o 0 
o 0 ~1) 

M1 =M14 = ( : o 0 o ' 
-1 o 0 o 

o 0 
M2 =Mu = (: 

o 0 

~~)  o 0 o ' 
. _ 0 -1 0 o 

o 0 
o 0 

(3.211)M3=M~ = (! o 0 ~1)  . 
o -1 

The structural foundations of the connected Lorentz group 0~(3.1)  are 
then given by the now familiar forms: 

"A) The Enveloping Associative Algebra E(Oi(3.1» characterized by the 
ordered, infinite dimensional basis 

E(O~(3.1»  : I,XIc,X,Xj,X,XjXIc, ... ; 

is j,i S j S k 

X = {J,M};i,j,k = 1,2,3; (3.212) 
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B) The Lie Group O~(3.1), chaiacterized by convergent infinite series in 

£(Ot(3.1» here formally written 

Ol(3.1) : A(', ti) =(nI-1exp(J.,.)I.)(n:'lexp(M,w,)I.), (3.213) 

C) The Lie algebra Ot(3.1) characterized by the familiar commutation 
rules in the neighborhood of the identity 1 e £(Ot(3.1» . 

[.J" J,] = -£,j,J" 

[M" Mj] = +£,j,J"
 

[J"Mj] = -£,j,M" (3.214)
 

where the product is, of coune, the simplest conceivable Lie product 
of matrices A, B 

[A;B]. = AB -	 BA. (3.215) 

The second-order Casimir invorionLt are then given by the familiar 
expressions 

"" <, 3 

C1 = J~  - 142 = E(J,J, - M,M,) =~31,1 

'=1 
3 

C2 =,. M= E J,M, =0, (3.216) 
. '=1 

where one should keep in mind that the selected basis verifies the 
property 

J: =-J" M: = M,.	 (3.217) 

We now pass to the review of the isotopic lifting of the Lorentz group 
0(3.1) which is one of the central objectives of this review, and which was 
presented for the first time in ret~  [14]. The isotopy will now appear trivial to 
the reader with some familiarity with the techniques; yet it's mathematical 
and physical implications are far from trivial. 

The first step is to lift the linear transformation t.heory on M, Eq. 
(3.207), ~nto  its isotopic ge~era1izati~n  on space Mill with separation (3.206) 

.:z' = A • z ~ Ag(z;:t; 'I; p;T;, •..)%, 

:tIC =%t • A' ~ %tgA r ,9 = 9t • (3.218) 

The emerging transformations are generally nonlinear, although isotopi­
cally linear. The second step is to impose the form-invariance of separation 
(3.206) which yields the isotopic conditions 

%IC • %' = zt • At. A• % =%t • %, (3.219) 

which can be explicitly. written 

At. A=A. At = i = 9-1 , 

det(!) = ±det(i), 

and constitute a clear isotopy of conventional conditions (3.208). 

'(3.220) 

The theory reviewed in §2, particularly the isotopy of Lie's theorems 
(§2.3), ensures that the transformations Apreserve the six parameters a = 
{i, w} of the original transformations A(a), and form a 8U- parameter, con­
nected, Lie-isotopic trans/ormation group on Mill, Le., they verify the iso­
topic group laws, 

A(a). A(-a) = i = 9-1, 

A(u). A(u') =A(u + a'), 

A(O) = i.	 (3.221) 

The explicit form of the isotopic lifting of the Lorentz group is then 
provided by the isotopes of structures A), B) and C) above. For later needs, 
we introduce the following redefinition of the basis 

X, = {i"M,} = -X+, 
.. -1/2 -1/2 J J" -1/2 -1/2J J" -1/2 -1/2JJ1 =922 933	 .Ii; 2 = 911 933 3; 3 =g11 922 3; 

.. -1/2
MIc =91c1c M"k = 1,2,3. (3.222) 

We then have the following results of ref. [14]. 

At) the isotopic lifting i(Ot(3.1» 0/ the enveloping algebra £(Oi(3.1» 
characteriz~  by the infinite (ordered) isotopic basis (§2.2) 

i(O~(3.1» : i,X"Xi • Xj;X,. Xj • X" ... ; 

is i,i ~  i ~ k. (3.223) 
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B') The isotopic lifting Oi(3.1) oj the connected Lorentz group 0~(3.1»  

characterized by convergent infinite power series expansions in i(0 i (3.1» 
here symbolically written 

3 3 

Oi(3.1): A(i,Vi) =CL .exp(i.8.)li)(L .exp(M.w.)I,), (3.224) 
~l  .=1 

which can be reformulated in E(O~(3.1» for computational facility 

• t	 .. ­0+(3.1): A(8,Vi)	 = (n~='1 exp(ja:g8a:)le)(n~=1 exp(Ma:gwa:)I.)i 

= exp A(B, w)i; (3.225) 

C') The isotopic lifting 6i(31) olthe Lie algebra O~(3.1),  which is char­
acterized by the isocommutation rules 

[ii~ii]  =-Ei;ii., 

[Mi~Mi]  = -g44Ei;.j,u 
.... .. -1/2" (3.226)[JitM;] = -g;; Ei;a:Ma:,
 

where the Lie product is now less trivial than (3.215)
 

[A;B]	 ~ [A, B], =A • B ~ B • A, 

= AgB- BgA. (3.227) 

The isocenter of the algebra is now given by the isotopic Cosimir 
operator of the first order, 1, and those of the second-order ' 

.. ..~ 1 .. 2 ~....  1.... ..
Cl =J - -M ='L.J(Ja:gJa: - -Ma:gMa:) =-31, 

g44	 a:=1 g.... 

3 

C = j. i( =L(ja:gMa:) =O. (3.228),
2 

. a:=1 

As expected for mathematical consistency, the values of the Casimir 
invariants are isoscalar, i.e., elements of R and not ordinary scalars 
(this clarifies the need for the lifting R -+ R pointed out in §3.4.5). 
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The isotope 0(3.1) of the entire Lorentz group 0(3.1) is achieved 'by 
including [14] the isodiBcrete transJormations (or isoinversions) 

P. z '= /J. (r,t) =P(r,t) =(-r,t), 

t.% =f.(r,t) =T(r,t> =(F,-t), 

Pi'.z	 = P.t.%=t.P.z 

= PT% =PT(',t) =(-F,-t), (3.229) 

with explicit realization 

p =pi,t =Ti,PT =(PT)i. (3.230) 

The above results then leads to the following property which is the most 
important application of Theorem 2.9. 

Theorem 3.5[14J The Lie-isotopic generalization 0(3.1) on spaces MlIl(z,g,R) 
with metric (3.106) oj the Lorentz group 0(3.1) on M(%, '1,R), hereinafter 
called Santilli's (or Lorentz-isotopic) group leovesJorm-invariant, by con­
struction, the separation in MIIl(%,g,R), i.e., 

0(3.1) : %' • %=%'g(%)% == %" • %' =%"g(%(z'»z' 

z' =A(i, Vi). % =A(e, w)gz. (3.231) 

An inspection of the results then leads to the following. 

Corollary 3.5.1 (14]: T~e process oj Lie-isotopy is insensitive 08 to whether 
Santilli's spaces M(%,9, R) are flat or curved. 

An inspection of isotopic expressions (3.224) or (3.225) yields the follow­
ing additional property. 

Lemma	 3.3 [14]: The isotopic transformations (3.!14) can be ezplicitly 
computed from the sole Imowledge of the conventional Lorentz generators j 
and Ai in their fundamental (.I%./) representation and the generalized metric 
g. 

In fact the assumed topological restrictions on 9 assure the existence of 
an isotopic Poincare-Birkhoff-Witt theorem (§2.2). The proof of the conver­
gence of exponentials (3.224) to a finite form is then reduced to the proof of 
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the convergence of the conventional exponentials (3.213). Corollary 3.3.1 
[14],{58}: The Lie uotopic theo,., allow. the ezplicit constn.&dion" 01 the 
lorm-invariant tranaformationa not only for /fat generalizationa M,(%,g, R) 
and MlI(%,g, R) 01 the Minbw,ki 'pace M(%, 'I, R), but allo for all per­
mitted gravitational mode" on tlll,(z,g,R), whether of conventional or 
generalized type (,~  nezt ,ection). 

An inspection of isotopic commutation rules (3.226) and the use of the 
theory of §2.4 (see also the classification of the isotopes 0(3) of§S.2) leads 
to the following additional property. 

Lemma 3.4 [58]: The isotopic group, 0(3.1) on Mlll(Z,g,R) are gen­
erally nonisomorphic to 0(3.1). Depending on the GI.umed metric and its 
topology, 0(3.1) Cdn be uomorphic to any .iz-parameter group of Carlan'. 
clGllijicotion, i.e., 0(3.1), or 0(2.2), or 0(4) or other group" 

The reader should note the appearance of the .tructure functiona of 
§2.3 in isocommutation rules (3.226). Remarkably, Santilli identified the 
need to replace· the structure constants with structure functions on pure 
mathematical grounds, while studying the isotopic generalization of Lie's 
second theorem [1]. This was several yean before the essential appearance 
of these functions in actual models. 

Recall that the central idea of the Lie-isotopic generalization of a given 
Lie symmetry is to leave unchanged the parameters and the generators of 
the theory, and generalize instead the Lie product. In the preceding analysis, 
Santilli left the parameters of the Lorentz group unchanged under the lifting, 
but changed the generators via redefinitions (3.222). This was done to reach 
form (3.226) of the isocommutation rules which is more suitable for the proof 
of the isomorphism of 0(3.1) wit~ 0(3.1) of the next section. 

The reformulation in terms of the original basis (3.211) is straightfor­
ward. Consider that basis in the form M"", and recall that their commuta­
tion rules are given by 

[McrthM-yS] =-'1a-yMPi +'1aS M/rt +'1/rtM~i  - '1Pi Ma-y, 

'I = diag(l, 1,1, -1). (3.232) 

It is then simple to show that, under isotopic lifting, we have the isocom­
mutation rules 

[J,;J;] =-£,jlegIt:It:JIt: 

[M,;M;] = -g44£,;It:JIt: 

[J,;M;] =-gjj£tjIt:MIt: (3.233) 

which can be written in the unified notation [58] 

[Mcrp;M-ys] =-ga-yMPi +gcriMp-, +9p-yMai - 9PiMa-y, 

9 =diag(glltgn,g33, -g44). (3.234) 

Note that, despite the similarities of rules (3.232) and (3.234), the alge­
bras are not generally isomorphic because of the possible different topologi~  

of the metrics 'I andg. Also, the reader should keep in mind that i80com­
mutation rules (3.234) occur for a generally curved space, although of the 
isotopic form M",. 

The extension of the results to the Poincore algebra (also called the 
inhomogeneous Lorentz algebra P(3.1) =0(3.1) ED T(3.1), where T(3.1) is 
the Lie algebra of the group of translations in conventional Minkowski space, 
has been investigated by Santilli in ref. [58] for the case when 9 does not 
depend on space-time coordinates %. 

Consider the isocomp08ition of a Lorentz-isotopic transformation Aand 
of an isotranslation T on spaces itIII 

{A,T} • % =A• % +G, 

G =(a") =(i,a4
) =const., (3.235) 

by keeping in mind that the product of two such transformations "{AI' 1'1} 

and {A2, T2} follows the isotopic rule 

{AI,TI}. {A2,T2} = {AI. A2,Tl +A2. T2}. (3.236) 

Let P" be the generators of translations in conventional Minkowski space 
(recall that the M"" generators are also the conventional ones). Then, the 
Lie- isotopic generalization of the Poincare algebra is given by the isocom­
mutation rules [58] 

.. { [M~p~M-,6] = -ga-yMp, +gcrSMp-, +9p..,Ma6 - 9P6Ma-, 
P(3.1) : [MaP'P-,] = g/rtPa - 9a-yPp,. (3.237) 

[Pcr;Pp = 0, 

(where the reader should keep in mind the diagonality of the P's). 
Again, despite the similarity of isoalgebra (3.237) with the conventional 

one, the algebras P(3.1) and P(3.1) are generally nonisomorphic. 
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The extension of the above result to the lifting P(3.1) of the Poincare 
group P(3.1) is straightforward [58] and essentially provided by the semidi­
rect product of the isotopic pup O~(3.1),  Eq. (3.224), times the isotopic 
group of translations 

T(3.1) : T(a) = exp(P"'1".,a")I, =i exp(P"g",,%")I., (3.238) 

with similar procedures for the inclusion of the isoinversions. For these and 
other aspects we refer the reader for brevity to the locally quoted paper. 

In order to identify the isotopic Casimir operators, we have to review 
the means of lowering and raising the indices of the various quantities [58] 
which fonow conventional geometrical (e.g., affine) approaches. Let Igi be 
the determinant of g, and introduce the contravariant metric tensor g"" 

defined by 
glfOgo" =,=,	 (3.239) 

with solution 
(g""1 = )g""r-1

, (3.240) 

i.e., because of the diagonaJ. maracter of the considered metrics, 

,"" = g~ •	 (3.241) 

Then, the covariant (contravariant) vectors %,,(P") are characterized by
 
relations of the type
 

%" =g""z" ,%IA =gl&" Z", PIA ='I&"P" ,P" =glA"P", (3.242) 

and verify the identities 

z"g""z"	 = z"9""z,, = z"z" = zlAzlA 

= Zigijzi - %4g44%\ (3.243) . 

as the reader can verify.
 
Similarly, for tensors we have ~he raising of the indices
 

},I"" = glfOgl'lfMo(J,	 (3.244) 

with similar forms for' other cases. 
After these preliminaries, one can introduce the -isotopic generalization 

01 the Pauli-Lubansl:i lour-vector (or Pauli- Lubansl:i isovector) on isotopic 

spaces Mill [58) 
w" = ~EIo'O""MO(J  • F', (3.245) 

which verifies the properties 

[Mop;W..,J = ,~WO  - gG""fWp, 

[Po~W(J) = 0,	 (3.246) 

where use has been made of the isotopic rule [30] 

[A;B • C) = [A;B) • C +B • [A;C]. . (3.247) 

It is then easy to see that the «nter 01 the Poinmri- isotopic algebra 
P(3.1) is given by the isounit i =g-l, the quantities in R . 

pi =(p"gl&"p")i =(P'9ijPj - p4g44p4)i, 

Wi =(W"g""W")i = (W"'jwj - W4g44W4 )i, (3.248) 

as well as any of their iso-combinations. 
The derivations of the numerical values of the above isocasimira from 

the conventionaJ. ones is the mathematical foundation of Santilli 'a concept 
of "mutation" of elementary particle when immersed within dense hadronic 
matter [2]. This important new concept is illuatrated in Appendix C via the 
isotopic lifting of field equations (153), i.e., field equations that are covariant 
under P(3.1). 

'3.4.8 Lie-isotopic Generalization of Einstein's Special Relativity 

Following ref. (14), we now restrict the analysis to Santilli's spaces of the 
first class, Eq. (3.195), with fourth component (3.202), i.e., 

M,(%",R) : %2 =%",,,,,%" =%lb~%1  +%2b~%2 + z3b~z3 _ %4C2z \ 

• 
...4 - t·r' - 0	 (3.249).. -, 1&"-, 

where the diagonal elements have a positive-definite character in the consid­
ered region of isospacetime. The subsequent property follows from Theorem 
2.9 and the preservation by spaces MI of the topological character of the' 
conventional Minkowski space. 

Theorem 3.8 [14]: The Lorentz group 0(3.1) on MinkoU1ski 'pace M(z, 'I, R) 
and all po88ible isotope, 0(3.1) on 'pa«. M,(%",R) are (loctJllyJ isomor­
phic, and they coincide at the abstract, retJlization-jree level. 
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To put it differently, the~ ezisU only one ab.tract Lo~ntz  group, say 
0(3.1), that realized in terina of a Lie algebra with abstract product ab-6o, 
where "ab" is an unspecified Lie-admissible product in a coordinate Cree 
form. Then there exist infinite varieties or realizations 0(3.1) in terms of 
the product AgB - BgA where 9 possesses the same topological structure 
of the Minkowski metric. Finally, there exists the "simplest possible realiza­
tion" 0(3.1), that of the contemporary literature with trivial Lie product 
AB - B A and the Minkowski invariant. All these different realizations are 
geometrically equivalent, and algebraically isomorphic. 

Owing to the convergence of exponentials (3.225) (Lemma 3.3), the iso­
topic transformations can be easily computed for each given generalized 
metric 9 (which is the only unknown of the expantions). 

In the case of motion a1on~  the third axis and for arbitrary elements 
bl, c2, exponential (3.225) on Mr yields the following generalization of the 
Lorentz transformations (3.163) intr\lduced in ref. [14] 

1 0 0 

( 

I" 0 1 
z =A • z = 0 0 

o 0 

0 
cosh(wc) 

-.t; sinh{wc) 
-t-sit<tl/C») (::) , 

cosh(wc) z4 

(3.250) 

which can be written more explicUly 

I
zll =zl 

z2J =z2 

z31 =;(z3 ­
Z41 = ;(~4  ..:. 

. 

vz4), 
u:;v z3), 

.. 

(3.251) 

where 

; =cosh(wc) =(1 - iJ)-t/2 =(1- v:JV)-t/2 
(3.252). sinh(wc) = ~t;iJ2 = ~{


6:t =6:t(z;:i; niP; T; .. .); c =c(z;:i; n; 1'; T; ••.). 

The nonlinearity of Santilli's transformations is then evident. The verifi­
cation that they do leave form-invariant separation (3.249) is a simple but 
instructive exercise for the interested reader. The computation of different 
forms for different explicit expressions of the metric is also trivial. Finally, 
the inclusion of the conventional Lorentz transformations, Eq. (3.163), as a 
particular case is also evident. . 

Needless to say, the transformations acting in the three-space {zl ,z2,z3} 
are the iMlrotatioRil of §3.2. Eqs. (3.251) provide an example of is06oo,,.. 
The isoinvertioR8 have been reviewed in§3.4.7. 

DEFINITION 9.8: Santilli's transformations (also called Lorentz­
isotopic transformations) ,hall be called 0/ the first, second or 
third class, depending on whether they letJve invariant the ,ep­
aration 0/ 'pacu 0/ the fir,t, M!COnd and third cia. (Definition 
3. 7), ~8peCtively. Their mo,t general/orm i8 characterized by 
arbitrary ,uperpo,itioR8 0/ uorotatioR8, iso600,,. and isoinver­
Bionl. 

We now come to a central point of this review. 

DEFINITION 3.9: Santilli's Relativity of the First Class, or 
Santilli's Special Relativity, is the generalization 0/ Einstein', 
Special Relations characterized by the Lo~ntz-isotopic  trans/or­
matioRl 0/ the first cla. on M,{z,g, R). 

The following property can be easily proven. 

Theorem 3.T [14J: Santilli'. Special Relativity is 0 C!Jvering 0/ Einstein', 
Special Relativity in the 5mBe thot 

a the generalized relativity i8 corutructed with mothemotical methods (the 
Lie-isotopic theory) structurally mo~  general than those 0/ the con­
ventional relativity (Lie'. theory in its simplest pouible reolization); 

b the generalized relativity describe. phy,ical conditioR8 (eztended-de!ormable 
particle. moving within inhomogeneous and anisotropic media) which 
a~ ,tructurally mo~  general than tho,e 0/ the conventional relativity 
(point-like particles moving in vacuum); and 

c the generalized relativity 

le-l} contains the conventional relativity as a particular case; 

le-!} can approzimate the conventional relativity as close as de­
'ired, evidently/or 9 ~ '1; and 

Ic-3} recover, the conventional relativity identically/or g == '1, j = 
I =diag(1, 1, 1,1). 
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The eqlicit co",trudion oj th~  .generalized relativitll will be reviewed in 
the nut .ediorv. 

DEFINITION 3.10: Santilli'. &lativitie. 0/ the SeCDnd and 
Third CIa.- are thOle claaraeterized 611 lA>rentz-u"topic truu­
formatiorv 0/ the 6«Dntl a,",",third cia.. on MI1(z,g,R) and 
1411I(z, g, it), re.,ectivel,. 

Note that these more general relativities do not constitute, in general, "cov­
erings" of Einstein'a Special Relativity (in the sense of Theorem 3.7) because 
the generalized metrica g do not Mimit, in general, the Minkowaki metric aa 
a particular cue. 

Also, note that the isotope 0(3.1) of these broader relativities u not 
necessarily isomorphic to 0(3.1), as iDclica~  earlier. 

The generalization of Class II i. important to achieve the desired unity 
of physical and mathematical thooPt. In fact, one can find in the literature 
severalstudiea on conceivable generalizations of the special relativity, still on 
lat spaces, but with a topology different than that of the Minkowski metric. 
All these studies are then unified by Santilli's Relativity of the Second Class. 

A. an example, Recami and Migaani (93] have introduced the nperlu­
minal truru/oNflatioru 

%12 = ZlCgz' = _z2 = -z'"z, (3.253) 

which are evidently transformations in Mll(Z,g,R). Note that Recami­
Mignaai's transformations provide the generalization to (3 +1)-dimension 
of the notion of isotopic duo' introduced in §3.2 (Definition 3.1) for the case 
of the isotopic lifting of rotations. The reformulation of transformations 
(2.353) in terms of the Lie-isotopic theory is therefore recommended. 

The generalized relativity of Class DI is of gravitational character and, 
as 8uch, will be discussed in the next section. 

In closing, we note that no lifting of the Lorentz group with iaotopies 
different than those of ref. (14] haa been investigated untll now, to our 
best knowledge. We are referring to iaotopies of the associative enveloping 
algebra with products of the type (1.10) i.e., A. B =W AWBW, W 2 =w. 
The reader should however be warned about the general loss of the unit 
under the latter isotopy, with evidently deep implications for Lie's theory 
which are absent in isotopy A. B =AgB, j =g-l. 

3.4.9 Maximal Speed of Mauive Particle. within Physical Media 

In Einstein's Special Relativity, the maximal speed of a massive particle (or 
of a caU8al, physical signal) is that of light in vacuum. It i8 characterized 
by the infinitesimal separation in Minkowski space M 

jth2 = tb'6,jc - dz4c:dz", dz" = dt, (3.254) 

when of null value, 

dr· dr - dtc:dt =0, (3.255) 
resulting in the value 

w'"'2 (d' 2 2 
VM,g = d') = eo (3.256) 

w~ch  also provides the fundamer..tol intlGriant of the theory. 
In Santilli's Special Rela.tivity, the infinitesimal separation is defined on 

isotopic spaces. M1, and is given by 

,u2 = dZ'61dz' - dz4C2dz4. (3.257) 

The case of null separation 

dr'61dr' - dtc2dt = 0, (3.258) 

then yields the expression 

dr' dr' .-62_ - c2( •• •• n· 'I· T· )dt 'dt - *, *, ,,., ,... , (3.259) 

which is the covering, fundtJmental invariant of the new theory. 

POSTULATE 3.1 [12],[14]. The mazimtJI possible speed 

-0 dr del • 
VMcu: = IdtlMcu: =C(z;z;p;T; ...), (3.260) 

predicted 6y Santilli'. Special Relativity for mlJ88ive phllsiccd arti­
cles (or coUBalsignals) propogtding within physicol media (§3.3.6) 
can be higher equal or smaller than the speed o/Iight in tlGcuum 
Co 

VMcas =C C Co, (3.261) 

depending on the particular physictJI conditions at hand. 
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To illustrate this p08tulaie, it is best to consider the case of an isotropic 
Euclidean space for which Equation (3.259) becomes 

dr'	 drj 

d;"jd; = c2/62,6t = 62 = ~ = 6> o. (3.262) 

The maximal speed C is then given in this case by 

dF C 
VM-. = Id,IM-. =C =i· (3.263) 

The existence in Nature of causal physical signals propagating faster 
than light in vacuum, which waa postulated in ref. [12], has a number of 
independent, although preliminary, tonfirmations. Consider for instance, 
Nielsen's mutation of the Minkowlki metric Eqs. (3.170), i.e., 

• 1 1 1 2 » ()9 = diag(l - 3 0 ,1 - 30,1 - 30, -co(1 +0 . 3.264 

Then, Santilli's maximal speed C for the case of hon.t, Eq. (3.173), is given 
by 

o =(0.61 :J: 0.17) x 10-3 > 0, 

1+0
C =Co--1- > Co,	 (3.265)

1- 30 

and does indeed result to bl! higher th-. Co. For the cas.e of the pion.t, Eq. 
(3.172), we have instead, 

o =(-3.79 :J: 1.37) x 10-3 < 0, 

. 1+0 
C=Co~<co, (3.266)

1-)0 

i.e., the maximal possible causal speed is 'moiler than Co (recall from 13.4.6 
that light itself cannot propagate within such hyperdense media). Eqs. 
(3.265) and (3.266) provide clear illustrations of Postulate 3.1 for the cases 
of maximal speeds higher and lower than the speed of light. 

At a deeper analysis, all ,tutlie, on Lorentz noninvarian~ reviewed in 
S3.4.3 generall" admit mazimal po,1i61e ,pmlI higher than that 01 light in 
vacuum. This is the case of the studies by Bloc:kintsev (67), Pecei [68], Kim 
[69], the various works by Nellsen and collaboratOR [70], Huerta-Quintanilla 
and Lucio [71J, Aronson et 01. [72], and others. 

In general, all modificatioRl/mutatioRl 01 the Minkowa metric mUlt 
n«eIBaril" renlt in an alteration 01 tlae mazimal ,peed 01 mU1a1 ,igJllJll, 
triviall", 6ecaule tlae 'pa~ remaitV /fat. The emerging nelD mazimal ,peed 
can then be, depending on the conditiOn.t con.tidered, higher, equal or maaller 
than 'he ,peed 01 light, ezactl" along Santilli', Po,tultJte 3.1. 

The above property was put in rigorous terms by de Sabbata and Gasperini 
[149] who, stimulated by Santilli's paper [12], computed the maximal POl­
sible speed within hadronic matter via the use of gauge theories, resulting 
again in a maximal speed which is higher than co. These latter calculations 
are reviewed in Appendix B. 

Additional, independent evidence, again purely preliminary, in support 
of Postulate 3.1 is given in astrophysics by certain galactic conditions under 
which ordinary matter appears to propagate faster than Co. 

. More specifically, Santilli postulated the following cases [12]: 

a)	 Nuclear 'tracture, in which cue the maximal speed is expected to be 
generall" IoUler than Co; 

b) Hadronic ,tracture, in which case the maximal speed is expected to be 
generGll" higher than Co; and 

c) Supenlerue ,tar ,tracture (e.g., the core of a collapsing star) in which 
case the maximal possible sPeed is expected to be inuch higher than 
Co and, under suitable limit conditions, even Jnfinite. 

The physical basis for the above expectations is provided by the interac­
tions at the foundation of the studies on Lie-isotopy: the contact, nonhamll­
tonian interactions experienced by particles when moving within physical 
media. In fact, as stressed earlier, these interactions are of insttJntaneou, 
character by conception and, as such, substantially outside Einstein's Spe­
cial Relativity. Furthermore, the interactions are of nonpotential nature also 
by assumption. Therefore, conventional relativistic considerations regarding 
the energy needed for the acceleration of the particles simply do not apply. 
·A new physical horizon, beyond that of Einstein,then emerges quite clearly. 

When a particle is under the joint action of conventional forces (e.g., 
electromagnetic, or weak, or strong, or ·gravitational), plu, the additional 
contact forces due to motion within a medium, the emerging maximal speeds 
is then expected to be precisely along Postulate 3.1. 

The postulated increase of the maximal speed in pusing from nuclear to 
star conditions is suggested by the progressive increase of the contact non­
hamiltonian interactions. In fact, the condition of mutual wave overlapping 
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of the constituents of nuclei (proton8 and neutrons) are minimal and esti­
mated of the order of 10-3 nucleon'8 volumes from values of nuclear volumes 
u compared to the volumes of the charge di8tributions of the nucleon. 

In the transition to the 8trudure of hadron8, 8uch u the protoDl and 
neutron8 themselves, the condition8 of mutual overlapping of the wavepack­
et8 of the con8tituents increue substantia1ly to about 100% of the charge 
distribution which is·approximately the same for all panicles and equal to 
the range of the strong interactiou (IF). Finally, in the transition to the 
core of.tars undergoing gravitatioaal collapse, we have not only 100% over­
lapping of the wavepacket8 of the constituents, but also their' compression. 
A progressive increase of the maximal possible speed is then consequential. 
Thi8 is, in essence, the central phY8ical idea of the postulate submitted in 
ref. [12].. 

It should be 8tressed, to avoid mi8representation8,. that particles propa­
gating at qeeds higher than Co a~ not tachl/OM when dealing tDith Santilli's 
Special Relativity, 6ut onlina,., phl/6iaJl particlu. In fact, the conventional 
notion of tachyon8 demands proP8lation in -vacuum, being strictly referred 
to the conventional special relativity. In Santilli'. ~  we have motion 
within phY8ical media, thus resulting in a different notion of tachyons, as 
conjectural panicles traveling faster than the 8peed C of Postulate 3.1. 

Another point that should be stle88ed to minimize misconceptions is 
that the notion 0/ mazimol caUIltJl .".J in Einstein'. qecial ~lativit"  U an 
absolute comtant, the invariant 4 thot applie. ef7ef'1ltDhe~ in space-time. 
In Santilli'. Special Relativitl/, iR8tetJd, the notion 0/ the fJlG%imal corual 
.peed u a .trietl" local invariant that can 6e generally defined only in the 
neighborhood 0/41 point or at 6e,t in .mall regiom o/.pace (e.g., the interior 
0/ a iaon). 

3.4.10 Isotopic Generalization of the Light Cone 

Another important concept introduced in ref. [14] is the generalization of 
the conventional notion of "light cone" caused by isotopic liftings of the 
space. 

DEFINITION 3.11 Ill}: The isolight cone, or hypersurface 
of maximal speed of mauive particles, Eq. (3.161), u the de/or­
mation of the light cone corum b" the lifting 0/ the Minkowski 

, 8pOce M(2:, ",R) into Santilli's uotope o/the first clu" M,(2:,g,R), 
and divide' the uospace itself into the follotDing three regiom: 
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1. isotime-like region,	 when the separation u ne,ative- defi­
nite; 

t.	 iaonull re~on  wlaen the Rparation U null; and 

3.	 ilOlpace-like region when the 'qJOmtion u poative definite. 
(S~  Fig. -I/or more details.) 

Specifically, 8Uppose that the observer is at the origin of the isotopic 
space ifI. Let 2:1 and 2:2 be two Uoevents in iti. Then their separation can 
be . 

Isotime-liie when 2:2 < 0, 

Isonull when 2:
2 =0, 

I,o,pace-lib when %2 > 0, (3.267) 

where 
%2 =2:lAg""zV =2:i626ij~  _ 2:4c:22:4, 

% = 2:1 - %2. z4 =t.	 (3.268) 

.,x + '-,Y - u:2t • 0--+1-- . 
C < c••cuu.. 

.,x + ''2y - te2t • 0

ntH.' ~ > C..CUUIII 
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FIGURE 10. A reprodaction of Fia. 1 of ref. [58] depictins the defor· 
matioa (matatioa) of the lipt coae caued by coatad, iIlItaataDeoal. aaU 
ruse iDteradiou experieDced by (exteDded) particle. wheD morins withia 
a phJlitai mediam. Tlae deformed coae. charaderile tlae muimal lpeed of 
cauallisDaie (e.s., the muilllalipeed of a m"'ye ordiaary particle) whicla 

re.alte to be eqaal, sreater or .maller tla... c. = c.ACtt."', depencliDS OD 
the phJlical coDdidonl at laud. AU aftilable p!aenomenololical iDformatioD 
i8 eDcoarqinpy fayorias the laypotlae.ia of phy.cal .peed withia hadronic 

matter hisher tla.. Co. In fad, all reeearell OD LoreDu "oaiaftriaace- re­

riewed bl 13.4.3 {ayor a deformatioD of tlae Mialro"ati metric ia the iDtenor 
of laadro... ID tarD, .aell a deformatioD neceuarily implie. u alteradoD of 
the maximal .peed of m..ift particle (58]. De muilllal Ipeed can then 

be biuer or .maller thu c~  depeDd. OD tlae circaml&aacel. And in fad. 
u mutrated in tlae text, the NieIIea.Picek del'ormatioa of the Mbalrow.ki 
metric (10] implie. that tlae muimal caual Ipeed i8 ..alIer tlau c. iuide 
the piou, bat it become- IUsJaer th.. c. iuide the bo.. exatly alODS the 
two correepoDclias, del'ormed CODe. of the fipre. TJu. appean to indicate ... 
blereue of the muimal Ipeed with the deuity, thu npponias the soeral 
calculation of the maximal lpeed proyided fa Appendix B, of co.rae iD a 

prelimiaary "ay. The reader .hoald be aware that (58] EiuteiD" Special 
Relatirity remain••trictly ftlid in. the arena of ite orip.aI conceptioD (mo­
UoD of poiat.-par&ide. iD nnam). Ne.ertlae1eu, wheD couideriaS faDd.. 
meDtally dift'erent phylical condi~on., deriatioa. are Dot oaly expeded, bat 
adaaUy Deceu&rJ to achieye com~tibility with aftilable phenomenological 
iDformadoD (13.4.3). FiDalIy, .atlldenatioa are referred, .pecifically. to the 

Special RelatiYity ud not &0 &he LoreDu .ymmetry "hich remai.. exact ill 
the iIlterior of hurou altho.sJa at the COYerbaa Lie-i80topic level. 

Throughout this section we shall assume for simplicity (but without loss 
of generality) that the metric of the isotopic Euclidean space is of the type 

. gij ~ 626ij,6 > O. (3.269) 

The following four cases are identified in ref. [14]. 
CASE lA: VMG~  =Co, C < Co. 
This is the case of propagation of light and particles within transparent 

fluids, a typical example being given by the C'herenkov light. In this case, as 
well known, light propagates at a speed smaller than Co given by the familiar 
rule 

c =Co (3.270)
ra' 
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Tests II, are of manifest, less, comparative relevance. These ethical aspects 
have heen pointed out by Santilli [132], and are not reviewed here. We 
restrict ourselves only to indicate that, when fundamental tests remain ig­
nored for protracted periods of time, scientists in good faith should expect 
the emergence of ethical issues. 

But the fundamental tests primarily suggested in this review are the 
following. 

FUNDAMENTAL TESTS 111: MelUure the 10Ctl1 i1olidit" or inva· 
lidity of Eirutein's Special Relativity within Iuulronic matter via 
the meaure of the behaviour 0/ the mean li/e of unstable hadroru 
at different energies (Figure 16). 

The test in this case are numerous and consist, more specifically, of the 
melUure of the behaviour of the mean li/e of (at least) pion. and kaons at a 
sufficient number of different 8pf!eds to allow the verification or the disproof 
0/ the Eiruteinian laW" (3.165), 

r =ro7 =ro(1 - ,,2/CfJ>-1/2 (3.492) 

A. reviewed in Section 3.4, p088ible deviations from law (3.492) should 
follow Santilli's isotopic law (3.279), i.e., 

T=111'7 =flI (1 _tI~tI fl/3 (3.493) 

which, as shown by Aringazin (89], unifies all known or otherwise conceivable 

modele of "Lorentz noninvariance" revi4!wed in Section 3.4.3. 
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FIGURE 11. A reproclactioa of Fiaare 5.6, PAle 592 of moaopaph [21J 
nmmuiaial the coaceptaal buia of the fuadameatal experimeatal &eltl tee­

OIIUIleaded ia thia work: meuare &he behaYioar of the mea.a llle of autable 

laadrou wlaUe mcwiJas ai differeat eaerps ia a particle accelerator. ne 

ceater-of-m.. mOUoa atried, obeJa Eiuteia'a Special Relatirit,. Never­

thelee., the iaterior dJllamia ia faadameatall, DoaeiDateiaiaa. Thia ia due 

to tile fad thai the former dJllamica1 ewolatioa ocean ia ftC1lum, "lane the 

latter deala with motioD ofexteaded wayepacketl (the hadroDic coDatitaeatl) 

moYiDS withia a ph,.cal mediam compoeed ofother coDltitaeDti. TIle com­

patibilit, of the above two dift'eretat dJDamical cODditioDa hu beea proYed 

ai alIleftla of de8Criptioa, thai ia, at the Galileaa (13.3), Rela.tiYiltic (13.4), 

GraYitatioaai (53.5) aad operator ley. (§1.3), aad it ia ao" aa establilhed 

fad. TIle oal, bowa wa, accordiD& to "hida deYiatioDa from Eiu&eiDiaa 

la.. iD the iaterior d,Damica muifett tlaelll8e1Ys ia the exterior ODe ia ria 

depar&afe8 frOID the £ioteiaiaa Ia" of time dilatioD. All a coueqaeDce, the 

propOMd teata are the mOlt faadameatal ODS coaceinble at thia time, ia.. 

• ada .. the, probe the local EiaateiaiaD or DODeiaiteDiaa behavioar of the 

altimate Itradate of matter. It il1'efJ relrettable that the ie-tl, propoeed 
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fields and sufficiently high rotational conditions. Nevertheless, the experi­
ments may well be within practical realization nowaday, owing to advances 
in superconductivity and other fields. 

The f~ndamental  nature of Tests I is manifest. For instance, the tests 
could well allow the resolution of the vexing problem of "unification" of the 
gravitational and electromagnetic fields originating in the charge structure 
of matter along Santilli'. hypothesis of their "identification" (3.334), i.e. 

= eElmM Oray	 -(3.489)lUI - lUI 

In turn, such an identification would open the door to realistic possibilities 
of achieving a unification, not only of the electromagnetic and weak interac­
tions (as ·permitted by the conventional Lie theory), but also of the strong 
and gravitational interactioD8, as conceivable under isotopic lifting of gauge 
theories (See Appendix A). 

There is a1~  little doubt that Fundamental Tests I are now grossly over­
due. 

The second group of experiments reviewed in this work consist of the 
following. 

FUNDAMENTAL TESTS 11: MetUUre the de/ormation/rotational­
ouymmetry/magnetic-moment-mutotion which u upectedlor neu­
trou (or on, other hadron) under ,ufficientl" intense (e.g. nu­
cleor) e:rtemol fieltll (Figure 6). .. 

The tests have been conducted by Rauch and his collaborators (see ref. [131] 
and quoted papers) via neutron interpherometric techniques up to 1982, but 
regrettably halted since that year. , 

The latest available experiments tested the spinorial symmetry of neu­
trons via two complete spin flips while the (low energy) neutron beam is 
under the action of an external nuclear field (i.e. the spin flips 9ccur while 
neutrons are under external nuclear forces). The best available measure are 
715.87 ± 3.8 which, as such, do Dot include (within the limits of the ex­
perimental error) the 720 deg needed to establish the exact nature of the 
spinorial symmetry.. • 

A preliminary, but full and direct representation of the above deviations 
from the exact SU(2) sYmmetry hu been reached by Santilli [153] via the 
iso- -Dirac', equation, i.e., the isotopic generalization of the conventional 
Dirac's equation which is the in\?Lfiant under the Poincare-isotopic group of 
Section 3.4. 

Fundamental Tests n shall be considered in detail in a separate re~iew  

on the "hadronic generalization of quantum mechanics" (Sect. 1.3), owing 
to their essential operator nature on Hilbert spaces. Here, we limit ourselves 
only to indicate the manifest plausibility of the violation of the conventional 
rotational symmetry in particle physics. In fact, perfectly rigid, spherical, 
charge distributions (3.1), i.e. 

r f 6r =:r:r +" + zz = 1	 (3.490) 

do not exist in Nature, but admit instead deformations, e.g., of the ellip80idic 
type (3.3), i.e. 

rfgr =	 :r6t:r +y61, +z~z = 1 

6, > O,k= 1,2,3 (3.491) 

with manifest breaking of the roationalsymmetry. The deformation is -mea­
surable because it implies a (necessary) alteration of the magnetic moment 
which, in tum, is measurable via the teat of the spinor 2r-symmetry of 
neutrons under external nuclear interactions. 

It should be stressed that the teats have been Cully within current exper­
imental feasibility since quite some time, as well known. 

The fundamental nature of Tests IT is incontrovertible. After all, the 
rotational symmetry is at the foundation of quantum mechanics and all of 
particle physics. It is a truism to say that deviations from the rotational 
symmetry, when experimentally established t could stimulate a new scientific 
renaissance. In particular, the mutation of metric (3.490) into form (3.492) 
is a clear case of isotopy and, as such, it provides one of the most important 
applications of Santilli Lie-isotopic generalization of the group of rotations 
(§3.2). This implies, in particular, that the rotational symmetry remains 
e:ract at the isotopic level. Only its conventional realization is violated by 
deformations (3.49t) (see Appendix C). 

Fundamental Tests II are also grossly overdue. In fact, the only avail­
able tests are those by Rauch and collaborators [131]. In particular they 
show a violation of about 1% (outside statistical errors). Lacking the final 
experimental resolution of the issue one way or the other, the entire branch 
of particle physics dealing with the rotational symmetry is now in a state of 
"suspended animation". 

The situation becomes unreassuring and acquires nonscientific (e.g., ethi­
cal) overtones ifone notes that all experiments currently preferred in particle 
physics, besides costing substantially more than the relatively inexpensive 
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We .choose, as usual, this second integration constant equal to - 2m = 
-2GM (where G is the Newton constant and M the mass of the central 
source) in order to obtain the Newtonian gravitational potential in the weak 
field limit; combining (3.484) and (3.485), we obtain then, to fint order in 
a, 

-,\ m e = 1-2­
r ' 

e" = (1- 2~)1+fCOel'(1+fcoJ. (3.486) 

The value of {J could be determined by imposing the boundary condition 
that, in the limit in which the gravitational field is vanishing, the metric 
must .reduce to the isotopic form (3.441). In this case one can easily obtain, 
to first order, (J = In(1 + a) (modulo a suitable renormallzation of the 
constant value of the light velocity in vacuum). Notice, however, that the 
requirement of spherical symmetry is not sufficient to determine univocally 
the choice of the time coordinate in the proper-time interval (3.481) and, 
in view of the general covariance of the theory, we are free to define a new 
coordinate t' =let), where I is an arbitrary function of t only. 

Using this freedom we can Choose then the time coordinate so as to 
eliminate the exponential faA:tor on the right-hand side of Eq. (3.486b) or, 
in other words, to put the integration constant {J =O. Therefore 

e" = (1_2~)1+fco. (3.487) 

In this way Gasperini obtains the Itatic, spherically symmetric approximate 
solution of the isotopic equations (3.436), to fint order in a, 

1+10 d 2"2 = _( 1 - 2~) dt2 + r 
r 1- 2m/r 

+ r2(d92 +sin2 9dep2). (3.488) 

The usual Schwarzschild solution can be recovered in the limit a ~ 0, 
corresponding to an exterior motion. 

Isotopic lifting (3.488) of the Schw&rZschild metric is significant for a 
number of aspects. In fact, it opens up a problem, unexplored until now, 
regarding the implications for black holes caused by the isotopic lifting of 
gravitation. 

More specifically, we are referring to the identification of the depar­
tures from the Schwanschild metric and gravitational singuJarities in gen­
eral caused by a bona-fide representation of the physical conditions of the 
interior problem with metricsless approximated than (3.441). All available 
studies are essentially based on the same theory for both the exterior and 
interior problem without any treatment of their physical difl'erences. 

Note also that the Lorentz-isotopic theory can provide the explicit form 
of the symmetry transformations, not only for the isotopically lifted metric 
(3.488), but also for the conventional Schwarzschild metric. Their explicit 
construction is another interesting open problem we recommend for consid­
eration by interested researchers. 

3.5.18 Some Overdue Fundamental Experiments 

A primary purpose of this review is to recommend the conduction of truly 
fundamental experiments, that is, of experiments on fundamental physical 
laws, rather than tests on secondary aspects and, therefore, of secondary 
relevance. We shall review below a few basic tests which have been sug­
gested for quite some time, hut have remained, regrettably, ignored by the 
experimental community and are DOW substantially overdue. 

The first basic tests were reviewed in Section 3.5.3 and they can be 
expressed as follows: . 

FUNDAMENTAL TESTS 1: Mt4Sure the prediction 0/ gmvita­
tional theories that any electromagnetic field is a ,ouree 0/ a 
gmvitational field (Figure 19) 

The experiments have been lingering in the literature on gravitation 
since the early stages of the theory. In 1974, Santilli [100J brought them 
back to the attention of the experimental community by recommending first 
the measure of the gravitational field which is expected to be produced by 
large magnets as available at several laboratories. This first test is well 
within current ranges of sensitivity of neutron interferometric techniques. 
Secondly, Santilli suggested the conduction of deeper tests to measure the 
contribution to the gravitational field caused by the dynamical conditions 
of charges and/or magnetic moments .(see Figure 13 for a summary and 
ref. [100J for details). These additional tests, apparently, were not feasible 
in 1974 because of limitations on the sensitivity of gravity meters, on one 
side, versus limitations for reaching sufficiently high electric and/or magnetic 
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To first order in a, including also general-relativistic effects, Gasperini ob­
tains the approximate equation of the orbit 

(0) (I) m 
u ~ u + u = h2 [1 +cos(cp - cpo - Acpo)] , (3.478) 

where 
2 

I1cpo = V3m - fa) cp (3.479)( 

is the precession of the orbit per unit revolution angle cpo After a full revo­
lution (cp =211'), the perihelion shift is then 

6rm ( L)I1cpo =T 1 - fa M • (3.480) 

The above equations, again, are valid for the interior problem only of 
Gasperini-Santilli Gravitation with NielseJl-Picek tangent metric. Theyes­
senti~y  provide a quantitative, although approximate model of deviations 
from conventional Einsteinian equations that are expected for realistic con­
ditions in the interior motion. Equivalently, Eq.s (3.478) provide a first 
approximation of the physical differences existing between the motion of a 
test particle in the exterior case (motion in vacuum) and in the interior case 
(motion within a physical medium). I 

3.1.1T An Isot«;»pic Generalization of the Schwarz.child Metric 

Gasperini [62] finally computed explicitly a Lie-isotopic generalization of the 
Schwarzschild metric for the case of Nielsen-Picek parametrization (3.441) 
of local Lorentz "noninvariance". It should be stressed from the outset that 
the isotopic metric provided heloUl is not an emct solutions oj Eq.s (3.-199), 
but it provides a solution only on a first approximation. 

Nevertheless, the emerging model naturally applies to the interior of the 
neutron star of the preceding sections. As one can see, the findings are sig­
nificant to illustrate the profound physical implications of the Lie-isotopic 
generalization of Einstein's Gravitation, e.g., for the problem of black holes. 
The reader should be aware that similar results are obtained via any the­

. ory capable of representing the local nonconservation of angular momen­
tum and other quantities in the interior problem. To put it differently, the 
Schwarzschild metric is a by-product of the perpetual motion approxima­
tion in the interior problem implied by Einstein's Gravitation. If physical 
reality is admitted and quantitatively represented, say, for the vortices in 

Jupiter's atmosphere with a varying angular momentum, a departu-re.from 
Scw&rZschild metric is unavoidable. A· suitable revision of the conventional 
notions of "singularities" and "black" (or "brown") holes is then expected. 

The usual procedure to obtain a static and spherically symmetric solu­
tion of the gravitational equations is to introduce spherical polar coordinates 
{r,9,cp}, so that the proper-time interval can be written in the "standard 
form" 

d&2 = -e"dt2 +e"dr2 +r 2( d,2 +sin2 9dtp2), (3.481) 

where" and ~  are functions only of r (notice that a static and isotopic metric 
like (3.481) C3D be a solution of the isotopic equations (3.447) because, using 
the m.etric of Nielsen and Picek as the metric of the local Santilli space, we 
are considering a deviation from the conventional Lorentz invariance which 
is still rotationally invariant). 

The explicit computation of the Christoffel symbols and of the curvature 
tensor for the metric (3.481) showl that Ro,fJ =0 if a;: {J, that R22 =~3,  

and that the only nonvanishing components of R.OI4fJ are 

R 41 R.t4 Idv_l= +--e"I rdr ' 
R 42 R.t343 =_1.dve-l .42 = (3.482)2rdr 

In this case the isotopic equations (3.447) are reduced to only three inde­
pendent equations: 

! d2v +!dv +! (dV) 2 _! dv dv d~  =0 
2 dr2 r dr 4 dr 4 dr dr dr ' 

l,(lv 1 (dV)2 Id~  Idvd~  2adv 
2dr2 +:1 dr - ;: dr - :I dr dr =-3;-dr' 

l [ (dV d~)] a dv l,- 1 +.1r - - - - 1 =-r-e- . (3.483)
2 dr dr 3 dr 

By subtracting (3.483b) from (3.483a) and integrating, we get 

"(1- fa) + ~ ={J, (3.484) 

where {J is an integration constant; Eq. (3.483c) gives then 

r ev(l-fOl)-fJ =r + const. (3.485) 
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U8ing Eq8.	 (3.466), the radial equation (3.456) can be rewritten 
(0))-1 

- /:' ( 1 - 2m u = -1, (3.470) 
:., {(I - 2mu)-Wu12(hu)fo 

and Eq. (3.468) for <:) is reduced to 

(0) (0) m+	 h2u2(hu)f lll - /:2(1- 2mu)(1+fO)} utI + a - h' = o. (3.471) 
. 4 d = Q (1- 2mu)-1_-(h2ul'J)	 The well-known Newtonian solution { 3thp 

(0) m 
8 tl	 } u =1t2(1 +ecos(tp - cpo)] (3.472)+3dcp (h2u') , (3.467) 

represents an ellipse with eccentricity e, semimajor axis 4, and semllatu8 

3	 we have, from (3.468) and (3.469), the following equation for ~): 

where u =r-1 and a prime denotes derivatives with respect to tp. Notice rectum L related by 
that a circular orbit of constant radius, ti' = 0, ia still a possible solution of 
the isotopic equation (3.467). Supposing u' ~ 0, the equation of the orbit 

. 
L =4(1 ­ e 2) =­h

2 

m (3.473) 
becomes, to first order in a, To first order in a, neglecting terms of order higher than 

u"(ha)to - ~au"  +#&(1&u)"O(1 ­
3 

2mu) (0) 
o • ­

a (0) 
L and m u _ 

2 . 
m 
L2' (3.474) 

+ !aa".-l +mu"(ha)fo (l- 2mu)-1 

k2m 2	 2
v(l +30 )(1 - 2mu)-(1+ j lll) =0 (3.468) (ll (1) (0) 4 (0) m 

a + • -3m u2 +-0 U -20­
3 .. h2

An approximate solution of thia equation can be obtained by using an iter­
8 (0) (0) 16 m (0))ative procedure (as in general relativity), putting	 12+ 30 u u-1 +3"ah2'n h u = o. (3.475) 

, (0) . (1) 
u~a+.,·  (3.469) 

Using now the explicit expression (3.472) for <:), we can expand the last two 
terms for orbits with small eccentricity, neglecting terms of order e2 and

where (~  is the unperturbed Newtonian solution, obtained putting Q =0 and 
higher. We can also neglect the terms representing constant corrections, as 

neglecting the relativistic contributions. We suppose then that the isotopic they do not produce observable effects, keeping only those conections whose . (0) 
corrective terms, of order a ., are not larger than the terms representing contibution increases continuously at each revolution. Equation (3.475) is 

. (Ol	 reduced then to 
general relativistic corrediolJs (- m u ) due to the curvature of the world 

(1)H (1)manifold, and that both contributions are included in (~). 	 (6m3 m)
u + u = -,;;- -.'1 0 h2 ec08(tp - <po) (3.476) 

Putting the Q =0, from Eq.s (3.467) we have 

and the solution is 
. (0)) -1. (0) (0) 

. 1 - 2m u h' ul'J +h2 .2(	 (1) (m2 
) m. u = 31if - \'0 h2 eSln(tp - 'Po) (3.417) 
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Integrating this conservation law over an i808pacelike section (§3.4.11) of 
the world tube of the test particle, performing a multipole expansion of 
the gravitational field inside the particle according to Papapeltou's method 
[125J, multiplying by dt/d" and using Eq.s (3.460), one gets, in fint approx­
imation 

.! jtPZ'v'-'[9(,·4)(I- ~o)  + !oe(44)6i']
til - 3 3 ­

+r_": Jtt':lA8(",~)  =O.	 (3.462) 

Finally, defining 

mou"u" =: Jtl's'Ae(""), (3.463) 

where fRo is the mus, and u~  = ds"/til is the four-velocity of the teat body, 
we obtain the following equations of motion, for a Lie-isotopic theory of 
gravity in which the deviation from the Lorentz symmetry is paramtrized 
by the metric of Nielsen and Picek 

4 ,ps" 4 ,(Iz4 dz" dz'" 
(~ - 30 ) d,2 +3064" ,"2 +r.,,,," d, til = O. (3.464) 

In the limit Q ~ 0, we recover the UlUal geodesic equation, as expected. 
The above example of 'equations of motion is important to illustrate 

another aspect of the generalized theory, the local deviation' from geodesic 
motion in the interior problem (only), whim is the"crucial condition for the 
representation of local intemal deviations from conservative conditions, and 
interior trajectories of perPetual-motion type. 

The example also illustrates the "No No-Interaction Theorem" of Sect. 
3.4.15. In fact, for Q -; 0, trajectory (3.464) CGnnot be reduced to a geodesic 
motion. As a result, the test particle under consideration is experiencing a 
nowhere reducible, nontrivial interaction. 

As a final comment, the reader should be aware that Eq.s (3.464) have 
primarily locol meaning, that is, they provide a first approximation of the 
motion of the test particle in the neighborhood of a given point of isospace 
MI. 

3.5.18	 An Example of Isotopically Lifted Orbital Motion for the 
Interior Problem 

Gasperini [62] continued his example with the explicit calculation of the 
modification to orbital trajectories caused by i&Otopy~  again, for the case of 

Nielsen-Picek parametrization of local Lorentz "noninvariance". We review 
this additional development below because of itl practical value for explicit 
calculations regarding the interior problem. 

The reader should be aware that Gasperini presented the isotopy of 
orbital trajectories for the ezterior problem [62]. The objective was that 
of ascertaining possible upper limits to Nielsen-Picek Lorentz-asymmetry 
parameter Q that could be established by the precession of the jJerihelium 
Mercury. 

Following Santilli's analysis [58], such objective is no longer r~zable, 

even though the orbital equations reviewed below' remain valuable for the 
interior problem only. . 

To put it differently, the Gasperini-Santilli Gravitation as per Eq.s (3.433) 
recovers the conventionailUemannian geometry in the exterior problem and, 
thus, admits conventioru.alorbital motion in the exterior problem. 

Using spherical polar coordinates, and inserting the Christoffel symbols 
conesponding to the metric (3.441) the isotopic equations of motion (3.464) 
for %2 = , are satisfied by assuming that the orbit is confined to the equa­
torial plane (as in general relativity), so we can put everywhere 9 =r /2 = 
const. The remaining equations for zl =r, z3 ='P, andz4 =t become then 

4 )-+ Idl.2 -.\ .2'(1 --Q r --r -re 'P
3 2dr 

1du ~.2+--e"-"'t = 0
·2dr ' 

4) - 2.. 0(1 - 30 ~ + ;r'P ~  , 

i + iii =0	 (3.465) 

where a dot now denotes derivative with respect to ,. 
The last two equations can be easily integrated, and we obtain 

r2(I~ta)rp = h1+ta , 
e"i =	k, (3.466) 

where h and k are two integration constants. Notice that Kepler's second law 
is modified, as the areal velocity is no longer constant but becomes a function 

2 Soof the radial coordinate, r rp ex r- / 3 (if 0 ~ 0); this is a consequence of 
the generaJ.ized angular momentum conservation law of the isotopic theo~y.  
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maximal possible speed of causal lignals. These questions are answered by 
Santilli's Special Relativity (S3.4). The reader should recall that the value 
of the fourth component of metric (3.441) is greater than the speed of light 
in vacuum, ;;44 = co(l +0) > CO,CO = 1,0 > o. Nevertheless, ;;44 is not the 
invariant of the theory, which is given instead by the maximal speed of causal 
signals (§3.4.9), and this speed, for the model of neutron star considered, 
results to be greater than CO (see Appendix B for more details). 

The reader should be aware that the above results, are not peculiar for 
the Nielsen-Picek metric, because any modification of the Minkowski metric 
necessarily implies a change in the maximal speed of causal signals [14],[58]. 

In summary, the example iUutrates that the Gaperini-Sontilli gravi­
tation ezlaibiu deviotiom in the tangent ~ 0/ the interior problem from 
Einstein'. Special Relativity, ht the Lorentz ,ymmet'll remains ezoct. In 
tum, this occurrence is important for the formulation of experiments, as 
suggested in the closing Section 3.5.18. 

3.6.15 An Example ollaotopic Equations 01 Motion 

Gasperini' [62] continued the example reviewed in the prededing section 
by working out explicitly the isotopic equations of motion for the case of 
Nielsen-Picek metric (3.441) on Santilli's Ipace M,. We reproduce the ex­
ample below because of its value for interior probleml, IUch as itl direct 
applicability to the neutron star of the preceding section. 

As stressed earlier the equations of motion for a test particle in a given 
external Lie-isotopic gravitational field are to be obtained by integrating the 
conservation laws of the energy and angular momentum. 'This follows from 
the field equations and the Bianchi identities of the Lie-isotopic theory. 

By taking the covariant exterior derivative of the isotopic equations 
(3.434), we obtain the isotopic Bianchi identities 

vit°-- = ito,,, r 
vit" = O. (3.454) 

Using these relations, the exterior covariant derivative of the field equations 
(3.434) and (3.435) gives the conservation laws of the isotopic theory, for 
the energy:'momentum 

3 .. •
Vall = '2Ra "Rc

Eo6al. (3.455) 
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and for the angular momentum 

iita Ie " Til 1\ r Eakll =0 (3.456) 

where the symbol "Elm" has been dropped for simplicity. To first order in 
0, the torsion is vanishing, ito =0, the connection is Riemannian, and con­
dition (3.455) is reduced simply to Vall = 0, which, introducing holonomic 
indices, can be rewritten as . 

u"a"" = - a""i"-- 0A (3.457) 

where a semicolon denotes the covariant derivative performed with the Chrisof­
fel symbols. 

The second isotopic equation of conservation (3.456) provides informa­
tions on the antisymmetric part of the canonical stress tensor. In fact, Eqs. 
(3.456) and (3.434) imply 

ao 1\ T' - a6 1\ TO =0, (3.458) 

and can be rewritten in the tensor language as 

a"" - a"" = a"oTo" - a"oTo". (3.459) 

Expanding a"" in power series in the parameter 0, and using the explicit 
form of T,,", one obtains, to first order in ° 

a"" = aC"") +a~"),  

a[",,) = ~[aC"")64"  ~  a C"")64"] ," (3.460)
3 

where round and square brackets denote respectively symmetrization and 
antisymmetrization. 

Therefore, the isotopic conservation equations are different from the cor­
responding general relativistic one because, in the isotopic theory, the canon­
ical energy-momentum is no longer a symmetric tensor, even in the case of 
spinless matter. • 

Using the properties of the Christoffel con~ection,  Eq.s (3.457) become 

8., (AaC""») +r"0"Aa(o,,) 

+8., (Aa["")) =O. (3.461) 
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evaluates the isotopic corrections to the usual Einstein theory to the first 
order in a. 

In this approximation we have 

. ( Q a a Q)
~ I. - dl&g 1 - - 1- - 1 - - -(1 +-)

a. - 6' 6' 6' 2 

= '1a6 - '21Xu (3.445) 

The vacuum field equations (3.376), neglecting 0 2 terms, and putting VJ ~ 1 
and ra6 ~ IXa6' become 

1 1 1
G 6 - D cx • - D fiX C ~ '+ R .X C (3.446)a - -"I.e C - "Ioe "Va - ca " 222 

from which, using the explicit expression (3.442) for Xa6, we have again to 
first order in a, 

Ga. = j(Rec6c6 - r'6t:1l'la' +Rcaw6cf1
) .. (3.447) 

Notice the explicit breaking of the conventional Lorentz symmetry, corre­
sponding to the contraction of the curvature with the Kronecker tensor 6., 
instead of that with the Minkowski metric '1a'. 

Notice also the reconstruction of the exact Lorentz symmetry at the 
Lie-isotopic level because metric (3.441) verifies conditions (3.433d). 

Other isotopic corrections to Einstein's equations are· due to the non­
Riemannian part of the connection, contained implicitly in the curvature 
terms. The fint order contribution to the tonion can be obtained from Eq.s 
(3.366), puttiong VJ ~ 1 and r•• ~ X••/2: 

1 . 1· 1· 
Q6c. =i[C6c'Xi. + '27"'Xci - 27e.'X,,] (3.448) 

where 7a6c is the Riemannian part of the connection, defined in Eq. (3.368). 
Using Eq. (3.367), one obtains the isotopic connection to the first order in 
a 

Wcac6 =7.c6 +K ac6 (3.449) 

where 

a· . . 
Kac6 = '3h6c'6.i - 7c6'6.i +7..'6ei 

-7ca'6,,] (3.450) 

Again the presence of the Kronecker symbol denotes the deviation from the 
conventional Lorentz symmetry. Notice that in this particular case the non­
Riemannian part of the connection is nonvanishing only if at least one of the 
indices of Ka6c is equal to four, otherwise Ka6c =0 because of the metricity 
of the Riemannian connection, ne. =-7"c' 

Finally, using the definition of curvature (3.351) applied to the c:onaec­
tion (3.349) one finds, to the first order in a, 

R""a6 = R"".. +c\.K,,]. +c\.acK"Je
6 

ac 6 •+K [P 7,,]e (3.451) 

where R""a6 denotes the usual curvature tensor for the Riemannian part 
of the connection. By using contraction to obtain the Ricci tensor and the 
scal~  curvature, one gets . 

G 6 - G' AK be l AK e"6 6 
a - a +"la c) - '2"le clJ a ­

ic . 6 "e 6i e
-7(, K,1/6a +7(a Ke)i +K(a 7e)i (3.452) 

Combining Eq.s (3.447) and (3.452) we have the explicit expression for the 
fint order isotopic corrections to Einstein's field equations G.. =0: 

Ga6 = -B[IIKe)6e +iB[eK"lcfl
'la6 + .. 

,cK j IX cui c·
+7(i ,lc 'la6 - 7(a16 c)i - .R(aI6 7e)i + 
+i(Rec6c6 -JlC"6cf1'1a6 +Rc..6cf1 

) (3.453) 

where the contorsion K is given by Eq.s (3.450). 
Note that the considered neutron star has a discontinuous transition from 

the interior to the exterior problem, as far as matter density is concerned. 
A step funcilon is in this case appropriate for the realization of condition 
(3.433c). 

The above example is useful to illustrate the local symmetry of the the­
ory. In fact, the conventional, local Lorentz symmetry is manifestly br~ken.  

But metric (3.441) preserves the topological character of the Minkowski 
metric, thus verifying Theorem 3.5 and conditions (3.433c). The Lorentz 
symmetry therefore remains exact. 

The next issue illustrated by the above model is the dynamics of the 
tangent isospac:e 14" that is, which is the local invariant, and what is the 
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vides no numerical alteration of the results achieved by Einstein's Gravita­
tion, trivially, because of the identification 9~  =M"." +,~. Also, when 
seen from the outside, the Gasperini- Santilli gravitation coincides with the 
cODventional one because of the subsidiary CODstraiDts (3.433e). As a mat­
ter of fact, .the restricitoD of the isotopy to the iDterior problem, and the 
cODveDtional total conservation laws as subsidiary constraints are imposed 
[58] precisely for the purpose of avoidiDg any quantitative differentiation in 
the exterior problem between the isotopically lifted and the conveDtioDal 
theory. As a result, IDe mow 0/ no criticism that con 6e moved tJgai~t  the 
Gasperini-Santilli ezterior problem unless exactly the same criticism applies 
also to the conventional theory (see Ydmaz's criticisms of Section 3.5.4). 

In closing, we would like to mentioD the fact that the GtJ8perini-Santilli 
Grumtation U a genuine covering oj EiRltein'. Gruvitation in the sense of 
ref. [1], that is 

a) The geDeralized theory is constructed via mathematical meth­
ods (Lie- isotopy) more· geDeral than those of the conveDtional 
theory; 
b) The generalized theory describes physical conditions (con­
tact nonhamiltonian interactions) more general than those of the 
conventional theory; and 
c) The generalized theory admits the conventional one as a 
particular case when all isotopic elements are everywhere equal 
to the identity. 

The authon would be gratef~  to any colleagues bringing to their atten­
tion (at the address of the Institute for Basic Research, 96 Prescott Street, 
Cambridge, MA 02138 USA) any information, whether in favor or against, 
related to the theory of gravitatioD here considered. 

conventional theory; and 
c) The geDeralized theory admits· the conventional ODe as a 
particular case wheD all isotopic elements are everywhere equal 
to the ideDtity. 

The authon would be grateful to any colleagues bringiDg to their atten­
tion (at the address of the Institute for Basic Research, 96 Prescott Street, 
Cambridge, MA 02138 USA) an)' informatioD, whether in favor or against, 
related to the theory of gravitation here considered. 

3.6.14 AD Example of Isotopic: Interior Problem 

We now coDsider, as an example, a neutron star which, for simplicity, Is u­
sumed to be spherical, homogeDeous and isotropic. ID his origiDal proposal 
[60], Gasperini worked out an example of the isotopically lifted gravity which 
is directly applicable to the iDterior problem of such a neutroD star. For sim­
plicity, we shall ignore herinafter the source term and restrict our attention 
to the pure contributioD from the isotopy. Its generalization to include the 
source term was worked out by Gasperini in the subsequent paper (62). 

A very simple parametrizaton of Lorentz "non-invariance" formulations 
has been suggested by Nielsen and Picek [70] in terms of the following gen­
eralized metric tensor (§3.4.3) 

~•• = ".' - x··,ii E Ml (3.441) 

Under the assumed rotational invariance, x•• is a symmetric traceless tensor, 
defined in terms of only one constant parameter Q 

x.. = i diag (1,1,1,3) = 
Q 

= i("" +26••) (3.442) 

H the -metric (3.441) is interpreted as the metric of Santilli's i808pace Ml 
(for a different interpretation Bee however ref [75]), one can formulate a Lie­
isotopic theory of gravity based OD this metric, by·introducing the isotopic 
element 

T.· =diag (J1- j.J1- j.J1- j.o/l+a) (3.443) 

for which 

qtdTc·Ti = diag (1- i.1- j.1- j.-(l +0» 
= ,," - X" (3.444) 

The underlying assumptioD is that the neutron star has the same den­
sity and interior problem, say, of bons. The gravitational field is however· 
modified, as we can see explicitly by considering t~e  vacuum field equations 
of the isotopic theory. 

Suppose that the deviations from the Lorentz symmetry are very small, 
i.e. Q < 1 (in ref. [70] the value Q S 10-3 has been obtained Crom experi­
mental data relative to the charged pion and bon decays). Gasperini then 
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and/o~ in the density of th~  interior medium; the Lorentz-isotopic sYmmetry 
transformations for the related tangent space should be explicitly computed 
via the techniques of Section 3.4; the verification of conventional total con­
servation laws should be explicitly proven; and the covering nature of the 
gravitaitonal model over the corresponding relativistic and Newtonian mod­
els should be studied as an important element for completing the classical 
study of closed nonselfadjoint systems. 

An important point in the explicit construction of a model of gravitation 
(3.433) is that Santilli's electromagnetic tensor for the case of the interior 
problem u not the conventional one of Maxwell theory on curved spaces 
[129], but requires a construction·on an isotopically lifted space along Nish­
ioka lines [127]. 

The possible existence of a (noncanonical) BirklaogiaR representation of 
the interior problem should also be investigated because of the possibility of 
allowing an.unambiguous "hadronization" into an operator form on Hilbert 
spaces, along the lines of Section'1.3, Eq (1.58) and following. 

In tum, the existence oC a consistent "hadronization" could allow the· 
identification of the possible short, range contributions to the "origin" oC the 
gravitational field, i.e. those of weak, nuclear and strong character. 

Another problem that remains open is the resolution of the issue of 
"unification" of the gravitational ,and electromagnetic fields, as attempted 
in most of the literature, versus the "identification" of the gravitational and 
electromagnetic fields advocated .by Santilli (§3.5.3). 

. A Curther problem that 'remains open is the study whether the Gasperini­
Santilli Gravitation is capable of resolving Yilmaz's criticisms of the con­
ventional theory (§3.5.4), by keeping in mind that Yilmaz's stress-energy 
tensor is readily admitted under isotopy Cor the interior problem, while the 
exterior field equations do ~b~t  a tensor which, even though it is not a 
stress-energy tensor, it is nevertheless a source tensor. 

Despite the existence of these open (and rather intriguing) problems, we 
are unaware of any experimental, phenomenological or other information 
that may disprove the Gasperini-Santilli Gravitation. This is evidently due 
to the Cact that all classical information accumulated during this century 
on gravitation is strictly related to the exterior problem and certainly not 
applicable, say, in the interior oC a star. We therefore know of no criticism 
that COR be moved against the Guperini-Santilli interior gravitation. As a 
matter of fact, all available information favors the generalized relativity over 
the conventional one. We are referring, classically, to the incontrovertible ex­
perimental evidence of local interior departures from the conventional rota­

tiona! and Lorentz symmetries, venus the perpetual-motion approximation 
implied by the conventional theory. At the microacopic level; all available 
phenomenological information a1so Cavon a departure from the Minkowlki 
metric in the interior oC hadroDl, as reviewed in Section 3.4.3. Needless to 
say, all this inCormation is merely preliminary. The final resolution oC the 
issue is evidently oC experimental nature, and will occur only after the con­
duction oC the fundamental tests oC space-time symmetries recommended in 
Section 3.5.18 (see Fig.6). 
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FIGURE 15. A reproductioD of Figure 6.1 pate 250 of mODopaph (20] 
(lee abo the more leDeral Ficare I, pase xvii of mODOIlaph (21]) exprese­

iDI Sutilli'. view of the lack of em&eDce of &ermiaal physical theoria. In 
fact, .tamDI from CODftDlioDal relatiritia, the figare iaduda the leDeral­

bed relativitia reYieftd in thit work~  and inCllcatei the Jet more leDeral 

relauYitea that are already coDceiYable at. thit t.ime, although DOt. techDically 

reuable beeaule of inluffic:ieDt mathematical formulatioD' (e.I., iuufficieDt. 
.topologia). 

As far as the exterior problem is concemed, the generalized theory pro­
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is the Riemann curvature tensor; 

r lUIor = ~gor~(8.,g.,~  +8.,gpfJ - a~g".,)  (3.4~ 

are the Christoffel symbols; B,," ~ RI'OII'G, B = R,,"; 

1
Gor~ = Ror~  - -6orflR (3.4J')2 

is Einstein's tensor; and finally, T,," is the traceless part of the tensor T.'. 
The Gasperini-Santilli field equation.e for the ezterior problem are given 

by 
Gor~ = e~ (3.44e) 

To avoid possible misrepresentations of the above equatioDl, the reader 
should recall that, in the c~ventional  th~ry  for the exterior problem, the 
matter tensor Mor~  is null, and all sources resulting from nonull total values 
of the charge and of the magnetic moments are represented via an.additional 
tensor t~.  In Santilli identification of the gravitational and electromagnetic 
field, Mor~' = an additional tensor is redundant because thee:r, such 
contributions t~  are automatically produced by the contributions of each 
individual charged consituent of the body considered. I 

It is easy to see that the Gasperini-Santilli Gravitation does indeed verify 
most of the conditioDl set forth in Section 3.5.5, with the undentanding that 
considerable additional research remains to be done. 

To begin, the background (empty) space remains homogeneous and isotropic, 
as represented by the local Minko.ski metric '1 of Eq.s (3.433d). Neverthe­
less, the geometry of the interior problem is generally inhomogeneous and 
anisotropic, as represented by the metric t} of the tangent isospace itIl,. 

The theory is, in the interior problem, essentially noninvariant under 
local, conventional, Lorentz transformations. This is a necessary condition 
to represent local variations &om conventional conservation laws (in a way 
compatible with the total conservation laws) and avoid perpetual-motion ap­
proximations. Nevertheless, the theory is invariant under the local, Lorentz­
isotopic symmetry (§3.4). Furthermore, under condition (3.433d), this sym­
qletry results to be isomorphic to the conventional one. 

In the transition to the exterior problem, condition (3.433c) ensures the 
recovering of the conventional Riemannian geometry with a conventional, 
local, Lorentz symmetry. 

However, unlike Einstein's Gravitation, the Gasperini-Santilli theory ex­
hibits in the exterior problem a nowhere null source tensor of the gravi­
tational field, thus allowing the compatibility of the gravitational theory 
with the charged structure of matter. Gravitation is then nowhere reducible 
to pure geometry, but it is generated, in a classical approximation, by the 
contributions of all charged constituents of matter. 

Finally, the conventional conservation laws (see, e.g., ref. [129J, Section 
IV-20) are imposed as subsidiary constraints in order to achieve a gravita­
tional counterpart of the notion of closed nonhamiltonian systems, which 
we have already encountered at the Newtonian (S3.3) and relativistic (§3.4) 
levels. As the reader will recall, conventional total conservation laws are 
imposed as subsidiary constraints in all these systems. 

The reader should also recall that, at the Newtonian and relativistic lev­
els, the systems considered admit algebraic solutions, that is, the number of 
constraints represented by total co~servation  laws results to be less in num­
ber than the total number of internal Donselfadjoint forces (for N ~  3). The 
systems therefore admit particular cases in which total conservation laws are 
automaticaJ.ly satisfied without being bona-fide subsidiary constraints (see, 
Eq.s (3.96) and following comments). As expected, exactly the samesitua­
tion occan at the gravitational level, e.g., because the number of subsidiary 
constraints for total conservation laws is less than the number of isotopic 
elements. 

We therefore expect the existence of explicit models of the Gasperini­
Santilli Gravitation in which the conventional total conservation laws are 
automaticaJ.ly verified without being genuine subsidiary constraints to the 
isotopic action (3.433a). Nevertheless, in general, Eq.s (3.433e) are indeed 
bona-fide subsidiary constraints to action (3.433a), exactly as it happens at 
the Newtonian and relativistic levels. . 

In this way, the Gasperini-Santilli Gravitation verifies most of the condi­
tionsl-9 of an "ideal" gravitational theory introduced in Section 3.5.5, with 
the understanding that so much remains to be investigated. 

An explicit example verifying all conditions (3.433) is prf'sented in the 
subsequent sections via a small constant deformation of the Minkowski met­
ric in the interior problem. 

Without any claim of completenetJs, we point out below the following 
open problems. 

The explicit construction of a general example verifying all conditions 
(3.431) is recommended. In particular: the example should exhibit ,a non­
trivial functional dependence of the isotopic elements at least in the velocities 
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equations defining the tonion R· and the curVature R·'. The simplest 
action, including matter sources minimally coupled to gravity, can be written 
as 

s= f(~r' A Vc A Vllf..ClI - ie•A V·), (aA32f 
. {\~~~ 

where e. is the canonical energy-momentum three-form, whose expliCit ex­
pression, in ~erms  of the canonic:al energy-momentum tensor ell', is 

ell = 9 111'f",,01l"" A tlzo A all (3.43') 

and f""oll is the totally antisymmetric symbol. 
A. reviewed earlier, a Lie-isotopic theory of gravity can be formulated 

by introducing a generalized frame TO =V'T,II where Til' is an isotopic op­
erator which defines the lifting of the vierbein field. The structure equations 
are then· 

it· = tIr +wll, AT' . 
it-' = dIJ·' +w·c A wet. (3.434) 

In this way, one is led to the following Lie-isotopic action without BOurce 

s= ~ f Jt:» A r: A T'f.W. (3.43J.) 

The geometric and algebraic structure of general relativity is preserved; 
however, the gravitational gauge fields are TG and w·', instead of VII and 
Wll'. 

It seems therefore natural, in the- framework of such Lie-isotopic grav­
itational theory, to introduce matter according to the formal prescription 
(3.390) supposing that the canonical stress tensor eca6 is minimally coupled 
not to VII, but to the generalized isotopic frames TO. 

The GGsperini {60},{6!}-SGntilii {58},[100} GravitGtion can then be de­
fined by the following equations 

.. /1 ..", ~ 1ElmS = (:iRIi A TC A J-f ca6ccl- i911 "r) (3.43) 

T.' = T. '(z,p,T, ...) 

T.'I =0 
r>1l 

"II' _ eel", .", • D' (1.2 62 A2 62) 6 > O' ,., - '1 .I.e .1.11 ~ lag flit 2'''3'- 4 , II 

9~=0 

where: Eq. (3.433a) is Gasperini'. [60] isotopic action with Santilli's [100] 
hypothesis on the electromagnetic origin of the gravitational field, of coune, 
in this first clusical approximation; the second and third equations repre­
sent the aasuined functional depelldence of the isotopic elements and their 
restriction to the interior problem only [58]; Eq.s (3.433d) represents the 
restriction of admissible metrlcs for the tangent i808p~e  to be topologically 
equivalent to the Minkowski metric, 80 u to preserve the exact character of 
the Lorentz symmetry; and Eq.. (3.433e) represent the mnventionol conser­
vation laws as su6sidiary conltraint.t to isotopic action (3.433a). Note that 
the condition of topological equivalence, Eq.s (3.433d) implies the validity 
of all topological properties of the Lie-isotopic theory, such as the sufticient 
smoothness of functional dependence (3.433b) or the invertibility of the el­
ements T.'. 

The variation of action (3.433a) with respect to TA gives the isotopic 
generalization of Einstein's field equations 

1..... 1 Elmi R ATC£II6ctl = i 9c1 (3.43~ 

Note that the same equation can be obtained also by using the definition 
·T· = V'T,· and performing the variation with respect to VII, because T.' 
is invertible. 

The variation with respect to the connection w.. (supposing that we are 
, considering unpolarized macroscopic matter, i.e. that wca6 is not explicitly 

contained in the matter part of the action) gives the isotopic generalization 
of the usual torsion equations 

1 .. ",6

i R• AJ -fca6c:d = O. (3.431) 

In order to obtain a solution of the field equations for the interior problem 
it is convenient to rewrite the isotopic equations (3.433) in the usual tensor 
language, introducing explicitly holonomic indices. Using the decomposition 
T = V +r for the isotopic frames, Eq.s (3.434) yield the GGsperini- SGntilii 
field equGtiorU for the interior problem 

Gop = 9~eIm  +Go"r,,1l - R,,"r,,"60 
1J +R.lTo " +Rpo"Pr,,", (3.436) 

where: 

R.""oP =f"r"op - Ar"all +r",Pr"oP - rIIplJr"oP (3.411) 
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In this generalized geometrical framework gravitation can be interpreted 
as a deviation of the world manifold from Santilli's tangent isospace AIIII. 
This allows Gasperini [59],[60J to reach the following, important, additional 
result 

ISOTOPIC PRINCIPLE OF EQUIVALENCE: Gravitational e./­
/«18 ma, locall, duappear when the metric of the. .,ace-time 
manifold approoche. the. metric of the tangent, Santilli'. isolptJCe. 
Mill, i.e. for . 

g"" -. ;,sa" (3.4J~ 

In fact, it can be seen from Eq.s (3.347), that the isotopic connection w 
can be locally eliminated by putting V: = 6:. A Cree fa1ling observer in flat 
spaces defined by V: =6: will no longer represent an inertial frame for the 
Lie-isotopic theory. In this system, force fields are the physical. manifestc.tion 
of the Lorentz-isotopic symmetry (see the deviation from geodesic motion of 
3.5.10). Also, the deviation of the isotopic metric q from the conventional 
Minkowski metric '1 is a measure of the "breaking" of the (conventional) 
Lorentz iymmetry. 

To understand the generalized theory of gravitation we are here formu­
lating (see below for a Inore accurate definition), the reader should think of 
a test particle that begins its motion in the e.zterior problem. In this case 
motion occun in empty space, and the metric of the tangent space is the 
conventional Miuowski metric. The geometry for the exterior problem is 
then the conventional one, but the field equations are not expected to be 
Einstein's Eq.s (3.320) because of the lack ofelectromagnetic source (Section 
3.5.3). . 

Suppose now that the same test particle mov~  into the interior problem 
(say, Jupiter's upper atmosphere). Then the particle experiences velocity­
dependent, contact forces which imply a neCessary deviation from the con­
ventional Minkowski metric of the tangent space. The Lie-isotopic general­
ization of Einstein's Gravitation is then activated. The new physical. features 
(the generally inhomogeneous and anisotropic character of the medium, the 
velocity- dependence of the forces, etc.) are represented precisely by gener­
alized action functional (3.370). 

As far as the local symmetry of the tangent space is concerned, ihe 
contact interactions of the interior problem do genetate a deformation of the 
Minkowski metric, but the deformation is not such to alter the topological 
character of the original Minkowski metric, in the sense that the topological 

structure Diag (1,1,1, -I) cannot be deformed into an inequivalent topology, 
say, of the type (1,1,-1,-1). As a result, the Lorentz symmetry remains exact, 
although at the covering isotopic level. 

In closing, we would like to indicate that S. Weinberg [122] has prop~ 

a quasi-Riemannian theory of gravity with a tangent space sym~etry other 
than the Lorentz symmetry. It would be interesting to identify the p088ible 
connections between Weinberg's and Gasperini's worb. 

Similarly, C. Wetterich [123] haa proposed a vierbein of the tyPe 

g""e.~ et #: 'Iii (3.4i~  

starting from a different physical. motivation, within the context of multidi­
mensional, chiral, fermionic theories. 

Also, Rosen [124] has formulated a bimetric theory in which one of the 
two metrics describes gravitation, and the other describes a generally curved 
background associated to a fundamental reference frame, a preferred rest 
frame of the universe. The connections with the Lie-isotopic theory of grav­
itation are remarkable aDd deserving a study. In fact, the former metric 
can describe gravitation in both theories, ,and the second metric could be 
associated, in the Lie-isotopic theory, with a priveleged reference frame at 
rest with the medium in which motion of the interior problem occurs, as 
suggested in ref. [1]. Note that liftings (3.420) and (3.421) apply to both 
metrics of Ro.e.n'. Gravitation and that, under restriction (3.424), the exact 
nature of the (abstract) Lorentz symmetry persists. 

Studies directly related to the Lie-isotopic lifting of Einstein's Gravit. 
tion have been conducted by Nishioka [127],(128). In the first paper, one 
can find a Lie-isotopic formulation of Maxwell electromagnetism and a Lie­
isotopic formulation of Gravitational, electromagnetic and scalar fields. The 
second paper deals with the connection of the Lie-isotopic lifting of the Rie­
mannian manifolds with the Lyra and Weyl Manifolds (see Appendix A). 

3.5.13 Gasperini-SantiUi Gravitation 

We shall now summarize all the preceding results of this section and present 
the essential aspects of Gasperini-Santilli General Relativity (or Gravitation, 
for short). . 

As now familiar, the conventional Einstein's General Relativity can be 
formulated as a gauge theory for the Poincare group. The fundamental 
variables of the theory are then the frames V· and the connection welt.. 

Using the algebra of the Poincare generators, one obtains the usual structure 
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bolically write 
Santilli [58J reinspected Gasperini's results and introduced the roe.'ridion 

of th~  isotopic metric;' to be topo'ogica", equitJtJknt '0 th~ MinkotD.1:i m~tric, 

and we shallsymbollically write 

;, ~  Diag (6f,bI,~,  -6:),6~  > O,p =1,2,3,4. (3.421) 

The above restriction essentially eaeures that the isotopic Lorentz symmetry 
and the conventional one are isomorphic. . 

Restriction (3.423) is formulated for curved tangent spaces Mlll. Never- . 
theless, flat tangent isospaces MI are generally sufficient for practical appli­
cations of the isotopic theory of gravity (see the examples later on in this 
section). In this cue, restriction (3.423) implies the equivalence of metric 
(3.422) with the diagonal form (3.195), i.e. 

;," == Diag (6f,bI,6~, -6:),6~ > 0 (3.42f) 

which is characterized by lifting (3.350) via the explicit form of the isotopic 
elements [60) 

(T.') =Diag (61t 6:1,6:,,6..),6. > 0 (3.421) 

The local isomorphism of the Lorentz-isotopic and the conventional symme­
try is then ensured by Theorem 3.5. All the examples to be revie~  later 
on are particular cases of isotopic elements (3.425). · 

In summary, the Lie-isotopic gravitation is a two-metric theory as· it hap­
pens for all gravitational theories. The primary diffe~nce  with conventional 
theories is that the metric of the tangent space (for the interior problem 
only) is generalized. However, this does not imply a breaking of the lo­
cal Lorentz symmetry, but its preservation as an exact symmetry~  although 
realized in its most general possible form. 

Also, the two metrics are not independent, but rigidly related. In fact, 
according to Eq.s (3.350) and (3.351), the tangent space metric (3.422) is 
defined via the isotopic elements of the algebraic (Lorentz) isotopy which is 
coupled nonminimally to the gravitational metric according to the rules [60J 

qd =g""V:V~ =g~"V:T:V"dT~  (3.4~ 

In different terms, the Lie-isotopic lifting of Einstein's gravitation pro­

;,d ="tATe.T4' (3.421.) duces a form of quasi-Riemannian gauge theory with a tangent space group 
other than the Lorentz group (in conventional realization), and that group 

The Lie-isotopic character of the theory is then evident. results to be the Lie-isotopic Lorentz group. 
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More specifically, suppose that the celestial body considered has no at­
mosphere. Then, the transition from the interior to the exterior problem is 
discontinuous and a step function is appropriate. Suppose instead, that the 
body has an ~tmosphere  with a density continuously going to zero with the 
increase of r. A conespondingly smooth realization of conditions (3.419b) 
is then needed. . 

The equations of motion for isotopic elements (3.419) are expected to 
be the same as those of Section 3.5.9. Nevertheless, specific studies to this 
effect are absent at this moment, to our knowledge. 

Santilli [58] finally suggested the use-of integrotlifferentiGl realimtions of 
the isotopic elemenu, u a toGy to repruent more closely the nonloctJl nature 
of the contact interactiom e.';enoed 61/ the test particle. 

This yields an intriguing geometrical structure. Recall th~t  all avail­
able geometries are essentailly local in character because the topology most 
known until now is local in nature. A bona-fide generalization of a geometry 
into a nonloe&l/integrodifferential form therefore requires a generalization of 
the background topology into a suitable nonlocal form, which has not yet 
been accomplished by mathematicians in a final form applicable to physics, 
to our best knowledge. . 

Santilli's Lie-isotopic lifting appears to be able to bypass these topologi­
c:aJ problems and yield a genuine, mathematically consistent nonlocal/integro­
differential geometry. The idea is so natural to "creap in unnoticed". The 
mechanism is essentially based in incorporating all nonlocal/integrodifferential 
terms in the isotopic unit (or elements) of the theory. But Lie's theory leaves 
such unit unaffected. Thus, conventional, local topologies can be used, while 
the emerging geometrical context is intrinsically nonlocal. 

As indicated in Section 3.5.5, if local realizations of the isotopic elements 
are desired, one can obtain them Via power series expansions in the velocities. 
As a result, the velocit1/-dependen« of t~e  isotopic element is, in general, 
~rbitra"" and depends on the' considered conditions at hand, including the 
value of the speed itself. In fact, as now familiar in engineering (but equally 
so in physics), contact forces of test p8.rticles in Earth's atmosphere (say, 
rockets or satelli_tes) may reach po~ers  in the three-veloaty as high as the 
Io-th. 
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3.&.12	 The. Locally Lorentz-Isotopic Character of the General­
ized Theory . 

We now review a central aspect of the Lie-isotopic generalization of Ein­
stein's Gravitation, its local Lorentz-isotopic character identified by Gasperini 
[60J, and its restriction to a form isomorphic to the Lorentz group by Santilli. 
[58J. An important property of the isotopic theory of gravitation is therefore 
that the local Lorentz symmetry, rather than being "violated" in the interior 
problem, is instead realized in its moat general posaible form. 

For clarity, let us rec:al1 the definition of Santilli's spaces of the first, sec­
ond and third class MI,Ml1,MIII (§3.4.5). In euence, M, is a space with 
null curvature equipped with isotopic metric (3.195) which is topologically 
equivalent to the Minkowski metric; itII is an i808Pace also with null cur­
vature, but the topologic:aJ equivalence of the metric with the Minkowski 
metric is generally lost; finally, M111 is a generally curved isospace. 

Recall also from Section 3.4.7 that the Lie-isotopic lifting of the Lorentz 
symmetry is formulated for space Mill, although it evidently admits for­
mulations in the simpler spaces Mil, and M,. Of all these liftings, the 
isomorphism of the Lie-isotopic Lorentz group with the conventional group 
is ensured only for isospace itI. 

The applications of these results to any theory of gravitation are at 
least twofold [58]. First, as anticipated in Section 3.4.7, Santilli's lilting 
of the Lorentz symmetry provides means for the.:explidt construction of 
the generalized transformations leaving invariant the metric g of the curved 
space. As the reader will recall, this is. achieved via the sole knowledge of 
the new metric 9 and use of expansions (3.224). 

This first step is applicable to ony theory of gravitation, (w~ether  Lie-
isotopic or not, and Riemannian or not) and we shall symbolic:ally write 

nat th.,- . ) ( CUftd 'paYitatiODai theory' )
( ~reag :i~etry  0(3.1) - Loreau - iJotopic aymmecry 41(3.1) 

MiDkOWlki apace M(z,ft,R) Saatilli apace Mlli(z,g,ll) 

(3.42') 
Secondly, the lifting is applicable to the tongent space of ony general­

ized gravitational theory (Lie-isotopic, Riemannian-c~an,  affine, etc.), in 
which the local symmetry of the tangent space is no longer the conventional 
Lorentz symmetry. Again, the methods provide the means for the explicit 
construction of the generalized symmetry transformations in their explicit 
form, via the sole knowledge of the generalized metric ;, and we shall sym­
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Another very simple, but interesting, lifting in terms of a not constant iso­
topic element is obtained starting again with the form (3.345) of the isotopic 
operator, and putting 

T.' = fIJ'." (3.41a) 

where 'I' is a scalar field, 'I' = cp(z) 
Following the same procedure as before, we obtain again Eq.(3.411). 

Thi. time, however, the last term of the isotopic torsion i. not vanishing, 
and we have a theory with a new algebraic structure, different from general 
reltivity. In particular, V· =flJV· and the isotopic torsion (3~410)  becomes 
explicitly 

k· =dtp" V· +flJH' +tpdtp" V· (3.41'f) 

where RO +",V· is the usual tonion two form relative to the standard 
frame V·. In this cue the choice of a standard gravitational action (3.344) 
is no longer justified, as the underlying geometrical structure is changed, 
and the problem of finding an appropriate action to formulate a consistent 
Lie-isotopic theory in this caSe is presently open. 

Santilli [58] reinspected the above findings by Gasperini and pointed out 
that the uotopic element.T." repre.ent the deviation8 from the conventional, 
10CtJ1 Minkow.ki qatJe ctJued b, motion 0/ a tut particle within the phy.cal 
medium 0/ the interior problem. As a consequence, the functional depen­
dence of the elements T.' is expected to be, in general, not only the local 
coordinates z of the test p~ticle,  but also the velocities :i, density IJ of the 
interior medium, temperature T, and any ~ther  needed physical quantity, 
i.e. " , .T. = T. (z,z,IJ,T, ...) (3.416) 

In particular, the dependence on the local coordinates could be indirect, e.g., 
via a dependence of the density and temperature on the distance r from the 
center of the system, i.e., 

T.' = T.'(i,l'(z),T(.z), ...) (3.4Ii) 
but without a direct dependence on z. 

In different terms, the most important functional dependence of the 
isotopic elements is in the velocilie. because, when a particle u at rest 
with respt!£t to the interior medium, the contact nonhami/tonian forces are 
null. The second dominant functional dependence is on the density because, 
again, when .uch density u nul" the contact nonhamiltonian force. are also 

null. Santilli's therefore suggested the following form of the isotopic elements 

(T.') = diag (/h/2,/3,/4) 
I. = 1.(i,p,T),a,b = 1,2,3,4 (3.4tl) 

where the local dependence of the density and temperature on the distance 
r from the center is ignored for fint, local approximations. 

The important aspect is that elements (3.417) commute with all gen­
eraton of the Poi~care  algebra, by therefore putting the foundations for 
regaining the exact (but isotopic)Jocal, Poincare symmetry, as we shall see 
better in the next section. 

Once the isotopic elements are interpreted as representing the deviations 
caused by the interior physical media from the dynamics of the exterior 
problem, it then follows, as a consequence, that they must reduce to the 
identity in the exterior problem itself. This leads to the .ub.diary conatraint 

, (or condition8) impo.ed b, Santilli {58Jon all Lie-i.totopic generalization 0/ 
Ein.ttein'. Gravitation 

T.'lIr>R = I.' (3.4'~ 

where R is the radius of the sphere of the interior problem, and r = IzI is 
the distance of the considered local point from the center. 

As now familiar from the work by Gasperini [60], when T.· == the con­60 ' 

ventional gravitational theory is recovered in it. entirety. In/this way Santilli 
ensures the existence of a generalized geometry for the interior problem of 
gravitation, while ensuring the preservation of conventional geometries for 
the exterior problem, exactly along the preceding occurences at the Newton­
ian (§3.3) and relativistic (§3.4) levels. 

It should be stressed, however, that, even though the geom~try  for the 
exterior problem is the conventional one, the field equation.t are expected to 
be different than those by Einsteins, Eq.s (3.320), because of their source­
less character which is incompatible with the charged structure of matter 
(§3.5.3). 

In summary, we shall hereon assume the following realization 0/ the iso­
topic element8 

(T.') ~  Diag (/t,h,/3,/4),I. = 1.(i,I',T) 

T. 'I,.>A = 6.6 (3.4~) 

where the second conditions can be verified either with a discontinuous func­
tion (say, a step function) or with a smooth functional behaviour, depending 
on the physical conditions at hand. 
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where, to fint order in r, 

dt IF" = tU tt'zA+- = 
=~.!.  ltt'zA AII4 +~  { p }.!!!. Itt' X A"(o,,) (3.4"')

ktl.	 4 110 dS 

is the isotopic 4-force acting on a Ipinleu test particle. 
Notice that in global flat space, (g,.., = '1,.., everywhere) this force is 

vanishing. However, it cannot be locally eliminated, because of the curvature 
dependent terms contained in ,,114 appearing in the fint integral; F" is then 
simllar, in this respect, to the spin-curvature forces [125],[126] which break 
the validity of the equivalence principle in its strong form. 

As 'pointed out by Sailtilli (58J, Eq.. (3.406) are the gravitational ex­
tensions of the Lorentz-isotopic dynamics, Eq.s (3.305a). The gravitational 
formulation of closed nonselfadjoint systems of N particles each moving 
within a medium composed by the remaining particles is then characterized 
by[5~ 	 , 

.I"=It +{~} ,:ut =F~SA'  k =1,2, ..•,N (3."1){ a"",,, = 0 

where one recognizes the conventional total conservation laws (see, e.g., ref. 
[129]) as subsidiary constraints. .. 

Also, Eq.s (3.406) cleary estabUsh the No No-interaction Theorem of 
Section 3.4.14, trivially, because the ~ongeodesicforces cannot be eliminated 
in a Lie- isotopic theory of gravitat~on.  Thus, a nontrivial isotopic lifting 
always implies the existence o( nontrivial interactions. 

This result is physically trivial if one keeps ill mind the arena under 
consideration here: test particles moving within a physical medium in the 
interior problem of gravitation. In fact, a test particle cannot be reduced to 
free conditions when moving, say, in Jupiter's atmosphere. 

As a final remark, the reader should be aware that the nongeodesic 
forces FNSA have been derived here for the case of the simplest possible 
realization of the isotopic elements T_'. When such elements acquire a 
nontrivial functional dependence, say in the velocities (see Sect. 3.5.10), the 
nongeodesic forceS also acquire a nontrivial functional dependence. It is at 
this more general level that the nonselfadjointnes& of the nongeodesic forces 
emerges more clearly. " 

3.6.11	 Restriction of the Iaotopically Lifted Gravitation to the 
Interior Problem 

We now pass to the review of other important aspects of the generalized 
theory: the extension by Gasperini [60],[61] to isotopic elements with a non­
trivial functional dependence, and its use by Santilli [58] for the restriction 
of the lifting to the interior problem of gravitation. 

As shown in Section 3.4.11, the algebraic structure of the Poincare group 
is preserved not only in the case of a constant matrix T_', but also in the 
case of variable isotopic elements. Consider, as an example, the following 
particular form [60] 

T_' =diag (!t(Zl),J2(Z2),J3(Z3),/4(Z4» C3A12)
l ~.J, D~ 

where Ji(zd are four scalar functions, each depending only on the corre­
sponding coordinate. Assume the general expression for the isotopic p struc­
ture (3.340), where XA are the Poincare generaton, XA = {Pa , Ma.}. As 
the isotopic elements (3.409) commute with rotations, but not with transla­
tions, the isotopic curvature reduces in this case to 

k = kAXA ={dhA +~JBcAhB " hC}XA + 
+ V-" V'T_C[Pc,T,f1]PfI	 (3.410) 

where hA + {V-, wG'} are the components of the isotopic potential. We 
obtain then, from (3.418) the following isotopic structure equations 

ak- =	 dV· +w • 1\ y' +V' A VCT, .I[PfllTc-] 

ka
' =	 dw

G
' +w-c " w 

c6 (3.41') 

But since [PfllTc-] ex 8f1Tca, it is easy to see that for the particular form 
(3.409) of the isotopic elements, one has 

7['lfl8f17jeJ- =0	 (3.41~ 

In this case the generalized structure (3.518.) reduces simply to Eq. 
(3.411). The algebraic and geometrical structure of the Lorentz group is 
preserved, and an isotopic gravitational theory can be formulated following 
exactly the same formalism of Section 3.5.7, with the only difference that 
there is an additional contribution to torsion due to the derivative of T_'. 
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stress-energy tensor 9"") the equations of motion of the isotopic theory are 
different from the ones of the Einstein-Cartan theory considered previously. 
Consider in fact the isotopic field equation (3.376) and, to simplify not. 
tions, let u. denote with Aoll the isotopic correction to the Einstein tensor, 
i.e. 

AolJ = cp-l(Ro"r,,IJ - R,,"r,,"60 
1J +R"o"lJr,,") 

+ ",-2ro"F"IJ	 (3.39'> 

Suppose that, introducing Diatter, the isotopic field equations (3.376), i.e. 
" , 

GolJ =AolJ	 (3..Jgl1) 
are modified as follows , ,k 

G IJ - A IJ +-9 IJ o - 0 '2 0	 (3~9~ 

and· that torsion is related to spin according to the usual Eq. (3.390). We 
then have " "'k 

G IJ - _90fJ.,. +. fJ.,. 
0;/J - 2 '''' ''''	 (3~9')1\0 

and from the contracted Bianchi identity (3.395) we obtain the fonowing 
conservation equations 

a"";" +2Q"a"" +2Q"lJa o" - tT~fJ"RI"'OIJ = 
. -~(A"";" +2Q" A"" +2Q,,1'O Ao ") (3.4OJP) 

which differ from Eq.(3.391) because of the A"" tenns representing the con­
tributions due to the coupling of gravity to the isotopic tensor. 

Again the connection of the above results with Ydmaz's [101] theory of 
gravitation is remarkable. In fact, tensor (3.396) is evidently inclusive of 
Ydmaz's stress-energy tensor. 

We can therefore say that the ilotopic generalization oj Eirutein'8 grav­
itation naturally producu rUmGz', 8treu-ene'!1y tensor. 

The connection of the above results with Santilli's (100) identification of 
the gravitational field with the electromagnetic field of matter constituents 
is also intriguing. In fact, the tensor a"" of Eq.s (3.398) can be interpreted 
as Santilli's electromagnetic tensor 9~  of Eq.s (3.333). 

In summary, the isotopic generalization of gravity does indeed offer gen­
uine hopes of achieving all conditions 1 through 9 of Sections 3.5.5 for an 
"ideal" theory of gravitation, as we shall see better latter on. 
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3.5.10	 Deviation from Geodesic Motio~  of the Isotopically Lifted 
Gravitation 

Gasperini [60] then passes to the identification of another important aspect 
of the generalized theory ofgravitation, the irreducible lack of geodesic char­
acter. In tum, this property is at the foundation of the proof of the "No 
no-interaction theorem" considered in Section 3.4.14, as well as of several 
other implications of the generalized theory. 

The equations of motion of the isotopic theory are not geodesics even in 
the case of spinless test particles. In this case, in fact, we have from (3.398) 

2 
a[ap) = -iA[olJ) (3.401) 

and Eq. (3.400) becomes 

'8,,(Ae("") +A{ P } a(o,,) =!8,,(Ah(P,,)
110 Ie 

+iA(k""0 A[o,,) -A"";" - 2Q" A"" _2Q,,"0 h o ';) (3.40"> 

Suppose that the deviations of T.6 from the identity are very small. We 
can put cp ~ 1 and r < 1 and, neglecting terms which are quadratic in r, 
conservation eq. (3.410) reduces to 

'_(Aal....') +A{:a} alao' +At" =o. (3.40~ 

where, to the first order in r, 

2A."	 = 'kAA("");" = 

~a,,(AA("") +iA{.ro} 1\(0") (3.40p 

and 

A"" =Rl'CIr ro" - RolJro" - RolJrpOg"" +Ro"P"rpa (3.4~~ 

The integration of this equation, according to the standard procedure, 
shows that the poth oj a test body in thu isotopic theory demate8 from a 
geodesic, and it i8 de8cribed by the equation 

dPP +{ JJ } pOp" _ F" = 0	 (3.4~U 110 
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where pIA = m u" is the momentum and u" the fou'r-velocity of the test body 
(§3.4.13). 

In the Einstein-Cartan theory (120],[121] we have two Bianchi identities, 
one for the curvature 

V Rail =0 (3.386) 

and one for the torsion 
V RG .= Ra,/\ V· (3.~)  

By introducing holonomic indices, and contracting the first identity, we 
obtain, instead of Eq. (3.387), the following one 

Gr.:' = -2 Q"G'''' - 2 Q"IIOGa" +SafJ"RIWtJI{J (3.361) 

and contracting the Bianchi ident~ty  for the torsion one obtains 

(3.361)G(ap) =S:fJw +2 Q"So{J" 

where Q" =Q"a0 
, SofJ" ·is the so-called modified torsion tensor 

S~fJ"  = QafJ" +8:QIJ - 8pQo, (3.~) 

and the covariant derivative now .must be expressed in terms of the Riemann-
Cartan connection. . 

Using the field equations of the ~heory  

·G"" = '2
k 

a",,,
 
S""a =. k(l","0 (3.39')
 

where a"" is the (generally.. nonsymmetric) canonical energy-momentum 
tensor, and (1110"0. the canonical spin density tensor, one obtains, from Eq. 
(3.387), the following generalized conservation law 

.ar: +2 Q"e"''' +2 Q"p.a 9 0 " - (lb{J"R",,,ofJ = 0 (3.39~  

Writing explicitly the covariant derivative, and separating the symmetric 
and antisymmetric part ~f  9 110", this equation reduces to [125] 

6.(Ha....)+H {:o} a(a.) +HK".0a[0.) = 

= Ht1ofJ"R""ofJ (3.39B) 

and integrating this conservation law, as before, one can obtain the gener­
alized equation of motion for a test particle in the Einstein-Cartan theory. 

Notice that the antisymmetric part of a"" can be expressed aa a funciton 
of the spin density. For a spinless test particle one haa then (1"'''0 =0 and 
all"') = GIP.,) ~ 0, so that the conservation law reduces to the Riemannian 
one (3.390) and we obtain again a geodesical motion, as noticed first by Hehl 
[126]. 

The isotopic theory of gravity has the same geometrical structure as 
an Einstein-Cartan theory, as shown in Section 3.5.7, in which torsion is 
produced by the isotopic element Ta'. Using the decomposition (3.361), the 
isotopic structure (3.347) can be written 

Rail = dlAJaII +wac Awell 
ar = tWa +w , /\ V' (3.398) 

where 
Ra = _~-l{C6ciTia +W[6iTc)i}V' A VC (3.3~ 

By taking the Lorentz exterior covariant derivative, we get the same Bianchi 
identities as in the Einstein-Cartan case 

VR
a

' = 0 
V R!' = Ra

• A V· (3.391 

and then, contracting indices, we are led to Eq. (3.387), (3.388) as before. 
In order to obtain the equations of motion, however, it is necessary to 

introduce field equations relating Einstein tensor and the torsion tensor of 
the isotopic theory to the matter sources, so that the corresponding con­
servation equations for energy-momentum and angular momentum can be 
written. . 

To this aim, the isotopic theory for pure gravity considered until now 
must be completed by introducing a term in the isotopic action coupling the 
matter sources to gravity. As the full theory must be based on a Lie-isotopic 
algebra, also the matter fields, in general, will be coupled to the operator 
defining the isotopic lifting. 

It should be stressed, therefore, that consistent equations of motion can 
be formulated only in the framework of a complete Lie-isotopic theory, in­
cluding matter sources besides the gravitational field. 

Such a theory will be reviewed later OD. However, even in the simple 
case in which the matter Lagrangian does not contain explicitly the iso­
topic element (and then the source of gravity is simply the usual canonical 
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is the usual cutvature tensor, constructed from the Riemann-Cartan connec­
tion W; R"" =R"o"a is the Ricci tensor; R =R",,"" is the scalar curvature 
(Iat indices are holonomized by means of V·", for example r"" = V:V~r..); 
finally, g = det g"" = {det V:)2, aDd 

g"" =V:V:,w. 'I =diag (1,1,1, -1) {3.3~  

is the world metric tensor. 
Santilli's Lie-isotopic theory becomes 'then, in this case, an Einstein­

Cartan theory for gravity coupled, in a strongly nonminimal way, to a sym­
metric second- rank tensor. . 

The variation of the isotopic action in the form (3.370) with respect to
w·', gives the expected construnt on the isotopic tonion, 

it· =VV· =o. (3.37~ 

By varying Eq.(3.370) with respect to the frames V·, we obtain the modified 
Einstein field equations 

{tlr'Avc+cpR·'ArC)t.w+{cpR·' AVcr..'+R-'"rCr.,')(.," =0 (3.37§j 

or, in the usual. notations 

Go" = cp-l{Fo" - ro"G,,") + cp-2Ta" F"IJ, {3.37'> 

where Go" is Einstein's tensor and 

Fa" =Ra"r,," +ro"R"IJ - ~Rro" - R,,".r,,"60 
1J + RI'O""r,,". (3.38;) 

In the same way, the variation of the action (3.370) with respect ot cp 
and r gives the equations for the isotopic element. The kinetic terms for' 
these fields are obtained inserting, into the definition of curvature (3.372), 

the explicit expression for w". 
Notice that Eq. (3.363) can be solved by an iterative procedure, under 

the hypothesis that the isotopic element T•• induces small deviations from 
the original geometrical structure, i.e. T., - 'I.' = e••,with le••1< 1 (a sort 
of weak-field approximation). To the first order in e.it· is then equivalent 
to . 

dY· +w·, AY' +d(. =0, (3.311> 

and this equation can be easily solved for w to obtain the first-order isotopic 

contribution to the connection. 

.. 

The connection between Gasperini's modification (3.376) of Einstein's 
field equations (3.320) and Yilmaz's' modification (3.336) is remarkable. In 
fact, Yllmaz's stress-energy tensor t~Y  is contained in the right hand lide 
of Eq.s (3.376). A study of this important, yet unexplored aspect, il recom­
mended here to interested researchen. 

~.&.9  Isotopie Generalization 01 the Equations 01 Motion 

To clarify better the generalized theory, Gasperini [60] provides the explicit 
calculation of the generalized equations of motion. . 

As il well known, the equations of motion in a gravitational theory should 
be obtained as a consequence of the energy-momentum conservation, which 

. follows from the contracted Bianchi identities and from the field equations 
with matter sources for the interior problem.
 

In general relativity, the contracted Bianchi identity is given by
 

G"";" =0 (3.311) 

where a semicolon denotes the UIUal. covariant derivative in terms of the 
. holonomic connection r""fl. The field equations are given by. 

G"" = !e"" (3.~2 
where e"" is the (symmetric) matter energy-momentum tensor. The con­
servation equations which fonow from the above equations are given by 

e:," = 0 (3.~ 

and can be written explicitly (remembering that in this case the connection 
reduces to the Christoffel coefficients) as 

8,,(Ae"") +{J:.1AeOl = 0 (3.381)" 

By integrating this conservation law over the world tube of the test 
particle, following Papapetrou's method [125J, defining . 

dt fm u"u" = tU tl'zAe"" (3.~)  

and developing in power series the gravitational field, one gets in first ap­
proximation (pole-particle) the geodesic equation 0/ motion 

dp" +{J:.} pop" = 0 (3.38f)dB 
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o6lifting 0/ a tor3ionkss theo'll (such as general reltJtivity), the connection w
0/ the isotopic theo'll contains a generally nonooniBhing torsion port. 

Consider in fact the following decomposition of the isotopic element: 

T.'. =f{J6.' +r.' (3.361) 

where 4cp is the trace and r.' =T.' - f{J6-' the tracefree part of T_6• The 
isotopic frame then becomes 

(3.3M}v- =r =V:T.-t&" =VJV- +r­

and the isotopic structure eq. (3.359) can be rewritten 

tW- +wo,/\ Y' +VJ-1{clr- +w-,/\ r6) = 0 (3.365) 

from which 
R- =vY· =_f/J-l V rca :F 0 (3.361} 

where R· is the usual tonion two-form relative to the standard frame. 
Gasperini [60] therefore reaches the following important conclusion. 

The Lie-isotopic lifting 0/ a Riemannian geomet'll inclucu even 
in the absent:.&o/ matter, a Riemann-Carlon {l!O},{l!l} geomet­
riml st",cture, tDith the isotopic element acting tJB a source 0/ 
torsion. .. 

The connection w can be explicitly calculated in terlDl of V and T solving 
Eq. (3.359) which can be written explicitly ~ 

1 1 
C6c- +2~-c - 2"'c-' +Q6c- =0 (3.36J) 

where 
C6c- =V,"V:l(p V"j (3.3~ 

are the usual Ricci rotation coefficients, and Q6c0 are the components of the 
torsion tensor 

Q6c· = \t6"y:~-l{c\.Y"J'T'- +W(plo,Y,,)·T.') 
. 1 . 1 . . = VJ- 1{C6c'r,- + 'iW6-,Tc' - 'iwco'1l') (3.36~ 

(remember that To' is a constant matrix). 

By cyclic permutation of indices in Eq.(3.363), using the metricity prop­
erty [118lwca' =wc(06J, one obtains then 

Wcac6 =7.~  +Kca~ (3.3ft/) 

where 7o~  is the usual Riemanniaa part of the connection 

7.~  = C6ca - Cca6 - C_6c (3.• 

and K_~  is the contorsion tefl80r [120],[121] 

Kcac6 =Q6ca - Qca6 - Qca6c (3.~) 

This isotopic theory can be interpreted [60] then as an Einstein-Cartan 
theory for gravity coupled nonminimally to a symmetric second-rank tensor, 
which is a source 0/ torsion Oa:Dnling to Eq.s(3.366)•. 

3.6.8 Modified Field EquatiGDI with Torsion 

Another direct way for showing the differences between the conventional 
and the isotopically lifted gravitation identified by Gasperini [60J(61) is to 
work-out explicitly the field equations, and show that they do. not coincide 
with the pure geometrical equations (3.320) but exhibit a first-order nonulI 
tensor on the right hand side. This result is implicit in Eq.s (3.357). We 
shall derive it again for clarity following ref. [61]. ­

As now knOWD, the second structure equation (3.347) defining'the cur­
.vature two-form is not modified lJy the lifting, i.e. Ro6(w) = R·6(w) = 
R""ca6c1z" /\ clz". The action (3.349) for the .isotopic theory becomes then, 
using (3.361) 

S = ~  Jgal. A (yc A y elVJ2 +2tpVc A rei +TC A T")€o6ai. (3.37') 

By introducing explicitly holonomic indices, we have clz" Adz" AdzQ A,u1J = 
tJCzc""QIJ, and using the properties of the totally antisymmetric symbols we 
can rewrite this action in the more familiar tensor language 

S =f atzH[RVJ2 -2VJR""T""+2R"",."QTQ"-~RTQIJ,.J'Q+R""QIJTQ"r'f")t 

(3.3~ 

where: square brackets denote antisymmetrization; 

R""QIJ(w) =v:vf2(l\.w"Jo6 +w(p°cw.,)c6) (3.37') 
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where T., = T.. is a symmetric CGutant matrix, and "., = diag(I,I,I,-I) is 
the Minkowski metric. 

In this case the isotopic potentials (3.341) become 

Ov· = V'T,· , w = w·' ~' 

( ~.3~b) 

and the isotopic structure equations are ",...
it = R'T,· = tIr +w·, 1\ r 

c6B.-'(to) =- JrI~( to) =tlto- +w·c 1\ to (3.&f.lJ) 

Therefore, the connection and the curvature are not lifted (for the simple 
case considered); however, according to Eq. (3.347), the connection is de­
fined in terms of a generalized vierbein field V; 

v: =V:T,· = T; (3.3U) 

The action (3.344) for this isotopic theory of gravity becomes. 

S =' ik Jr'(to) 1\ 'r 1\ T'(Uctl (3·:t+1) 

By introducing explicitly holonomic indices, we have R~  = RlAv·'tlxlA /\ 
tlx" , and alA 1\ dx" 1\ d%ClI /\ all =tJ4X(lA"oll. By using the properties of the 
totally antisymmetric symbols Gasperini rewrites this action in the (perhaps 
more familiar) tensor lansuage . 

$ = ~ fbR{ i~2  -iRTclTp" - 2R»"T..»H 

+ 2 R"ClITollTll +RIA"ClIIlToIATp" } (3.35~  

where 
RIAl/ail = 2v:vf(c\.to,,)·' + tD(pGCto"jc') (3.3~ 

is the usual curvature tensor for the connection w, RIA" =Rpova 
is the Ricci 

tensor, R =RIAIA the curvature scalar, and 9 =det g,." = (det V;>2, where 

glAv =V;V!".. (3.35J) 

is the world metric tensor. Finally, Lorentz indices are holonomized by 
means of V;, for example TIA" =V;V,T.', and 

t/> =glA"TIAI/ =,t6T.. (3.~)  

is the trace of the isotopic element. '. 
Comparing the action (3.350) of the isotopic theory with the usual Ein­

stein action 

1 cIs =4k JR·' A V
C 

A V (a6al =~ f atzF;R (3.35+) 

the coupling constant of the usual gravitational Lagrangian is renormalized, 
Rlk -. RIll [60], where 

k' _ 2k (3.351)- fil- TofJTpa 

as expected in general when performing the isotopic lifting of a gauge theory 
(See Appendix A). Also, the isotopic element is coupled, in a strongly non-' 
minimal way, to the curvature tensor, thus introducing additioniJ tenns to 
the Lagrangian besides the scalar curvature. Notice that these new terms are 
all proportional to the scalar curvature, jf the isotopic element is the same 
for all the generators of the group or, in other words, if T., is proportional 
to '1116. 

By varying the isotopic action (3.349) with respect to the frames V·, 
Gasperini obtains the modified Einstein's field equations in vacuum 

RII 
'(to) 1\ ViTicT, fl(..ctl =~ (3.356) 

or, in the usual notation, 

4t/JTa"G,l = -2 R Ta"T,,1I - 4 R,/T"IAToll + 
+4 RIA"T"PTalA +4 ToIATIA" R"P +4 Rnnu)."IlT"IATo). (3.3IJ) 

where 
1G,l =R"P - -2R6,,1l (3.~) . 

is the usual Einstein's tensor (remember that in the standard theory the 
vacuum field equations are simply Gall = 0). 

By varying (3.349) with respect to the connection w.. one obtains the 
expected cODstaint on the isotopic torsion, i.e. 

itll 11= vr =tlr +"1 ,/\ r = 0 (3.3~ 

where V denotes the Lorentz covariant exterior derivative. From this equa­
tioD Gasperini is led to the remarkable result that, even oonsidering the 
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Lie-isotopic generalization, as reviewed in Appendix A. The Lie-isotopic lift­
ing of gravition was presented 8ubsequent to 8uch gauge isotopy. 

Consider Einstein'8 Gravitation for the 8implest pos8ible cue, that with­
out matter ~d  field equation8 (3.320). Reformulate 8uch theory in the gauge 
language [117). 

Let p. and M"" be the convptional generators of the local Poincare 
8ymmetry, where small Latin indeces denote anholomic Lorentz indeces. 
Denote the usual frame and connection one-form with 

V· =V:tlz" ,tD"" =tD:'dz" , (3.338) 

respectively where small Greek indeces denote Lorentz indeces in our 8pace­
time (as in. the preceding sections of this work). 

The 8tandard "potential" of Ein8tein'8 Gravitation can then be written 

h =hAXA =V·P. +tD-M.., (3.339) 

where capital indeces A, B,••• run over the set (a,u,...). 
Along the lines of Santilli'8 Li.isotopic theory [IJ, Gasperini [60J leaves 

the parameter and the generators of the theory unchanged, but 8ubmits the 
various composition laws to a lifting characterized by generally different iso­
topic elements TAB for different generators. Conventional potential (3.339) 
then becomes under lifting I 

h = hATASXS = V·T.6l\ +V·T.6c M6c + 
+ tD"T..cpc +tD·'T..etlMetl (3.340) 

Suppose that the isotopic elements TAS . are constant matrices, which 
commute with the Poincare generators and among themselves. The isotopic 
curvature can ,be expressed in terms of the generalized components of the 
potential hA = hSTsA = {V·, w·'} according to the expressions 

6cT6c•V· =. hATs· = V~T6· +w
w·' = hSTs·' = 1,cTc" +wol.Tetl" (3.341) 

U8ing the standard commutation rules of the Poincare algebra, one ob­
tains then the same structure equations as in general relativity [118] 

it· = dV· +10·, A V' (3.342) 

and 
noDca' = d""" +W...C 1\

A W.. c6 (3.343)W 
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defining th~  isoto~!c  torsion it·, and curvature it-, in terms of the i80iopic 
potentials hA = tV· , to'"}. 

Imposing the constraint it· =0 as in general relativity, the group man­
ifold procedure prescribes then for this theory the standard Einstein action 
expressed in this cue with the generalized variables itA and i&A, i.e. 

S = 4~ f RU(tiI) A VC 
1\ ''''leW (3.344) 

where €.., is the totally antisymmetric symbol, and k = 16rG/4 is the 
usual Newton coupling constant. 

In this way, Gasperini ~oc.citJ  achieves a result analogous to those reached 
in Sections 3.3 and 3.4, namely, that the conventiOfltJI Einstein's Gravita­
tion and its image under isotopic lifting coincide at the level oj abstract, 
retJlization-Jree Jonnulations. 

Despite these similarities, and exactly as it happens for the Galllei­
isotopic and the Lorentz-isotopic cases, the physical differences between the 
conventional and the isotopically lifted theory of gravitation are rather deep. 

In order to identify these differences, the isotopically lifted theory must 
be explicitly worked out and expressed in terms of the conventional potential 

Ah = {V· t w·'} for, again, these mathematical symbols represent physical 
quantities that remain unaffected by the lifting. ' 

. It then follows that the geometrical structure underlying the isotopically 
lifted theory is more general than that of the conventional theory, as we 
shall see below. 

3.&.1 Isotopic Origin of Torsion 

Gasperini [60J first illustrated the physical differences between the conven­
tional. and the isotopically lifted theory by showing that the former is a. 
torsion free theory, while the latter is, intrinsically, a gravitation theory 
with torsion. In turn, the appearac:e of torsion is of fundamental nature, 
inasmuch as it allows the p088ibility of attempting the resolution of at least 
some of the problematic aspects of Einstein's Gravitation recalled earlier 
(Sect. 3.5.4). 

Consider the simple isotopic lifting defined by 

T.,c =0 =Te·' (3.34~) 

T., = '1rH:T•c ~ 'la' , T.,ctl =6.c6,d 
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The foundatioDl of the.studies are provided by Santilli'a identification 
of the apparent electromagnetic origin of the gravitational field (S3.5.3), 
the Lie- isotopic generalization of the conventional Lie's theory (Section 2); 
the LIe- isotopic generalization of Galilei Relativity (S3.3) and of Einatein's 
Special Relativity (S3.4); u well u the formulation of the Lorentz-isotopic 
symmetry for general1y curved isotopic SpKel Mm (S3.4.7). 

Following these linea Gasperini {59]J60],(61),[62] CDDltructed, for the first 
time, a step-by-step Lie-isotopic generalization of Einstein's Gravitation 
which p081e8881 predsely a local Lorentz-isotopic character. He then pre­
sented numerous developments, particularizations and examples. 

Santilli (58] reiDlPected Gasperini's theory, by making a number of ad­
ditional contributioDl, such as: the restriction of the isotopy to the interior 
problem only in order to recover the conventional homegenuity and isotropy 
of space as well aa the conventiona11Uemannian geometry for the exterior 
problem; by restricting the Lie-isotopic theory in the interior problem to be 
locally isomorphic to the abstract Lorentz symmetry, 80 that this fundamen­
tal symmetry is not lost, but only relized in ita most general pouible way; 
and by presenting additional contributioDl reviewed below. 

The generali1.ed theory of gravitation which emerges from the above 
studies shall be referred hereon aa the Gaperini-Santilli GeMral Relativit, 
(or the Gaperini-Santilli Gravitation). 

In the remaining parta of this section we shall re~ew  such a novel theory, 
point out which of the above requirements 1-9 is verified, and identify some 

of the open prt?b~ems.  
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FIGURE 14. A reproductioa of Filare 5.7 of ref. [21J WU\raUal 'he· 
elMaual uPecu of the t1jdeu- theory of IraYitatioa renewed ill Sectioa 
3.5.5: the phylical dift"ereaC81 bet..a the exterior ud the iDterior d)'1lam­

ic:a, with motioa of teat particle. ia ftC1Iam (empty .pace) ill the former cue, 

&ad motioa withia a phylicalmNia. ia 'he latter cue. For theM reuou, 
ref.. [64] ud [21J advocate the De of the coaYeatioaallocal, Loreatliu t•• 

ory of paYitation for the exterior problem. The reader Ihoalel be awue that 

tile paYitaboaal theory for the interior problem advocated in ref. [21J. a 

COftrial of the Lie-i80topic theory reYiewed ill tllia IleCtioa, OwiDI to iu Li. 
aclmia8ible charader. A. it happeu for other ley_ of Itady (lee, e.I., Fil1lre 

3), the Lie-i8otopic theory pau the empham. oa total, coayelltioDaI, coaler­

nboa laft .ader leaeralilecl ia&erllal Itradatel. 11ae 1&iII more lelleral 

Li.aclJai.ible approach elleatiaUy repretellu olle iadividual test putide 

whea th~ rat of the Iyltemia external, thai re.alal ill &Il Opell, IlODCOIl­

tervauve, IYltem requiriDI the LoreDt.. admiuible leaeralilatioll [21J of the 
LoreDts-itotopic Iymmetry of tllia reYiew. 

Remarkably, the Gasperini-Saatilli Gravitation we shall review hereon 
is only a particular case of a more general theory of gravitation of the '«N­

ering Lie- admiaible (rather than Lie-isotopic) character for the atudy of 
open gravitational problema, which has been independently investigated by 
Gasperini [114],Santilli [21], P.F. Gonzalez-Diu [115], A. Ja.nnuuis and col­
laboraton [116] and others. This more general approach whiU not be re­
viewed (although we hope to review it in a future work). 

In Section 1.2 we quoted Bruck's statement to the effect that the notion 
of algebraic isotropy is "so natural to creep in unnoticed". In this section 
it is appropriate to quote Gasperini's words (ref. [59], p. 652): "This (Lie­
isotopic) generalization (of Einstein's gravitation) is 80 natural' to appear 
nearly trivial. However, its physical implications are rather deep", as we 
shall see. 

. 3.5.8 Lie-isotopic Lifting ofEinstein's Gravitations without Source 

In three pioneering papers of 1984 Gasperini [59],[60],[61] presented a Lie­
isotopic generalization of Einstein's Gravitations for the case without energy­
momentum tensor of matter (see later on for the case with source tensor). 

The starting point is the formulation of conventional gravitational the­
ories as gauge theories with local Lorentz invanance [117]. Sasperini fint 
shows that conventional gauge theories admit a consistent (and intriguing) 
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Santilli [58} contend. that Yilmaz', teruor t~:·tI  ~.  ita origin in the 
.ho'" range (tDetJi and .trung) interactioru at the Joundatioru of the .truc­
ture of matter. More explicitly. he recalls that all fields or the elementary 
constituents or matter are expected to contribute to the total gravitational 
mass. or these fields. the electromagnetic fields reviewed in §3.5.3 is ac­
countable ror the 9:'''' tensor ~hich.  u such. is tracele&8. The remaining 
weak and strong fields are responsible ror an additional tensor. It is easy to 
see that such tensor cannot be traceleu and. thus, it can well be Yilmaz's 
stress-energy tensor t~··.  

The position assumed in this paper is that the correct field equations ror 
the exterior problem are expected to be Eq.s (3.337). with the understanding 
that the contribution to, the gravitational field by t~·tI  is expected to be 
substantially smaller than that or 9:''''. The rormer tensor can tehrerore 
be ignored in our fint classical approximation. 

S.S.,S	 Some Desirable Features tor a Generalized Theory 01 Grav­
itation 

By combiDing the various problematic aspects or Einstein's Gravitation, 
Santilli [58] advocates the construction or a suitably generalized theory or 
gravitation having the following primary features. 

INTERIOR PROBLEM 
1. The generalized theory should represent motion within a gen­
erally inhomOgeneous and anisotropic material medium. The un­
derstanding is that space itselr remains homogeneous and isotropic. 

2. The generalized theory should be based on a nonlocal. in­
tegrodifferential generalization of the Riemannian geometry in 
order to account ror the nonlocal forces experienced by an ex­
tended test particle moving within the medium composed by 
all the other particles. If a local-differential approximation is 
888umed (via power series expansions in the velocities). the gen­
eralized theory should be able to produce under the PPN ap­
proximation all possible Newtonian equations or motion, with 
an arbitrary functional dependence on the velocities (the essen­
tially nonseltadjoint rorces or rer. [63]). 
3. The generalized theory should be able to represent local devi­
ations from the conventional rotational and Lorentz symmetry, 

in order to avoid perpetual motion approximations, as evident 
in the cl888ical physical reality or the interior problem. 
4. Despite all the above departures from the conventional Ein­
stein's Gravitation, the generalized theory should be 10c:a11y Lorentz­
isotopic (§3.4) and, in particular, the local Lorentz-isotopic sym­
metry should be isomorphic to the abstract Lorentz symmetry 
on isotopic spaces Mm (§3.4). This latter requirement evidently 
demands the realization of the preceding characteristics via a 
Lie-isotopic generalization of Einstein's Gravitation. 
5. The generalized theory should admit a non-null Birkhof­
fi~ representation via a nontrivial, Pfaffian generalization or the 
canonical action principle. FUrthermore, such a representation 
should permit an unambiguous "hadronization" or the. theory 
into an operator form on Hilbert spaces (§1.3). 
EXTERIOR PROBLEM 
6. Along the lines or the Galilean (§3.3) and relativistic (§3.4) 
closed nonhamiltonian systems, the generalized theory is ex­
pected to be a theory with subsidiary constraints to ensure the 
validity of conventional total conservation laws, as well as to en­
sure any needed additional feature. 
7. The generalized theory is expected to be purely Riemannian 
in the exterior geometrical character and, therefore, should pos­
sess the local, conventional, Lorentz character in the exterior 
problem; 
8. The generalized theory should incorporate the electromag­
netic tensor originating from the charged structure of matter 
and resolve the problem or the "origin" or the gravitational field 
(§3.5.3). In case such a tensor is not sufficient to resolve all 
problematic aspects identified by Yllmaz (§3.5.4), the genreal­
ized theory should incorporate the stress-energy tensor or the 
gravitational field. 
9. Last, but not least, the generalized theory must be compatible 
with all available experimental data on gravitation. 

It should be stressed that a gravitational theory satisfying all the above 
requirements does not exist to this writing, to our best knowledge. Never­
theless, major advances have been made along these lines as we shall report 
in the rest or this section. 
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By implementing Einstein's equations with the stress-energy tensor, Yal­
maz haa constructed a generalization of the theory, hereinafter refened to 
aa Yilmcaz'. Theo,., oj Gravitation Jor the uterior problem with rather re­

. marable p088ibilities, such as: 

a) compatibility with the Newtonian description of the planetary motion; 

b) compatibility with the relativistic description; and 

c) compatabliity with the quantum-mechanical fonnulation. 

In particular, Yilmaz's theory ap,ean to be consistent with cunently avail­
able experimental evidenCe. .. . 

The latest development in the space-time theory of gravitation is the 
rediscovery of Freud's identity and its application to the problem ofexterior 
field equations. Freud's identity waa originally found by P. Freud [112] in 
1939. It was mentioned by W. Pauli [65] in 1958 in the "Notes" section of 
the Dover edition of his fam~U81921  work and by J. Weber [113] in his 1961 
work on gravity waves but no systematic application to the problem of field 
equations was made. L 

Recenly .H: Vilmaz (110) pointed out that the existence of two indepen­
dent identities (that of Bianchi and of Freud) creates a severe restriction 
on the possible fonnof the field equations. This is the problem of overde­
termination in the presence of mUltiple conditions and the consequences 
are quite dramatic: In order Jor Uae field equation. to be compatible tDitla 
ttoO identitiu one mat add in tAe uterior problem the Btre••energy tensor 
t~·Y on the right hand .ide tDiUa unit eoJlicient ~t~raY  ,~  = 1. Otherwise the 
field equations either have no solutions or only solutions which are trivial 
(for example, only a I-body solution if l ~ 1) or solutions which are non­
unique (for example, a linearly accelerating frame depending on a parameter 
(= ±v'(I-l) which is double valued). 

Compatibility requires l = 1, so that in this case one haa non-trivial 
N - body solutions and, at the same time, all solutions are unique since 
( = ±v'(I-l) =o. Furthermore, Yilmaz demonstrates that only when 

=1 (that is, only when the field equations are compatible with the two 
i~entities)  that the theory is experimentally viable. 

An example of this is that, wess ~  = 1, there are no N-body solutions, 
hence the N-body equatioDl of motion cannot be constructed other than 
(possibly) by puttiong the second, third, etc. bodies by hand. But then the 
theory becomes a test body theory and cannot predict the 532" per century 

N-body part of the perihelion adva.aceofMercury, since test particles cannot 
interact with each other. 

These points were already made by H. Yilmaz [11] before the rediscovery 
of Freud's identity but now with their exact derivation using that identity 
the results become quite strong. 

Yilmaz's theory itself is not immune from criticisms. For instance, Eq.s 
(3.336) are unable to account for the first-order tensor e:~'"  of Section 3.5.3 
owing to the different structures of the two tensors (one traceless and the 
other not). As a consequence, the electromagnetic field originating from the 
charged structure of matter and propagating in the exterior problem is not 
explicitely represented in Ydmaz's theory. 

This indicates that, even though Yilmaz's criticisms of Einstein's Gravi­
tation appear to be valid, and his objectives a), b) and c) above are equally 
valid, his theory might need further geJieralizatioDl to achieve compatibility 
with other aapects, such aa the origin of the gravitational field itself. . 

A fundamental problem which is open at this writing is whether the argu­
ments by Y"1lmaz apply also for Eq.a (3.333) with an electromagnetic tensor 
on the right, or they hold only for Eq.s (3.336) with a .tfe••energy tensor 
on the right. To put it differenly, the issue addressed here is whether' the 
arguments by Yilmaz remain valid when the tensor on the right is traceless. 

This issue is important for the final identification of the r.h.s of the ex­
terior equations and, in particular, for the problem whether Eq.s (3.333) are 
sufficient or they have to be implemented into still more general equations 
of the type 

GlUI =81r; (e:,'" +t~aY) (3.337) 
CO. . 

Note that the argumentations by Yilmaz are specifically valid for the 
exterior problem, such as the planetary motion. Nevertheless, if the stress­
energy tensor must be added for such a problem, it evidently persists in the 
interior problem. 

A primary emphasis of this review is the identijiadion 0/ the origin 0/ 
any tensor that is needed in the r.h.• oj the field equations Jor the ezterior 
problem. This emphasis haa been the guide for the presentation of the elec­
tromagnetic tensor 9:1,"'. As a result, we cannot escape the problem of 
the possible origin of Yilmaz's stresi-energy tensor t~·v.  To put it differ­
ently, if a clear origin of such a tensor can be identified, its place in the 
r.h.s. of the field equations becomes incontrovertible irrespective of any of 
the advantages reviewed earlier in this section. 
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of Ule electromapetic ud IraritatioDai field., e.I., via Sutilli'. hypothellia 
of their t1jdeDtificatioD- (AuD':IlpUoa 3.1). The IeCODd teI& .Dllelted iD ret 
[100J ia a deeper relaemeat of tile fint tell ud couiderably more clif6cult 
ill practical realisatioa. Aa iupedio~  of eaerlY-momeata.. teuor (3.330) 
.ader poteau" (3.332) iadieue ~at  a .ipificaat part of paritatioaal m.. 
(3.331) ia due to tile dyaami~ eGa.~Uo. of the clauiel. The leCOad teat 
uder coDlideratioa ... iateaded preciMly to telt tile coatribatioll' to the 
paYitatiollal field oripllatiDltromelle dyaamical coadiOoD' of tile chUlei. 
For tllat parpoM, SutiDi .DII__ the meaiaremeat of the paYitatioDai 
field (abo via aeatroa iaterf~.tric.tecbiqael) prodaced by the -electro­
mapetic h.... of tile fil_re -WcIa, U ODe cu Ne, eueDtially cowt of 
oppOllite clauiel ud mapetic IDOmeau ia extremely Mala rotatioaal COil­

ditio. 1M) U to reprodace tile coaditiou of tile .tndare of matter u cbe 
u ~ble.  Appueatly, tllia Mcoacllellt ... Dot fe"ble back ia 1974 (Saa­
tilli, priftte commaaicatioa) ~111  to a a1UDber of IimitaUGu .ada u: the 
impoaaibility &0 reach .aBideatly Wala ul1l1ar momeatam, ud electromAl­
aetic field•• Neverthelel8, tllia aecoad.d.. of expenmeau caa well be withia 
pradical feuibility aowada,. owial &0 the adftllcemeau ia teclaaololJ that 
have occared ia ~Ile  meaatime (e.I., ia ApeICODdacton). WIletller alGal the 
Uel of propoala [l00J or au, ~tlaer  approada, tile abcJYe telu ue .troDp, 
recommeaded Ilere for couidera.a .b, experimeDter:a ia tile field. 

Stated differently, the ultimate objective of ref. [100] was to conduct a 
study on the origin of the gravitational field along the hypothesis underlying 

. Eq.s (3.332), 
11M.. =eEl'"	 (3.334)..."" - "" ~ 

After all, the use of mass terms is nothing but an expression of our ignorance 
of the dynamical structure originating the mass. 

A number of approximate expressions for the tensor e~~m  are computed 
in ref. [100]. The value of the tensor M:'·' itselt caD evidently be assumed as . 
an approximation of e:,m,provided that its dependence in space is assumed 
to be equal to that of 9~~m,  and the tensor can be rendered nowhere null. 

A number of conceivable experiments to test the expected gravitational 
character of the energy of electric or·magnetic nature (which have not been 
conducted to this day, to our best knowledge) were also formulated in ref. 
[100] (See Figure 13). 

As a final comment, the reader should be aware that the extension of the 
analysis to a celestial body with a non-null electromagnetic phenomenology 

is simple. Einstein's field equations assume in this case the familiar form' 

. G - 8rG (MM.' +tE'm)	 (3.335),." - 4 ,."IW 

where t~~'" is the electromagnetic tensor solely due to the total el~tromag­
netic quantities (and, as such, its value is much sma11e~ than that of e:~"').  

Eq.s (3.335) are trivially contained as a particular case of Eq.. (3.333), i.e. 
9:~m is inclusive, by construction, also of total electromagnetic effeCts. 

3.6.4	 Problematic Aspect. ofEinateint. Gravitation for the Exte­
rior Problem Cauecl by the Lack of Sireu-Energy Tenaor. 

By far the leading expert on the problematic aspects of Einstein Gravitation 
for the exterior problem is H. Ynmaz. We list here only some of his papers, 
ref.s [101] through [111]. Ydmaz's analysis is related to that by Santnn 
(§3.5.3), although it is based on different physical motivations. In fact, 
Yilmaz advocates a generalization of Einstein's field equations (3.320) for 
the ezterior problem of the type 

G - 81rG tOra• (3.336)"" - 4 I'll 

where t~ra. is the stress-energy tensor of the gravitational field, i.e., a tensor 
physically and mathematically different than e:,'" of Eq.s (3.333). 

Yilmaz's motivations for Eq.s (3.336) are numerous and can be only sum· 
marily reviewed here. First, he shows that, when the stress-energy tensor 
is absent, the Newtonian limit of Einstein's Gravitation is unable to recover 
the Galilean description of the planetary system, because it recoveri instead 
the ~called  Hooke's mechanics (in which the Sun has infinite inertia and 
there is no principle of aCtion and reaction). When the stress-energy tensor 
is however present, this problem is apparently resolved. 

FUrthermore, Yilmaz ~oc.cit] shows that, in the absence of the stresa­
energy tensor, Einstein's gravitation is appanently unable to recover the 
energy- momentum conservation law of the Special Relativity. 

More 8eriously, Yl1maz additionally shows that, under the absence of the 
stress- energy tensor, Einstein's Gravitation is indeed capable ofrepresenting 
the celebrated 43" of advancement of the perihelium of Mercury, but serious 
problematic aspects exist for a consistent representation of the basic 532" . 
because of the strict Hamiltonian character of Newton's laws. 
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The extension to the proton ia trivial inasmuch as it implies a simple 
increase of the SUID in Eq. s (3.331). The extension to atoms and mo1«!cuJes 
then (ollows the .ame pattern along Eq.s (3.332), and with similar results. 

Notice that 9:~'"  cannot be reduCed to zero unless one alters the struc­
ture of matter, e.g., by forcing all ~arges to be at rest and sufficiently close 
to each other. 

As a result of this analysis, Santilli ~oc.cit.]  concludes that an, ma&tive 
cele,tial bod, with null total electromagnetic phenomenolog, hOI a limble, 
Jir,t-order, enerv,-momentum tefllOr 9:~'" due to the electromagnetic ,tnu:­
tu~  0/ matter which if nowhe~  reducible ,0 zero. 

Under the classical approximation here considered (i.e., short term, weak 
and strong interactions "are ignored), the following hypothesis was formu­
lated. 

ASSUMPTION 3.1 [100] (Strong Allumption): 
The gravitational mall 0/an, mu"ve hotly iI entirel, due to the 

.electromagnetic field 0/ itl cJaarged CORBtituentl. 

The "tDeGk GllUmption" (which ia the minimal possible under the cal­
culations of ref. [100]) is that the gravitational field of a massive body is 
substantially, but not entirely due to the electromagnetic field of the charged 
constituents (because of the additional short range fields .of the weak and 
strong interactions). . .. . 

On the contrary, no contribution to the gravitational field is admitted 
in Einstein's Gravitation, evidently because, under such a contribution, the 

. r.h.s. of Eq.s (3.320) cannot be nuB. 
In different terms, the gravitational field'il notDhe~  ,ourcele&t, because 

the only possibility to render integral (3.332) null is to work-out an ad hoc, 
profound modification of Maxwell electrodynamics which would undoubt­
edly result to be contrary to experimental evidence. 

Under the classical approximation indicated earlier, ref. •_00] therefore· 
submitted the following refol1Q.ulatioD of Einstein's field equations for both 
the e%terior and the interior problem 

G - .8rGeEl'" (3.333),." - c3 ,.". 

where 9~'"  is precisely the energy-momentum tensor produced by all charged 
constituents of matter. 

As a couequence of the above results, Santilli put the foundation' for 
a pOllible genuine resolution of the vexing problem of the "unijicotion" of 
the gravitational aod the electromagnetic fields, &ad replace it with the 
"identification" of the gravitational field with the electromagnetic field of 
the matter constituents. The undentaoding is that contributions from Ihort 
term (weak and strong) interactioDl mUlt be expected from a future operator 
formulation of a gravitational theory. 

~:..~.V€l, . 01-"A , 
'<:1 " .... 

'~:~: bl 
.~  ' " " -" 

~~:~  cl( ~/, ,-

FIGURE 13. A reprod.diu of Fipre 7 of ref. (100) depidial tile 

-eledromapedc 1aeaU- of tile pro'" uperimea&L AU sraYit&tioaal tla~ 

ori. p!edict 'lau ..., electromapetie field seaera_ a pYitUio." Ield 
Yi~  .... (3.331). 'flU. p~c:tioaIa.. aot beea aperimeatall, verified ••m 
aow. For tlda ~a,  Sutilli lagm&ed back ba 1914 (100) tile coad.dioD 
of tlaia faad&lllstal &eIt ill a a1Ullber of waJl. ne fint prop.... wu to &at 

tlae predictioa iUelf ill iii mc.& cIinc:t paaible wa" • tlae He of tile IUSeil 
anilable lO.rca of electromapetie fieldl, e.I., tlaOie of tile IUle mainetl 

anilable ia a a...ber of laboratorim. ne teet C&Il be coaductecl Yia abail­
able aeatroa iDterferomeater tecbiqam ud/or Iraril, meten of Idlla leD­

IitiYit, by meuarUal fint the backpo.ad witla the ....aetic field oft', ud 
thea tile payilatioaal field IoBoNI the actinuoa of the mapetic field. 

To ou belt bowledIe tm tint faadameatal e][perimeat ia iJadeed feuible 
aowada, (...d of rather coatuned COlt) becaue, oa oae lide, Beutroa iDter­

ferometrie &edaaiqaes have readaed a Yery'higla desree of leaaitiYit" wlaile, 
oa the other aide, we laave aftilable very IUle lOalees of m&petie field. 
!lesretabl" tJail propoul Ia.. remaiAecl igaored b, the expenmeatal COID­

moit,. to oar be8& bowledIe, despite iii ..Ulnesll, faadameatal aatare, 
e.g., for the pouible resolutioa of the YeDDI opeD problem of ·unificatioD­
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l(D D){ 8}) 1 op(D,,· V,,)20-'2 ". fa' v"' V;, - '29 d,." 

I op(l- 6"", )[( }-9 ,d,.3<, D,,· D",)(v,,· v",) - (D,,· v",)(D",· v,,)] , 

(3~325) 

where 

{AO,Bt'} =AO Bt' +Bt'AO 

D:", =X O 
.;. y:", (3.326) 

When the magnetic moments p of the constituents (in a singlet ground state) 
are included, we have an additional potential outside the 11'0 system given 

by 

Ot'D ot'D 
"A;'(z) =. [co3P tEJ P+eo(D· a)p P­

jJot'DfJ (3.327)- eo ~	 ]r=r. 

with additional total electromagnetic field 

F0t' _ EtOt' + rrolJ + r.d1J (3.328)
" - "rt/IJI "rt /D2 "rt/D 

where 35' 
r.d1J _ 2CO ,..01J _ 3c3 (,..oPDIJ _ ,..IJPDO)D • (3.329)"r1/DJ - til'" fl5 ,.. ,.. . P' 

2eo OA 2eo (D' .) 
~~tD2  =	 -ifP" +d3 ·4 P

01J
 

-(~1  +~(D  o a») (p"'nP - ,,"D")D,
 

+a;:(""I!DI! - ""I!D")D, + ~(""'a'  - II"~ a")Dp 

... CO (pOP vIJ -poPDO)vp + 2CG (pOP v" _plJpvO)Dp,
tfJ tfJ 

_ [Co(a. D) _ 3eo(D .,a)2] ( OIPDIJ _ fJpDO)D
,,~tD  - d4 d5 P P p 

, , 

+3eo(~· a) (pOlPDIJ _pt'PDOI)Dp_ ~(jioPDP  _ jifJPDOI)Dp • 

After a judicious handling of the advanced and retarded component, 'the 
corresponding energy-momentum tensor is then given by 

gofJ _ ..!. ( r.tOI" IJ .!. 0It' /W )
• 0 - 411' r.o F.o" + 4'1 F.o F'1.. 

r,1J
.0 = ,pat' +"pafJ	 (3.330) 

The volume integral of the 0 - 0 component of the above tensor then char­
acterizes the electromagnetic contribution to the gravitational mass of the 
11'0, 

m'" =~f 9 ••gdv	 (3.331) 

Explicit calculations [100] show that the above value of m~J'"  is very close 
to the rest mass of the ",0. Under certain velocity-dependent corrections 
(caused by the deep wave overlapping of the ",0 constituent), the total rest 
mass of the 11'0 can be reached both, via SchrOdinger's type equations [2] as 
well as via purely electromagnetic contributions [100). 

Clearly, such a large, first-order value of the electromagnetic field in the 
exterior of the 11'0 is incompatible with Einstein's field equations (3.320). 
Note that the 1'0 was selected because, (as it is the case for the celestial 
body considered) it has null total charge as well as null t~tal electric and 
magnetic moments. 

The extrapolation of the analysis to a massive body is conducted in ref. 
[100] in sequential steps. First, the problem of the neutron n is considered 
under the assumption (rather generally accepted nowaday) that quarks are 
not elementary but have a structure resulting from a suitable bound state 
of a yet unknown number of elementary charges. 

This results into an energy-momentum tensor for the neutron of the type 

gEl'" 1 ( 1 fJ)= 411' F"oF: +4'1""Fot'pa ,"" 
N 

FEI	 EI El
'" ­'" L.J	 ( F '" +~ F "') (3.332)

,~"  /W ' "" - ,,,,=1 
where the sum goes over all elementary constituents. For a sufficiently high 
number of such constituents under sufficiently high dynamical conditions, 
volume intergral (3.331) for the case at hand acquires, again, such a high 
value to be able to account, in principle, for the entire gravitational mass of 
the particle. 
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Santilli (100] essentially shows that the obo~ purel" gravitationalletdure 
01 Ei",'ein'. ezterior gravitation u incompatible fDith the cho'TIe .t",cture 
01 the bod" coMderetl in an apparentl" irTeODncilGble tDCI" (see Fig. 12). As 
well known, matter is composed of atoms which, even though neutral, are 
composed of charged particles in highly dynamical conditions, the peripheral 
electrons and the elementary charsed conatituent. of protons and neutrons. 
It is the dynamical condition of the charged consituentB of matter that re­
sults into a total non-null electromagnetic field outside the body considered, 
contrary to Eq.• (3.320). (See Figure 6). Owing to the importance of this 
point for the analy.is of this paper, let u. review its essential aspects. 

As a first .tep, Santilli computes the total electromagnetic field outside 
a r O under the &8Iumption that it i. a bound state of a generic "parton" and 
an "antiparton" (say a quark-antiquark system, or equivalently in Santilli's 
approach, an "eleton"-"antieleton" system) of charges (+q,-q). The analysis 
is purely classical and relativistic. Also it is based on the conventional 
Maxwell's theory of electromagnetism in tat space-time via the use of the 
(advanced and retarded) Lienard-Wieckert potential at a point z of the 

Minkowski space M 

.A:.(s) =-':: ,m =Adv.,Re&., (3.321) 

Under the approximation of a point-like structure of the rO constituents 
and of their absence of magnetic moments (spin zero), the potential of the 
system at an exterior point iJl Miakowski space M i. given by 

,A:'(z) = -9E("(",C,,.~· 
 

"'" un.
 

vtAdY ]"iR.= -9{[C+Ret. t4Re& - C+AdY d+AdY 

- [C-Re& tl"~Ret. - C-AdYtl"~A~Y]} =1:C"",A:",(~,322) 

-Ret. -Ady ft. 
where: €" =-1 for positive charges; ( =+1 for negative charges; the C's 
are (at this point) arbitrary constants verifying the properties 

C+Re& +C+AdY ::= 1,
 
C-Re& +C-AdY = 1; (3.323)
 

and" v"A" (z) - -n( ~  .:!!!!L (3.324)
"'" - 'Z"~'" d,.", 

p 

FIGURE 12. A reprocl.c:tioll of Fis. 1, p. 111, ret (100) PreIeIlUaS a 
dematic: Yiew of & ce1eItial bod, witla lluB total claarle u a -.u" ofcUled 
particlea ia IaiPl, dJllamical collditio.... EftIl tho.p tbe total claule ia 

aero, til. total electromapetic field ia nowhere nail· ba hoth the interior 
ad the exterior prohlem. Explicit calcalaUo...Ilow tllat .adi a field bu 
&.al.e • hiP to aa:out, in pmc:iple, for the paYitatioaal m.. of tile 
bod, (A.nmptioD 3.1). nele re8utl eltahliala a ~com~tibilit, hetweea 
Eiuteia'. GraYitalioa aad Maxwell'. Elec:tromapetilm. ia the IeIlIe that 
the latter tlaeol'1 predictl the em&eace of a IUSe, lnt order ..arce dae to 

themalled.tndareofmatter.laieb ilaimply ladias ill the Cormer theory. 
ReI. (100) mdeatl, embracea Maxwell'. electromapetilm ad nae:ttl a 
reYilioa of Eiu&eia'.lIaYitauon with tJae iadO_OD of a Dowhere nan lOatte 
teDIor. hidel the reIOl.tioD of tbe abo.. inCOD_teIlCJ, the reYilioll a1Io 
oft'er'. the pouibilit)' of reaolYiDS the YeDaI prohlem of -Uaificatioa- or the 
lIaYitatiollal ud electromapetic fielell wia their ~deIlUficatioll- in the IleDIe 
of Aaamptioll 3.1. 

The exterior energy-momentum tensor is then given by 

1fT;! = q;; E {~.[cAD""D..~ +(D ov)..{D",")" 
"ft' 

- (1.z3~~"·  )I(D" •v".){D:"lI,,~} - ~(v" . v",){D.." •~, )
"I 
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obeying a unitary, Hamiltonian time evolution). Such a proof evidently 
does not exist. Santilli contends that the proof is impossible for numerous 
technical reasons, such as the impossibility for a finite number of unitary, 
Hamiltonian time evolutions to reconstruct a classical, noncanonical, non­
hamiltonian time evolution. 

Again, in the words of the quoted author, the insistence in the capability 
to resolve classical violations of the rotational symmetry at the particle level 
without rigorous mathematical plOOfs, constitutes such an approximation of 
Nature to shift the issue from a technical to an ethical context. Besides, San­
tOO poe.cit.] points out the evident need to construct a classical theory of 
gravitation capable of representing the clouietJl reality as is, and prior to its 
possible particle counterpart. The next problematic aspect (which is also 
linked to the above "illusory" reduction) is the now vexing imp08sibllty of 
achieving a consistent quantum mechanical formulation of Einstein's gravi­
tation, despite serious a..nd protracted efforts. Santilli poe.cit.] claims that 
this additional problematic aspect is due to the intriD8ic property of Ein­
stein's Gravitation of admitting ~,null  Hamiltonian. Jd a result, a "true" 
quantization of the theory (i.e. a unique quantization without ambiguities) 
is expected to be quite diflicult if not impOSlible to achieve owing to the 
intrinsically Hamiltonian character of quantum mechanics. 

In view of this occurance, and because of the eviden~  need that any 
future theory of gravitation must eventually admit a coD8istent operator 
formulation on ~bert  sp~,  S~tilli  poc.cit.] suggests that a more ade­
quate theory of gravitation for the interior problem (which is not expected 
to be Hamiltonian because of the power series expansions in the velocities 
indicated earlier ) should admit a consistent Birkhoflian representation via 
a generalize Pfaflian action principle (11.3).. Once such a nonun structure 
has been identified, "hadronization" without ambiguities becomes at least 
conceivable (see also 11.3). 

. Finally, in regards to the problem of quantization/hadronization, San­
tUll poc.cit.] does not see the need, or even the consistency, of a quantum 
mechanical formulation for interplanetary distances, but only locally, in the 
interior problem. To put it differently, the conceivable operator formulation 
of gravity is recommended for the interior, but not for the exterior prob­
lem. This is trivially due to the evidence that quantum mechanical effects 
are manifestly present in the interior problem and manifestly absent in the 
exterior one. 

For a technical understanding of the above comments, we urge the reader 
to acquire a knowledge of the techniques of variational selfadjointness [63] 
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and understand occunences such &8 the violation of the integrability con­
ditions for the existence of a Hamiltonian in the frame of the observer for 
systems experiencing forces with an arbitrary dependence on the veloci­
ties, while such a representation always exists, (directly universality) for the 
Birkhoffian covering of Hamiltonian mechanics [20). 

3.6.3	 Problematic Aspect. of Einstein'. Gravitation for the Ex­
terior Problem Caused by the Lack of Source 

The problematic aspects for the interior problem reviewed above are abient 
or otherwise inapplicable to the exterior problem of gravity. 

In fact, the Riemannian geometry is evidently applicable to the exterior 
problem because of the absence of all the contact, nonlocal, integrodifferen­
tial effects of the interior dynamics. Also, the medium of the exterior prob­
lem, empty space, can be well assumed to be homogeneous and isotropic. 
Finally, since motion occurs in empty space with evident local conservation 
laws, the local Lorentz character of the theory is also applicable. Santilli 
[58) therefore advocates a gravitational theory for the exterior problem that 
is Riemannian and locaJly Lorentz in character. 

Despite that, Einstein's Gravitation for the exterior problem remains still 
affected by such fundamental problematic aspects to raise serious doubts on 
its approximate validity. 

A first problematic aspect relevant for this review was identified also by 
Santilli in 1974 [100]. It consists of an apparently irreconcilable incompati­
bilty of Einstein's field equations for the exterior problem with the electro­
magnetic structure of matter. 

Consider a celestial body with null total electromagnetic phenomenology, 
Le., nun total charge, null total electric and magnetic dipole moments, etc. 
Under these assumptions, Einstein's field equations for the interior problem 
are given by the familiar form 

del 1 8rG Ma& ()
GIW = RIW - i 9uvR = c3 MIW 3.319 

where G"" is Einstein's tensor, and Ml;!,a& is the energy-momentum tensor 
of matter. For the ezterior problem the ~quations  acquire the familiar form 

G"" =0 (3.320) 

which represent the essence of Einstein's Gravitation, namely, the gravita­
tional field 0/ a celestiol body with null totol electromagnetic phenomenology 
i8 characterized by pure geomet,., without 8ource. 
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tically null probability of tunnel effects for free quarks); identification of the 
quark constituents with physical, ordinary particles; etc. 

As it occurred in the preceeding parts of this review, in this section we 
shall ignore operator profiles and restrict the analysis only to classical as­
pects. Thus, all short range quantum mechanical interactions of the interior 
problem will be only marginally indicated without treatment. 

We shall now begin with a review of some of the problematic aspects of 
Einstein'. Gravitation; identify what we call an "ideal" theory of gravitation; 
and then pass to a review.of Gasperini [59,60,61,62) and Santilli [14,21,58] 
work on the Lie-isotopic General Relativity. 

3.5.2	 Problematic Aspect. of Einstein's Gravitation for the In­
terior Problem 

Einstein's Gravitation is based on·a geometry, the Riemannian geometry, 
which is loml and differential. Santilli (21),[64) points out that such a ge­
om'etiy is fundamentally incompatible with the interior problem of celestial 
bodies, ~ecause  of the incontrovertible nonlocal nature of the forces for the 
interior dynamic., as well as the ultimate nonlocal nature caused by the 
mutual penetration and overlapping of the wavepackets of panicles in the 
core of the celestial body considered (Fig. 1). . 

The use of a suitable nonlocal integrodifferential generalization of the 
Riemannian geometry is therefore advocated as the fundamental mathe­
matical tool for a more adequate treatment of the interior problem. 

The above occurrance leaves open the problem whether the Riemannian 
geometry Can be at least approzimGtely valid for the interior problem. The 
answer to this question appears also to be negative. 

A known way to approximate contact nonlocal interactions experienced 
by an extended object moving, say, within a gas, is via power-series ezpan­
sio.... in the velocities, as well known in Newtonian mechanics. 

In this way, locolity is. regained in first approximation; yet the power 
series in the velocities allows a quantitative treatment of the conditions 
considered. Santilli poe. cit.] contends that the Riemannian geometry does 
not allow the representation of a sufficiently high value of the power of the 
velocities, thus preventing a nontrivial, quantitative treatment of the i~terior  

dynamical conditions (this is also known in the specialized literature as the 
Carton legacy, that is, the inability of the Riemannian geometry to recover 
all possible Newton's equations of motion under PPN approximations, see 
ref.[4]). 
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Another central property of Einstein Gravitation is its intrinsically ho­
mogeneous and isotropic charader. Santilli poc.cit.] contends that such 
character is in violation of incontrovertible physical evidence for the interior 
problem (only). In fact, interior motions are not in empty space, bu t occur 
within the physical medium constituted by the celectial body itself. In turn, 
such medium is, in general, inhomogeneous and anisotropic. As an example, 
the density of Jupiter manifestly increases with the decrease of the distance 
from the center. 

Owing	 to this occurence, Santilli [58] advocates the construction of a 
gravitational theory for the interior problem capable of representing motion 
within generally inhomogeneous and anisotropic material media. The un­
derstanding is that space itself remains homogeneous and isotropic, exactly 
as in the Newtonian and relativistic eases. 

Another central feature of Einstein's Gravitation is its local Lorentz char­
acter. Santilli poc.cit.] contends that this character too is violated in clas­
sical mechanics by incontrovertible physical evidence. In fact, the local 
Lorentz character implies, in particular, the local rotational symmetries, as 
well known. Santilli therefore suggests the observation of dynamical systems 
in the interior problem of our Earth, such as satellites during re-entry with 
their continuously decaying angular momentum; the vortices in Jupiter's 
atmosphere with their continuously varying angular momentum; etc. All 
these systems constitute incontrovertible physical evidence of the breaking 
of the (conventional) rotational symmetry in our classical environment. The 
violation of the local Lorentz symmetry is then consequentive. 

In the words of the quoted author, the insistence in the acceptance 0/ 
Einstein's Gravitation for the interior problem directly implies the acceptant% 
of the perpetual motion in our environment. In turn, the ac~eptance  of 
excessive approximations of Nature, inevitably raises ethical issues (which 
are not considered in this review). 

The customary attitude when facing systems with varying angular mo­
mentum is that such breaking of the rotational symmetry is "illusory" in the 
sense that, when the interior system considered is reduced to its elementary 
particle constituents, the rotational symmetry is regained in full. 

The suggestive "journey without return" in the Solar system [17] shows 
that such an attitude itself is "illusory". In fact, a mathematical proof of the 
contention would require that an object such as a satellite during re-entry, 
with its continuously decaying a.ngular momentum (and noncanonical, non­
h~ltonian time evolution) is reducible to a finite number of elementary 
particles all possessing a locally conserved angular momentum (and thus 
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3.5	 Lie-Isotopic Generalization of Einstein's Gravitation [14], 
[58],[60],[62] 

3.S.1 Introductory Remar~  

"As stressed in the preceding section, when violations occur because of motion 
within inhomogeneous and anysotropic media, Einstein's Special Relativity 
must still be considered approzimately valid. 

The situation for Einstein'. General Theo,., 0/ Relativity (or Einstein'. 
Gravitation for short) is different because of the existence of so many and so 
deep problematic aspects to create serious doubts even on its approximate 
validity. 

The literature on these problematic aspects accumulated throughout this 
century is so vast that it cannot possibly be reviewed here. We shall simply 
limit ounelves to a review of those problematic aspects that have a direct 
relevance for our objective: a review of the Lie-isotopic generalization of 
Einstein's Gravitation. 

A necessary condition [64] for uildentanding the problematic aspects, as 
well as for avoiding potentially major misrepresentations, is a return to the 
old separation of (any) theory of gravitation into 

A) The interiorproblem. This is essentially the theory of gravitation appli­
cable to the interior of the minimal surface (or sphere," for simplicity) 
containing all matter (thus including the at~08phere,  when it exists). 

B) The ezterior problem. This is essentially the theory of gravitation ap­
plicable to the exterior of the abf?ve identified surface (or sphere). 

The beat way to illustrate the distinctions between the above two prob­
lems is by observing their physical" differences as they occur in Nature. 

Consider the motion of a tut particle in a given gravitational field, say, 
that of Jupiter. When considering the ezterior problem, motion occurs 
in vacuum (empty space), in which case the actual size of the particle is 
ignorable. We can then effectively deal with a point-like test particle moving 
in vacuum under a gravitational field, with consequential local conservation 
laws, e.g., that of the angular momentum. 
. When the same test particle enters the interior problem, the situation 
is different because we now have motion within a physical medium such as 
Jupiter'~  atmosphere. Under these conditions, the actual size of the panicle 
is no longer ignorable, but must be properly represented to avoid excessive 

approximations of physical reality. We therefore have motion of aD ex­
tended particle within a physic:al medium, with the consequential contact, 
nonhamiltonian forces we have encountered at each level of our analysis 
(Newtonian, relativistic and, therefore, gravitational), with aU their partic­
ular physical implications that are simply absent in the exterior problem 
(inapplicability of the notion of potential, null range, deviations from local 
conservation laws, etc.). 

At a deeper analysis, the distinction between the exterior and the interior 
problem is even deeper than that. In fact, the interior problem includes not 
only the long range interactions (electric, magnetic and gravitational), and 
the contact nonhamiltonian interaction indicated above, but also the short 
range interactions that are typic:al of the structure of matter (such as the 
weak, nuclear and strong interactions). By comparison, the exterior problem 
includes only the long range interactioQ.s without any contact or quantum 
mechanical effect. 

The distinction between the interior and the exterior problem was well 
known soon after the inception of Einstein's Gravitation but it has beeD 
ignored in more recent times, thus reaching the condition of (most of) the 
contemporary literature in which no mention is made of such distinction. 
This is regrettable owing to the incontrovertible experimental evidence es­
tablishing the physical differences of the motion of a test particle in the 
exterior and in the interior problem. . 

The distinction under consideration is crucial lor the physical applica­
tions of the Lie-isotopic theory, consistently, at all levels of study, from the 
Newtonian to the relativistic and to the gravitational level. In fact, the dis­
tinction was brought back by Santilli in 1978 (2] with the notion of closed 
nonhamiltonian systems (§3.3), and then extended to the relativistic context 
(§3.4). As now familiar, these systems obey conventional relativities for the 
exterior dynamics, but require a Itructurally more general description for 
the interior problem. 

It is then natural to expect that a similar distinction plays a fundamental 
role in the Lie-isotopic formulation of gravity. 

A'similar distinction also exists in the structure model of hadrons poco 
cit.] according to the "hadronic generalization ofquantum mechanics" (§1.3) 
in which, again, conventional quantum mechanicallaw8 and relativities ap­
ply in the exterior problem, while structufany more general laws and rela­
tivities apply in the interior dynamics. In tum, this dichotomy opens up a 
truly new frontier of possible advances, we hope to present in a subsequent 
review, such as: achievement of a true confinement of quarks (with an iden­
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symmetry tranaformatioDl, with the couequentiaJ. excessive approximation 
of Nature indicated earlier. 

Despite all the above dift"erences with the conventional cue, it is re­
markable that S.ntilli'. aM Ei,..tein'. SpecitJl Relativitiu coincide .t tAe
.""1"Gd, realization-/ree leveL By keeping in mind the large variety of dif­
ferent particular cues admitted by the Lie-isotopic theory, tmslatter prop­
erty provides genuine hopes for atrue, ultimate unity of mathematical aDd 
physical thought. . . 

We regret being unable to review a couiderable Dumber ofcontributiou, 
all conceived in a way entirely u.depeDdeat &om the Lie-isotopic theory, but 
which eventually result to be a panicularizatioD of the Lie-isotopic lifting of 
the Special Relativity. 

NONEINSTENIAN SYSTEMS 

OPEN 
~INTERIOR 
~ - ITREATMENT:.......­
........
.......,.,
 

CENTER-oF-MAII TREATIIENT: ......, 
.........-41...... d .... 

FIGURE 11. A reprodudioa of F"II. 2 of ref. [58] depidias tlae ftri­
OD de8Cliptio.. that ma, neB&uall, reaalt &0 be aeeded for the d,.amicaI 
behaYior of a h••froa. Fint, we haft tlae deKriptioa of the centa-of-m.. 

beJaaYior of the parade ..da alenaal. aclioa-a~a.-d.tuceiatenctiou. 
_,. wh. morias ill a put.ide ua:lerator. Thia fint deaipaoa .Uidt, 
abe,. Eiuteia'. Special RelaliYit,. SecoDd, we laaft the deKriptioD of the 
•tneture of the particle wlaea iupeded from aD ou.de obiaYer. Ia &hg 
cue. SaatilJi'. -Loreut..i80topicnlatirit" reriewed ia thie 8eCUoa ia ree­
olDllluded becaue the luaaliaeel oit of the theory alIo.. the represea­
taiioa of DODIocal. iatepodift'e~tial iDterau forcea d'ue to mutual wave 
OftrlappiDI of tlae hadroDic: co..titueau, all ba a wa, compatible with total. 
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CODYeatioDaI, coDMnatio. Ia... Fiaall" we haft a third deecriptioD. that 
of ODe iadiridau coutitaeat whn couiderinl all tile othen u extenalo 
ne nlatiYit, laUe8ted for thia latter Yiewpoi.t ia of -Loreat..admiaible­
type &Ioal mOJlOlraph [21]. tllat ii, witla aD aJaebraic Itndare capable of 
directl, repfeleatias the Doacouenatioa of tile ph,lical qaaautie8 of the 
coatitaeDt. Note tllat ia tile atomic Itndare ODe aialle relativit" EiJa­
.a'. Special Relat.iYit" iI fall, "cieat for tlae deecriptioD of both. &II 

atom u a whole ud ODe of iu periplaeral eledro.... Thia iI dae to tile fad 
that tile electro.. Ilaye Itable orbiu .ada potential forcelo TIle coaftatioaal 
Lie-BamiltoaiaD Itnetare • theD laftiaut. I. tile trauiuo. to the atrac­
ture of hadrou, tJae litaatioa iI difFereat becaaae iadiridaal coDltitaeata are 
ia l-eraU, aODCODMrftUft coDclitiou ••der tlte actiOD of DoahaDiiltDDiu 
rora.. A deacripuoa of Doa-Lie type iI thea ncommeDdahie. We hope to 
reriew the ahcwe upecu.ia a nbleqaeat paper oa -hadroaic mechwcao-

We limit ourselves to mention Preparata worb [97] which are based on 
the idea of a possible anisotropy in the interior of hadrons with intriguing 
implicatiou. Quite clearly, Preparata's research, in its classical formulation, 
is a particular case of Santilli's Special Relativity which, as now familiar, 
deals with the most general poeaible class of anisotropy and inhomogeneity 
in the interior of hadrons. Intripingly, as now predictable, Preparala's 
anisotropy doe. not imply the necessary violation of the Lorentz symmetry, 
which could be recovered as an exact symmetry at the level of Lie-isotopic 
formulations (Theorem 3.6). Needless to s,ay, the establishing of the property 
requires a form of statistical averaging [98] of Preparata's space or other 
approaches capable of reducing the quantum field theoretical setting of ref. 
[97] to a primitive, classical, anisotropic framework.' 

Similarly, we are unable to review a rather considerable number of addi­
tional research, such. as the studies by P. Bandyopadhyay and S. Roy [98], 
or S. Roy [99] and others. 

We would be grateful to any colleague who sends to our attention (at 
the Institute of Basic Research, 96 Prescott Street, Cambridge, MA 02138 
USA) articles or references ofpapera directly or indirectly related to Santilli's 
Special Relativity for their possible review in a future work• 
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3.4.1T	 Reconstruction 01 the Lorentz-Isotopic Symmetry when 
ConventionaUy Broken , 

One of the most important propertiea of Santilli's Special Relativity is that 
of being able to reconstruct as exact, at the isotopic level, space-time sym­
metries that are conventionally broken (see fundamental Theorem 2.9). 

The direct consequence is that all statements of "Lorentz noninvariance" 
or "breaking of the Lorentz iymmetry" available in the contemporary liter­
ature are generally incorrect on strict technical grounds. 

As an example, consider the phenomenological studies by Nielsen and 
collaborator [70]. They reault in generalized metric (3.170), i.e., 

• 1 1 1 2(
9 =diag(1 - 3°,1- 3°,1- 30' -eo 1 +a», (3.318) 

which is clearly "Lorentz noninvariant" but only when the symmetry is 
.realized in its simplest possible way, that via the trivial Lie product AB ­
BA. 

H the Lorentz symmetrY is realized instead in a more general way, via 
Santilli's isotopic products A • B - B. A = AgB - BgA, with the metric 9 
given by form (3.318), then the !Arentz symmetry remains exact (Theorem 
3.6). 

A similar situation occun for all C88e8 of "Lorentz noninvariance" re­
viewed in §3.4.:rConsider, for instance, the generalizatio!1 of Einstein's Spe­
cial Relativity proposed by Bog08lovski [83] for Fbislerian invariants of type 
(3.176). Since the topological character of the conventional Minkowski met- . 
ric is preserved (for positive-definite anisotropic terms), Theorem 3.5 applies 
and the abstract Lorentz symmetry in Bog08lovski's Special Relativity re­
mains exact.' , 

The implications of the above results are far reaching. A central result 
of the Lie-isotopic .tudie. is that, 6" no mean8, the Lorentz ."mmetry is 
"6roken- and therefore "abandoned." l,..teod, it is pre.enJed in full, although 
realized in iu mo.t general pOuible form. . 

As a consequence, all the "deviatioR8- from contJentional law. eqre88ed 
6" P08tulate. 3.1-3.5 are deviatioR8 from the Einsteinian realization 0/ the 
Lorentz symmetry, and not frr?m Lorentz 8"mmetry which remai,.. ezact. 

3.4.18	 Epistemological Comments 

A few epistemological comments are important to illustrate in more depth 
the physical departures of Santilli's Special Relativity from the Einsteinian 

one. 
As now familiar, the generalized relativity has been constructed with 

the objective of admitting the Galilei-isotopic relativity as particular case 
for "nonrelativistic" speeds. As a result, all the epistemological comments of 
§3.3.9 on the Galilei-isotopic relativity apply, of course, in their "relativistic" 
generalization. 

Traditionally, the (conventional) Lorentz symmetry has been assumed 
as the fundamental symmetry of Nature. The metric (or the equations of 
motion) have then been restricted to comply with such a symmetry. Santilli· 
advocatea the reverse attitude: one .hould a88ume a fundamental phPl8iaJ1 
information the metric (or eqtJatioru oj motion) tJ8 provided 6y uperimenttJl, 
phenomenological or other evidenoe, and then .eek the generalized relativit" 
ctJPtJ6le of leaving that metric (or equatioR8 of motion) inooriant. This is the 
case of generalized Minkowski metric (3.170) by Nielsen and collaborators 
[70] for the interior of pions or bons. The insistence on the assumption of the 
conventional Lorentz symmetry and Minkowski metric as the fundamental 
quantitiea would directly imply disagreements with available phenomeno­
logical information, besides forcing the exc:essive approximations of physical 
reality indicated in §3.3 (Perpetual-motion approximations, etc.). 

As for the Galilean case, relativistic studies have been essentially re­
stricted until now to only one symmetry, the Lorentz symmetry. San­
tilli'8 Special Relativit" characterize., iutead, an infinite number ofdifferent 
8"mmet'll tramformation., etJch of which is a covering of the conventional 
Lorentz symmetry. This is evidently due to the infinite variety of possible 
metrics g. Honly one symmetry is imposed, whether conventional or gener­
alized, a substantial limitation on the representational capability of physical 
reality would follow. 

The aoondonment of line4rity in favor of intrinsicolly nonlinear, but for­
mally isolineor trunsformatioR8, i. another condition for a more adequate 
representation of Nature. Again, the insistence on the linearity of the trans­
formations would imply another substantial limitation on the represent. 
tional capability, with consequential excessive approximation of Nature. 

Also, as in the Galilean-isotopic case, Santilli'. Lorentz-isotopic s"mme­
trie. are generally nonmanife8t; yet the" ~n  be ezplicitlPl computed from the 
sole knowledge of the new metric and the old Lorentz symmetry. 

Finally, Santilli'8 Special Relativity ha. been conceived to map noninertial 
Jrume. into noninertialframe., 6eaause inertial frame. are a conceptual all­
struction that cannot be realized in ezperiment•. From a different viewpoint, 
the insistence of the preservation of inertial frames would imply only linear 
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Theorem 3.8 [581: (The No N~lnteractioM Theorem). Sy.tef7U of par. 
ticlu on _.,ace M, which verilJl SantUli'. Special Relativity (i.e., are co­
NMant untler the Lorentz-uofopic group) CGnnot 6e ,.muced to a free form 
unle.. the generalized relativity u reduced to the eonventional Eiuteinian 
relativity (and the uo.pace M, u reduced to the eonventionGi Minko.".ki 
.pace AI (ezcept for a po.hle MXJltJr .ton). . 

The proof of the theorem [58] is based on Gasperini's [60] Lie-isotopic 
generalization of Einstein's Gravitation and, in particular, the property that, 
under & nontrivial Isotopy of the Millkowski metric, the motion CGnnot be re­
duced to a geodesic one (i.e., it is irreducibly nongeodesic), thus establishing 
the existence of irreducible, nontrivial interactions. 

The main conceptual foundations of this important result is the follow­
ing. Recall that the Birkhoffian formulations are baaed on a nontrivial gen­
eralization of the conventional canonical action into a Pfaflian form. Now, 
at the conventional (relativistic) level, there exist canonical transformations 
capable of reducing the system to its free, and therefore noninteraction, 
form. 

At the level of Santilli's Special Relativity, the situation is different. In 
fact, the use of the transformation theory can at best reduce the Birkhoffian 
to the free form, but the system remains interacting owing to the remaining 
nontrivial Pfaflian terms. I 

To put it differently, the conventional transformation theory can at best 
eliminate the potential-Hamiltonian forces, but .ot the contact, nonhamil­
tonian .forces owing to their representation by the generalized unit (and 
related Lie-i80topic b~ets) which evidently remain totally unaffected by 
the transformation theory. This yields Theorem 3.8 above. In conclusion, 
particlu o6eging SantUli,. Special Relativity and whicla therefore admit a 
generalized isounit i, CGnnot 6e~. This important property has truly 
fundamental impUcations, especially in particle physics, as we hope to indi­

.cate in a subsequent paper on "hadronic mechanics" (§1.3). 

3.4.18 The Direct Universality of the Lorentz-Isotopic Symmetry 

As the reader familiar with the Lie-isotopic techniques can now predict, SaR-. 
tilli'. iie-isotopic generalization 0/ the Lorentz symmet,., is directly univer­
'01, i.e., CGpable 0/ including all poBBi61e ~u of noninVGMaRCe or general. 
izatiou eouidered until now (univer.alit,) without any need 0/ the truns­
formation theo,., (direct universolit,). 

This property is a direct consequence of the arbitrariness of the metric 

g in the Lorentz-isotopic symmetry. It is ·the "relativistic" counterpart of 
the direct universality of Birkhoftian mechanics and its Galilean-isotopic 
relativity [20]. 

As an illustration, ihe generalized relativity on isotopic spaces MI in­
cludes, as particular C&Ie8, all models of Lorentz noninvariance reviewed in 
§3.4.3. 

This latter property has been studied in detail by Aringazin [89] for 
the case of (1 + 1)-dimensional spaces with components z3 and z4, and 
the assumption that the q~antity  ~  of the Lorentz-isotopic transformations 
(3.251) does not depend on the local coordinates, but only on the velocities 
v, thus allowing power series expansion of the type 

~(t1)  =1 +~o  +~17 +~272 +... , (3.316) 

where the ~ 's are much smaller than one, and the quantity 7 is the con­
ventional relativistic one. By putting Co = 1 for convenience, Aringazin 
expresses behavior (3.279) of the mean liCe of unstable hadrons in the form 

~2 

r =ro7{1 +.\072+~1(1  +~)73 +[ 21 +~2(1 +.\o)h4 +...l, (3.317) 

which evidently includes behavior (3.169) by Blockhinstsev [67] and Pecei 
[68], as well as behavior (3.171) by Nielsen and collaboraton [70]. The 
case of behavior (3.175) by Aronson et Gl. [72] for the mean life is also a 
subcase of Aringazin'lI expansion (3.317). The conesponding behavior for 
other parameters of the K -system, IUch as the mass difference, were obtained 
by Aringazin via a Lie- isotopic lifting of the field equations compatible with 
the assumed structure of the metric underlying Eq. (3.317). For ~revity, we 
refer the interested reader to ref. [89]. 

Finslerians spaces are also a subcase of the isotopic spaces and are ob­
tained, trivially, tg factorizing the anisotropic term from all terms of the 
metric 9 = Diag.(b ,c2), as the reader can verify. 

In case a model of Lorentz noninvuiance breaks the topology of the 
Minkowski metric but it is still flat, the isotopic spaces Mil, are needed. The 
lifting of the Lorentz symmetry is in fact unaffected by this gener~zation, 

as indicated earlier. This broader class includes models such 88 Recami­
Mignani's superluminal invariants (3.253), ref. [93], and othen. 

The illustration of the direct universality of the Lorentz- isotopy with 
other available models is left to the interested reader. 
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Uld, for "nonrelativistic" conditions, does indeed recover the corresponding 
Galilei-isotopic counterpart (except for a scale term) 

2 1"2 1 . .°

Erin ~ Em:c: (1 +iJJ )= E: +2m: v'9ijv'. (3.308) 

Suppose that the particles are under the action of an electromagnetic field 
generated by the other particl., and represented with the four potential 
A:(s). Then, the correct form of the potential energy in Ml must be written 

U(.,i) = '2: ~A:(s)g,..,.i:.	 (3.309) 
I • c: 

To add the contact nonhamiltonian forces, one needs only to general­
ize conventional, relativistic, variational principles into those of Birkhof6an 
type, where the Birkhoflian is the conventional total Hamiltonian properly 
formulated on M,. 

The simplest class of 8uch systeIDI is a relativistic generalization of the 
Birkhoffian systems used to identify realizations of the isotopic group of 
rotations 0(3), Eqs. (3.57). By Uluming for conventional Hamlltonian on 
MI expressions of the type (see, e.g., ref. [96], p. 127) 

H = E 2~ ~gIWP:  - ~m.c:2 +U(s,z) +4E~, (3.310) 
• 

where the M are multipliers, the desired particulariZation of systems (3.305) 
can be represented by the generalized Ktion [58] , 

A= 1·2

lEP:g,..,(p)P: +Er.l. - H]d,. (3.311) 

The symplectic tensor of the theory is then given by 

O;j =(g~ -r) ,i,; = 1,2, •.•,8, (3.312) 

with corresponding, Lie-isotopic counterpart 

g-1 ) g'''' ) (0 (3.313)Oil = (-g;: 
0 0' = -g"" 0 ' 

and generalized Poisson brackets 

[ ..] 8A _1 8B 8B -1 lJA (3.314)A,B =8s".g"" 8pIA - {JPPg,,)llJ%fJ· 

The departure of the generalized from the conventional brackets is a direct 
representative of the non-self-adjoint forces, as the reader is urged to verify 
via a 8tudy of monograph [20]. 

Systems (3.311) then Ulume the Birkhoman form 

." ~(JH  ~  IWlJH ° 

s. = 11 8-" ,1'. =-g 8s'" 
r. • 

• lJH· lJH 
1. =lJr. ,r. = -lJA.'	 (3.315) 

where, as now familiar, the last two sets ofequations represent the subsidiary 
constraints :r•• z. = -1. 

Note the manifest Poincare-isotopic invariance of Pfaflian action (3.31.1), 
with couequentlal conservation laWs. Note also that the conserved quaa­
tities are the conventional ones because Santilli's Lie-isotopic theory,leaves 
,unchanged the parameters and generators of the original symmetry. 

Almost needless to 8ay, several refinements of systems (3.305), (3.306) 
or (3.315) are possible, most notably, that via Dirac's theory of relativistic 
systems with constraints. For brevity, we must refer the interested reader 
to paper [58] for a discu88ion of these aad other aspects. For the purpoee of 
this paper it haa been 8ufficient to review that: 

,	 , 
1.	 the relativistic generalization of GaIilei-isotopic, dosed, nonhamilto-

Dian systems can be consistently formulated in i_paces M,; 

2.	 such ,sy8tems are not only consistent, °but generally admit infinite v.­
rieties of diff'erent solutions; and 

3.	 the systems admit a representation in terms of (relativistic} Birkhoff"s 
equations which allows the identification of the generalized metric of 
the theory from given nonhamiltonian forces via the use of the tech­
niques of monograph [20]. 

The above results are amply sufficient for the limited scope of this review. 
In closing, we would like to mention aaother important consequence of 

Santilli'. Special Relativity, that of being able to bypass the so-called No­
Interaction Theorem of Einstein's Special ~ativity (see, e.g., ref. [96]). 
The theorem essentially states that, under certain quite plausible, Lorentz­
covariant conditions, 8flsteru 0/particles that a~ in nontriritJl mutual inter­
actions a~ inc:omptJti6le tDiUa EiRlltein's Special Relativity. For the isotopic 
setting we have instead the following property. 
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thus yielding the following relatiollship 

.. 1 
FNew. =":"""" KS.,,'iIIi· (3.304)

1C 

As now familiu, forces (3~300) are claasified into self· adjoint (SA) and 
non-self-adjoint (NSA) depending on whether they are derivable or not from 
a potential [63]. 

We reach in this way the' following "relativistic" generalization of the 
Galilei-i80topic systems (3.93) ofN particles with Hamiltonian and non· 
hamiltonian forces [58] I 

d " . 
• .U. K" " mo tU = .SA +K.NSA ' 

., CI =~, 2, ••• , N, 

d d N 
th P;" = tU (E,,:) =0, 

-=1 

d d N· 
-M"" - -(~ II"") - 0th eo, - tU ~ JD. -, 

••1 

." .".- 1 . (3305)s.g""s. - -: .' . . . 

where the ten conservation law. 'for the Pl'oe and .M::'~  are the relativistic 
version of the ten Galilean .Conservationlaws of Eq. (3.93) and the last 
equations are the conventional con.traints for relativistic theories, evidently 
expressed in the generalized metric. 

Equations (3.305) constitute systems of 4N ordinary differential equa­
tions with N +10 subsidiary constraints, which can be interpreted as alge­
braic constraints in the 4N components.of K~SA'  Thus, for N ~ 3, system 
(3.305) admit an infinite ,variety of80lutions, the case N =2 being a special 
one, exactly as it happened in the Galilean case (S3.3). 

. Systems (3.305) are of-central relevance for Santilli's Special Relativ­
ity, not only classically, but a180operationally. In fact, the systems are 
proposed as a c1usicallimitof structure models of hadrons, in which each 
extended-deformable constituent moves .within a medium with metric g"" 
characterized by the wavepackets of the other constituents. 

As presented, systems (3.305) are based on the requirement that the 
center of mG. of the 8JI,tem, wh,en _ten from an outside ob'erver, obe", 

Einstein', Special ReltJtivit" .Aile having a manife,tl, generali;td internal 
,t,;,clure obefling Santilli', Special Relativity. 

A large variety of generalizations, implementations and modifications of 
systems (3.305) are conceivable. Stronger requirements may be expreaecl 
by the more restrictive systems [58] 

• du= K" +K"mo ds = .SA .NSA' 

CI = 1,2, ..• , N, 

.!!... n" - 0 .!!. II"" - 0 ."g ." - -1tU """coe - 'th JU'o' - ,.... "".... - , 
d 

. -(P"'1""P") = 0,
th 

~  (W"'1""W") =0, W = i£o""AUrc:~~" 

N
'"',, ,,~  " X""'1",,X.oe = -l,Xw (3.306)= .-1~ s., 

where one can see, not only the ten conventional, relativistic conservation 
laws, but also the condition that total quantities can be,well defined in 
the conventional Minkowsld space. For these stricter systems, the general­
ized inlemal structure is not detectable from the outside, triviGll", 6eaaue 
eztemal observer. can onl, detect total qutlntitiu, and such quantities tire 
constrained to a conventional MiniotDslri 8ptJ~. 

Note that, despite their restrictive character, systems (3.306) remain 
consistent for sufficiently large N. In fact, the total number of con'straints is 
N +13. By assuming that the self- adjoint forces are conventionally assigned, 
one remains with a total of 4N + 4 free functions, the 4N components of 
K~sA  and the four diagonal fundions of the metric g. Soiutions then exists, 

,again, for N ~ 3, and they are expected for N =2. 
Following ref. [58], we shall now present a special class of closed non· 

hamiltonian systems, those verifying by construction the Poincare-isotopic 
symmetry. In this case the ten conservation laws for Pl:" and Mt'o, are 
guaranteed by the symmetry itself (see Theorem 3.3) and can therefore be 
ignored. 

Recall that the kinetic energy of each particle is given by 

2Et" =m·c == m:i'c2
, (3.307) 
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that is, the tHJlue.moc~ oj the conventional relativit, u replaced by moc2 oj 
the generalized relativit,. 

By keeping the conventional 888umption 

,4= E 
c ' 

(3.295) 

where E is the energy of the particle, we have from Eq. (3.294) 

,4c2,4 _ ,. , =E2 _ pi.ijpi =m~c4, (3.296) 

with the following consequences. 

POSTULATE 9.5 [58}: The mG8I mo oj a particle moving 
tDithin a ph"ical medium MU with "eetl according to the UO­
toPic: law 

m = moi, 

i = (1- ~2)1/2,  

. iJ ... ti':)vi I (3.297) 

and itl e.quimlent .Iue oj the enefJJ/ Jor at rut oonditionl U 
given 6, ' 

E =moc2~ moc:, _ (3.298) 

tDhere c .. the Rpeed oj the light (or electromagnetic V14ve) tDithin 
the medium COnIitlered, tDhen·admilli6ie, or a geOmetrical quan­
tit, characterized 6, the medium itlelf· 

Note that for the c:ase of water represented by invariant (3.271), Eq. 
(3.297), coincide with the conventional ones, trivially, because in this case 
6/c = Co. Also, in this case ,; = -:,r and the conventional Einsteinian ex­
pression E =mo~ caD be recovered. In order to have a nontrivial departure 
from the conventional relativity one must have an isotopic generalization of 
the MinkowsD metric other IAon itl ,calar votoP" =~". 

For the case of Nielsen's metric for bons, Eq. (3.170) one has 

. 21 1 
(1 v - 3°)-1/2 

m=mo - ~  1+0 

E =moc:(1 +0) > moc:, 
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-3 . °= (0.61 ± 0.17) )( 10 , (3.299) 

that is, the mass m of the particle v not infinite at speed Co (because the 
particle in that metric can exceed co, see §3.4.9) and the energy equivalent 
at rest is higher than that predicted by Einstein's Special Relativity. 

Conceivably, the above deviations from the conventional predictions are 
suitable for experimental resolutions in favor of one or the other prediction. 

It should be stressed that isotopic laws (3.299) are refened, specifically, 
to a mesonic constituent and not necessarily to the particle as a whole. 

Note that the fundamental itiOinvariant (3.294) is the central starting 
point of the Lie-isotopic generalization of classical (and operator) field the­
ory. See in this respect Appendix C. 

An important particularization of Santilli's Special Relativity with min­
imal deviations from the conventional setting has been worked out by Ani­
malu [95]. We regret to be unable to review it here for brevity. 

3.4.15 Relativistic, Closed, NonhamUtonian-Birkhoman SystellUl 

We now review the preliminary studies presented in ref. [58] on the rel­
ativistic extension of the Galilei-i80topic notion of closed, nonhamiltonian 
systems. 

Consider the uo-Jour-Joff% on isotopic space itI, which is given by the 
MinkowsD force 1 . . 

K = (K") =( il 'c2ucK'gijR'), (3.300) 

refened to the isotopic contraction.on M,. This means that K" is no longer 
orthogonal to the four velocity u" (§3.4.13) on the conventional Minkowski 
space, i.e., K"'IlWu" :I- O. We have instead the isotopically lifted Property 

K"glWu" = K"g""u" = K"u" = K"u" =O. (3.301) 

The dynamic equations for one particle can therefore be written 

du" 
m --K" (3.302)

o d, - · 

~he space component is given by 

dil dzc du .. du il 
(3.303)mOdi = mo dI dz4 = mo7c dl = . 
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POSTULATE 3.4 {58]: The Doppler frequency ,hilt for elec­
tromagnetic tDGve, propagating wuhin phy,ical media (e.g., tranl­
parent liquidl) follow, the Yotopic laW" 

" "2 1/2 "2 t1b2 
rw' =wi(l- PCOIo),i =(1- P)- ,P =-2' (3.285) 

, C 

with iIotopic G6erration rule 

coso' = (COla - ~)/(I- pcos 0). (3.286) 

The above generalization of the corresponding Einsteinian laws is im­
portant for astrophysical considerations. In fact, galactic space is far from 
empty, being filled-up with dark matter, radiations, and (real) elemen­
tary particles (ignoring virtual ones). As a result, propagation of light 
between galaxies should follow Saatilli's law (3.285) rather than Einstein's 
law (3.167). Over sufficiently long intergalactic distances (e.g., for far away 
galaxies), the difference between the laws should imply experimentally mea­
surable difFerences~  This can conceivably provide a first experimental reso­
lution of prediction (3.285) suggested in ref. [58]. ' 

Note that the generalization is trivial for metrics such that bIn =CO' For 
instance, in the cue of propagation of light in water (Cherenkov light), we 

have isotopy (3.271) under which isotopic laws (3.285) and (3~286)  coincide 
with Einsteinian laws (3.167). We reach iii this way the important conclusion 
th20t the Doppler ,hilt for light in -fer follow, the eonventional EiruteinitJn 
law [58J. In ~rder  to have a significa:nt generalization we either need a value 
6/c '# Co or an anisotropic and inhomogeneo~sthree-dimensional medium. 

3.4.14 Isotopic Generalization of Relativistic Kinematics 

We now pass to the review of the isotopic generalization of the conventional 
kinematics for one particle according to ref. [58], which, as the reader may 
readily predict, is the basis for the ~sotopic  lifting of field equations outlined 
in Appendix C. ' 

The generalization is mathematieauy quite simple. Nevertheless, its 
physical implications are far reaching. It is recommendable to mention at 
this point the fact that, in some of hie last papeR, P. A. M. Dirac [94] pro­
posed a generalization ofhis celebrated equation which results to be precisely 
of isotopic type, that is, of a quite simple generalized mathematical struc­
ture. Nevertheless, the spin of the represented particle is generalized from 

the value 1/2 of the conventional equation into the value 0 of the isotopic 
form. 

Introduce the infinitesimal invariant in isotopic space MI 

d,,2 =-dz"g""d.%l1 =dz4c2dz4 - dzigijdz, 

~...4 -
-

t goos, - b2~fls,.. (I... , ­ (3.287) 
from which one can write 

d.%" dz" 
- d" g"l1 tU =1. (3.288) 

We now define as yo-four-velocity the vector on il, 
dz" 

U"-- (3.289)- d, . 

To compute the·components of u", we c'an write from Eq. (3.288) 

dz4 dz i dzj 

( d, )2(c' - th4gij d.%4) =1, (3.290) 

from which we have the fourth component 

th4 dt u4 =- = - =;c,d" d,
 

i = (1 - p2)-1/2,
 

" t1igij~ 

(3.291)fJ=--r' 
The space components are then given by 

dz lr dz4dz lr 
Ulr - - - -- -7,,-1r (3.292)- tU - d, th4 - ~1II.  

We now define as iso-four-momentum on MI the four-vector 

pP = mou",p = (mo;cv,m0 7c). (3.293) 

By recalling the'lowering and raising of the indices in Ml of §3.4.7, we then 
have the fundamental property 

pl'g"."tI' ~ p"g"lIpu =pPp" =p,,1'" = m:;2c't1i gijVi - m:;2c" 
_ 2 4 "2(t1igij~ 1)- moc 7 2­

C 

= -m~c2,  (3.294) 
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In fact, if one assumes in Eq. (3.276) VI = 112 = c, one obtains the 
noninVGriant condition 

2c 
\'co. =1 + '2 #: c.	 (3.277) 

On the contrary, if one assumes vt = t72 = VMu = cl', one obtains the 
inwnant relation 

2;;/6 c 
Veoa = 2 ::;; =VMu.	 (3.278) 

Note that, for the case of Einstein'. Sp~a1  Relativity, we trivially have 
the identity VMu = e =co,thua recovering the familiar invariance of Co' 
The nontriviality of Santilli'. Special Relativity is the capability to show 
that, in actuality, the invariant quantity is VMlIS and not the speed of light. 

As indicated in ref. [14], Postulate 3.2 is verified by the Cherenkov light 
(in which VMlIS is precisely eo), and appean to be plauaiblefor other cases. 
Mter aU, when light propagatu at ,peetlI smaller than eo, those ,peeds cannot 
be the invariGnt oj the theo",. Postulate 3.2 is equivalently reached when 
no electromagnetic wave can propagate at all within the medium consid­
erecl. Any consistent relativitymut, under these conditions, provides the 
invariance only of the maximal speed of propagation of massive particles. 

3.4.12	 Isotopic Generalization ofTime Dilation an~  Lorentz Con­
traction 

The generalization of Einsteinian laws (3.165) and (3.166) provided by San­
tilli's Special Relativity can be directly read from the Lorentz-isotopic trans­
formations (3~251).  

POSTULATE 3.3 {l-1}:The dependeru;e oj time intervals 
tDith speed follow, the law 0/ isotopic time dilation 

A .. A Ato 
ut =7uto = ~ (3.279)

(1- c;i- )1/2 

while 'pace intervals Jollow the law oj isotopic space contraction 

Al = (1 - p2 )1/2Alo = (1 _ V~2 )1/2Alo• (3.280)
e 

As indicated in §3.4.9, isotopic law (3.279) appears to e confirmed by 
all available phenomenological elaborations of the dependance of the mean 
life of unstable hadrons at different speeds, although still in a preliminary 

way because o( the lack o( direct experiments. In the final part o( §3.5 we 
shall then show that isotopic law (3.279) has a truly crucial character for 
fundamental experiments, such as the resolution of the validity or invalidity 
of the locally Lorentz character of cunent theories. 

3.4.13	 Isotopic Generalization of the Doppler Etrect 

The generalization of the Doppler Effect (or motion within physical media 
(assumed in this section to be trusparent to light) is straightforward, and 
was worked out in detail in ref. [58]. 

The "plain wave" form of the electromagnetic waves on Santilli's isotopic 
space MI can be written 

~(z)  =Aexp(ilt:" . %)11 =Aexp(ilt:"glU'z"lei, (3.281) 

where one ca.n recognize the familiar expansions in the isoenvelope i as well 
as the expansion in the original envelope t. The i80unit i shall be ignored 
hereon for simplicity (see §3.4.5 for comments in this respect). 

The k-i80vector in Eq.. (3.281) is an i80null vector with components 

eO 111 .. 111 2r
It: - (It: -) k - - -­- 'e' -c-~'  

2It:''g,,,,It:'' = &62&- 111 = 0,	 (3.282) 

where VI is the wave frequency and k is the wave vector. Again, for simplicity 
we have assumed an homogeneous three-space with metric gij =62Bij. 

Suppose that the above wave is detected by two observers S and S', 
e.g., one at rest with the source of the wave and one in motion with respect 
to it at relative speed ii; along z3. Suppose also that. k makes an angle 0 

with the z3-axis in (rame 5 J:3 = lEI =~ coso. Let w', k', and 'a' be the 
corresponding quantities in frame 5'. 

Santilli's Special Relativity requires the form invariance of the "isowave" 
(3.281), i.e., 

k'"g""z'" == k"g""z", (3.283) 

under which 
It: II = 1t:1,k21 =k2, 

k13 =i(k3
- pk·) =Ik'i cos' a, 

.. w' 
k'· = i(k· - fJk3 

) =-.	 (3.284)
e
 

Elementary algebra then leads to the (ollowing
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Note &1so that mt and m2 can also have a local dependence on a variety 
of physical. quantities, as it ia ultimately the cue for the index of refraction 
n of invariant (3.271). Such functional dependence muat be provided by the 
phyaica1 information at hand, and cannot be predicted by any relativity. 

The undentanding is that the electrodynamica of charges moving inside 
conducton is not expected to be exhausted by this case alone, trivially, be­
cause different conducton imply difFerent media and, thus, different isotopes 
Mt. Thia is particularly illustrated by conductors in limit conditions (e.g., 
superconductivity) in which VAlAX ia expected to be CO. 

CASE 2A: VMu < Co, C > Co. 
This is the cue submitted in ref. [12] for the nuclear structure in which: 

1) light cannot propagate through t~e  medium itself, thus requiring a geo­
metrical interpretation of the term C (§3.4.6); 2) contact nonpotential inter­
actions now appear because of the dense nature of the medium (as compared 
to that of metals and of fluida); and 3) the maximal speed of the particles 
(e,g, the nuclear constituents) ia conjectured to be .maller than Co, no matter 
what interactions is used, and we ahall write invariants of the type 

z"gfAllz" =~i626ij~ - z4c2z4t 
C 

VMu = ;; < co;c > Co, VMu :F c., (3.274) 

The ultimate physical property represented in thi~  case ia the fact that, 
unlike the atomic structure and other cases, nonrelativistic approaches are 
very effective in nuclear physica. 

Notice also that the above treatment Is a cltJuical approximation. As a 
result, processes such as local photons exchanges are not reptesented because 
of their essential quantum mechanical character. 

CASE 2B: VAiu > Co, C > Co. \.' 
This is the case submitted in refs. (12), (14J for the hadronic structure 

itself as well as forllmiting conditions of hadronic matter, such as the core of 
a collapsing star. In this case the quantity c can be ..su.med to be essentially 
that of Case 2B. The maximal speed of massive particles (e.g., the hadronic 
constituents)is conjectured in this case to be higher than the speed of light 
in vacuum because of the action of 'he contact; instantaneous forces (§3.4.9), 
and we shall write separations of the type 

lrb2 lrz"gfAllz" =z z - z4c2Z 4, 

c 
VMu =;; > co,c > Co, VAiu ¢ C. (3.275) 
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This is the intriguing prediction of Santilli's Special Relativity which 
appears to be confirmed by available phenomenological calculations on the 
deformation of the Minmwski me.tric in the interior of bons and other 
hadrons (§3.4.9), as well as by explicit gauge calculations (Appendix 8). 

In summary, we can conclude that Santilli's Special Relativity predicta 
a variety of cases in which: 

•	 the value of g~~2  can be C Co, and independently, 

•	 the maximal speed of mauiw particles VMca. can also be C Co, as well 
as their combinations. 

The predictions of Case lA (Cherenkov light) appear to be confirmed by 
available experimental information; the predictions of Case 2B (motion in­
side hadrons) appear to have indirect phenomenological confirma.tions from 
the elaboration of ava.ilable data on the behavior of the mean life of unstable 
hadrons at dift'erent energies (§3.4.9 and Appendix B); the predictions of in­
termediary Cases 18 and 2A are plausible, but not sufficiently investigated 
as of this writing~  

The undentanding is that the future, final resolution of the validity or 
invalidity of predictions (3.271), (3.173), (3.274) and (3.275) will require 
direct, fundamental experiments (53.5.18). . 

One point is important for this review. Despite the lack of final resolu­
tion, there is no experimental or other evidence available at this time that 
can disprove the prediction of the generalizec! relativity, to our best knowl­
edge. In fact, as stressed earlier, no information on Einstein's Relativity 
can p088ibly be applied to the much more complex physical conditions of 
Santilli's covering. 

3.4.11 Isotopic Composition of Speeds 

The use of successive LorentZ-isotopic transformations (3.251) yields, after 
some algebra, the following isotopic covering of Einstein law of composition 
of velocities, Eq. (3.164) 

Vtt12 
(3.276)Vtot=I+~· 

POSTULATE 3.1 {1.I]: The invariant speed is not, in gen­
eral, that oj 'ig~t,  but the ·mtJZimal speed oj propagation oj mtJ8­

,ive particle, Vmu C Co. 



u. the literature for decadel, have beeD ilDored by experimeDtali8t1 uDtii 

DOW. 

For instance, Nielsen and Picek [70) have reached modification (3.170) 
of the Minkowski metric in the interior of pions via the use of currently 
available phenomenological information 

111 
9 = (1- 30,1- 30,1- 30,-(1 +0» 

.0= (-3.79 ±1.37) x 10-3 (3.494) 

which, when plotted in law '(3.493) yields the non-Einstenian behaviour 

,,(1 -la)2,,] 
(3.495)r =r [1 - q(1 +0)2 

Similarly, for the case of kaons, Nielsen and Picek have reached modification 
(3.170) of the Minkowski metric with 

a =(+0.54 ± 0.17) x 10-3	 (3.496) 

with corresponding non-Einstenian behaviour (3.495). 
Numerous, additional, essentially similar, quantitative 'predictions also 

exist in the literature 88 reviewed in Section 3.4.3. 
Let us also recall alternative law (3.171) propoSed by Nielsen and Picek, 

.i.e. 

r =1111 (1 +4(;t) (3.497) 

which is however reducible to Santilli's unified form (3.493) 88 shown by 
Aringazin [89]. 

Note not only the different value of the "Lorentz-asymetrytt parameter 
Q	 but also its different 8ign in the transition from pions to kaons. This 
confirms, quite eloquently the need to conduct Tests III for at least pions 
and bons. 

The reader should keep in mind the truly fundamental implications of 
modifications (3.493) of Minkowski metric, as represented by Santilli's Spe­
cial Relativity (Sect. 3.4). Fot instance, the maximal speed of a physical, 
massive, particle (or causal signal) is smaller than CO for the interior of piODS, 
but bigger than CO for the interior of the heavier bons and, expectedly, of all 
remaining (still heavier) hadronB. In tlirn, the possibility for causal signals 

of surpassing the speed of light in vacuum, if experimentally establi~hed,  

would have truly deep impUcations throughout aU of particle' physics, by 
offering intriguing and still unexplored possibilities (e.g., the achievement 
of a true confinement of quarks with null probability of tunnel effects (27». 
Finally, the experimental verification of deviations (3.493) would estabUsh 
the need for a Lie-isotopic generalization of Einstein's Gravitation for the 
interior problem &.t the openJtor/partide leveL In tum, this would have at 
least two-fold implications. First, the occurence would be a rather natural, 
particle-image of the established claasical violations of Einstein's Special 
Relativity in the interior dynamiC8, such as satellites during re-entry with. 
a continuously decaying angular momentum. Secondly, the occurrence con­
sidered would finally remove the current, rather widespread belief that the 
classical violations of the Special Relativity are resolvable via the reduction 
of the classical object to its elemelltary particle consituents (see Sect. 3.5.3 
for the lack of technical feasibility of 8uch a belief). 

The te8ts for unstable leptons, such u the muons, are recommended 6ut 
positivelJl not in lieu of the a60ve tuts for hadrons. In fact, the problem 
whether leptons are elementary or composite is still basically unsolved. If 
they are indeed elementary, then they are expected to obey law (3.492) 
exactly, thus leaving the issue under consideration here (local Einstenia.n 
character of .trong interactions) fundamentally open. At the same time, if 
the tests are conducted for unstable leptons, and they show violation, this 
would be indirect experimental evidence of their composite structure. 

It should be stressed here that Fundamental Tests In are quite simple 
and fully feasible nowadays. In fact, they require relatively low energies, and 
as such, they are realizable in all available particle accelerators throughout 
the world. Also, the tests are of· very moderate costs, particularly when 
compared to the costs of the current search for heavy mesons' and other 
contemporary particle experiments. Finally, Tests III require no· theoretical 
elaboration of the results, trivially, because they have simply to measure a 
time at a given speed. As such, they are intrinsicaUy model-independent (a 
feature rather rare in contemporary particle experiments). 

The motivation for the conduction of the suggested tests are simply 
compelling, because of their number and diversification. They are at the 
very foundation of the Lie-isotopic theory, and, as such, have been reviewed 
throughout this work. We simply recall here: 

1.	 The incontrovertiblt! experimental evidence requiring a deep overlap­
ping of the wavepackets of the constituents of unstable hadrons (Figure 
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1) with consequential nonlocal nature of the strong interactions. In 
tUrD, such a nature implies a necessary violation of Einstein's Special 
Relativity, as wen known since quite some time; 

2.	 All phenomenological calculations of the mean life conducted untU now 
show clear violation and none of them recovers Einsteinian law (3.492). 
We are referring here to the predictions by Klochintsev [67J, Redei [68], 
Kim [69], Nielsen and Picek (70], Huerta-Quintanilla and Lucio (71], 
Aronson, Block, Cheng and FIShbaCk [72], and several others; 

I 

3.	 The incontrovertible experimental evidence of the violation of Ein­
stein's Special Relativity in cltJaicol macroscopic dynamics of interior 

problems recalled earlier; 

as wen as other motivatioDl~  " 
The contributions made by the Lie-isotopic theory at the various levels 

considered (Newtonian, relativiatie and gravitational) are numerous, such 

as: 

a)	 The proof of the compatibility of deviatioDl (3.493) for the interior 
problem, with the exact cha.racter of Einstein's Special Relativity for 
the center-of-mue motion of the unstable hadrons (see Figure 16) 
achieved, &I now familiar, with the ~otion  of closed'Ronhamiltonian 

systems; 

b)	 The construction of genuine covering relativities at all levels of study 
which do not leave the "~roken""  context mathematically and phys­
ically undefined, but replace it with e:overing, explicitly computable 
symmetries unifying all available generalizations; 

c)	 The clarification that, contrary to popular belief, the Lorentz sym­
metry remains exact under generalized law (3.493). As a result, "all 
predictions of violations of ref.s .[67J through [72] must be referred, 
specifically, to Einstein's Special Relativity and not to the Lorentz 

symmetry; 

and numerous additional contributions reviewed in this work. 
The fundamental experiments under consideration have ~ready  been 

recommended for decades, but regrettably, they have not been conducted 

until now. 
For instance, the paper by Kim [69] originated as a preprint at SLAC 

back in 1977. The paper by Huerta-Quintanina and Lucio [11] originated as a 

preprint at FERMILAB. Santilli [132] conducted a rather considerable effort 
in the period 19784981 at various laboratories in the USA and abroad (see 
ref. [132], Vol. I, Sect. X, Vol. II, Section XII and Vol. III, Sect. XXXIII) 
to recommend the conduction of Fundamental TestslD but this eft'ort too 
resulted in no actual conduction of the tests. 

In particular, Kim [69] concludes his analysis with the statement that 
Tests In are such to "tle,erve a _riou, unprvcnutinable ,tutlrf. Santilli 
states OD p. 1977 on ref. [4] that 

·Until the tHJlitlit, or inVGlitlU, 0/ Eiflltein', Special Relt.ativit, lot" 
Itrorag interoctwfllha 6een eqerimentall, ruolvetl, all theoreti­
col ,ttulia on hatlrofll and all uperiment. in ,trong inuroctiofll 
tDill remain 0/ conjectural claartJcter". 

Note the conjectural character of the ezperiment, on strong interactions 
in the absence of Tests III. In fact, Einstein's Special Relativity is a c~ntral 

component of the data elaboratioDl of experiments on strong interactiona. 
If deviations of type (3.493) do occur, a corresponding alteration of the 
data elaboration. is evident, and equ~y  evident is the alteration of the 
experimental results. 

In short, the entire, theoretictJl anti eqerimental Imowletlge on ,trong 
interoctiofll u kept in a ,tate 0/ ·,upended animation· "" the lack 0/ Te," 
Ill, and thil .ittultion will ,e,.,ilt until the te.tI are Jinally conducted. The 
economical, let alone scientific implications for any additional deferral of the 
tests are then evident. 

This situation is regrettable, not only for the experimental community, 
but also for the entire physics community, world-wide. The lack of conduc­
tion of the tests has essentially left the foundations of contemporary physics 
in a state of "limbo", with no resolution one way or the other, and with 
manifest imlications beyond those of scientific nature. 

As well known, physic, u a tlilcipline tDith an absolute standard 0/ volue: 
the ezperimentl. Lacking a direct experimental verification, physical theories 
remain conjectural no matter how old, and no matter how important they 
are. 

Ezperimentl themselves have their oIDn .tandaN of volue: the more /un­
domenta' the test, the more relevant u its conduction as compared to le.ser 
fundamental te.tI. It is in the tradition of physics to measure and then 
measure again physical quantities. And in fact, the mean life of unstable 
hadrons at reat has been measured a truly considerable number of times, and 
additional tests are scheduled for a refinement ofavailable data (see, e.g., ref. 
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(133) and quoted papers). But then, by comparison, the conduction of new 
fundamental tests of these mean lives at different speeds is manifestly lion! 
important than the refinement of already established data. By no means 
are we against new measurements of the mean life of unstable hadrons at 
rest, because 011 feasible experiments must be supported. We are merely 
.stressing a known absolute standard of value among various experiments. 

The reason for priority On fundamental tests are evident and well known. 
Refinements of available data can at best imply refinements of available 
theories. But new, fundamental tests of the type recommended here have, 
by comparison, potentially far greater implications, no matter whether the 
results are in favor or against Einstein's Special Relativity. 

In the final analysis, 1'ef.s (67) through (72), by no means, recommend 
the test of the violation or Einstein's Special Relativity. On the contrary, 
they simply require its verification in new physical areas, such as in the 
interior of hadrons, in the tradition of physics: via experiments, rather than 
conjectural theoretical work. 

When the above scientific scene is put all together, including: 

•	 the manifestly fundamental character of the experiments; 

•	 the dear plausibility of the violations; 

•	 the rigorous mathematical structure of the proposed covering theories; 

•	 the clear feasibility of the experiments with currently available equip­
menta and technology; 

•	 their moderate costs when compared to other, lesser relevant tests; 

•	 the truly historical implications of the results, whether in favor or 
against old doctrines; 

and many additional motivations~  the conduction of Fundamental Tests III 
becomes. simply compelling. . 

A primary hope of this review is that experimentalists will understand 
this scenario, and finally conduct the much overdue tests. 

APPENDIX A: LIE-ISOTOPIC LIFTING OF GAUGE 
THEORIES 

Gauge theories, within the context of the conventional formulation of 
Lie's theory, have been instrumental for an important physical achievement: 
the unification of electromagnetic and weak interactions (see, e.g., ref. (134) 
and quoted papers). 

The Lie-isotopic covering of the above theories appears to offer realistic 
possibilities of advances, in due time, toward a much broader unification 
which is inclusive of the strong as well as the gravitational interactions. This 
possibility is a central theme of a subsequent possible review on Santilli's 
"hadronic generalization of quantum mechanics". 

At- this point we merely limit ourselves to mention that these advances 
toward a "true grand unification" are made conceivable by the following 
elements reviewed in this work: the novel representational capabilities of 
Lie-isotopic theories offered by the isounit j =T-1, Eq. (1.35); the addi­
tional degrees of freedom offered by the isotopic element G of the underlying 
Hilbert space, Eq. (1.49); and, last but not least, the hypothesis of "iden­
tification" of the gravitational field with the electromagnetic field of matter 
constituents, Eq. (3.334). 

In this appendix we shall review the pioneering works of 1983 by M. 
Gasperini [135],[136] who formulated, for the first time, the Lie-isotopic 
generalization of gauge theories. We shall also review important advances 
achieved subsequently on the subject by M. Nishioka [128),[137), [138], and 
G. Karayannis and A. Jannussis (139). The analysis shall remain essentially 
classical as in the rest of this review. All major operator aspects are deferred 
to the possible subsequent review of "hadronic mechanics". Additional im­
portant research by Nishioka., Karayannis, J annussis et aI on isotopic: gauge 
theories will be reviewed in Appendix C following the introduction of iso­
topic field equations. . 

By following Gasperini's original presentation [135] as close as possi­
ble, we shall first review, for notational convenience, the notion of compact. 
gauge group, present its Lie-isotopic covering, identify some of the physical 
implications and then conclude with a review of additional advances. 

Suppose we have a field theory invariant under some compact Lie group 
G of global transformations, whic~  can be represented as follows: 

.p' = Ut/J	 (A.l) 

U =e-il'x.	 (A.2) 
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where " is a set of constant real parameters, and X. is a matrix represen­
tation of the generators of the group, satisfying the rules 

(X"Xj] =i c,;'X, (A.3) 

where ct;' are the structure constants of the Lie algebra of G. The infinites­
imal form of the transformation (A.l) is 

I'; = -it'X,.; (A.4) 

where £' are the infinitesimal parameters corrNponding to ". Notice that 
the representation matrices 

, 
of. the transformations are unitary 

U+U=I IU+,U] =0 (A.5) 

and the basic invariant of the theery is "+,, =t/I+t/J'. 
If the global symmetry is enlarged to a local symmetry, i.e. if' we consider 

transformations with space-time dependent parameters, " = "(z), then 
the theory is no more invariant, in general. The inV&l'iance is restored if 
the partial derivative of the matter field, I"t/J, is replaced with the covariant 
derivative 

D"" = (8" - igA:X,)I'; . (A.6) 

where 9 is the group coupling constant, and the gauge potential A" = A~X,  

is a vector field with values in the Lie algebra of G. Its transformation 
properties are fixed by impOling thalD"" transforms like ,p, that is 

(A.7)D~U';  =l!Dp '; 

We obtain then 

A~iXi  =UA~XiU-l  - !(8"U)U-I (A.8) 
9 

Performing an infinitesimal transformation, i.e. putting 

U ~ I - i£'X, , U- I ~ 1 +ie'X, (A.9) 

and using the commutation relations (A.3), we can obtain, from Eq. (A.8)~ 

the infinitesimal gauge transformations for the potential vector 

IA~  =-!8"e' +c;,'e;A: (A.I0)
9 

Finally, we must complete the field theory by adding a dynamical term 
for the gauge potential. To this aim, one defines the Yang-Mills field strengths
F"., as follows 

. ·1 
P".," = F;.,Xi" = --:-[D", D.,)" (A.ll)

Ig 

that is, using Eq.s (A.6) and (A.3), 
. . . . . ,

P"" =8"A~ - 8.,A~ +9 eji'A~A.,  (A.12) 

Its transformation law can be obtained from Eq.s (A.ll) and (A.7) 

F'"" =11P".,U- I (A.13) 

and then we can construct the following gauge-invariant kinetic term 

Tr(P".,F"") = Tr(F'""F''''') oc r""p'"" (A.14) 

These few basic notions on classical gauge theory are sufficient for the pur­
pose of this review. Further details ~an be found by the interested reader in 
ref. [134]. 

At this point, Gasperini (137] introduces Santilli's Lie-isotopic generaliza­
tion of the conventional formulation of Lie's theory (Sect. 2). For notational 
convenience we review the isotopy for the case at hand. 

Given an invertible and hermitian operator T, the enveloping Lie algebra 
ofa theory with associative product AB and unit 1 is generalized introducing 
the isotopic (associative) product A.B =A T B aDd a new unity j =T-l, 
such that A*i =i *A =A. 

As a consequence, the usual definition of hermitian conjugate, A+, and 
inverse, A-I, of an operator A must be replaced by the isotopic generaliza.­
tions; the T-hermitian conjugate (1,4 1), i.e., 

A+=T+A+j (A.IS) 

and the T-inverse 
A-i =ia-ti (A.16) 

Furthermore, the T-isotope, exp A, of an exponential operator exp A, is 
given by Eq. (2.138), i.e. 

eA = j eTA =eATi (A.17) 
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The Lie-isotopic lifting Gof the compact Lie group G is represented then 
by transformations (~,  i.e., 

( 1·1~")  

t/J' = iJ * t/J (A.I8) 

where .. .. ·,AI X •U =I e.-' • • =e.-iX.*, j. (A.I9) 

The explicit computation of ita isotopic hermitian conjugate 

fJ+ =7*e."AI.xAlT-1 =e."AI.XAI i (A.2D) 

and of its inverse 

fJ-i = T-1T ei,·.x.T-1 = e."·.x. j (A.21) 

shows that fJ is a T-unitary operator, since 

fJ+ =fJ-I (A.22) 

It is important to mention that Gis locally isomorphic to GifT is a positive­
or negative-definite isotopic element (this result is due to Santilli's Theorem 
2.9). , 

Another i~portant  point is that the isotopic condition of hermiticity co­
incides with the usual one, when the Hllbert space is generalized introducing 
the isotopic inner product (a, 6)· = (a,T6)i of Eq. (1.50). 

Notice also that the infinitesimal form of the Lie-isotopic transformation 
(A.19) is given by 

fJ ~ i - it"X" (A.23) 

and 
(A.24)I" =-iX" *t"f/J 

respectively. 
At this point, Gasperini (135) introduces his Lie-isotopic generalization 

of a gauge theory, by following as close as possible the structure of a con­
ventional theory. 

Suppose we have a field theory invariant under the global isotopic tr!Uls­
formations 

.p' == fJ * t/J (A.25) 

where fJ is the representation of a continuous, Lie-isotopic group G, and is 
given by Eq. (A.19). As iJ is a T-unitary operator, 

iJ+ * if =j =iJ * if+ (A.26) 

the basic invariant of the theory is then structure (2.153), i.e., 

t/J+ * t/J =t/J'+ *,p' =t/J+ * if+ * if * ,p (A.27) 

In order to preserve invariance also under local isotopic transformations 
if = iJ(z) (i.e. I = I(z) and/or T =T(z», we introduce, in analogy with 
ordinary gauge theory, the isotopic covariant derivative 

.. " ..
D" = (8" - igA" *X,,)I (A.28) 

and we impose the following transformation rules 

iJ~  =fJ *h" *fJ-i (A.29) 

that is 

iJ~ * if * t/J =if * j;" * t/J (A.3D) 

.. ... ... .. ' 
By using the factorization D =D" I and U =U I, where 

. ."
D,,= 8" - .gA" *X" (A.31) 

• ieAl• X•U= e- (A.32) 

we obtain, from Eq. (A.3D), 

Ii • i .-1 i • .-1 
A" *Xi =U A" *Xi U --(8" U) U (A.33) 

9 

which is the. isotopic lifting of the gauge transformations (A.B). In order 
* to obtain the corresponding infinitesimal transformations, we develop U as 

follows 

•U ~ 1- it lc *X" 
.-1
 
U ~ 1+ i£" *X" (A.34)
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and then we get, to the first order in t,· 

6A~  *X, =!8,,(t' *Xe) +i[A~ *Xj,t' * XI:] (A.35) 
9 

which can· be written 

A~TX,  = -!(a,,~'T)X,  +iA~tI:T[Xi:XI:] (A.36) 
9 

where we have introduced the isotopic commutators [1], i.e. 

(A.37)[X,;Xj] =X,TXi - XjTX, 

Finally, Gasperini poc.cit] defines the isotopic Yang-Mil,. jield8trengths 
F"" for the gauge potential as follows: 

... -1.. A' 

F"" *'" = ig [P,,;D,,]'" = 
1.. A.'" 

= - ig(D" * D" - D" * D,,) *'" (A.38) 

which transforms covariantly under an isotClpic gauge transformation. In 
fact, from Eq.s (A.29), (A.38) he gets 

t',." ~ fJ *F"" * fJ':l (A.39) 

Its explicit expression can be easiiy obtained substituting Eq. (A.28) i..to 

the definition (A.38). The result is 

pi,." * X, =(8"At - a"A~)  *X, +A~(w:a"T-

-6:a"T)Xi - igA~A~T[Xi;Xl:] (A.40)
 

Equations (A.28),(A.36) and (A.40) describe the main aspects of Gasperini's 
Lie-isotopic gauge theory. It must be stressed that the isotopic generaliza­
tion is simple but not trivial, as one can see. For example in Eq. (A.40) the 
gauge field is· radically modified by the coupling to the isotopic element T. 

At this point, Gaspe~ini  poc.cit] passes to a preliminary physical inter­

pretation of the results. 
For this purpose, some additional information on the element T is needed. 

Assume the simplifying hypothesis that T is in the center of the algebra of 

the oril9nal Lie group. a, i.e. 

[X.,T) =0 (A.41) 

since, as stressed by Santilli [1],[58], this condition is verified in several cases 
of physical interest. 

In this case, using the commutation relations (A.3), the basic equations 
of the Lie-isotopic gauge theory can be rewritten as follows: 

n" *'" =(a" - igTA:XI:)'" (A.42) 

T-l 
6A~  =--8,.(E'T) +cil:'(tiT)A: 

. 9 
(A.43) . 

._ , , ijl: 
P,." - V,.A" - V"A" +gTejl: A"A" (A.44) 

where 
v,. A'" =a,.A'" ­ A'of,."or (A.45) 

r,."a =4<80 ".a"T - 60 "6,,T)T-t (A.46) 

Comparing the above isotopic equations with the corresponding equations of 
the conventional theory, Gasperini interprets the isotopic theory a8 a gauge 
theory for loctJI tmnsfomlationB with infinitesimal pommeter E =t'T, and" 
tDith an efl«tive coupling comfant given by 

9I =gT (A.47)-

Since the isotopic element does depend, in general, on the spacetime coor­
dinates z, the linear momentum p, the energy E, and so on, then we have a 
gauge theo", tDith a variable coupling 9' 

g' =g'(z,p,E, •••...) (A.48) 

This offers rather interesting possibilities which could be connected with 
the phenomenon of the so called "running coupling constants" (i.e. cou­
plings evolving as a function of the energy scale), which takes place in the 
framework of the grand-unified theories (134]. 

Furthermore, the isotopic field strengths 01 Eq. (A.,4,4) mn be interpreted 
IJ8 the gauge field for a potential Ai" coupled to the geometry 01 an effective 
Riemann-Carton space (§3.5) equipped tDitA the antisymmetric connection 
r,."o =-f",,0 of Eq. (A.,46). 

It should be stressed that the coupling <A.45) of the gauge field to the ge­
ometry is the usual "minimal coupling" obtained by replacing partial deriva­
tives with the geometrical covariant ones. In a Riemann-Canan space such 
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a coupling is usually forbidden, II is well, known [120] because it destroys 
the gauge invariance of the theory, and only more indirect interactions, such 
as a "8emi~ minimal" coupling, are allowed between torsion and the gauge 
potential (§3.5). 

It i. then remarkabl~  that the minimal coupling of Eq. (A.45)' is com­
patible with the invariance under isotopic gauge transformations. But even 
more remarkabl4! is the fad that tAe coupling of the gauge field to the ge­
ometry oj a curved manifold it not only alloUled, but also neces,a'1l when 
the ilotopic'lifting 0/ a gauge tlaeo,., u performed. This may suggest, as 
stressed by Santilli (20], that the Lie-isotopic theory represents a promising 
clue towards a satisfactory quantum mechanical formulation of gravitation. 

Anoth~  point worth noticing is that, by putting 

T =I /-I(s) (A.49) 

where /(z) is a scalar function, Equations (A.42-A.46) reduce to the same 
equations proposed by Hojman et ale [140J for the case of an abelian Lie 
group, and generalized by Mukiu and Sayed [141J to the non-abelian case. 
The latter theories, therefore, are only particular cues of the Lie-isotopic 
lifting of a gauge theory. 

In papers [140],(141], however., the modification of the gauge structure, 
and the explicit form of the tonion tensor (Le. of the antlsymmetric part 
of the connection), are introduced "ad hoc", with.. the only justification of 
allowing a gauge invariant coupling between torsion and the gauge potential. 
In Gasperini's theory, on the contrary, the modification of the theory, and 
the necessity of introducing a connection with a nonzero antisymmetric part, 
given in Eq. (A.46), are well justified as the consequences of an underlying 
isotopic algebraic structure. '. 

Notice that by putting T =1, the Lie-isotopic gauge theory reduces to 
,the usual gauge theory. As a result, Gasperini's isotopic gauge theory is a 
bona,.fide covering of the conventional theory, in the same way as Santilli's 
Relativities are a covering of the conventional ones (Sect. 3). 

Gasperini then concludes paper (136] with the following words. 

·Perhap. the mos' intriguing dream oj contemporary physic, 
is to delCn6e all interactiona with a unifieJ theory. Electro-weak 
Gnd ,tong force' have been put together into grand-unified the­
oriel /13-1}, but it .eem.t likely that the gravitational interaction 
trln 6e included only 6y gauging a graded Lie group and using 
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agradetl algebra (eztended IUpergravity theone. (loll}). The roe­
lUlu, however, are not fully Illtu/adory up to no1O, GI the theo'1l 
is unable to contain the totality of emting particle., even in itl 
mazimal uteRlion (N = 8). A, ,treaed 6y Santilli {I}, the 
graded Lie theory is only a particular case of the Lie-admiuible 
theory. Therefore it iI tempting to ,peculate that a retJliltic uni­
fied theory, compreheruive 0/ all particle' and fo~s  of nature, 
will be rt.dched only on the ground of Lie-admiuible generulim­
tion 0/ ,uper.ymmet,." and utended ,upergrovity. • 

Note the referral, specifically to the broader Lie-admissible generalization 
of the Lie-isotopic gauge theory, evidently for a structurally higher level of 
treatment. 

We now review the research by M. Nishioka, beginning with paper [137]. 
As shown in the preceding review, in his formulation of the isotopic gauge 
theory, Gasperini essentially selects an element T which is in the center of 
the algebra of the original Lie group a, 

[X"Tl = o. (A.50) 

Under this hypothesis, Gasperini obtains the basic equations of the Lie­
isotopic gauge theory which are reviewed here for ~onvenience 

A • k
D,..(f = (8,.. - ,gTA,..X,t, 

tSA,. = - g~a,.(iT) +cili(tiT)A:. 

F' ,.." -- t"'7v,..A',,-"A'V" +gTci''Ai,.. A' (A.51)P II' 

where 
V,..At =8"At - r",,"A~, 

r,..,," = ~(6:8"T-6:8"T)T-l,  (A.52) 

b" are the isotopic covariant derivatives, A~  are the gauge potentials, and 
F;" are the field strengths. 

In the space-time with symmetric connections r~,,"  consider isotopic co­
variant derivatives (A.51a) and the covariant derivatives (A.52a) with anti­
symmetric connection r",,". Then, the covaria.nt derivatives are generalized 

278
 



to 

Dp.~" =(8p - igTA:X,)~., +r',.."~(1,  

VpA~  = 8pAt - Lp.,"tliJi3) 

where ~p  are the components of aD arbitrary vector, and Lp.," are given by 

L,,,/' = r1'.," +r'".,". (A.54) 

The generalized i80topiccovariant derivatives (A.53a) are equivalent to 
the covariant derivatives appearing in· a gauge model of gravitation except 
for the variable coupnng constant gT. 

Following the weB known parallelism of VectOR defined by Levi-Civita 
in a Riemannian manifold, Eisenhart [142] gave a definition of parallelism 
of vectors in a general connected manifold given by . 

>.' (d~(1 L "~,,dz")  _)." (d~'L  ,~"dZ")  =0 (A.55)
dt + pi' dt ~  dt + pi' dt 

where >''' are the components of a vector on a curve which is the locus of 
points for which the coordinates· s" are functions of a parameter t. The 
curves whose tangents are pU'allel with respect to the curves are called the 
path, 0/ the manifold. The equations of these curves are 

d%" (tflzp tk" .hI') dz" (tflz" . ds" .h')dt dt2 +r:,," dt tU - -;Ii 7 +r~,"  -;u tit = o. (A.56). 

From (A.56) it is clear that all connected manifolds for which r~"  U'e the· 
same but r ""(1 are arbitrU'f. have the same paths. 

The cllanges of connection which preserve parallelism were also investi­
gated by Eisenhart. Nishioka [137] makes use of these results. Let L",," and 
L ,," be the coefficients of two different connections, under the condition p
that parallel directions along every curve in the space-time are the same for 

the two connections, " 
LpII" == L",," +26:4>" (A.57) 

where t;" is an arbitrary covariant vector. 
U we denote the symmetric and antisymmetric parts of Lp,," by r:.,," . 

and il",," respectively, from (A.54) and (A.57) they are given by 

Lp,," = L,.,," +26:4>" +6:t;",
 
a",," = r,.,," +6:;" - 6:;p. (A.58)
 

From (A.52b) and (A.58) Nishioka concludes that n",," vanishes if the· fol­
lowing relations hold 

8"T =-2t;"T. (A.59) 

In this case, from (A.S8a) and (A.58b) r:.,," becomes 

f"p,," =r:,,," - ~(6:8"T +6:8"T)T-t, (A.60) 

and i~,,"  is symmetric. 
U T is a function, ;" becomes the gradient 

4>p =-8p ln.JT, (A.61) 

where we assume T is positive definite. In this case we have 

L-" - (A.62)"", - L"pII,' 
because, in general, from (A.57) 

=Ltii" +26" (84), _ 8~,,)  (A.63)"", "", "8z" 8zp , 

where L:", are the components of the curvature tensor for .L",,". 
From the above analysis, Nishioka. (137) concludes that, as far' as the 

preservation of parallelism is concemed, the symmetric connection iJ;l space­
time plus the antisymmetric connection induced by the Lie-isotopic lifting 
become equivalent to the symmetric connection t:.,," provided that (A.S9) 
or (A.61) hold. 

We now pass to the review of Nishioka's paper [128]. Santilli (Sect. 3.4) 
has shown that, in the framework of a Lie-isotopic theory, the conventional 
Lorentz symmetry should be replaced with a generalized LorentZ-isotopic 
symmetry whose transformations preserve a correspouding Minkowski-isotopic 
metric describing a generally inhomogeneous and anisotropic physical medium. 
Along these lines Gasperini (Sect. 3.5) has formulated a corresponding Lie­
isotopic theory of gravity, i.e. a generalized gravitational theory based on an 
underlying Lie- isotopic algebra and has moreover suggested the Cormulation 
of a Lie-admissable theory of gravity. . 

In note [128] Nishioka takes a slightly different position from the above, 
stressing the isotopic generalization of the associative product and neglecting 
the isotopic"lifting of other concepts or of other entities. Along this line the 
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author gives some connections between the Lie-isotopic lifting of the space­
time (RJemannian manifold) and the Lyra or Weyl manifold. 

Following the parallelism of vectors defined by Levi-Civita in a Rieman­
nian manifold, Eisenhart [142] gave a definition (A.55) of parallelism of 
vectors in a general connected manifold. Changes of connection which pre­
serve parallelism were investigated also by Eisenhart. Let L",,· and L",,· be 
the coefficients of two di1l'erent connections. We impose the condition that 
parallel directions along every curve in the space- time are the same for the 
two connections. The condition is given by 

L",,· =L",,· +41:A." (A.64) 

where A., is an arbitrary covariant vector. Notice that, if L",,· are sym­
metric with respect to p and II, then L",,· are asymmetric. Notice also the 
introduction of an arbitrary 'vector A., which plays an important role later. 

As usual, Nishioka assumes that in the space-times the length of the 
displacement vector (" = ." between two points P(z") and Pl(z" +dz") 
is defined by the invariant quantity 

d.2 = g""u".", (A.65) 

where g"" is the metric (symmetric) tensor of second rank. Nishioka's iso­
topic lifting of the space-time begins by introducting the isotopic associative 
product 

th2 =g"" • u" •a", (A.66) 

where the symbol • defines Santilli's product A • B =Aq,B, and q, is a 
positive definite scalar function. 

In the usual space-times the parallel transfer of a vector (" is given by 

6(" =-r"."("dz·, (A.67) 

where r"." are the Christoffel symbols of the second kind. For the isotopic 
lifting of (A.67) Nishioka assumes 

6(" =-LtIfI" • (" • dz", (A.68) 

where L",," are the coefficients of the connection in a general connected 
manifold. 

For the parallel transfer oflength, Nishioka assumes as in the Riemannian 
manifold that it is integrable, that is, 

I(g"" • (" • (.,) =o. (A.69) 
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The above condition can be considered as the isotopic lifting of 

I(g,..,("(") = o. (A.70) 

From (A.68) and (A.69) Nishioka obtains the representation of L",," 

L",," = q,-2r",," +q,-I~(6:A" +':A" - g""A"), (A.71) 

where i".," have been found to be symmetric with respect p and II. 

By setting . 

q,-1A" =IJ.", q,2 =tP, (A.72) 

L",," are found to have the same form as the coefficients of a connection in 
a manifold suggested by Lyra in 1951 [143] as a modification of the Weyt 
manifold, which had a defect of nonintegrability of length transfer. In Lyra's 
geometry '" is called a gauge function and BiA is the electromagnetic field. 

Although one can obtain the coefficients of connection in Wey!'s geom­
etry provided that t/J = 1, this is uninteresting, because it is a very special 
case of Lie-isotopic liftings. If one uses a new unity I = t/J-l, which is an 
important concept in Lie-isotopic theory, the coefficients of the connection 
in Lyra manifold L~J"  can be written as 

L1:'J" = IL",,", (A.73)I 

where t/J is a gauge function and A" is an electromagnetic field. In this way, 
Nishioka [128] identifies a remarkable connection between the isounit i, the 
gauge potential A" and the electromagnetic potential B". 

We now pass to the review of Nishioka's papers [138], which essentially 
consists of the introduction of the gauge field via the Lie-isotopic lifting of 
the Hilbert space (Sect. 1.3) where the commutator between the isotopic 
element and the generators of the Lie algebra does not vanish. 

Let T be an operator that is nonsingular and Hermitian. Following [30J 
we shall introduce the isotopic lifting if. of the Hilbert space 11. of quantum 
mechanics. Let vectors be fjJ, iJ, •••• The inner product will be defined via 
Eq. (1.49), i.e. 

(fjJltb> =(fjJITltb> =(fjJITiJ)£C (A.74) 

and normalization 
(epifjJ) = 1, (A.75) 

where all symbols without the upper hat denote the corresponding quantity 
~.  . 
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Following ref. (1), Nishioka defines the Lie-isotopic lifting of the envelop­
ing associative algebra of Hermitian operators A, B on C whose composi­
tion is given by the simple usodative product ABt into the isotopic form 
t characterized by the product A. B =ATB and the new unity 1 =T-l, 
i. A= A.i = A. 

Following ref. (30)t Nishioka defines the action of the algebra t on the 
space it, which is characterized by the modular isotopic ferm A.~  = AT~, 

as well as the linear, Hermitian, adjoint as follows 

(A .~itP)  = (~IAt.  tP). (A.76) 

Nishioka therefore Ulumes liftings (1.52) with T = G, in which case 

Ai = At. (A.77) 

Next, the uotopic, linetJr, unita,., operator is defined by 

o (if- • • iu .ep) =(~itP) (A.78) 

which characterizes Eq.s (1.43), i.e. 

fJt • fJ = fJ. fJt = i. (A.79) 

Santilli's Lie-isotopic lifting Gof the compact group G is represented by 
the transformation (Sect 2.5) 

.j,' = fJ • .j" (A.80) 

where fJ is an ilotopic, linear, unita,., operator given by 

fJ =i exp[-iB' • X,] = exp[-i" • X,]i, (A.81) 0 

" ii a function of z, X, is a matrix representation of the generators of the 
group G iatisfying 

[XhXj] =iCij'X" (A.82) 

and Cij' are the structure constants of the Lie algebra of G. If one sets 

, =~t .-/J (A.83) 

it follows from isounitarity 
e' =I, (A.84) 

that is to say 

,j,t • ~' =tiJt • ,j,. (A.85) 

Next Nishioka ~oc.cit] introduces a Lie-isotopic lifting of the exterior 
derivative as follows: 

J = di, (A.86) 

where d is the ordinary exterior derivative. 
The operation of Jon -/J i. assumed as follows: 

J. -/J =d;j,. (A.87) 

One can then operate Jon (} by making use of (A.87) 

d. (} =(d. ~t).  -/J +.j,t(J. T).j, +;j,. (d. -/J). (A.88) 

If one assumes 

d. T = yt • T +T • Y, (A.89) 
where V is given by 

v=Fi, (A.90) 
where F is a 1-form, then it follows that 

d. (} =(D. -/J)t • -/J + -/Jt .0 (fJ.~ ;j,), (A.9i) 

wher Dis given by 

iJ • ~ = d. -/J +V • ~. (A.92) 

At this point Nishioka postulates that under tranformatioDs (A.SO) and 
(A.91) should be invariant. Then 

(J • (})' =J• (}. (A.93) 

From Eq. (A.93) one has the transformation law for b.,j, 

D' • fJ • tP= fJ • iJ • ,j, (A.94) 

from which 
iJ' =.I - iA' • x.i, (A.95) 

where, from Eq. (A.90), F is given by 

F= -iA'.X., (A.96) 
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and A' i. a I-form. 
From (A.94) one also obtains the transformation rules for A~ which are 

defined as A' = A~dz" 

A~  • Xi =UA~ • XiU-1 
- (O"U)U-1 (A.97)t 

where iJ =ui. 
A~ can be identified as a gauge potential. One can then define the 

isotopic gauge field .trengths F"., for the gauge potentials as follows: 

i"" • tj,= i(iJ" • h" - h" • h,,) • ~t  (A.98) 

from Eq. (A.94) and (A.98) Nishioka derives the transformation rule for i'"" 
.. fJ" "-1 

t 
(A.99).t;" = • F"" .• U 

where D" are defined from D=b"dz". 
The simplifying hypothesis that T is in the centre of the algebra of the 

original Lie group Gt 

[X.tT) =0 (A.lOO) 

does not hold, in general, in the above analysis, because if i.t holds, formula 
(A.89) vanishes provided that the commutator between the gauge poten­
tials and T vanishes. In the discussion reviewed above the vanishing of the 
commutator between the gauge potentials and T was tacitly usumed. 

We now review the research conducted by G. Karayannis and A. Jan­
nussis in ref. [139] (additional research by the same authors will be reviewed 
in Appendix C after the introduction of the isofield theory). 

Paper [139a] is important for 'his review inasmuch 88 it provides a di­
rect connection between the Gasperini-Santilli Gravitation for the interior 
problem (reviewed in Section 3.5) and Gasperini's isogauge theory (reviewed 
earlier in this Appendix). The connection is established by studying one of. 
the simplest conceivable interior test particles: a charged particle moving in 
a physical medium with a velocity-dependent drag force of the type -7 v 
caused by the medium itself. A semiclassical treatment (which remains es­
sentially valid at the pure classical level), allows the authors to reach the 
following results: a) via an essential use of Santilli's isotopic theory, the 

motion of the charged test particle under drag is isogauge invariant; b) the 
electromagnetic field of the test particle, when properly written in the is()o 
topic theory, is isogauge invariant in excellent agreement with Gasperini's 
isogauge theory; and c) there is the natural emergence of a torsion produced 
precisely by the drag force due to the medium, which is in excellent agree­
ment with the Gasperini-Santilli Gravitation for the interior problem. The 
problem of finding the proper Hamiltonian that describes the motion of a 
particle in an electromagnetic field with quantum friction has been faced by 
many authors [144J, [145]. All effort. consist of constructing the classical 
Hamiltonian and its canonical quantization. This method usually leads to 
ambiguities related to the Heisenberg uncertainty relation, and other prob­
lems~  A novel approach was piOlleered in memoir [2J and based on the 
Lie-isotopic formalism, where the SchrOdinger equation is generalized in for 
(1.45), i.e. 

iA ~~ =HTfi. (A.lOl) 

The explicit form of the operator T and the Hamiltonian H which de­
scribe the motion of a particle in an electromagnetic field with quantum 
friction was computed in ref. [146J, resulting into 

T =e-rt (A.I02) 

and 

h2 2- 2 ieh' - - - - e t
H == HT =__e-r&v +-(AV.+VA.) +(V +e4> +--A2)e'" • 

2m mco 2m~ 

(A.I03) 
In ref. [l39aJ, Karayannis and Jannussis prove that this result is also 

established by the isotopic gauge invariance principle. Consider the trans­
formations 

A' = A+P(q,t)V 1\ 

# :: '" - ~ .s(q.l)~~  

fI' = eie(f,C)fI (A.I04) 

for Eq. [A.lOl-I03], and compute the functions {J,6 and £ under the condi­
tions of being a gauge transformation. After simple calucations the results 
are e

6 =P=e-r& and (A.IOS)£= he"· 
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Then the new gauge transformation takes the form 

A' = A+f!-rtVA 
"J.' I __ DA 
VI' = • - -f!-'- ­

CO 8t 

'I' = f!eA 
• I (A.I06) 

The conservation of probabillty density is given by the equation 

8p -­ (A.I07)8t +VJ =0 

where 
p= ••+ (A.IOS) 

and _ ih +- -' e - . ++. (A.109)J=-(+VI -il v.)e--'---Ail•. 
2m mco 

From this equation we see that the expression for the current density, which 
is invariant under the gauge transformation (A.IOSb) is similar to that of a 
frictionle88 motion except for the factor e-rt multiplying the first term of 

the second member.
 
Gauge transformation (A.I06) in compact for is given ~y
 

A~ =A" +e-rt _ (A.IIO) 

and it does not hold for the ~avy's  case [140]. The preceeding expressions 

for '1 -+ 0 are reduced to the usual ones. 
Next, Karayannis and Jannussia reproduce, under certain conditions, the 

gauge transformation(A~.I06)  using the Lie-isotopic formalism. 
Let the Lie-isotopic gauge ,transformation be 

.' = Or. f! (A.Ill) 

where Or is T-unitary and the symbol (.) denotes Santilli's isotope product. 
Equation (A.IOl) with the new product is written . -8t ­ (A.112)ih/h=H.t 

and the gauge-transformed equation becomes 

-8 I' (A.113)ihT =Ht.t' 

From relations (A.III-115) we get
 

.. .. (Off..... aT-I .. )

H' =UT. H • Ui

l +ih Dr. UiIUT. lit •Ui
l 

• (A.U4) 

It is known from quantum mechanics that operators corresponding to ob­
servables must be Hermitian. Also, there should be a guage invariant such 
that its expectation value is independent of the gauge transformation. 

By expressing these requirements in the Lie-isotopic generalization of 
quantum mechanics toe demand the UJJeCtation value 0/ the operator CO~­
,panding to an observable to be inoonant under the isotopic gauge truns/or­
motion i.e. 

(t,9(A,,) ••) = (.',9(A~) ••1) (A.115) 

. Since the operator UT of the Eq. (A.III) is T-uhnitary we have 

9(A~) = Ur • 9(A,,) • fI-1 == 9'(A,,) (A.116) 

This means that the T-gauge transformation of the operator which corre­
sponds to an observable, generates a gauge transformation in the fields A". 

From equation (A.116) for 

fIr - e-e;x (A.117)- T 

where 
e4 =T-leTA =eATT-1 (A.IIS) 

we have 
.. .. -1 [ie];=Ur.P.UT =p+ heX,P +... (A.119) 

By taking T = e"'c we get
 

eOX
 
(A.120)p' = p-; Oq . 

Similarly 
I" "-1 (A.121)A" =Ur .,A" • U =A" 

and for the kinetic momentum one gets 

I" e .. t e OX 
11'% = Ur. (p- -A). Ui= p- -(A+-) (A.122)

CO CO Oq 
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Now since the kinetic momentum is an observable it should be gauge invari· 
an', i.e. 

11' 
, =p--eA

, 
(A.123)s c 

and we have the transformation 

A'=A+vx (A.124) 

Equation (A.112) must be form invariant, where 

I e 2H= -(P--A) +V+et
2m CO 

UT =T-le~TX  

Uil = e-t:eXTr l 

T = e"'" (A.125) 

and from the invariance of the operator (A.114) we get 

I e 2 . 1 OX
H'=-(p--A') +V+e[t--(,X+-)]

~.  CO CO & (A.126) 

Thus 

t' =t - .!(7X +8X ) . eo 8t 
(A.127) 

We wee that the isotopic extension of the SchrOding""er equation yields gauges 
transformations (A.124) and (A.l22) which coincide with Eq (A.I06), if 
e-rtX = A. 

Finally if we demand the operator H of Eq. (A.112) to remain T·gauge 
invariant, then from Eq. (A.l14) we have the relation 

aT-I -AAT (8'1'-1 ie T-laT A ie OA) .JLT/\-=e Aqt --+- -,,+-- e"~  (A.128)8t 8t . Aco 8t Aco 8t 

which connects the isotopic operator T and the gauge function A. 
Next, Karayannis and Jannussis [139a] pass to the study of the Lie. 

isotopic formulaiion of the electromagnetic field of a charged particle in 
dissiputive conditions due to motion in a physical medium. 

In conventional cases, one considers the invariance of the fields 

lJ = vxA 
- - 18A
E = -vt--- (A.129)

c lJt 

" 

under the gauge transformation 

A -+ A' ~ A+VA 
, .... 1 8/\

t-+t =y- CO lit (A.130) 

as a consequence of the requirement that the fields and not the potential 
enter the several physical processes. 

U one demand.. the same to hold in the Lie-isotopic gauge theory, one . 
must properly modify relation. (A.l29) in such a way that the invariaoce 
with respect to the new gauge transformation (A.106) is conserved. Indeed 
from Gasperini's work [135] reviewed earlier it follows tha~ 

BT = VX(AT) 
- 1 lJ - .ET = -V(tT) - --(AT) (A.131)coat 

For T = e-rt we have for the fields 

B-v xA 

- - lOA, ­
E= -Vt-----A (A.132)

c 8t c 
which, as one can easily &ee, remain invariance with respect to the new gauge 
transformation (A.106). 

Note the essential character of Santilli's Lie.isotopic theory to achieve 
the above results. In fact, other conventional approaches such as (145), do 
not allow the achievement of a gauge invariant formulation. . 

We now pass to a review of Karayannis and Jannussis' studies [139a] 
on the connection between (quantum) friction and torsion for the interior 
problem of gravitation (sec. 3.5). 

S. Hojman et al (140) have developed a formalism making torsion com­
patible with the principles ofgauge invariance and ofminimal coupling. This 
theory leads to the following modified form of the gauge transformation of 
the field A,. 

A~ =.A" + e·8",/\ (A.133) 

which depends on a scalar field (the "tlaplon" field) + which serves as a . 
potential for torsion 

7;" = ':8,,+ -1:8,,+. (A.134) 
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In the case of the electromagnetic field of a charge particle with friction 
we have. =-7' and we can say that the problem of the quantum friction 
in the electromagnetic field il equivalent to an interelation of the electro­
magnetic field A,., a complex field ., and a scalar field + = -7', which 
generatea a constant torsi~n,  

(A.135)74., = ';
.1 

in agreement with the gauge invariance and the minimal coupling principles. 
A consequence of the existence of thil torsion il the appearance of Am­

pere's. Uke equivalent currents (91) 

i; = ~E=VxMe
4.­

i; = - 4:iJ =Vx M'" (A.136) 

The components of the electromagnetic field tensor F,.." in case of quantum 
friction, are given by 

F,.., =a,.A., ~ 8.,A,. forI''' ~  .. (A.137) 

and 

F..., =8..A., - 8.,Ac - A.,T~  =a..A., ... 8.,At - A., i7 (A.138) 
c 

which leads again to relations (A.132). In general, Hojman's electromagnetic 

tensor is 
F,.., =a,.A., - a.,A,. - A,(1:8,.+ - 6:8.,+) (A.139) 

and correSponds to the special case of Gasperini's theory if we put 

T = e-· (A.140) 

Also, from Gasperini's theory [135] it results that 

F,..,T = 8,.(A.,T) - 8.,(A,.T). (A.141) 

If we put 
(A.142)B,. == A,.T 

and 
(A.143)H"., == F,."T 

the new gauge invariant fields are derived from B,. 

B,." =a"B., - 8.,B,. (A.I«) 

and obey the conventional gauge transformation 

B~ = B,. +8,. A • (A.145) 

Karayannis and Jannussis [139a] conclude by noting thaI Guperini', 
theor, implies a -'ifting" 0/ the field A,. 10 B" which obeN' the knOtDn gauge 
trons/ormation. This conclusion is in agreement with the relations (A.131). 

The "lilting" of the field A,. to A,.T gives an electric and a magnetic 
current and thus acts as a part of the source of electromagnetism. Indeed 
from the relation 

- - 1 8 ­
V x (BT) =--a(ET) (A.146)

C4) t 

we have a density of electric current related to T 

- Co I -aT - - 1JT=-(-E-+B x vT)T­ (A.147)
41' Co IJt 

and from the equation 

- - I a -V x (ET) =--(BT) (A.148)
co8t ­

one gets the density of magnetic cunent 

- CO I -8'1' - - 1JT =-(--B- +E·x vr)T- (A.149)"
41' Co 8t 

Relations (A.147) and (A.149) coincide exactly with those of Hojman's 
theory [140] for T = e-·, and· constitute a particular case of the more 
general theories of ref. [153]. Similarly, from the other two "lifted" Maxwell 
equations, one finds the relations for the electric charge density and magnetic 
charge density respectively, 

1 - - 1Pi- :; :t;(E.vr)T- , (A.150) 

Plf =-4~(itVT)T-l. (A~151) 
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For the case of quantum friction in electromagnetic field from (A.147) and 
(A.149) it follows that 

- -,­JC=-E 
"Y 4r (A.152) 

- -, ­
J'" = --B

"Y 4r (A.153) 

and in a region free of charge we have 

1; == VX Me 
1;' == VX M'" (A.1M) 

Thus the cunents 1; and 1;, behave like Ampere's currents (91]. 
KarayamUs and Jannussis conclude the analysis of ref. [139a] by noting 

that the invariance of Eq. (A.101) under a gauge transformation leads to a 
new gauge transformation for the potentials A" and establishes, in the Lie­
isotopic theory, the requirement that the expectation value of the operator 
correiponding to an observable must be invariant under the i80topicgauge 
transformation, Eq. (A.115). The new gauge transformation demends a 
"lifting" of the fields from A" to A"T which in the case of quantum friction 
takes the forms (A.132). In this way, they reach a new definition of the fields 
E and lJ from the potentials. and A. ' 

In Maxwell's equations the "lifting" of the fields gives an electric and a 
magnetic cunent where the conesponding relations (A.147) and (A.149) c0­

incide exactly with those of Hojman's theory [140]. These studies lead to the 
conjecture that the quantum friction in the electromagnetic field generates 
a constant torsion between the electromagnetic field and a complex field in 
agreement with the gauge invariauce and the minimal coupling princliples. 
These results are also in remarbble agreement with the Gasperini-Santilli 
Gravitation for the interior problem(§3.5). 

APPENDIX B: CALCULATION OF THE MAXIMAL SPEED 
OF CAUSAL SIGNALS WITHIN DENSE HADRONIC MAT­
TER. 

n is generally believed that massive physical particles (c&Usal signal) 
cannot acquire speeds bigger than the speed of light in vacuum co. By using 
the Lie-isotopic theory, R.M. Santilli [12] has disproved this belief by es­
tablishing, apparently for the fint time on rigorous theoretical grounds, the 
conceivable existence of dynamical conditions under which .ordinary muaive 
particles may indeed surpass the speed of light co. In turn, this result is 
of a manifestly fundamental nature for the Lie-isotopic studies, particularly 
those of operator nature on Hilbert spaces, because it opens-up possibilities 
that are otherwise precluded, such as the achievement of a true confinement 
of quarks (with identically null probability of tunnel effect [27]), as we hope 
to illustrate in our possible subsequent review of "hadronic mechanics". 

In a courageous paper of 1982, Santilli [12] stressed that the maximal 
speed of a causal signal is certainly CO for the conditions originally conceived 
by Einstein (point-like particles moving in empty space under long range 
action-at- a-distance interactions), but not necessarily for substantially dif­
ferent physical conditions. In fu:t, he considered extended particles moving 
within physical media under action-at-a·distance potential forces as well as 
contact resistive forces caused by the medium. He pointed out that the 
latter forCes are profoundly different than the former ODe, inasmuch as: 

1. the formers admit potenti~  energy, while the notion of pot~ntial  has 
no meaning for the latten; on more technical grounds, the formers 
are Hamiltonian, while the latten are not because they violate the 
integrability conditions for the existence of a Hamiltonian in the frame 
of the observer [63]; 

2.	 The formers have infinite range, while the latters have zero range, 
being contu:t forces by conception; and 

3.	 the formers are action-at-a-distance, while the latters are instanta­
neous (evidently from their null range). 

Owing to these profound dynamical differences, Santilli ~oc.cit.]  conjec­
tured that the mazimal speed 0/ massive particle, Vmax while momng within 
tJ physicol medium is not neas8tJrily CO, but con be bigger, equal or smaller 
than CO depending on the locol phy.iml conditions at hand 

> 
VMu ~  CO	 (B.1) 
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On the basis of his theory that the strong interactions have a compo­
nent precisely of the above contact type due to the necessary condition of 
mutual penetration and overlapping of the wavep~ets  of the particles [2] 
(see Figure 1), Santilli poe.dt.) submitted the following 

HYPOTHESIS 1: The ·maim4'qeed 0/nucle4r corutituenu (p,.. 
tOM and neutroru) u maa'kr than t%); and 
HYPOTHESIS 11: The maimallpeed 0/ the Iuulronic coR8tituent. 
or, in genefU~  0/ a Iuulron tDithin deR8e htulronic matter (e.g., 
the core 0/ a collap.ng .r) can 6e bigger t1uJn eo· 

The former hypothesis was formulated on the basis of the observation 
that nonrelativistic calculations have a truly remarkable degree of accuracy 
in nuclear physics. The ~atter  hypothesis was fonnulated on the basis that 
null range, instantaReOa, lon:u are .tructurul', out.ade the frametDOrl: 0/ 
Ein.tein'. Special Relativit, and, as such, the maximal speed must be re­
computed indePendently from conventional prescriptions. Besides, since the 
forces conaidered have DO potential energy, there is no a priory' technical, 
experimental, or conceptual informmatioD precluding the achievement of 
speeds beyond eo. Needlea to say, these speeds higher than eo should be 
generally conceived as being local, that is, as conceivable at one given poiDt 
in space-time inside superdense hadronic matter. 

In the subsequent papers [14],I58J, Santilli CODStruCted his Lie-isotopic 
covering of Einstein's Special Relativity (53.4) which confirmed in full Hy­
potheses l,ll. In particular, the application of the new relativity to the 
Nielsen-Picek metric [70] for the interior of bons, Eq.s (3.170), i.e., 

('1,...,) = Diag(l, 1, 1, -1) --+ (g,...,) 

= Diag(l- io,1- ia., 1- io, -(1 +a» 
a =(0.61 :I: 0.17) )( 10-3 (B.2). 

provided a direct confirmation of Hypothesis II (Section 3.4). In fact, by 
using Eq.s (3.263), one obtains for the above metric 

1+0 
VMu =eo.. .1 > eo (B.3) 

- 3° 

while the value VMu < eo occun for pions. 
These latter papen established the fact that, any modification 0/ the 

Minko",,a metric in the interior ()/hadroru a, sugge,ted 6, the currently 
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available phenomenology (Section 9.~.9) implie, a corruponding ~"a,.,  

modijiCtJtion o/the mtJ%imal Bpettl ofcau.l.gnau precisel, along Eq. (B.l). 
In this way, the Lie-isotopic generalization of the conventional Lie'. theory 
permitted the rigorous prediction of the pouibility of breaking the "barrier" 
of the speed of light t%) by physical massive particles. 

The above fiDdiDgs were confirmed by V. De Sabbata and· M. Gasperini 
who published a paper [149J in 1982 foUowiDg paper (12) providing an expUcit 
calculation of the maximal causal lpeed within hadronic matter, via the use 
of conf1f!ntional gauge theories. In the following we review the calculation 
by De Sabbata and Gasperini because particularly releva.nt for the line of 
study of this work. 

In a preceding paper [150J, De Sabbata and Gasperini had shown that 
the breaking of the SU(2»( U(l) gauge sYlDDletry can be related to the pos­
sibility, inside hadrons, that causal signals propagate with a speed cdifferent 
than co, much along the classical case of the Cherenkov light. This result 
was obtained by embedding the Yang-Mills Lagrangian in a a space-time 
with a constant s~  curvature and allowing the maximal causal speed to 
be a local variable. The Higgs field was therefore. introduced iD a natu­
ral way into the gauge Lagrangian, and the Higgs potential can acquire a 
gravitational interpretation. 

However, in order to reproduce the negative mus squared term of the 
Higgs potential, De Sabbata and Gasperini [150J were forced to introduce a 
space-time with a negative scalar curvature. .. 

Santilli's hypothesis [12J of maximal causal speeds higher than eo al­
lowed the elimination of the negative curvature, thus rendering the model 
more realistic. In fact, De Sabbata and Gasperini showed in the subsequent 
paper [149] that, by using a metric background with a nonzel'() cosmological 
constant, one can obtain the spontaneous breaking of the internal symme­
try without introducing a negative curvature. This also establishes a quite 
intiguing link between the maximal propagation of a causal signal and the 
mechanism of symmetry breaking in the presence of interactions on a curved 
background. (The reader should note that paper [149J was written prior to 
Gasperini's isotopic generalization of gauge theories [59J. As a consequence, 
a conventioDal gauge theory was used in the calculations. This creates the 
intriguing problem,. still open to our knowledge, of reinspecting the calcula,­
tions via the theory of Appendix A. 

Consider a space with a conformally flat metric tensor,9p" =",2(t)'1,.." 
and with a nonvanishing cosmological constant h. The gravitational La,­
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grangian is then given by 

Ac3
£0 = 161'G (Ro - 2/\), (B.4) 

where A =w4 and Ro =fiWlw3c1J(w =dwldt). Suppose that the maximal 
causal speed is a variable quantity, ~ ~ c(z, t) (this is to be seen only like 
a starting formal prescription, as we end up with a constant vacuum light 
velocity), and associate to c a sQllar multiplet cp such that [150] 

c2(z,t->. = 3~2Icp(z,t)12,  (B.5) 

where v is a constant velocity, introduced for dimensional reasons, which 
wiD be interpreted later on. 

Putting R =6Ww3 v2 , Lagrangian (B.4) becomes 

2 _ GAl 14) (B.6)£= A(R I 1
S1I' 6 cp 9v4 cp 

Complete it by adding a kinetic term for the scalar field. -Then, the total 
Lagrangian, which can be interpreted as the Higgs Lagrangian producing 
spontaneous symmetry breaking, is given by 

£r = H[(D"cp) +D"cp - V(cp)], (B.7)
- S1I' 

where 
R G/\

V(cp) =il~12 + 9v41cpl4 (B.S) 

To preserve invariance under the local gauge transformations of cp, the au­
thors used the gauge covariant derivativeDp =81£ - iaA:9" where A: are 
the gauge potentials, a and '" are, respectively, the coupling constant and 
the generators of the gauge grQUp. Notice that for a positive curvature, 
R > 0, potential (B.S) has the right signs to provide a positive real mass for 
the scalar field after the application of the Higgs mechanism. . 

From Lagrangian (B.7) one obtains the following field equations for 91£" 
and cp: 

1~1<p12Gp~ = -4 [T,...(<P) + gP~l~~  1<p14] • (B.9) 

(DP<p)", =iaA:S.DP<p +:;. (B.10) 

where a bar denotes the metric-covariant derivative, G"" is the Einstein 
tensor and Tp"(cp) is the so-called "improved" energy-momentum tensor or 
the scalar field (see for example ref. (151» 

Tp,,(cp) = (D"cp) +D"cp- i9p"(Darcp)+ Darcp+ Hlcpll"I" - 9""Icpl21ar 'ar)· (B.ll) 

The vacuum 'state is obtained for A: = 0 and (cp) = (cp+) =VJo, where VJo 
is a constant value minimizing Veep). The field equations (B.9) and (B.10) 
in vacuum are reduced to 

G/\ 2 
(Gp ,,) =-(9",,) 3v" epo, (B.12) 

6(V) = 0 (B.13)
6cpo 

and they both give 

2 _ 3,," (R) (B 14) 
epo- G 3/\' . , 

where (R) is the vacuum scalar curvature. Obviously it must be (R) :F 0 in 
order that spontaneous symmetry breaking may occur. 

- Assuming in vacuum a De Sitter metric background, i.e. putting (w) = 
Tit, where r is the "Hubble constant", we have (.fl) =4/\ = 12/42, where 
a = vr is the constant space-time radius of curvature of the vacuum; it 
follows then, from (B.5) and (B.13), that Icpol =v2(3IG)i, and (c) =fl. 

Therefore, the parameter v may be interpreted as the constant value of 
the speed of light in vacuum, and since it depends on CPo, its experimental 
value is not arbitrary, but is fixed by the spontaneous breaking of some 
internal symmetry. It is amusing to notice that in the absence of symmetry 
breaking, we have 'Po =0 and then, according to our model, (Co) =0, i.e. 
light cannot propagate in vacuum. 

In conclusion, De Sabbata and Gasperini [149J evaluated the maximal 
speed of causal signals inside hadronic matter, applying their model for the 
Higgs Lagrangian to the SU2 x Ut gauge group of the standard Weinberg­
Salam theory. In this case cpo must satisfy the low-energy experimental 
condition (150] 

A2,,2 . GF 
(B.15)

4cp~ = v'2' 
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where GF is the Fermi coupling constant. and then we obtain 

1&2 G,,2-._- (B.16) 
- 6..j2GF· 

Since in the De Sabbata.-Gaaperini model the curved space-time must 
represent the "hadronic medium" (2], one can identify the De Sitter met­
ric background with the hadronic "microuniverse" governed by strong in­
teractions (see ref. (152) for an extension review of the p088ibility of this 
identification). By replacing the Newton constant G with the strong gravity 
coupling constant 1:/ =(0.85 .1038)0 (as in ref. (152) of De Sabbata and 
Gasperini then reach the following value for the maximal speed of causal 

signals 

( 
)1 .1&2 Ie,,= M~ .~ 75co, (B.17) 

whi~ is determined by the spontaneous breaking of the weak-interaction 
symmetry induced by the presence of Santilli'. "hadronic medium". 

APPENDIX C: ISOTOPIC GENERALIZATIONS OF FIELD 
EQUATIONS AND THEIR APPLICATION TO RAUCH'S EX­
PERIMENT ON THE SPINORIAL SYMMETRY. 

In this appendix we shall review a generalization of the conventional 
Dirac's equation proposed by P.A.M. Dirac himself (in two of his last pa­
pers, ref.s [94a. 94bJ). The generalization implies an alteration of the spin 
from the traditional value I down to zero, which results to be due precisely 
to an isotopic lifting of Santilli's type. In turn, this deformation of the .pin 
apparently pennits the achievement ofa consistent representation of Ruther­
ford's historical hypothesis accordillg to which the neutron is a bound state 
of one proton and one electron, of course not within the context of quantum 
mechanics and its point-like approximation of the constituents, but within 
the context of the covering hadronic mechanics and its representation of the 
extended wavepackets in condition of total mutual immersion (Animalu and 
Santilli [155]). 

In this appendix we shall also review the isotopic generalization of Dirac's 
equation in Santilli's Cormulation for small deviations from Einstenian set­
tings [153]. This, topologically different generaliation represents in a rather 
natur" way the deformation of the charge distribution of hadrons under 
sufliJeiently intense extemal fields and the expected alteration of the mag­
netic moment. In this way, Santilli reached a rather natural and direct 
representation of the cunently available experimental data by Rauch and 
collaboraton (see ref. [131] and quoted papers) on the apparent breaking 
of the spinorial symmetry of neutrons when under external nuclear fields. 
Intriguingly, this latter breaking occurs when the problem is treated via con­
ventional quantum mechanical Cormulations,. while the spinodal symmetry 
is recovered exactly at the covering isotopic level. The background work in 
the absence of mutation is paper [154] by Nishioka and Santilli on the rep­
resentation oC the shape of the charge distribution of a proton and related 
anomalous magnetic moment via the use of hadronic mechanics. 

In this appendix we shall finally review some important contributions on 
isotopic field equations by Nishioka [156], Karayannis and Jannussis (139), 
and others.· 

As a result of these findings, the isotopic lifting of field equations offers 
an apparent representation of the old hypothesis (formulated in the early 
stages oC nuclear theory but subsequently ignored to a considerable extent) 
according to which nucleons experience an alteration of their magnetic mo­
ments in the transition from electromagnetic interactions in vacuum, to the 
new' conditions when bounded in a nuclear structure. 
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. More generally, and as we hope to show in a possible subsequent re­
view on hadtonic mechanics, the isotopic field equations offer the possibility 
of identifying quarb and/or hadronic constituents with physical, already 
known particles, although in an altered state due to their condition of total 
immersion within the hyperdense medium composed by the wavepackets of 
the remaining constituents (the "hadronic medium" of ref. [2]). 

In summary, the isotopic lifting of field equations is &Bother topic which, 
as we shall see, is mathematically quite simple; yet its conceptual, theoretical 
and epistemological implications are rather deep indeed. 

The central physical notion of this appendix is the concept of mutation 
0/ekmentGry particles proposed by Santilli in his second memoir of 1978 [2]. 
This is ~  alteration of the intinsic: characteristics of a particle (rest energy, 
spin, magnetic and electric moments, etc.) that is conceivable under the 
transition from motion in vacuum (stnd Einsteinian conditions),. to motion 
within an hyperden&e hadronic medium (Santilli's conditio~.  

Santilli proposed this concept following his isotopic (and Lie-admissible) 
generalization of the Galilei relativity [lJ (and prior to his generalization 
of Einstein's relativity [14]), precisely as one way to illustrate the physical 
implications expected from the Galilei-isotopic (and the Lbrentz- isotopic) 
symmetries. As well known, field equati~ns are characterized by represen­
tations of the fundamental L!Jrentz symmetry. If' the latter symmetry is 
subjected to an isotopic generalization, he expected the characterization of 
different field equations which, in tum, ren~er  inevitable the alteration of the 
characteristics of conveniional. particles according to the following schematic 
view of paper [153]. 

CONVENTIONAL LORENTZ 
LORENTZ ISOTOPIC 

SYMMETRY .SYMMETRY 

Conventional Isotopic 
Field field 

equations equations 

conventional ...-.... Mutated 
physical physical 

characteristics characteristics 
of panicles 

Motion Motion 
in empty within 

space physical 
_ media. ..J 

As a result, the notion of mutations of particles is already implied b 
the Galilei-isotopic (or Galilei-admissable) symmetry. As a matter of fact 
the notion can see its mathematical foundation. in the isotopic general­
ization of Lie's First, Second and Third Theorems introducecI In memoir [1] 
jointly with the consequential notion ofLie-isotopic symmetry. The Lorentz­
isotopic symmetry essentially provides a technical refinement (hadronic me­
chanics provides yet another contribution to mutation that will be indicated 
later on). 

More specifically, Santilli submitted in memoir (2] the notion of eleton as 
a mutated form of the conventional electron which is conceivable when the 
wavepacket of the particle is in a state of total immersion within hadronic 
matter. He then formulated the hypothesis that eletof18 are the ph,siml 
constituent8 oj hadrof18 (or oJ quarb). 

The central part of memoir [2], the proposal to construct hadronic me­
chanics via an isotopic lifting of itl enveloping algebra, was formulated pre­
cisely to achieve a quantitative representation of the notion of mutation 
of elementary particles at large, and of the notion of eleton in particular 
(mutations are necessary to achieve a consistent model of quark and/or of 
hadronic structure with physical already known constituents). 

Also, the construction of the hadronic mechanics was suggested to ~eve  

a consistent model oj structure oj quarb as (hadronic) bound states oj ele­
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tOni• .In memoir (2] Santilli presented a consistent model of structure of the 
light mesons (which is capable of representing all known total characteristics 
of the particle, including their size). Unaware of Dirac's work [94] at that 
time (1978), he then suggested as a subsequent objective for hadronic me­
chanics the achievement of a consistent formulation of Rutherford's hypoth­
esis of the' neutron as a compreuetl h,drogen aCom (in Rutherford's words). 
Thanb to the resolution of the problem of spin achieved by Dirac himself 
(94), the consistency of Rutherford's hypothesis haa been recently indicated 
by Animalu and Santilli (155), as we shall see in the pOllible separate review 

on hadronic mechanics. . 
In conclusion, the particle characterized 6y the Dirac'. netD equation [9-11 

tUml out to be UGCtly one /oma 0/ Santilli'. eldon with a finite discrete 
mutations of the spin, while intermediary forms of mutation of the eleton 
are provided by the isofield equation of ref. [153]. 

This appendix is aD essential complement of the isotopic generalization 
of the Lorentz group of Section 3.4, because it provides a quantitative il­
lustration of the physical i~plicatlons  occuring in the transition' from con­
ventional representations of the Lorentz grOup to i80representations of the 

Lorentz-isotopic group. 
To see these novel phys~ca1 results, the reader is urged to alter the con­

ventional mental attitude (pruervcaticm as much 88 p088ible of established 
doctrines), and leave instead freee COUfIe to scientific curiosity by seeking, 
specifically, the maximal possible alteration of conventional doctrines. 

We shall now review the foundation 0/ the isoJield equations as presented 
in ref. (153], i.e. a. characterized by uorepresentation. 0/ the complete 
Lorentz-isotopic (PoinctJre-Uotopic) group P(3.1) (§3.4.7). Let us begin 
by assuming the following formulation of the underlying Minkowski and 

Minkowski-i80topic metrics' 

" = ("",,) = Diag(l,l,l,-.-I),
 

9 = (9,w) =Diag (91lt 922,933, -944),
 

~  Diag: (~~,b~,6I. - 61) = (b:"".,)(No ~um),b"  > 0, 

- 4' - (C.l)
% = (z ,z ) =(z ,cot) 

where the b's are independent of % but can bave dependences of the type 
b" =b,,(s,p,T, ..•). The central (claSsical) invariant of the theory is then 

~ ;D) 

i A.B~ ATB 
c {ele =ci,c E c,i =T-1} 

if. (.itP) ~ (4)>I.I,,)i = (;ITltP)i E C. (C.4) 

The modular action of an operator A of an element" of it i, then given 
(for necessary reasons of consistency) by the isotopic form (1.40), i.e. 

A."~ AT" (C.S) 

The "hadronization" (i.e., the mapping of Birkhoflian into hadronic mechan­
ics, see §1.3) is done according to the isorelativistic extension of rule (1.63), 

i~.  a 
p:". '" =-i8,.,p,A = 1,8" =ax". (C.6) 

For simplicity, the isotopic metric 9 and the isotopic element T are as- . 
sumed to be independent of x (but dependent on velocities s, density p, 
etc.), so that they are in the center of i. . 
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In order to understand the isofield equations, it is important to review the 
basic rules for properly writing equations in hadronic mechanics. In fact, 
misrepresentations are pouible because familiar expressions such as ziPi 
or PiPj, which are fully defined within the context of quantum mechanics, 
become intrinsically inconsistent when refered to hadronic mechanics (they 
violate the postulate of' isolitdearity because the trivial aasociative product 
of operators has no mathematical or physical meaning for isoenvelope t, see 
§2.2). 

The essential notions of' the theory are the following 

1.	 Units. Whenever confronting generalizations of Lie's theory it is rec­
ommendable to identify fint the underlying unit. In the case under 
consideration then, we have two diR'erent isounits, for the simple rea­
son that we have two generalized structures, the iso-Minkowsky space 
M" with related isounit 1 =T-I and the isoenvelope t with isouDit 
i = T-l. These two units are generally diR'erent, and we shall write 

1= g-1 f:. i =T- I	 (C.7) 

although the case T" = 9 is not excluded. 

2.	 Scalar•• Ordinary scalars n E R (or e E C) have no mathematical 
sense in hadronic mechanics and must be replaced with the iso8C4lars 
of Eq. (C.4b), e.g. ft =ni. However, as adopted in Section 3.4, this 
way of writing scalars is purely f'ormal and has no practical implication, 
because the product of' the isoscalars is given by ftl • n2 = n{n2 = 
nln2i. As a result 

(C.S)n." =. n" 
Hereon we shall ignore the above mathematical formality and use or­
dinary scalars f'or simplicity. Note that the elements g"" of the gener­
alized metric 9 are, strictly speaking, i808calars and should be written 
g"" = ig"". However, property (C.S) allows the reduction of'isotopic 
contractions to ordinaly ones, e.g. 

z" = g/jll • z" =. g""z"	 (C.9) 

3.	 OperutorB. As stressed earlier, the conventional associative product 
are inconsistent within the context of generalized envelope t and must 

J99' ~ot 

be replaced with the more general isoproduct. For example, if Xi and
 
Pi are operators, their "product" in t must be written
 

zl =Zi • zi,p1 =Pj • pj,etc. (no sum). (C.lO) 

The reader should also keep in mind that, from the assumption T =G
 
in Eq. (1.52), and from rule (1.51), operators that are conventionally
 
Hermitean remain isotopically Hermitean. See §1.3 and ref.s [30-32]
 
for details.
 

. Vedors. Until now we have been dealing with classical vectors on iso­
topic generalizations of metric spaces, such as three-vectors -; on iso. 
Euclidean spaces i('r,g,R),.or four-vectors % and l' on iso.Minkowsld 
space Ai,. Their products are therefore characterized by the general­
ized contractions 

_! _2 o.0 0 

r = ,'9iir' ,P = pi9"pi, 

z! = x"g""z" ,1'2 = p"g""p" (C.II) 

But the quantities "Xi" and "Pj" are now operators, that is, they 
acquire the additional meaning of being elements of i acting on iso­
Hilbert space 'It. As such, contractions of the type (C.II) are no 
longer acceptable after hadronization, and must be replaced with the 
expressions 

_2 0 0 0 ._2 0.·· •• - ~  

'? =. ~ii.  r ' • rJ = gijr'TrJ; Pop~  gl' ~ Pi. Pi =g"piTp . 

z~  = g"•• z" • %" =g",,~"Tz";p~  = g"" • p" • p" =g""p"Tp" . 
(C.ll) 

For simplicity, Santilli [153] also rewrites hadronization rule (C.6) in 
the form 

Po,: • tP =-i81101/J ~ -ifJ" ." ~r  -ii8" • t/J (C.a) 
which allows the substitution rule 

P",! ..... -ifJ" = -ii8" (C.I,,> 

Thus, the fundamental opemtor-invariant of the isofield theory can be 
written
 

a del "14" "" ..P
= 9 • p" • P" =9 p". P" =" •p" 

= g""pIIoTp" =-g""8" • 8" = -8" .lJ" 
= -g""8"8,,i =-8"8"i (C.II) 
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Similarly, if t" are matrices, their correct contraction with the opera­
The corresponding extension to the case of a charged particle under an "_ 

tora 1'" must be written temal electromagnetic field while in imme,ion within the hadronic medium 

is given by
.:." .."" .. ,."..7"T1'" (C.l~)
, • p" =g ·7,,· 1'" =g 

as conecdy identified for the fint time by Karayannis and Jannussis Ii""· (,.. + ~A..)•(p" + ~A.) +~c2). t/J 
[13980]. 

=- [(8" +i~A") • (a.. + ~ A..) - ~c2] ." = O. (C.~) 

5.	 Hilbert .pace. The reader should finally keep in mind that the proper
 

way of writing the norm. in the underlying Hilbert space is form (C.4c).
 
The il%urcurrent is then given by poc.cit) 

i.e. the space is a. iso-Hilbert space. Thus, the conventional, linear­


action of an operator, say 8, on an element .p of Hhas no mathemat­


ical or physical meaning and must be replaced with the i80Unear form i .. =2i~ [t'1+ •0..." - (0.. • t/J+) • t/J]
 
(C.S). If H is (i80)Herm.itean, then the (i80)eigenvalues are real [30]
 

and we shall write +~A". (,,+. ,,) (CJ~
moc 
H." =h",8 = 8+,h e R (C.1J) and it verifies the conventional conservation law 

Finally, the conect product of the element t/J and its dual t/J+ is given	 8"i" =81A 
• i" =o. (C.2i) 

by ,,+ •t/J =,,+Tt/J. 
The ilocharge demit, is then given by 

We are now in a position to point out the contribution provided by hadronic 

mechanics to Santilli's notion of mutation of elementary I particles. This p=;..1. = --!...- (t/J+ • 8t/J _ 8r/J+ • ,,). . (C.~ 

latter notion is intrinsic in the very basic eigenvalue equation of the theory, Ie:" 2moc2 8t 8t 

Eq. (C.16). Suppose that the Hermitea.n operator 8 has eigenvalue lao in 
and it is indeed conserved,

quantum mechanics, H4J = 1ao4J. Then the .me operator H has a different 

eigenvalue h in hadrooic mechanics, 8 ." =ht/J. The. transition lao -+ h 

is precisely Sant~'s notion of mutation because it mutates,specifically, the dQ -'!!f Ad" =o. (C.~)-;It-tit P . 

physical characteristic lao "(153). 
By keeping in mind the fact that the isotopy of i808Pace 14, is different The mutation of the characterjstics of the particle is now evident. To 

than that of isoenvelope t.' Eq. (C.7), we have two different, mutually begin, we have a mutation 0/ the re,t energy, from the value mo~ for Ein­

compatible contributions to the notion of mutation, one originating from the steinian conditions to the value moc2 for Santilli conditions where the quan­

titye: has been defined in Section 3.4.6. Suppose that p is the charge density
fundamental Lorentz-isotopic structure, and one generated by the isotopic 

lifting of the enveloping operator algebra. for Einstenian conditions, i.e., for T =1. Under the presence of contact, 

Once rules 1-5 above and the physical objectives of the theory are prop­ zero-range, instantaneous interactions represented by the operator T 1:. 1 the 

charge density assumes value (C.21). The transition p -+ p is evidently a
erly underatood, the formulation of i80field equations is quite easy. In fact, 

we readily have the following ilo- Klein-Gonlon field equation [153J. form of charge mutation. A similar situation occurs for the fourcurrent. The 

mutation of other characteristics will be considered in more details below.

(i"" •1'" • p~ +~(2) •f/J = (pi' •p" +~(2) •" The iso-Klein-Gordon equation (e.18) iI inoonant underthe/ull Poincare­

isotopic group P (3.1) [153]. In particular, the wavefunction transforms as 

= - (8 - ~(2) ." =- (8"8"i - m:(2) •'" = O. (C.1S> 
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an i808calar. In fact, by keeping in mind rules (3.218-320), it is easy to see 
that A 

,,8 lJ 2 2 IW IJ IJ 2 2 g" -.--moc =9 -.--moc
8s" 8z" 8z'" 8s'" 

(C ~)  · 

A plone uOtDG"e ,olution is given by 

y,(s) = Nei""',,,,r' (C.~ 

and evidently transforms u fonows 

'L,. _ 'u,. III " .p(s) =Ne'· ,,,,,~- =Ne'· ,,,,,~  =t/J (z ) (C.2i) 

thus proving the isosca1ar nature of the equation under P (3.1). 
The reader should be aware that the uo-Klein-Gordon equation doe. 

not re~.ent a free particle (see the No-No-Interaction Theorem of Section 
3.4.15), and, thus, solution (C.25) is not a conventional, free, plane wave 
solution. This is 'evidently due to the fact that the deformation of the metric 
" -+ 9 is per se a representative of interactions, not of the conventional 
Hamiltonian-Lagrangian type, but precisely of Santilli's non-Hamiltonian 
type. '. 

To put it differently, a relGtivi8tic (mtJlli"e, 'Pin zero) particle that u 
tnd, free mu.t obe, EiRltein'. Special Relativit, enetl, and, G8 IUch, mUlt 
be characterized 6, the conventional Klein-Gordon equation-An, deviation 
from this e,ta6lished setting CtJuetl 6, motion 0/ the ,ame particle within a 
ph,lictJl medium or other muORl mul obe, the covering Santilli'. Sp«ial 
Relativit, and, a. IUch, it must be characterized 6" the rovering iso-Klein­
Gordon equation. 

As a final comment, note the way Santilli ~oc.cit]  writes wavefunction 
(C.25) with the exponent given by glWk"z" and not g""k,.. z" = g,."k"Tz". 
This is evidently due to the fact that the quantities "i" aIid "z" in the 
isophale are isoswars and not isooperators. 

The construction of the remaining essential parts of the theory (e.g., 
the iso-Green functions) will be deferred to the possible subsequent review 
on hadronic mechanics. It is appropriate here to bring to the attention 
of the interested reader the important work by Nishioka [156b] on the so­
called Dirac-M,ung-Santilli delta function (which .is essentially an isotopic 
generalization of the structure of the conventional delta function) and which 
plays an essential role for the further development of the isofield theory. 

We DOW pass to the" review of the isotopic generalization 0/ Dirac', equa­
tion u presented in ref. [153]. The origin of the equation is an isotopic 

decomposition of the fundamental second· order isoinvariant operator,. Eq. 
(C.lS). For this p~rpose,  suppose that i,. are 4 x 4 matrices. Then, the 
second-order i80invariant operator can be decomposed into the isoproduct 
oC the two first·order 4 x 4 operaton according to the form 

p,.. pIA +m~~ 

=(i". pi' - imoe) • (i" • pI' +imoe) 
l{A AA} .,JJ "+ 2 i = 2 1,.,1" • Y • P moc (C.2') 

which holds iff the i" matrices verify the laws 

{i,.;i,,} = 7" • ill +ill • ill = 2g,."i (C.21) 

Note that the first law is exactly the isotopic lifting of the conditions on the 
conventional 7-matrices of Dirac's equation 

{7,.,7,,} =7"1,, +7"1,, =2'11£11 1 (C.3J) 

The desired isotopic lifting 0/ Dirac's equation is then given by 

(i,. • PI' +imoe)• .p =0
 

= -(ii,. .0" - imoc)." =0 (C.3~
 

Introdu~  now the adjoint wavefunction 

~  (C.~=.,+. 14 

then, each and every step of the theory of conventional Dirac's· equations 
(see, e.g., ref. [157]) can be subjected to an isotopic lifting. In fact, the 
(iso)adjoint of Eq. (C.30) is given by 

A eo ~ 

(i8" • q,) • i,. - i moe" = 0 (C.~  

The combination of Eq. s (C.30) and (C.32) then yields 

(ia" •~) •i,. • .p +~. i,.. (a" •.,) =0 (c.:!J) 

thus allowing the introduction of the isocufTent 

i,. =ic~.  ill • " (c.34) 
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which is evidently conserved 

(C.3J)8" • j" =IJ" j" =0 

The isocharge density is then given by 

1 - ~ + (C.37) 
p= -:-JIe .. = " • i .. • '" = '" • '" 

with corresponding uocharge 

(C.38)
Q =f pet's =f t/1+ • .pct's 

that is, it coincides with the i80ianer product of the underlying space it. 
Note that density (C.36) is positive-definite under assumptions (C.4), i.e~,  

isotopic lifting of a positive- definite inner product via a positive-definite op­
erator T. Along the same lines, it is possible to prove that j" is (iso)Hermitean, 

and that its components are real. 
A realization of the i-matrices verifying Eq.s (C.25) has been identified 

by Santilli (153) and it is given by 

i,.,. =i"i =b"7,,i(no sum) (C.39) 

where the 7'S are any given representation of the conventional 7-matrices 
[157). Note the non-triviality of the generalization, inasmuch as the quan­
tities 6" (representing the deviation from the Minkowski metric caused by 
motion within the hadronic medium) enter directly into the structure of the 

i-matrices. 
Santilli (153) then passes to the identification of the mutation of angu­

lar momentum and spin caused by isotopic lifting (C.30). First, the total 
angwar momentum can be defined as the sum of the orbital and intrinsic 

angular momentum in i 
(C.40)ill =Mi+'i 

The orbital part is given by 

(CAl)Ali =f t/1+ • (Eij.Sj • 70.>. t/1tPs 

while the intrinsic part (spin) is given by 

(C.42); = f t/J+ • (Eijiij • ii) • .pd3
z. 

The above expressions are nothing but isotopic liftings of the correSponding 
equations for the conventional Dirac's setting (see, e.g., ref. [157], page 142). 
The corresponding densities are 

1 .. 
mi = Ei;'Z;. ~{},  

I 

;i = Ei;,i;. i, (C.4~) 

with explicit form of the spin matrices 

- 1 .. - 1_-1­
"1 = -72. 73 =-72732 2 
.. 1.. _ 1__ 
"2 = -73. 71 =-1'3712 2 
.. 1_ .. 1_- ­
"3 = -71. 72 =-7to721 (C.44)

2 2 
By using Eq. (C.27) the isocommutation rules for the spin matrices are 

readily computed, resulting in the isotopic rules [153] 

[ -..-] .. - - - .."i,"; ="i • "; - 8; • "i =-Ei;1r9U'" (C.45) 

which formally coincide with those of the isotopic rotational algebras 0 (3), 
Eq. (3.30), but characterize instead those of the isotopic ~b  (2) algebra. 
In this way, Santilli poc.cit.] reached the desired mutation of the "pin 0/ 
Dirac's equation which can be expressed via the eigenvalue equation 

41'2 ....,.... .. 
S • '" = (51.51 +52 • 52 +53 • 53) • t/J 

1 = 4(911922 +922933 +933911)'" (C.46) 

Note that ;2 is not an is~Casimir  invariant (because it is not propor­
tional to i, which is given by expressio~of type (3.39) after redefinitions 
(3.37). Nevertheless, ;2 is indeed invariant for metric of Nielsen-Picek type, 
Eq. (3.170), i.e., when 9n = 922 = 933('1- 94..). For infinitesimal muta­
tions these latter conditions can always be assumed. In this case, Santilli 
recovered the expression poc.cit.] 

, = ~ +( , (~ 0 , gu ~  1 (C.G) 

which is precisely the mutation of spin he submitted at his invited talk 
at the 1980 Clausthal's Conferenc~  on DiJJerentud Geometric Methods in 
MathematiCdI Physics (see Fig. 1; also Eq. (4.26), p. 1249 of ref.. [9]). 
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The orbital angular momentum remains formally unaffected by the lilt­
ing. In fact, from hadronization rule (C.6), the fundamental isocommutation 
rule, preserve the quantum mechanical values 

[Pi;zd • t/J =(Pi • Zi - Xi • Pi). t/J = -ili;t/J 
(c..il)[Xi;zi] • '" = (Pi;'i] • '" =O. 

As a result, the component.! of the angular momentum verify the isocom­
mutation rules 

[mi;mi] ." = Eiilt' mit • t/J = 
(C.49)= EiiltmlttP 

that is, the structure constants are not modified by the isotopy under con­
sideration [153]. In computing rules (C.47), the reader should be aware of 
the validity of the following properties [30] 

[A. B;C) =A. [B;C] +[A;C] • B. (C.50) 

Santilli poc'.cit.] then passes to the study of the transformation prop­
erties of the iso-Dirac's equation (C.30). Essentially he proves that the 
equation is invariant under the full Poinaare- iaotopic group P(3.1) (§3.4.7, 
Eq. (3.237» that is, the wavefunction transforms according to 

t/J'(x') = S. tP(z) = S(A). ,,[A-I. (x - a)l 

P(3.1): { ~(z')  =tJ1(x). S-l(A) =1/1[A-1 • (z - a)]. S-i(A). 
At • A =A • At =i =9-1, detA =±deti. 

(C.5q 
The equations transform according to 

(-ii~  • a:. +'moe). ,,'(x') = 0
 

iJ'(z'). (-ia:,. i" - imoc) = 0 (C.52)
 

under the particular rules 

,,-i. ill • ".11" = i". a" 
... -i '" "'+ ... (C.S3)" = 74." ·74· 

162-163), it is easy to see that Eq. (C.30) is invariant under the following 
realization of the isotopic s'U'(2) group 

SlJ(2): R(I) = eli2-i3"sl(elis';'.l21(elil-i2*'3Iti (C.5J) 

which turns out to be precisely an iS08pinorial covering of Eq. (3.24-25). 
The nontriviality of isotopy (C.30) can now be shown in all its depth. In. 

fact, the inoo,;ance o/the iBo-Dirac equation under uotopic rotatiofll implie, 
a breaking of the ezoct Ipinorial character of the conventional equation {153}. 
Thil if readily proved by nothing that the components 018t".clu~  (C.S3) con 
be mtten in the form 

R(13) = e".,,(JUF'3) (C.SS) 

Eq. (C.30) therefore breaks the exact spinorial character of the conventional 
Dirac's equation in view of the factor 911g22. Note also that realization 
(C.53) holds irrespective of whether the iso-Casimiz invariant is an expres­
sion of type (C.45) or of type (3.39). This illustrates the irreducible nature 
of Santilli's spin mutation. 

The experimental implications are also far reaching. Recall the funda­
mental experiment by Rauch and collaborators [131] on the spinor symmetry 
of neutrons when in the vicinity of nuclei. As now well known to experts 
of Lie-isotopic theory (see Fig. 6 of §3.2), neutrons are expected to experi­
ence a deformation of their charge distribution caused by external nuclear , 
fields. This, in turn, would necessarily imply a mutation of the magnetic 
moment of the particle from the conventional value JJ to a mutated value 
IJm ¢ P, Pm ~ IJ. The current experimental numbers for two'complete spin 
flips are [131] 

Q = 715.87 ± 3.8Deg; QMu = 719.67 Deg < 720 Deg;clMin = 712.07 (C.56) 

that is, available data DO NOT prove the exact character of the spinor 
symmetry for the case considered, but show a deviation of about 1%. The 
isotopy of Dirac's equation is capable of representing experimental data 
exactly. In fact, from Eq. (C.54) aDd (C.55) Santilli [153] reaches the values 
of the deformed metric 

911 = 922 ~ 1 +10-2 (C.57) 

Let us review first the transfom&atioRl under isotopic rotations. By which essentially shows the deformation of a spherical charge distribution 

following the isotopic lifting oCconventionallines (see, again, ref. [157], pp. into an oblate spheroidal ellipsoid. 
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At a deeper analysis, ~ne  can start with the representation of the shape 
of the charge distribution of a proton via hadronic mechanics provided by 
Nishioka and Santilli (154). In this case, one has a shape of the type 9n = 
922 = I, 933 =0.60, i.e., one haa aD oblate spheroidal ellipsoid already in 
the absence of mutation (because of the anomalous value of the magnetic 
mo~ent).  The mutation merely increases the oblate nature of the ellipsoid 
because of values (C.56), i.e., 9n =922 =I -+ 1+10-2

• Intriguingly, the iso­
Dirac'. equation does indeed reconstruct the exact (iso)spinorialsymmetry 
[153]. In fact, for measures (C.SS) and values (C.56), the total angle of 
rotation is exactly 720 deg., i.e. 

I
2911922111,=ns.81 Dec = 720 Deg (C.5f) 

This is fully in line with all other cases of conventional symmetry breaking 
we have e~countered  throughout our analysis. In fad, as it was the case 
for the rotational, Galilean and Lorentz symemtries, when the symmetry is 
broken at the ~nventiona1level,it i' exact at the Lie-isotopic level. 

Paper [153] then passes to·the study of the invanan« 0/ Eq. (C.3D) 
under iso-Lorentz trans/ormGtions. In this way Santilli reaches the following 
new· realization of the orthochronoUl Lorentz-isotopic group (§3.4.7) 

S(Wl) = el"'I-i.·WJ lEi = elfl""'; I(i 
.5 LC24 S(U72) = eli2-i1·WJ.I~i  ~ el12'.WJI(1 

S(w:s) = eliJ-i··W,IEi = el-b'ltUl3IEi (C.59) 

where each- expression evidently holds for speeds along the directions %1,%2, 

and %3, respectively. The proof of the invariance of Eq. (C.28) under trans­
formations (C.SS) is an instructive exercise for the interested reader. 

Paper (153] then passes to the study of the invariance of Eq. (C.30) 
under discrete transformations, the isoinversions (see Eq.s (3.229». For the 
case of 'pace iso-inverBionl one has 

, -', . - ­z =(z ,ct)=P.(z,ct)=(--%,ct)=P(%,ct) (C.60) 

where P is the ordinary space-inversion operator. The 5 quantities verify 

the conditions 

$-I.i,.5 = -i"k=I,2,3
 
5':1 • i4 • S = i4 (C.61)
 

with a solution given by the expected isotopic lifting of the conventional 
forms 5 ='1,14, '1, =±l,±i where the last value originates from the ~ndi­
tion that two space isoinversions provide the identity transformation. 

For the case of the invariance of Eq. (C.30) under time Uo-inver,ioRl, 
one has [153] 

, -' '). (-) (­z = (z ,ct = T • % = T %, ct = % , -ct) (C.d.) 

The S quantities must then verify the conditions 

5-1.1,.5 = 1i, k=1,2,3 
"'-I .. S'" • "S .74. = -74 (C.63) 

with solutions 

S = rrris. i4 
is = 14. il • 12 • 13
 
'IT = ±l,±i (C.64)
 

In this case too we have a simple generalization of conventional settings. 
In fact, the time iso-reverBIJI is equivalent to the operation 0/ complez iso­
conjugation [30] which is formally identical to the conventional complex 
conjugation for assumptions (C.4). We can therefore write 

t/1' =(flTis • i4 • t/1). (C.65) 

As a final comment, the reader should keep in mind that, as it was the 
case for Eq. (C.18), the iso-Dirac's equation (C.3D) DOES NOT represent 
a free particle. After all, deformation (CA5) of the conventional spinoral 
character is due precisely to interactions which, being represented by the 
generalized unit of the theory, is of non-Hamiltonian (or of non-Lagrangian) 
type. 

Next, paper [153] identifies the mutation oj the magnetic and electric 
dipole moments characterized by the iso-Dirac's equation in a way parallel 
to the spin mutation (CA5). For this purpose, introduce the extension of Eq. 
(C.30) to represent a charged i80ptJrticle under an eztemal eledromagnetic 
~W  . 

[,1' • (-i8p +!Ap ) - imoc]. t/1
c 

~ (,1' • 7rp - imoc) • t/1 = 0 (C.66) 

~)/~- m >/~ 
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which is mani/e.tl" invariant under Guperini'. isogauge theo,." (Appendix 
A). 

The isocurrent remains the 8&Dle as in Eq. (C.34). In particular, the 
i80charge is given by Eq. (C.37). 

Eq (C.66) is invariant under the following. charge iso-conjugation 

..IJ .A-i -, T" 
~  ='lei) *"," =-'Ie" • Se (C.6t) 

with a solution (for the iso-Paull's representation of the i-matrices) 

Sc =i2 .i.. (C.68) 

(and similar solutions for other representations). 
In order' to understand Eq. (C.66) and its underlying mutation of con­

ventional quantities, one must differentiate between physical quantities that 
are isotopically lifted in an e88ential way, and those that are not. Along these 
lines, Santilli points out first that the electromagnetic field is not mut!Jted 
in Eq. (C.66). Thi8 i8 aD imPortant property, for 8uch a field is external 
and, 88 such, is expected to be conv:entional. Explidtly, the four-potential8 
A,.. are the conventional ones~  and the associated iso-electf'Omagndic field 
coincides with the conventional one owing to the properties 

F,.." =a,.. *A., -a" *A,.. == 8"A., - 8.,A,.. 
= F

IW 
". (C.69) 

In addition, the isotopic commutators of the ..-operators coincide with the 
conventional commutators owing to the properties· 

e" e
(r,,;...,J =-F,.." == -FIW =[1',..,11'.,] (C.70)

C C 

The quantities that are mutated in an intrinsic (non-reducible) way are 
the i- matrices, owing to their new structure (C.28). In fact, they can be 
written explidtly by using Eq. (C.l) and (C.38) 

a-Ir ).. ).."" (0 1. (0 ITic (j 0) (1 0 ).." = -a. 0 1 = ." -(1. 0 , 1,7.. = -i =6.. 0 -1 1 

1'= i •• ';,.'" =(:, :' ) i =b, (:, :' ) ,k =1,2,3 (c.n) 

where the IT, are the conventional Pauli's matrices. For the isometric. 

9 =diag(6~t6~,6Jt -6...2),6. =", =6:s ~ b > 0 (C.7~  

we can write 

~7=6 (0 _ U)"1, ~0=6 (0_ U)"1 (C.73)
-u 0 (T 0 

For the Nielsen.-Picek generalized metric (3.170), one therefore has the . 

appea.rance of the term (1 + 10)1 (representing the mutation ~f  the space 

part of the Minkowski metric) directly in the structure of the :;- matrices. 
The conventional spin tensor is then lifted into the isospin tensor [153] 

UIW= ~(t,..  *ill -i" • i,,) (C.74) 

. also in an essential way, as the reader can easlily compute explicitly. Once 
the above basic concepts have been understood, the identification of the mu­
tation of the magnetic and electric dipole moments is quite simple. Consider 
the isosquare 

(i". 1',.. + imoc). (i" .11'., - imoc) 
.. e " 

= (11''' *11'" +m~c2) + 2cU"., ~. F"" (C.7S) 

This shows that the second order equations corresponding to Eq. (C.30) is 
Eq. (C.19) plus the term 

1 .. ,.., F." e "'I " ., F." 
-(T". =-'Y" • "Y •2c II" 2c ' II"
 

=_e_(a' *H, _ iaA: *E,) (C.76)

2moc 

which is precisely the derived isotopic lifting of the conventional term. 
In this way, Santilli (153) reaches the important result of identifying the 

mutation 0/ the magnetic moment and 0/ the electric dipole moment char­
acterized by Eq. (C.66) which, for the general case, are given respectively 
by 

-e ­-Pm = --a
2moc 
. e -: 

mm = I--Q (C.77)-
2moc 
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and f~r  the particular case of matrices (C.72), can be written 

-e ­
- -60' " 
1'.. = 2moc . (C.71l) 

e ­- - i--60m", - 2moc 

where the mutatioft is manifestly represented by the 6 value. 
This concludes our review of paper [153]. Additional developments on 

i80field equations require a detailed study of the i80representations of the 
Poincare-isotopic group P(3.1) (which is essentially lacking at this time), 
as well as the construction of the iso-Green functions and related solu­
tions, which is a topic more appropriate to the possible subsequent review 
of hadronic mechanics. . 

On historical grounds, it should be remarked that, by no means, the 
hypothesis of the mutation of the magnetic moment is new. In effect it dates 
back to the early stages of nuclear physics [158] and emerged immediately 
following the availability of experimental data on total nuclear moments in 
the 40's. These data, as well knoWD, show a rather sizable departure from 
the expected total values (which are f'ar from being truly explained to this 
day). The hypothesis was subsequently abandoned, as soon as it was clear 
that it implies significant deviations from orthodox lines of'. inquiry. 

Santilli's i80field equation (C.30) with its mutated values (C.78) and re­
lated experimental backing [131) offer an intriguing possibility of reinspect­
ing the problem of' the total magnetic moments of' nuclei on the basis of 
the hypothesis that the charge distributions of' nucleons and related mag­
netic moments are altered when these panicles become members of a nuclear 
structure. 

It is hoPed that such an inveaigation is indeed conducted by interested 
physicists in the field. 

We now pass to the review of the last pioneering articles written by 
P.A.M. Dirac [94a,94b). These articles were written in 1971 and 1972, re­
spectively, but have remained lusely ignored since that time, apparently 
because of' their manifest lack of alignment with established doctrines of 
contemporary physics. In the following we shall fint review the essential 
aspects of the articles in a way as close as possible to their original presenta­
tion (including the use of'the original notation). We shall then point out the 
intrinsic isotopic character of the new equation which, as such, results to be 

incompatible with conventional quantum mechanics (because it breaks the 
linearity condition), while being a clear realization of the covering hadronic 
mechanics. 

Consider two harmonic oscillators in one dimension with dynamical vari­
ables 

(q) =(qA) =(fltPtif2,P2),tl =1,2,3,4
 

[q., f6] =f.f6 - f6q. =illA, (C.71)
 

where 

0 0 10)
P= ~1 ~ ~ ~ ,(jT =-Il,{J2 =_l,p-l =pT (C.SO) .(

. 0 -1 0 0 

The generalized f'orm of the conventional Dirac's equations proposed by 
Dirac himself' at the very begining of paper [94a] (Eq. 1.3) is given by 

(a:o +a.a:. +p) '" = 0 (C.81) 

where" is a scalar (one-dimensional) wavefunction with the dependence
" =,,(%,q), where the %'S are the space-time coordinates of a (conventional) 
Minkowski space, q is a column matrix with the four elements (C.78), the 
0,. are 4 X 4 matrices that anticommute with each other and with {J, and the 
product is the conventional associative product. ,One of the various possible 
realizations of' the 0,. presented by Dirac is given by 

0 -1 0) (0 0 1) 0 0)(1o 00 0 1 0 00 10 0 1· 00 0 
01 = -1 0 0 0 ,02 = 0 1 0 0 ,03 = 0 0 -1 0 .

( o 1 0 0 \ 1 0 0 0 0 0 0 -1 
(C.82) 

Assume 00 = 1 and 8p. =8/8%1'. Then Eq. (C.80) was rewritten by 
Dirac in the f'orm 

(01'81' +P)q.p =O. (C.83) 

The second-order equation characterized by the above form was worked out 
via the formulae 

p. =(op.8P +P)...96; p." =0 

[P., Pc) = i(o,..8P +P).6PW(0,,8" - fJ)ed 
=i{(op8P +{J){J(oIl8" - fJ)}.c (C.84) 

;JW 1;11 .iU4" 1~ 
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and resulted in the equation (Eq. 2.8 ~oe.  cit.) 

(8,,8" + 1)!Jt/J =O. (C.8f.) 

This allowed Dirac to prove the mathematical consistency of Eq. (C.82). 
Next, Dirac identified the main law of the a matrices which resulted to 

be of the form 
a",!Ja" +a"!Ja,, =2!J'1"" (C.86) 

where 'I"" is the conventional Minkowsld metric. 
The conventional Lorentz covariance of the equation waa proved via the 

infinitesimal transformatioll.l 

z; =z'" +a,,"z" (C.87) 

which resulted in the transformed equation 

{(a" + O",lia,,)tJP- +P}q" =o. (C.SS) 

By putting 
. l 1 
N =-a/lllap!Ja" (C.89)

4 
Eq. (C.87) can be rewritten 

{a,,(1 - !IN)IJ''* +!J(l +. N)}qtp·= 0 (C.90) 

thus resulting in the final form 

(a,,8"* +P)q·P =0
 

q* =(1 - PN)q. (C.9l)
 

Dirac (loe.cit.) then passes to prove that his new equation (C.80) or 
(C.82) haa only po.itive enern (normalizable) solutions. Assume ia" = p". 
The equation can then be written 

{(~ - P3)ql + (i +Pt)93 - P2q.}1/1 =0, 

{(~ - P3)f2 - 1'293 + (i - PI)q.}1/1 =0, 

{(~ +1'3)93 +CPt - i)ql - P2q2}1/1 =0, 

{(~ +P3)q. - 1'2ql - (PI +i)f2}.p =o. (C.92) 

By applying a Lorentz transformation t~  the rest frame with P=0, the above 
equations show that Po can be either +1 or -1. Of these two possibilities 

only the first is normalizable because the underlying wave func~ioD haa the 
form 

t/J =kexp{-~[q:  +q~ +iPt(q: - q~) - 2i1'2qlf2]/(Po +P3)exp(-ip"z,.)} 

(C.9~  

This established the first significant difference between the new equation 
and the conventional one (for which, II the reader knows well, both positive 
and negative energies are admitted). 

But by far the biggest differences emerged for the spin. Consider the 
familiar total angular momentum 

M/III =zpa" - z,ap- i'/Ill. (C.M) 

To identify the explicit form of '/Illt Dirac considered the equation 

[(a"a" +!J)q,a/lll(zp8, - z,8,2aIW0,,8,q,
 
[(a"a" +!J)q,w] = 2i(0,.8I' +!J)PNq, W = qTNq. (C.9S)
 

which can be written 

[(0,,8" +!J)q, a'(z,8, - z,8,) +iWj = 
=-2N!J(0,,1J" +lJ)q '(C.96) 

thus yielding the form 

I . 
a/lllS" = -W = _qTNq =-'4a" qTo,{Jo,q (C.D7) 

As a consequence 

I T
S" =-if (o,lJo, - o,{Ja,)f (C.98) 

which, via Eq.s (C.8S), becomes 

IT 1..T IT 1. 
S" = -'4f O,{JO,f +'49,,'1 (Jq = -'4q o,lJo,f +2"'''· (C.99) 

For p, a = 1,2,3" MJHI can be interpreted as the angular momentum, 
while '" is the spin. By using expression (C.81) for the a'" the spin 
components can be computed explicitly, 

1 . 1 
2222 

"'23 = '2(qI9, +f39.)"31 =4'(91 - 9' +93 - 9. ) 

;m- 12/ )W' ,1,2­
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1 
.12 = 2(f2f3 ~  flf.. ) (C.~g) 

and also 

. "01 =~(flf~ - ff +9:), "02 =~(939"  - 9192) 

1 

• ="23 +"31 +·12 =16 91 +92 +93 +Y.. =• , +1 (C.I02) 

"03. = 2(9193 +9..92) (C.I01) 

As a consequence, 

_2 2 2 2 1( '2 2 '2 .-2)2 1 ( ) 
- • 

I 

and, finally, 
1 2 2' 2 2 1 1•=.(91 +q2 +93 +9.. ) - 2 =2(n +n') 

,
 
n, n = 0, 1, 

. 

2, 3, ••• (C.I03) 

In this way, Dirac (loc. cit) reached the remarkable conclusion that 
modification (C.8!) o/lau ·cele6rated equation can laave only even I10luu 0/ 
spin ~ning  tDith the zero volue. 

The six quantities 'ptl provide a representation of the Lorentz group. By 
introducing the additional four quantities 

•,.. = -.I~  = ~rtit,.9 .. (C.104) 

the ten quantities .CI' = ...,a.6. = 1,2,3,4,5, provide a representation of 
the (3 +2)- dimensional De Sitter Group. 

Dirac then passed to the identification of the four-current 

J_ = f t/Jt9TOp9t/Jtfl9 (C.IOS) 

which verifies the usual conservation law 

8"J_ = 0 (C.ID6) 

and transforms conectly under the (conventional) Lorentz transformations 

J~ = f t/Jt9T (0_ +41£" 0" )9t/Jd2 q = J_ +4_"J". (C.I07) 

The charge density 

Jo = / t/JtqT qt/Jd2 q (C.IDS) 

is positive definite while the underlying wavefundion is normalized to. unity 
according to the rule . 

f t/Jt9T9t/JtPZ =1. (C.101) 

Generalization (C. 101) of the charge density of the conventional Dirac'. 
equation MOW. another departure from orthodo% I1Oluu. In fact, value (C.I07) 
is manifestly different than the conesponding value for the conventional 
equation. 

Dirac concluded paper [94a] with the calculation of the Fod representa­
tion of his new equation (which is not reviewed here for brevity) as w~ as 
with the warning that 4ny eztention 0/ Eq. (C.8!) to include interactiOfll 
u eqected to re,ult in inconlutenciu. In /act, he showed that, by replacing 
PI' with the familiar form Pp +eAp, the equation if incon.tutent ezcept for 
tlae COle AI' = as/xl' which mean.t the a6sence of field. 

The subsequent paper [94b] was primarily devoted to the physical in­
terpretation of the new equation. It tUrDS out that the theory describes a 
collection of random circles covered by the point % on a sphere. This results 
in a random motion on said sphere. In particular, its radius is not co~stant  

but pulsates in time within given boundaries. 
Paper [94b] then concludes with the proof that the particle (in its grounil 

st4te) 1a41 4 zero spin for 411 poI.ible voJue. 0/ the linetJr momentum. 

The reinterpretation ofDirac's pioneering paper (94a,94b] within the con­
text of the Lie-isotopic theory (Santilli [153]) is quite instructive. In short, 
Dirac's new equation (C.8!) if characterized by an enveloping auociative 
algebra with an essential iIotopic "",cture. The underlying, Hilbert space is 
the conventional Hilbert Bpace without any isotopic generalization (see beloUl 
for the consistency 0/ such additional lifting). A. a con.tequence, Dirac'8 
new equ4tion con.ttitute, an intriguing realization 0/ hadronic mechanic. ac­
cording to Bt",cture (1../6). The Minlt:olDski Bpace is kept unchanged in Eq. 
(C.8t). As 4 con.tequence, we have no isotopic lifting 0/ the Lorentz symme­
try (although, again, a reformulation 0/ the theory that show" (J lifting also 
0/ the Lorentz symmetry is poBBible). Finally, Dirac', nelD equation provide. 
an intriguing realization 0/ Santilli's notion of mutation 0/ the original con­
ventional equation and related particle {I]. 

The above results can be easily seen (153]. First, the isotopic element of 
the isoenvelope is not 9 (trivially, because this quantity is a column matriX), 

;us-' }2.'t...m ~2~ 
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but p. Thus, all associative products must be formulated in the isotopic 
form, say, 

.. clef " -1(: A. B = APB,I = P . (C.lt,) 

It is easy to see that Dirac's new equaiton (C.82) does indeed verify this 
fundamental requirement at a11levels. 

Introduce the four-component column wavefunction • = qt/J (as in the 
conventional equation). Then,by reca.lling that /J-l = IJT = -IJ, Eq. (C.82) 
c:a.n be readily written in the isotopic form 

(0,.8" + lJ)qt/J = (a,. • a" +1).4> = 0, 

a,. =a,.i, iJ" = a"i (C.lll) 

which, in particular, verifies hadronization rule (C.6) .(bu~  not the conven­
tional quantization rule). 

To identify the properties of the a matrices, we consider the expression 
for the characterization of the second-order equation (c.84) 

(a,. • a" +1). (0.,.8" - 1) 

=i{Q,.~Q.,} • 8" • if' - /J
 
= -(8,.lJP +1)1J (C.112)
 

which holds iff 

{a,.;a.,} =a,. • a., +a., .,. a,. =-2",..,i. (C.113) 

Note that the above equations coincide with Eq. (C.85) because of the 
property P=- i. 

Next, ~nce  all operators belong to isoenvelope i, so must be the case also 
of the angular momentum and spin. Again, it is easy to see that quantity 
(C.93) can be readily rewritten in the isotopic form 

Mp6= z,8" - z,,8, - i.", == z,. 8" - z" • a, - is,,, (C.114) 

while the spin is in full isotopic form already as written by Dirac. In fact, 
Eq. (C.97) can be written . 

~ . 1_ _ i _ 
.", == ~", =-.'4Q

, Q" +2"",,0, = a,q. (C.lIS)• 

The underlying Hilbert space can be equipped with the con~ntion41  

inner product (C.IDS), i.e., 

1t. : (4)14>) =f 4>tf>d3z =I (C.I II) 

in a way fully compatible with isoenvelope e(see Sect.1.3 and ref.s [30-32]). 
In this case, the current is given by Dirac's expression (C.I06) without need 
of any reformulation. The same happens for other calculations based on 
Hilbert space formulations. 

The reader should recall that, for structure (1.46) the definition of con­
ventional and iso- Hermitidty are different. These definitions can be made 
to coincide with an isotopic lifting of the Hilbert space with the same iso­
topic element IJ, as in structure (1.52) with T = G. This reformulation 
of Dirac's new theory can be also readlly achieved by introducing the new 
wavefunction . 

~  =fJ-t 4> (C.117) 

under which the conventional inner product C.IlS) can be reformulated into 
the isotopic form 

it : (.1.) =f 4>+ tIHf:: =1 -. if. : (~i~) =f ~t • ~(j3z ;= i (C.118) 

The four-current (C.I06) must be in this case rewritten in the different form 

.. f "+ ..LA (c.119)J,. = q,. Q" • fI'U q 

It is easy to see that the above four-current verifies too all essential require­
ments of J" and it is therefore a fully acceptable expression~  In this way, 
Dirac's new theory can be extended to admit the same notion of Bermiticity 
as the conventional one (with consequential preservation of the reality of the 
eigenvalues). 

Finally, the covariance under LorentZ-isotopic transformations c&o. be 
readily reached via the trivial isotopy 

, A ., A ., "lA (C.120)z" =z" +4" • %."4,, =a" 

as the reader is encouraged to verify. It should be stressed that, in the 
theory under consideration here, the trivial lifting a,," -. a,,"i is necessary 
because the theory is formulated ina conventional Minkowski space without 
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any deformation of the space-time metric. On the contrary, such a trivial 
isotopy of the Lorentz group would be inconsistent for the content of Section 
3.4 owing to the necellary presence there of a nontrivial modification of the 
Uinkowski metric (see the comments following Eq. (2.163». 

Finally, the isotopic lifting from the conventional to the ReID Dirac'. equa­
tion 

(a"r +1); =0 -+ (ii" • r + I) .; =0 (C.12') 

providu a 6eautiful Ulu.tn"ion of Santilli'. hwotlauu of the mutation of 
.pin (.~,  re/.8If,9}). More specifically, lilting (C.120) illustrates the pos­
sibility that the ordinary electron can be subjected to a mutation into' a 
particle with spin zero when passing from motion in empty space to full 
immersion within dense hadronic matter. 

Lifting (C.120) and underlying mutation of the electron, playa funda.­
mental role in the studies by Animalu and, Santilli [155] on the apparent 
consistency of the original Rutherford's hypothesis on the structure of the 
neutrf;)n (as a bound state of one proton and one electron). In fact, when 
the old notion of point-like protona and electron (as necu.a'llfor quantum 
mechanics) ,are abandoned, aDd the KtUal size of the wavepackets of these 
particles is truly represented, the electron according to Rutherford is in a 
state of total immersion inside the proton. Such a total mutual overlapping 
of the wavepackets must result in some sort of dynamical effect. Santilli sug­
gested the construction of the hadronic mechanics in memoir [2] precisely 
for the purpose of representing the mutation of the"electron when in a state 
of total immersion inside the proton. It now appears [155J that such original 
proposal is acquiring fun technical support. 

The reader should be aware of the imlications of these findings. The 
construction of hadronic mechanics was suggested for the specific purpose 
of achieving a. qUaDtitative treatment of the mutation of particles, so that 
the constituents of hadrons (or of quarks) can be consistently given by mas­
sive, already known particles. In tum this illustrates the profound physical 
implications of Santilli's Lie-isotopic theory under review in this work. The 
alternative of preserving conventional doctrines is well known: new hypo­
thetical particles must be invented again to be the constituents of quarks. 
The possibility that particles experience aD alteration of their physical char­
acteristics when in conditions of total immersion within hadronic matter 
is manifestly more plausible and positively preferable to the invention of a 
second generation of unknown hypothetical particles. In the final analysis, 
Rauch's experiment on the spinor symmetry of neutrons under extemal fields 

(see Fig. 6 and ref. [131]) confirms the mutation of the magnetic moment 
of the neutron in its cunent form, thus providing the possible experimental 
foundations to the notion of muta&ion. 

These issues are the central objectives of a review of hadronic mechanics 
we hope to conduct at some future time.' 

We now pass to the review of paper [139a] by G. Karayannis and A. Jannus­
sis on one of the first formulations of the isotopic lifting of field equations 
that appeared in the literature, that achieved via the lifting of conventional 
Lagrangian densities. The quoted article is important for this review be­
cause it establishes a direct link between Gasperini's isotopic gauge theory 
(Appendix A) and the'isotopic field equations. For additional papers by the 
same authors see ref.s [139b,c,d]. 

For notational convenience, let us review first some essential aspects of 
Gasperini's theory from Appendix A. Let G be a compact gauge group. Its 
isotope G is characterized by the transformations . 

" =fJ., (C.12~ 

where 
fJ = ie,e-.J- =e-j_·e- j (C.123) 

Since fJ is a T-unitary operator, i.e. 

ui • 0 =i =fJ • fJt, (C.124) 

where 
uf =Ttuti, (C.125) 

the basic invariant is given by 

,t .t = ,If•t'. (C.126) 

The isotopic Yang-Mills field strengths 1'"" are defined as follows: 

i.. .. 
1'"" • , = -[D,,;D,,] • , 

9 
i.. .. ... .. 

= -(D". D" - D". D,,). 'I, (C.127)
9 
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which transforms covariantly under an isotopic gauge transformation, and 
h" is the isotopic covariant derivative. In fact, 

F;" =if. F"" • fJ-I , (C.128) 

where 
u-I =iU-1i. (C.129) 

Finally, to complete the field theory we can· construct dynamical terms 
invariant under isotopic gauge transformations. 

Karayannis and Jannu88is construct in paper [139a] a field theory which 
is invariant under Lie-isotopic local gauge transformations. The starting 
point is the free Dirac Lagrangian density 

L =-"fl. - m'., (C.130) 

which is obviously invariant under global gauge transformations. As is well 
known, Eq. (C.I29) remains invariant under local gauge transformations 

I' =ei.A(~). (C.131) 

if the conventional derivative,substituted from the covariant derivative, ,is 
transformed as 

(D"I)' = ei.A(~)(D".). (C.132) 

If we define 
D". = [8" - 'gA,,(:t)]."· (C.133) 

we obtain the following tr&lllformation for the gauge fields: 

A~ = A" +8"A. (C.134) 

Introducing the covariant 'derivative, the Lagrangian density (C.129) takes 
the form 

L = -",. - m." 
= -fi'fI- mIl +'gA,,'1"", (C.135) . 

from which it is clear that the local gauge invariance leads to interacting 
field theories of a particular structure. 

If one works out in a similar manner the Lie-isotopic gauge transforma­
tions, 

", = ei.TA(~).,  

(D" • 9)' = ei.TA(~)(D".  i), (C.136) 

~  ~ZJ  

where 
h" • , =(8" - igTA,,)' (C.13~ 

is the Lie-isotopic covariant derivative, then one obtains the generalized 
gauge transformation for the gauge fields 

A~A" +8"A +A8,,(ln T). (C.138)
1\ 

Thus, the Lie-isotopic lifting of Eq. (C.129), which is invariant under local 
Lie-isotopic gauge transformation, must have the form 

.. 1[~ .. .. ~ ]
L = -'2 ,. i" • D" • • - D" • , • i" • , 

-m'i •• (C.139) 

where 
i =itio =Ii, (C.140) 

and 
i" =1"i (C.141) 

is the Lie-isotopic lifting of Dirac matrices, which are assumed to obey rule 
[139d] 

i" • i" +il' • i" =2g""i. . (C.142) 

Here it is assumed that we are in a curved space-time with the metric tensor 

T- 1 (C.143)g"" = 'I"", 
where '1"1' is the Minkowski metric. 

Writing Eq. (C.138) in terms of Dirac matrices 1", we have 

i = ~4 (""8", - 8"11"'ll) . 

-mIt +igTA"I1"I. (C.144) 

Thus, we see that by the Lie-isotopic gauge invariance we construct a gauge 
theory with an effective coupling constant 9' = gT which is a function 
of the space-time point where the gauge fields A" interact. This physical 
interpretation is analogous to that of Gasperini (Appendix A). 

As is well know, repeated application of covariant derivatives will always 
yield covariant quantities. This fact can be used to construct a new covariant 
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object. Thul, if we define the Li~  isotopic Yang-Mills field strengths Fp" 
for the gauge potential as in Eq. (C.~26),  then we have the curvature tensor 

t"" =8"A" - 8"A" +(8"ln T)A" - (8" In T)A" (C.14~)  

for the Li~isOtopicgauge gield ti(I). 
In the lame manner we prove the Lie-isotopic lifting of the Jacobi identity 

[iJ,,;[iJ,,;bpl] + [b~;[iJ,;b,,]]  

+ [h,;fhtb"l] = O. (C.146) 

Combination of (C.I44) with (C.145) leads to the following equation: 

h" *t"p +h" *F,,, +h, *t"" =o. (C.147) 

Since the isotopic field strength is invariant under Lie-isotopic gauge trans­
formationl, one may replace covariant by ordh,lary derivatives, 

8" • t", +8" • t,,, +8, • Fp" = 0, (C.148) 

and thus obtain the Li~isotopic  lifting of the Bianchi identity. Equation 
(C.147) in four dimensionl is v.:ntten as 

€""fW8" *PfW '= o. (C.149) 

H we define the dual of the F" tensor as 

Ai .. 
uP" = _-E""fWFfW' (C.150)

2 

we obtain the following field equations: 

8"G"" = G""8,,(In T). (C.151) 

This equation gives the Li~isotopiclifting of the second pair of the Maxwell's 
equations, and it entails a magnetic current 

. i';= G""a,,(In T), . (C.152) 

which, for T =e-", coincides with the magnetic current given by Hojma.n et 
aI (140). Thus, Hojman'. theory is a special case of the general Lie-isotopic 
gauge theory. 

The field-strength tensor (C.144) ca.n now be used to write a Lie-isotopic 
gauge-invariant Lagrangian density for the gauge field, as follows: 

1.... .. 
La = --Tr(F"" *F",,) (C.l~4 

Here the symbol Tr denotes the Lie-isotopic trace [30]. The Lagrangian 
density (C.152) can now be added to the previous one (C.147), so that we 
have obtained an interacting system of vector fields and fermion fields which 
is invariant under the Li~isotopic  local transformations 

1[~  .. .. ~ ]
L,oe = - '2 ~ *i" *D" *t - [D" *~  *i" *It 

~  1.... .. 
-mit *, - 4Tr(F"" *F",,). (C.154) 

This interaction takes place in an effective Riemann-Cartan space, equipped 
with an antisymmetric connection 

r:" = ~ [6:8,,(ln T) - 6:8,,(ln T)] • (C.I55) 

From the total Lagrangian density (C.153) we produce the field equation, 
under ~me  assumptions 

8>.P>'X = -igF'1e • ~ - PX>'8>.(ln T). (C.156) 

This equation constitutes the Lie-isotopic generalization of the first pair of 
Maxwell's equations. The first term in the right side gives the lifting of the 
Dirac current, while the second term gives the Lie-isotopic electric current 
associated with the isotopic element T. . 

j; =F,,>'8>.(ln T). (C.157) 

We see that the Lie-isotopic lifting of conventional gauge theories yields 
new currents (magnetic and electric) which act as a part of the source of 
electromagnetism. 

The other two field equations produced from· the Lagrangian density 
(C.153) are . 

i ('" a" -m) = -ig~ *,"A", 
(,"8" +m)~ = +ig,"A" * 'P (C.158) 
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and constitute the Lie-isotopic lifting of the Dirac equation. So, once more 
we see that the Ufting of the gauge fields is equivalent with the Ufting of A" 
to TA,. or 9 to Tg. 

Since tile tensors F"" and G"" are antisymmetric, the total electric and 
magnetic currentl are conserved: 

a"j; = 0, 

a"i'; = o. (C.1Sf) 

The explicit forms of the electric charge and current densities are 

pe = g.t*,+E'V lnT, 
~ t.. ~  - 1.1:-8 In T 
J = g. *ii*t-BxV ln T--E-· (C.160)

~  a, 
These relations are those given in ref. [139b] except for the first terms. 

In a similar way we obtain, for the magnetic charge and current densities, 

the relations 
(C.161)p'" =1·Vi" T, 

",. .. _ jj 81n T 
J = -~ X Via T +---at. (C.162) 

~  J 

As in conventional quantum, mechanics, different formulations exist in 
the Lie-admissible theory, i.e•. the Heisenberg and the SchrOdinger picture. 
In 1978 Santilli [2] proposed the Lie-admissible covering of Heisenberg al­
gebra, and in 1982, together with Myung [31) he derived the corresponding 
Lie-admi88ible SchrOdinger equations 

~ 

. a ­,Ii8t t = H T ., 

--a 'j;­-iii.at = 1r R H (C.163) 

for forward and backward motion, respectively. Mignani [22] derived the 
same Lie-admissible Sc:hrOdinger equations by a different approach. The 
Lie-isotopic 'lifting of the Lagrangian density for a SchrOdinger scalar field 
proposed by Karayannis and Jannussis [139a] is given by 

A2 .. iA (_ : ': ) ­
L = - 't * 't - 'I' *. - - V • • V'2 2m 

-V(r)... (C.164) 

p ~';, 

where * denotes the Lie-isotopic product and • =8et i. From the above 
Lagrangian density and with the assumption that . 

[T,8,,) =0, (C.16~  

the Lie-isotopic lifting of the Sc:hrOdinger equation (C.162) results easily. 
Thus we see that, based on the Lie-isotopic generalized gauge invariance, 

we can construct a Lagrangian density compatible with the Lie-isotopic lift· 
ing of SchrOdinger equation. 

In a similar way, the Lie-isotopic lifting of the conventional Lagrangian 
density for a Klein-Gordon scalar field must have the form 

.. 1- / 2J:
L =--(.- • t "+" •••) (C.166)

4 /" ' 

where 

./" = (8" - igTA,,)t,
 

1Ii" = (8" + igTA,,)1I, (C.167)
 

is the Lie-isotopic covariant deriva.&ive in the case of the V(l) Lie-isotopic 
group. This Lagrangian density is invariant under local isotopic gauge trans­
formations and gives the wave equation . 

.~: +8,,(InT)t /" - ,,211 =·0. .(C.168) 

H we assume the commutativity between T and 8"as in Eq. (C.l64), 
and 

la TI" =IJ"ln T, (C.169) 

then we take, for. =T., 

(D" D" - k2
) • =0, (C.170) 

in agreement with the conclusion in ref. [139b] that the Lie-isotopic lifting 
of the U(l) ga.uge theory is equivalent with the lifting of the fields from A" 
to TA". An explicit form of Eq. (C.169) with 

(C.17l)9 =e/lic" 

and 
k =m/lic (C.172)

() 
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is 

-

c.­~(AT) •v. _ 2ie (l'oT) ail 
Ae., A~ 8t 

e 
2 [()2 ] m 

2 
c 
2 

A2~  AT ~  (VaT)2 • -7. = o. (C.17J.) 

In this case, the generalized Lorentz condition 

8",(TA",) =0 (C.174) 

takes the conventional form. 
In closing, Karayannis and Jannussis [139aJ quote the studies by K. 

Cahill and S. Ozenll [159J for which. 9 is a metric field, and which provide 
gauge theories for arbitrary noncompact groups. 

Again, 81 ik'is the case for Gasperini's theory, the studies by Karayannis 
and Jannussis poco cit.] characterize the U(l).gauge theory as a gauge the­
ory on a curved space-time where the total magnetic charge is null, as proved 
in ref.s [139b]and [140]. The m..petic current is therefore Dot expected to 
be observable from an outside observer. However, this does not rule out the 
p088iblity that magnetic CUReDts could be observed in the interior problem, 
e.g., where the tonion is not null, or when future experimental advances 
will achieve the capabilities of actual measures under external strong inter­
actions. · 

We DOW' pass to the review of some of the articles by Nishioka [156]. 
In particular, we shall review only representative articles of mainly semi­
classical nature with a direct coDnection to, the preceding content of this 
review. The remaining articles will be outlin{in a possible subsequent review 
on hadronic mechanics owing to their strictly operator character. 

Let us begin by reviewing paper [l56a] which is directly related to paper 
[139a] by Karayannis and Jannussis previously reviewed in this appendix. 
As one will recall, the latter paper establishes that' the isotopic lifting of 
U(I).gauge fields is equivalent to liftings 

A", -+ TA""g -+ gT (C.175) 

where A",(z) are the' gauge fields, 9 is a coupling constant, and T is the 
,isotopic element. In paper [156aJ, Nishioka confirms this important result 
from a different approach. Again, for notational clarity we shall review the 

basic elements of the theory considered. Consider an invertible and ,Her­
mitian operator R which may be a function of space-time. The enveloping 
algebra of a theory with associative product AB and unit 1 is generalized by 
introducing Santilli's product A. B = ARB and a new unity i = B-1 such 
that A • i =i • A =A. The elements A, B, ..• are essentially conatitu~ 

by polynomials in the space-time coordinate and momentum operaton. 
We define the isotopic generalizations of the H~rmitian  conju&ate At and 

inverse A-I of an operator A via the quantities At =RtAti, A-I =iA-ti, 
respectively. 

The Lie-isotopic lifting Gof the compact group G is represented by the" 
following transformation of a wave function j': 

j" = fJ. q; (C.l7J) 

where 
o=i exp(-ie· •X.) = exp(- X• • e·)/. (C.177) 

Here el is a function of the space-time coordinates, X. is a matrix repre­
sentation of the generator of group G satisfying 

[X.,Xj] = iCSj·XIe, (C.178) 

and Cijle are the structure constants of the Lie algebra G. it is now, known 
that U is an R-unitary operator, that is,-Ct* U~ Of • 0 =i, (C.179) 

with invariant form 
j't • t =q;1f • t /. (C.180) 

In analogy with ordinary gauge theory, Nishioka introduces Gasperini's iso­
topic covariant derivatives Dp. by imposing the following transformation 
rules 

b~ • iJ • ., = 0 • b",. j', . (C.18l) 

where 
- le-D", = (8", - igA", • XIe)I (C.182) 

and 
- I - - --iDp. = U. D", • U , (C.183) 

in which A~ are gauge fields, and 9 is as a coupling constant. 
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Define the isotopic gauge field strengths i",,, for the gauge fields (poten­
tials) as follows 

- 1 fJ - - ­F",,, • t =--:-( ". D" - D" • D,,) • " (C.l8J)
'9
 

with transformation rules
 

-	 - - --ir,." =U • F"." • U • (C.185) 

Notice that the minimal coupling term in (C.181) is 

A: • X, =A:(RX,). (C.186) 

Nishioka poe. cit.] then U8~mes  that R has the following form 

R=TS, (C.187) 

where T is a nonaingular function of the space-time coordinates and S is 
an'invertable and Hermitian operator independent of the space-time coor­
dinates. Represent A~.  X, as followl 

(C.188) 

where Y, = SX,. 
Using the discussion above, define i'"." and Fi"." as follows 

i',." = i'",,,. i, 
t"." = F".".X,. (C.189) 

.Then r"." are given by 

A:. X, =A:TY"
 

• . 1 •. 
1';" =T- H~",  (C.190) 

where 

- 8 Bi 
A B' + 'n; B'iI~"  - - v.,,, '""'., g~;. II' 

B' = A~T,  (¥i,1';) =i~ij'Y'. (C.191)
" 

Finally, introduce a "metric tensor" defined as 

h"." =T-1'l".",	 (C.192) 
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where 'I"" is the Minkowski metric. Then 

pi",,, = h"'Ph"" F'1't' =TrfP,,""iI~ =T ili",,,. (C.19~ 

Next rewrite 1'11." and t"'., in terms of l'i as follows: 

t",., = J:"TYi =iI:u,Yi =iIlJII , (C.194) 

FIJII	 = r"". Xi = r"'''Tl'i 
= T 2bilJllYi =T'l il"". (C~195) 

The Lagrangian density L for the gauge fields is then given by [156aJ 

1 r-L,.. • 
L = --v -hTr(F"" * F",,,)

4 
1.· . 

= -'4Tr(H"''' * HIJII ),	 (C.196) 

where h =det(h",,,), the relations (C.193) and (C.194) have been used, and 
Tr denotes the Lie-isotopic trace [30]. 

Before we interpret Lagrangian density (C.195), notice that b"." become 
equivalent to the field strengths of ordinary gauge fields on' changing A". --. 
B",(:i: B~l'e) and X, --. l'e and that the right-hand side is represented in the 
flat space (the Minkowski space). -

Nishioka poc.cit.] therefore concludes that the Lie-isotopic lifting of gen­
eral gauge fields can be done via the following steps: 

1. construct the Lagrangian density for ordinary .gauge field~;  

2. change the ordinary gauge fields A", ~ B", and the Lie-algebra gener­
ators Xi ~ l'e; , 

3. change the product of two field strengths to the isotopic product; 

4. change the trace to the isotopic trace. 

We now review Nishioka's paper [156b] on the isotopic lifting of con­
tinuity equations. This paper is important for this review, inasmuch as 
it establishes that several familiar dissipative models of quantum mechanics 
are, in actuality, particular cases of the covering hadronic mechanics, and its 
underlying Lie-isotopic equations. In (act, the concept o( isotopy and related 
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generalized unit was proposed by Santilli [1] precisely to represent dissipa­
tive conditions. Consider the following Li~isotopic lifting of the SchrOdinger 
equation [30] 

iABc' =HG. =H • " (C.191) 

and its Hermitian conjugate 

- -­ t­- i1&9. 8t= It GN= , • H (C.198) 

wheJt,the symbol. means Saiatilli's·produd A. B =AGB; H is the total 
Hamiltonian of the system, here usumed to be iso-Hermitian; and G is the 
Lie-isotopic element also &Ssumed to be Hermitian and invertible, as well as 
a function of space-time. 

Following Ref. [30], define the G-Hermitian conjugate of 1t as the quan­
tity 

,f =Gt1ttj =G'tti, (C.199) 

where j is the new unity, I = a-I. 
Define the Lie-isotopic lifting of the probability density as follows: 

p= it ••. (C.200) 

Next, the Lie-isotopic lifting of a differential operator - for example, the 
time-diff'erential operator 8, - will be defined as 

8e =Bci 8t •• =8,'1. (C.201) 

The derivative of pwith respect to the time ~  is given by 

8, •pI:: a,(a,t't). (C.202) 

Also, assume that the Hamiltonian H haa the following form: 

1&2 2 
H = ~~ V +V(z,JI,z), (C.203) 

where V is Hermitian and m is the mass of the particle considered. By mak­
ing use of t~e  prededing formalism, Nishioka [loc.cit] obtains the equation 

a,p +V .J =(a,lnG)p, (C.204) 

.. ~ )jj 
r. 

where 

p = Gttt, 
A

J = -.{(Gt)t V (G1t)2m. 
-rV(G't)t](Gt)}. (C.20~) 

If G is independent of time t, Eq. (C.203) is reduced to the conventional 
form 

8,p+V·J =0 (C.206) 

which can be rewritten 

8,p +V· (G2JO
) =0, (C.207) 

where 

JO = -.
1& 

[tt V " - (V1tt),], (C.208)
2m. 

and the notation A . B denotes the scalar product. Equation (C.206) can 
be written ' 

8,(pOi) +V. JO =-(V In G2). JO, (C.209) 

where 
pO =tt1t. _ (C.210) 

As applications of (C.203) and (C.208), Nishioka considers two examples: 
one is a complex-potential model by Feshbach, Porter, and Weisskopf [160], 
the other is a model in which a particle with charge is interacting with an 
electromagnetic field. 

The complex~potentia1model is based on the idea that an incident parti­
cle inside a target nucleus effectively moves in a complex potential well; the 
real attractive potential simply refracts the incident nucleon, wbile the pres­
ence of the imaginary term implies absorption of the nuleon. A simplified 
Hamiltonian for this case is given by [160] 

Tl,2 
H=--V2 +V - iW: (C.211)

2m ' 

where V, W are assumed to be real, and W is constant. 
The SchrOdinger equation for Hamiltonian (C.210) in conventional quan­

tum mechanice is given by 
iA8,t/> =H~, (C.212) 

~,4o  



~" 
and It, Hermitian conjugate i, 

t ... t ...t 
- iA~ 8,= ~  H (C.213) 

with continuity equation 

o 0 2W 0
8,PA +V·JA = -TPA' (C.214) 

where 
'A

P~ =~t~, J~ =--:[~t  V ~ - (V~t)~].  (C.215)2m. 
Nishioka Poe.cit.) then assumes .that the Lie-Isotopic element a is a 

function of time only, and that the correspondences 

- 0 J - JOP+-PA-, +-: A (C.216) 

hold. Be then obtains trom (C.203) and (C.213) 
" 

- 2W8,lnG +- -A' (C.217) 

80 that 

.( 2W)a =eip -Tt , _ (C.218) 

where one has to keep in mind that Hamiltonian (C.210) Is not Hermitian. 
Next, NishJoka poc.clt.) considers the Hamlltonlan 

II' 
H = --V' +iB · V + V, (C.219)2m 

Where B Is a vector and Is &Bsumed to be Hermitian, and V contains all 
interaction terms (except the second term of the right aide) and is assumed 
to be Hermitian. 

The Hamiltonian in -this case i. Hermitian. The SChrOdinger equation is 
given by 

ilia,fJ =H "', (C.220) 
and Its Hermitian conjugate is _ 

... t­
- iA"t 8,= t/J H (C.221) 

.;13ft ~+  I 

• .. 

with continuity equation 

o 2m 0 (C.222)8cp'lJ + V . J B = 1i2B . J B' 

where 

p~  = tPtt/J, J~ =~ {1/Jt V t/J - (VtPt)",}. (0.223)
2m, 

Assume that G is independent of time t, and that the following correspon­
dences hold I 

I 

Ia-.po ;::. p~, JO =. J~. (C.224) 
I 

I 

IThen, f~om  (C.208) and (C.223), Nishioka obtains the correspondence 
I 

I 

I 

_ V'nG2 ~  2': B. (C.225) 
1& 

The correspondence between the Lie-isotopic element G and the vector po­
tential B of the electromagnetic field can therefore be readily estabUshed 
when B can be represented as a gradient term. 

In this way, Nishioka [loc.cit.] identifies the possibilty of representing the 
electromagnetic interactions themselves via an isotopic lifting of free cha.rg~d 

particles. This property had been established at a classical level by santilli 
in monograph [20), see Example 4.1, p. 98 and following, a.nd its operator 
counterpart has been established in paper (156b). 

As a final remark, note that the reformulation of a conventional mod~  

with conserved (Hermitean) Hamiltonian generally leads to the Lie--isotOP.1C 
setting, while the reformulation of a nonconserved (non-Hermitean) namil­
tonian generally leads to the broader Lie-admissible approach. · 

' · • r th l·",itatlons
Thi8 occunence IS, in the final analysIs, a confirmation 0 e 1~.-

of the Lie-isotopic theory, and of the need to enlarge it into the yet mot~  

general Lie-admissible approach, exactly along Santilli's original propos 

version at the IBR, 

[ij. -

* * .. * * 
. hi s seeon 

NOTE ADDED IN PROOF .Fol1owing the completion of t r (16U] ; 
one of the authors mailed in pape l101ogica1 

which 1tis essent1 a11y shown that the recent I?he~otl1iol1ic  5 trl 
Ithadronization models" of ref.s [162] have a Lle-lsg sed on a 
ture of Sant111'ps type. In fact, models [162.] are a 
neral1zation of the Dirac equation of the type te. 22~ 

(-i r' 0f'''''.i i,x/~:  _~) ~::.o 

~ ,4// 



according to which quarks produced in weak decays are' described REFERENCES
 

by a free wave function damp;d by , Gau~s1an of the type Nexp
 

where the width ~(= O.2-o.3F) is a measure of the di­
1. R.M. Santilli, Or. a Po.rible Lie-aJmiuible COtJering or~" ,..

e uQ/'lea -.1(-12/~S) .' 
0 _ 

.",'tI­
•• .,.L . "

stance beyond which quarks hadron1ze and do not appear as asymp­
t..nt" In• nell>A,. tonsan. ""ec"anac. Jor noncon-ervatlf/e ond Gol." Of< 

totic states. Paper (162] essentially shows that Eq. (C.225)can 
mriant .".tem., Hadronic Preas, NOlIantuDl MA 02195-007 t:~;7-lIGllin. 

' 00 P&8e.
be identically written tn Santilli's isotopic fonm (C.30). where 

(1978); reprinted from Hadronlc J. 1,223 (1978). 

tbe" ~re the trivial isotopes (C.140). In fact. one has the id­

2. Ibidem, Hadronic J. 1, 574 (1978)
• 'f(<1 J ""7tU::"

(.i i.a -~),. 'f =: [ot f' '~,. ... '" o~T - :.J 1 (C.226)entity J.t 
3. Ibidem, Hadronic J. 1, 1279 (1978) 

wb;~e ~h~isOtO~iC element is given precisely by Gaussfan Nexp 
4. Ibidem, Radronic J. 2, 1460 (1979)
 

(-x IsO). . . 5. Ibidem, Hadronic J. 3, 440 (1979)
 

The identification of the isotopic structure of Eq.(C.225) has
 

. a nunber of nontrivial implications, such as: the possibility·, 6. Ibidem, Phys. Rev. D20, 555 (1979) 

of reconstructing an exact Poincarl symmetry; a more accurate . 
7. Ibidem, Hadronic: J. 3, 854 (1980)


dlaracterization of the vacclli. and other implications presented 

8. Ibidem, Hadronic: J. 4, 642 (1981)

. in ref. [161].'
 

Note that structure (C.226) is lie-isotopic and not lie-admissi­
9. Ibidem, Radronic J. 4, 1166 (1981)
 

ble, trivially, because of the Henmftean character of the isoto­
10. ibidem, Hadronic J. 5, 264 (1982)


pic element T. We should recall in this respect the "direct un1­

',versa11ty"of Santilli's lie-admissible time evolution (1.77), 1. 
11. Ibidem, Hadronic J. 5, 1194 (1982)
 

e. its capability of representing (identically) all possible no­

nonunitary ,time evolutions (verifying certain topological restr ­
12. Ibidem, Lettere Nuovo Cimen,o 33, 145 (1982) 

ictions),directly in the frame of the experimenter [4]. As a re­
13. Ibidem, Lettere Nuovo Cimento 37, 337 (1983) 

sult. all possible modifications of conventional field equation­

(time evolutions) can always be written in the lie-admissible ,~ 

14. Ibidem, Lettere Nuovo Cimento 37,545, (1983) 

(Lie-isotopic) fonn whenever the modified Hamiltonian ,is non­
15. Ibidem, Lettere Nuovo Cimento 38, 509 (1983)

Henmitean (Henmitean).In this sense, refonmulation (C.226) is 

fully in line with that of Eq.s (C.216) or (C.2224). 
16. Ibidem, Hadronic: J. 7, 1680 (1984) 

17. Ibidem, Radronic Journal Supplement 1, 662 (1985)
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