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Abstract 

We present the outline of a research project aimed at designing and constructing a hy­
brid computing system that can be easily scaled up to petaflops speeds. As a first step, 
we envision building a prototype which will consist of three main components: a general­
purpose, programmable front end, a special-purpose, fully hardwired computing engine, and 
a multi-purpose, reconfigurable system. The driving application will be a suite of partic1e­
based large-scale simulations in various areas of physics. The prototype system will achieve 
performance in the"" 50-100 teraflops range for a broad class of applications in this area. 

Central to our design is the isomorphic relation between the abstract and the physical 
dataflow paths: the pipelined architecture of the hardware will mimic the physical interac­
tions in the simulation. This tight binding between algorithm and architecture is the key 
to obtaining maximum efficiency and throughput, with negligible latency and hardly any 
overhead. 

The merging of custom LSI and reconfigurable logic will result in a unique capability 
in performance and generality, combining the extremely high throughput of special-purpose 
devices (SPD) with the flexibility of reconfigurable structures. The prototype system will 
represent proof of concept of this new hybrid architecture. A central goal is to explore per­
formance scalability, by dynamically adjusting the balance of workload and interconnection 
overhead between the reconfigurable SPD and its host computing system. Issues of direct 
concern are the scaling with problem size of parallelism, critical path, intra-system commu­
nication bandwidth, and overhead. This research will investigate the scaling sensitivities 
of the role of the host computer both as system size increases and as SPD computational 
demands vary due to the changes in the SPD structure. 

We have been led to our overall design by the following considerations. The combination 
of a hardwired petaflops-class computational engine and a front end with sustained speed on 
the order of 10 gigaflops can produce extremely high performance, but only for the limited 
class of problems in which there exists a single bottleneck with computing cost dominating 
the total. While the calculation for which the Grape-4 (our system's immediate predecessor) 
was designed is a prime example of such a problem, in many other applications the primary 
computational bottleneck, while still related to an inverse-square (gravitational, Coulomb, 
etc.) force, requires less than 99% of the computing power. Although the remainder of 
the CPU time is typically dominated by just one secondary bottleneck, its nature varies 
greatly from problem to problem. It is not cost-effective to attempt to design custom chips 
for each new problem that arises. FPGA-based systems can restore the balance, guaran­
teeing scalability from the teraflops to the petaflops domain, while still retaining significant 
flexi bili ty. 



1. Special-Purpose Computers in Scientific Computa­
tion 

Many problems in computational science have the characteristic that the bulk of the CPU 
time is spent in one or a few relatively short sections of code. One general area in which 
these problems are well known and particularly acute is particle simulations. Some examples 
are: 

•	 astrophysical simulations of stellar systems, in which particles interact predominantly 
by means of long-range gravitational forces, 

•	 molecular dynamical (MD) simulations, which may involve both long-range (Coulomb) 
and short-range (van der Waals) forces (e.g. the protein-folding problem; MD simula­
tions in Materials Science), 

•	 kernel methods in fluid dynamics (e.g. Smooth Particle Hydrodynamics-SPH), in 
which local thermodynamic quantities such as density, pressure, and specific energy 
are determined by sampling the properties of nearby particles, 

•	 plasma-physics applications (ranging from the dynamics of the solar wind to controlled 
fusion and the simulation of explosive processes in astrophysics and elsewhere), 

•	 vortex methods in fluid simulations, in which individual vortex elements are modeled 
as particles with well-defined interparticle forces. 

If these important applications are to achieve very high (petaflops-class) performance, it 
is essential to find ways to overcome the computational bottlenecks that presently limit their 
utility. We have set out to explore the possibilities of combining general-purpose computers, 
custom-designed processors, and reconfigurable logic elements to achieve this goal. Although 
our description is cast largely in terms of particle simulations, the general physical context 
motivating this study, the results of our work will have applicability to a far broader range 
of problems. 

In all of the examples listed above, typical programs spend most of their time computing 
a very small kernel, such as the determination of particle interactions, that contains relatively 
few instructions but processes a large amount of data. This kernel is often sufficiently simple 
that one can contemplate realizing it in the form of custom hardware: a specially designed 
board, reconfigurable chip, or custom LSI device. The efficiencies inherent in hardware 
implementations of algorithms, as well as the opportunities for massive parallelism, mean 
that special-purpose systems can outperform general-purpose machines by several orders of 
magnitude within the ranges of their applicability, and can be designed and built on a time 
scale far shorter than is normally feasible for commercial supercomputers. 

In some contexts, one can achieve spectacular performance improvements by concentrat­
ing the design effort on accelerating (with custom hardware) the principal bottleneck in the 
problem. However, it is more usually the case that the cost of the next most expensive 
part of the calculation is significant-a few percent of the total, say-so the speedup one 
can achieve with the combination of special-purpose hardware and a general-purpose front 
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end is still rather limited. For example, in MD calculations of organic molecules, over 90% 
(but less than 99%) of the calculation cost is spent on Coulomb forces, while more than 
90% of the remainder of the calculation cost is spent in computing van der Waals and other 
short-range forces. Again, in simulations of stars or galaxies with gas dynamics included, 
more than 90% of the CPU time is typically spent on the gravity calculation, with over 90% 
of the rest spent on gas dynamics. 

Rather than attempting to construct separate custom hardware devices to handle all even­
tualities, our strategy will be to define a hybrid system in which the principle bottleneck-in 
our case, the computation of long-range, inverse-square forces-is accelerated with custom 
hardware, but where the various secondary bottlenecks are addressed using reconfigurable 
Field Programmable Gate Array (FPGA) technology. The design of such a system combines 
custom high-performance chip design, reconfigurable logic systems design, system architec­
ture, and algorithm development. In the next section we describe the two previous projects 
that form the basis for this collaboration: the teraflops class special-purpose Grape-4, and 
the reconfigurable Splash 2. We then proceed to describe in more detail the approach to be 
followed and some specifics of the architecture. 

2. Technical Background 

In 1995 and 1996, a series of workshops explored the extreme regime of trans-teraflops com­
puting to near-petaflops-scale performance. These community-led forums involved experts 
from academia, industry, the national labs, and government in a diversity of fields including 
device technology, computer architecture, system software, and application algorithms. The 
broad objective of this initiative was to identify the opportunities and challenges towards 
achieving petaflops computing and to formulate a research program that will lead this nation 
aggressively toward that goal. 

It was found that using conventional COTS technologies anticipated from industry would 
require approximately 20 years to deliver petaflops scale execution rates, but that alternative 
methods could deliver such capability in less than half that time. An important conclusion 
was that special-purpose devices, possibly augmented with reconfigurable logic structures, 
were capable of being the first to reach this goal and could achieve petaflops scale performance 
for mission-critical applications within as little as 5 years, and at moderate cost. It was 
recommended that reconfigurable special purpose devices be pursued for well defined and 
highly important applications and that methods for doing so be explored. Our research 
program directly addresses this recommendation and focuses on the domain-specific problem 
of particle simulations. 

2.1 Particle Dynamics and the Grape Project 

This project is the natural advancement of a class of special-purpose devices whose heritage 
extends back to the Digital Orrery designed and built by G. Sussman (of MIT, then visiting 
Caltech) and coworkers (Applegate et al. 1985) to perform very high-precision, long-term 
integration of particle problems. This original work focused on the evolution and stability 
of the solar system, but the techniques extend to a wide array of particle-based applica­
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tions. This early research motivated an international collaboration which developed the 
Grape series of special-purpose computers that ultimately achieved teraflops-class sustained 
performance, winning Gordon Bell awards in both 1995 and 1996. 

The purpose of the Grape project is the long-term integration of large self-gravitating 
systems, such as star clusters and galaxies-the celebrated "gravitational N-body problem" 
in its fullest form. While significant speed-up has been obtained in certain circumstances 
through the introduction of efficient algorithms (e.g. Barnes and Hut 1986, 1989; Greengard 
& Rohklin 1987), this problem continues to tax the capabilities of even the fastest general­
purpose machines. Detailed analysis of the best algorithms available for the study of dense 
stellar systems (Hut, Makino & McMillan 1988; Makino & Hut 1988, 1989) indicated that 
speeds on the order 1 Tflops would be required to model even a small star cluster with any 
degree of realism. 

In 1989, a team of researchers (led by D. Sugimoto, of Tokyo University) began to explore 
the feasibility of building special-purpose hardware for stellar dynamics simulations. Familiar 
with the earlier success of the Orrery, and aware of the disappointing performance of stellar 
dynamics calculations on general-purpose machines, they realized that a novel approach 
might be appropriate. To this end, they constructed a series of special-purpose "accelerators" 
to speed up critical parts of the simulations. The first machine in the series, known as Grape­
1, was completed in the Fall of 1989 (Ito et al. 1990). (The acronym "Grape" stands for 
GRAvity PipE, and designates a very efficient hardware implementation of the Newtonian 
pairwise force between particles in a self-gravitating N-body system.) Grape-l had a speed 
of over 200 Mflops, but relatively low ("" 1%) precision. Just six years later, the Grape-4 
achieved a speed of over 1 Tflops, with high (15 decimal digit) precision (Maki'no et al. 1997). 

Constructed specifically for astrophysical simulations, the Grape-4 consists of 1692 cus­
tom LSI chips, each of which computes the gravitational interaction between two particles 
(in this case, stars). The design of the Grape hardware is such that, once all pipelines are 
filled, each chip produces one new interparticle interaction (corresponding to approximately 
60 floating-point operations) every three clock cycles. With a clock speed of 30 MHz, a peak 
chip speed of 0.6 Gflops is achieved. Operating all chips in parallel gives a theoretical peak 
speed of 1.08 Tflops. 

From a programming standpoint, the Grape simply replaces a section of existing code 
by a series of hardware calls, implemented as library functions, that return the desired 
information, namely, the force on a specified particle or group of particles. The distribution 
of computing load is such that the 1 Tflops Grape-4 can be driven at better than 50% of 
peak speed by a 100-200 Mflops host (which performs the rest of the dynamical simulation), 
for systems comprising 20,000-50,000 particles. 

2.2 Splash 2 

The second critical component of this project is the use of reconfigurable logic to enable high­
performance, but flexible, implementations of application-driven algorithms. The Splash 
project (Buell et al. 1996, Arnold et al. 1992, Arnold 1995) was designed to provide ex­
ceptional performance on a general range of systolic problems. The first generation Splash 
system consisted of a fixed length linear systolic array of Xilinx 3090 FPGAs. Although 
successful for many algorithms, the limited I/O bandwidth, the inflexible interprocessor 
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communication and the difficulty of programming Splash 1 prevented wider use. 
The Splash 2 system connected sixteen Xilinx 4010 FPGAs in a linear array augmented 

with a crossbar data path to increase the flexibility of the communication network. The 
system could be scaled up to 256 FPGAs by extending the linear array across multiple 
boards. Each FPGA in the array was coupled to an independent memory element for local 
storage. Splash 2 pioneered the use of a simulation based programming methodology which 
created a very rich application development environment. 

A wide variety of applications were written for the Splash 2 system, including database 
searches, macromolecule sequence analysis, and real time signal and image processing. It was 
discovered that the most successful of these applications exhibited a small number of common 
themes. These themes included: streams of small data objects which required relatively 
low precision arithmetic, such as pixel streams for image processing; very long pipelines 
spanning many FPGAs, such as the macromolecule sequence comparison applications; static 
communication patterns among the processing elements that did not require dynamic routing 
overhead, such as the FFT algorithm. 

Splash 2 successfully demonstrated the utility of reconfigurable computing to reduce the 
overhead associated with fixed instruction set computers. Direct hardware implementation 
of algorithms in reconfigurable logic eliminates the overhead of instruction stream interpre­
tation. Reconfigurable logic allows the programmer to tailor the width of data path elements 
to match the precision requirements of the application, resulting in significant area and per­
formance savings. Partial evaluation techniques can be used to fold constant values into the 
logic, further reducing the silicon real estate required by an application. 

3. Integration of SPD and FPGA Systems 

3.1 Algorithms 

Particle-based simulations are eminently suitable for a wide class of physical problems. Un­
like grid-based methods, particle methods are well suited to the treatment to extremely 
inhomogeneous systems with large time-dependent density contrasts. Also, there is no prob­
lem with mesh tangling, regridding or subgridding: particles sampling the fluid (either in 
physical space or in phase space) form a naturally comoving system of reference points. 

Within the general class of particle simulations, there is a rich variety of integration 
algorithms, and a large set of problem-specific interparticle forces. Designing custom LSI 
chips for each separate problem and algorithm is not feasible. A much better alternative 
is to use reconfigurable hardware to establish domain-specific pipeline structures for whole 
classes of problems, programming the detailed algorithmic implementation directly into the 
FPGA subsystem. The best of all worlds, however, is to combine the two approaches. 

Even though most particle-based simulations have their own specific types of interparticle 
forces, in many cases there is at least one force component that scales as the inverse square 
of the distance. Gravity is an obvious example of a fundamental force with this property; 
electrostatics is another. Vortex methods in hydrodynamics offer an example of a derived 
type of force field, in which vortex elements can also be approximated as point particles 
which obey inverse-square interactions. 
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The common functionality of interparticle force laws across much of the class of particle 
simulations supports the development of custom LSI chips to work in tandem with FPGA­
based systems on which the remainder of the force interactions can be performed. In fact, 
since the inverse-square component of the force dominates the total computational cost in 
many cases, the use of custom LSI chips does more than simplifying the overall design: it 
speeds up the total throughput considerably. 

3.2 Implementation 

Hardware acceleration of critical segments of a computation allows the high cost/performance 
of special-purpose hardware to be combined with the flexibility of existing workstations 
without the need for special software development. This approach can be compared to using 
hand-coded assembly-language or machine-code for an inner loop in an algorithm that itself 
is programmed in a higher-level language-the difference being that this inner loop is now 
realized directly in silicon. 

Whether or not it is feasible to implement a complex interparticle force law, such as SPH, 
using FPGA technology depends critically on the relative accuracy required. Preliminary 
studies suggest that the required relative accuracy is actually rather low in many cases, and 
an error of a few percent may be acceptable. In this case, it is possible to implement a full 
SPH pipeline in a single 1997 FPGA chip; multiple chips may be used to implement more 
complex pipelines. It should soon be possible to implement several pipelines in a single larger 
chip, although the increase in density of FPGA devices is not as rapid as that of gate arrays. 
Some commercially available systems may already be close to satisfying this need. 

Reconfigurable computing engines based on FPGA technology appear very well suited 
for implementation of SPH and other interactions. A natural question is: why not proceed 
one step further, and implement the entire system, including the functionality of the custom 
hardware, using FPGA? The answer is that the performance that can be achieved with 
FPGA is at least two orders of magnitude lower than that can be achieved by custom LSIs. 
There is about a factor of 100 difference in the available circuit densities between FPGAs and 
custom LSIs. In addition, there is a factor of few difference in the clock frequencies. These 
factors have been roughly constant since the first FPGA was introduced, and are likely to 
remain roughly constant in the future. Thus, if we were to use FPGAs as the basic building 
blocks for our system, our cost/performance would be degraded by a factor of 100, placing 
the cost of a full petaflops system close to $1 billion. 

4. Scalability and Systems Integration 

System scalability is dependent on a number of closely associated architectural attributes. 
One is the ratio of the intrinsic algorithmic parallelism to the critical path length as the 
problem size grows. A second is the overhead required in managing the larger problem size 
which itself may contribute to the critical path length. A third scalability issue for systems 
of the type described here is the balance of workload between the special-purpose device and 
the host as problem size increases. This last issue, if not properly handled, can defeat the 
purpose of employing special-purpose subsystems as Amdahl's law takes effect. 
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As the total system workload increases due to problem size, the amount of work to be 
performed by the host, the frequency at which this work needs to be done, and the amount 
of information that must be exchanged between the host and the special-purpose device 
will all contribute to establishing the upper bound to scalability. In addition, the amount 
of overlap between processing by the special-purpose device and the host can extend the 
apparent scalability by trading parallelism for latency, thus hiding the execution time of the 
host subsystem. All these factors vary with problem size. 

The basic means of addressing the scalability issues associated with the system-level 
architecture are: 

• increase the speed and capacity of the host, 

• increase the bandwidth between host and SPD,! 

• reduce latency times of interconnect between host and SPD 

• increase the proportion of total workload performed by the SPD, and 

• organize the work profile so that both host and SPD are operating concurrently. 

The size of the host can be expanded through conventional parallel MIMD organization. Note 
that this requires that the workload of the host exhibit sufficient coarse-grain parallelism to 
exploit the resources of the MIMD architecture. 

The intra-system bandwidth and latency poses an increasing challenge. While specific 
optical technologies for communication are or will be in the near future capable of Gbps 
throughput, the bottlenecks may very well be the interface to the host system itself. Algo­
rithms must be redefined to minimize the information flow between the two subsystems by 
transferring an increasing proportion of the total workload onto the SPD. This has proved 
to be necessary with more conventional accelerators used to augment conventional system 
capabilities in such areas as signal and image processing. By configuring the SPD to provide 
adequate buffering and flow control to enable concurrent operation of both systems, it is 
possible to effectively take the host system out of the critical path and permit the SPD to 
operate at peak performance. 

An important contribution of this project is the inclusion of reconfigurable logic within the 
structure of the special-purpose device. The objective is to broaden the class and generality 
of algorithms that may be performed by the system, thus increasing its utility and cost 
effectiveness. The use of reconfigurable logic within the SPD can significantly alter the 
computational and timing relationships between the host and the SPD. As the internal 
topology of the SPD is modified through reconfiguration, the SPD workload profile will 
change. This is particularly true where use of data paths may be conditional (dependent on 
intermediate values) causing the execution profile to vary. 

Without associated changes to the host processor workload, execution time could be 
dominated by the host and scalability constrained, again by Amdahl's law. However, since 
the new structures enabled by the reconfigurable logic imply new applications and algorithms, 

1In the general discussion of this subsection only, we use the term SPD to refer to the entire system, 
including the FPGA part. 
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the programmer will be redefining the host codes as well. A negative aspect of this is that 
the careful balancing of host to SPD computation is not done just once, as in the case of 
conventional fixed SPDs, but many times as the adaptive SPD is imbued with new application 
algorithms. 

We are exploring effective ways of mitigating the challenges of repeatedly having to pro­
gram the host and balance its computational demands with that of the reconfigurable SPD. 
Software tools must be adapted or developed to assist in this special case of heterogeneous 
computing to expose the demands and behaviors of the new algorithms as they relate to the 
system workload balance. 

5. Architecture 

Our planned architecture is a high-performance hybrid computing system consisting of three 
components: a general purpose front end processor; a multi-purpose reconfigurable back 
end processor array; and a custom designed, special-purpose back end processor array. The 
system will provide a direct means of investigating the behavior of reconfigurable systems at 
performance levels, and on problem sizes, sufficient to advance the state of knowledge in an 
important scientific discipline. 

5.1 Custom Chip Performance 

The present Grape-4 processor represents 1990/1991 technology (l/lm fabrication line width). 
Even if no changes were made in the basic design, we estimate that advances in fabrication 
technology would permit more transistors per chip and increased clock speed, enabling a 
50-100 MHz, 10-30 Gflops chip in a 1996 start (0.35 /lm line width), and a 100-200 MHz, 
50-200 Gflops chip with 1998 (0.25 /lm) technology. Based on these projected performance 
improvements, we conclude that ""10,000 chips of ",,100 Gflops each could be combined to 
achieve petaflops speeds by the year 2000. (This is one of several conclusions reached by 
a recently completed NSF Point Design study in which we were involved.) Fabrication of 
250-500 copies of the chip will enable system design at the board (16 chips per board) 
and controller (16-32 boards per controller) levels. Anticipated performance is in the 50­
100 Tflops range. The design of the force-calculation pipeline in the new processor chip is 
essentially similar to that in the Grape-4, although a number of changes will be made to 
optimize the design further. A ""10-Gflops front end will allow the system to run at close to 
peak speed. 

5.2 System Structure 

Our architecture can be viewed as a collection of hardware function accelerators attached to 
a general purpose front end computer through a high speed network. In this system there are 
two categories of accelerator, or "back end", processor: a fixed function processor for com­
puting inverse-square law forces; and a reconfigurable processor capable of computing a wide 
variety of functions. The fixed function processors will be implemented as the custom LSI 
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chips just described. The reconfigurable processors will be based upon commercially avail­
able FPGA devices, with an anticipated sustained performance of 1-10 Gflops, depending 
upon the application. 

The overall organization of the system has yet to be determined, but one possibility is: 

•	 Multiple pipelines per processor. For the custom processors, sixteen inverse-square 
pipelines per chip should be possible. For the reconfigurable processors this number 
will be application dependent. 

•	 Sixteen processors per board. 

•	 Up to 32 boards per controller. This level of the hierarchy is called a cluster. 

•	 Initially, two to four clusters per front-end host. This number is scalable to 16 clusters, 
corresponding to a 1.2 PRops machine. 

A high-performance point-to-point network will implement the cluster-level interconnect. 
This network will likely extend down to the level of the individual processors and up to the 
host. 

To achieve the processor-to-memory bandwidth required to sustain the inverse-square 
law processors it will be necessary to integrate the particle data memory into the processor 
chip. Using 30% of the total silicon as SRAM, one chip can have at least 2 Mbits of SRAM 
memory. One particle requires about 600 bits of storage, so one chip can store at least 3 x 103 

particles. Committing 1/3 of the silicon for memory, we need around 12,000 chips to achieve 
1 Pflops. Thus, the total number of particles which can be stored is 4 x 107 

, which is more 
than the maximum number of particles for which direct-summation algorithms are practical. 

With the FPGA technology expected to be available in 1998, and the software techniques 
described earlier, it should be possible to build reconfigurable pipelines capable of delivering 
in excess of 1 Gflops performance. Much more problematic will be the delivery of data to 
those pipelines to sustain that level of performance. The particle force pipelines envisioned 
typically consume on the order of 20 bytes of data per clock cycle. Assuming a clock rate 
of 100 MHz, keeping the pipeline filled will require an FPGA-to-memory bandwidth of the 
order of 2.5 GB/sec. To approach this level of performance will require a very wide path to 
a synchronous DRAM. 

Most of the force calculation pipelines currently envisioned are expected to fit comfortably 
into an FPGA of the density expected to be available in 1998. However, some applications 
may require deeper pipelines than will fit in a single FPGA. The decision of whether to 
interconnect the FPGA processors to permit a single pipeline to span multiple FPGAs is 
difficult. The obvious advantage would be to increase the range of applicability of the 
reconfigurable processors. There are several significant disadvantages, however, including 
using I/O pins that could otherwise be devoted to memory bandwidth, and inserting I/O 
pad drive and receive times to the critical path of the application pipeline. 

For a typical application the system will operate as follows: 

•	 The front end loads the FPGA configuration corresponding to the function to be com­
puted into the reconfigurable back end processors. 

8
 



•	 The front end loads the set of particle descriptors into the back end memories. 

•	 Each back end processor reads the particle data, computes the forces on each of a list 
of target particles, and writes the modified particle data back to memory. 

•	 The front end retrieves the results, computes the next time step, and iterates. 

5.3 Outstanding Questions 

Several important questions must be addressed: 

•	 FPGA architecture. There are several competing device architectures available com­
mercially with advantages and disadvantages to each. A detailed analysis of options is 
required. 

•	 Memory organization. To achieve the required bandwidth it will be necessary to look 
to high performance memory interfaces such as Rambus or synchronous DRAM. 

•	 Network topology. The design of the communication network is another critical aspect 
of the hardware architecture. Although a hierarchy of bus-based connections was used 
in Grape-4, in our system some form of point-to-point structure will be required to 
achieve the necessary bandwidth. Tree and sorting network topologies are under study. 

•	 Interprocessor interconnect. Ideally, an integral number of application pipelines would 
fit in a single FPGA, in which case the only interprocessor communication occurs 
through the particle memory. However, some applications may not fit in a single 
FPGA and require spanning across multiple chips. 

•	 Ratio of fixed to reconfigurable computing resources. The optimal mix of these two 
paradigms depends on both the computational mix of the application and on the 
relative costs. 

Factors to consider in the architecture study include: 1) the level of technology available 
commercially; 2) the balance of memory size to logic density; 3) the required memory band­
width per unit of logic for the expected application set; 4) the expected size and nature of 
the application pipelines; and 5) the performance of the FPGA I/O. 

6. Software Issues 

6.1. Software Tools and Methodologies 

One of the key advantages of reconfigurable computing is the ability to tailor the hardware to 
match the requirements of the application. In the case of the numerical applications in which 
we are most interested, reconfigurable logic will allow the application programmer to control 
the data path widths to exactly match the arithmetic range and precision requirements of the 
algorithm. This will result in a substantial savings of real estate and improved performance 
for those portions of the algorithm which do not require high precision. Additional savings 
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can be achieved by partial evaluation of arithmetic expressions to fold constant values into 
the synthesized logic. 

Partial evaluation and the exploitation of varying precision and range in an application 
will require the development of sophisticated analysis tools. One tool will derive lower bounds 
on the data path width of every arithmetic operator in a function from a set of input and 
output constraints. It will work in conjunction with a set of parametrized module generators 
capable of building efficient arithmetic operators over a wide range of size and throughput 
requirements. 

The methodology for mapping algorithms onto the reconfigurable processors will rely on 
commercial CAD technology wherever possible. Most applications will use logic synthesis 
from a high-level design language such as VHDL, although for efficiency some commonly 
used critical structures such as adders and multipliers will be designed at a lower level. 
Final mapping to the particular FPGA technology will be provided by the device vendor's 
tool suite. 

Development of the reconfigurable application modules will be facilitated by a simulation 
environment consisting of a common interface specification for the FPGA processor and 
behavioral models of the surrounding circuitry. This will allow the application code to be 
simulated in the context of the surrounding system while still providing all of the features 
of a source level debugger. 

A number of software challenges exist for the front-end host computer. The device driver 
and runtime library must support very high bandwidth data movement between the user 
data space and the back end memory. Efficient synchronization primitives must be built 
to coordinate the interaction between the user code and the back end. A debugger must 
be developed to support the development of the reconfigurable code. This debugger should 
allow single stepping and internal register state examination of the FPGAs. 

6.2 Software Mapping Strategy 

A critical aspect of our architecture is the programmability of the reconfigurable back-end 
processors. The functions to be mapped onto reconfigurable logic will be expressed as a 
set of arithmetic expressions augmented with annotations on the arguments and results 
which specify the range and precision requirements. This textual description is input to an 
arithmetic analysis tool which produces a synthesizable VHDL model of the function. The 
functionality of the resulting model may be verified through simulation before synthesis and 
technology mapping into FPGA bitstreams. 

The arithmetic analysis tool converts an annotated mathematical expression into a syn­
thesizable VHDL circuit. The input to the tool specifies the data format of the arguments 
and the range and precision of the results. The constraints represented by the annotations is 
propagated through the data flow graph of the expression to determine the minimum range 
and precision required of each of the operators. The resulting set of labeled operators is then 
used to construct an application specific module library. For each unique combination of 
operator and parameter set, a module generator for that operator type is invoked with the 
appropriate parameters. The module generator produces a synthesizable VHDL model of 
the specific operator, which is added to the library. A top level structural VHDL description 
of a circuit which implements the data flow graph in terms of calls to elements in the module 
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library is then generated. Finally, the resulting VHDL model is synthesized by conventional 
logic synthesis tools to form a gate list suitable for input to the FPGA vendor's mapping 
tools. 

A key component of this mapping strategy is a library of parametrized fixed and floating 
point module generators. These generators are parametrized on the precision and range of 
their arguments and results, allowing the creation of data path elements and representation 
formats that exactly match the requirements of the algorithm. The modules produced by 
the generators obey a common specification, allowing the composition of modules into long 
pipelines. 

6.3 Runtime Software 

We have ready at hand a suite of well-tested codes for large-scale particle-based simulations. 
Some of these have been developed by others, and subsequently modified and extended 
by us, while other codes have been developed from scratch. Our most sophisticated code, 
named Kira, has been designed and developed over the last few years (with the Grape-4 as 
a development platform) with the explicit purpose of treating simultaneously problems that 
span huge ranges of time scales and length scales. 

The original motivation stemmed from astrophysics. In order to follow the complete 
evolution of a star cluster, from soon after the Big Bang to the present, we have to model a 
history that spans across ten billion years. During this period, however, we have to resolve 
occasional critical episodes, during which highly energetic processes in double stars can take 
place on time scales of milliseconds (when neutron stars or black holes are involved). Our 
algorithm thus has to deal with time scales that span a range of 1020 . Similarly, physical 
length scales range from a hundred light years down to kilometers, spanning a range of 1013 . 

None of the orbit-integration algorithms found in standard texts on the solution of ordi­
nary differential equations can handle these extreme requirements. Our solution has been to 
implement individual time step sizes that are continually adjusted for each particle. Tightly 
interacting subgroups of particles are treated locally by constructing dynamically changing 
recursively refined coordinate patches. Most importantly, on all levels hooks are included 
that allow us to transparently interface with independent software modules that treat addi­
tional physical processes. Some of these non-gravitational effects, such as stellar evolution, 
will be run on the host, while the more compute-intensive interactions, such as those involv­
ing hydrodynamics, will be run on the FPGA part of our system. 

In addition to these astrophysically motivated problems, the Kira code can be modified 
to treat other problems in physics that require modeling through particle realizations. The 
modularity and flexibility of the Kira architecture will make it straightforward to change the 
force-law module, and to modify the particle-interaction management separately. 

7. Comparison with Other Work 

Only a small number of large-scale reconfigurable systems have been built to date. The most 
notable of these efforts are the DEC Paris Research Lab's PeRLe projects; the IDA SRC's 
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Splash project (described elsewhere in this proposal; Buell et al. 1996, Arnold et al. 1992, 
Arnold 1995); and HP Lab's ongoing Teramac project. 

The PeRLe systems (Bertin & Touati 1994, Vuillemin et al. 1996) were designed to act as a 
tightly coupled general purpose configurable hardware coprocessor. The PeRLe programming 
model consisted of a large array of bit level functional units called "programmable active 
memory" cells implemented in an array of Xilinx 3000 FPGAs. A number of applications 
were written for PeRLe with impressive results: a 50 tap 16-bit FIR filter ran at 16 times real 
time audio rate. An RSA decryption implementation outperformed the then state-of-the-art 
custom ASIC by an order of magnitude. PeRLe and its successors have been used for a 
number of high energy physics applications at CERN. 

Amerson et al. (1995, 1996) at Hewlett-Packard Labs have built a large scale reconfig­
urable computing engine called Teramac, based upon a custom FPGA design called Plasma. 
Teramac, which can execute synchronous logic designs of up to one million gates, was de­
signed to conduct experiments in using special purpose processors to search large non-text 
databases and to perform volume visualization. 

Because of the traditionally low logic density of FPGAs, there have been relatively few 
efforts to map floating point intensive applications onto reconfigurable hardware. Shirazi et 
al. (1995) implemented a 512-point Fast Fourier Transform for image processing on Splash 
2 using an 18-bit floating point format. The 10 bit mantissa and 7 bit exponent provided 
sufficient precision and range for the image stream of 8-bit pixels. The resulting pipelined 
multiplier occupied 44% of the Xilinx XC401O-6 (Xilinx 1994) FPGA (1991 technology) while 
the adder occupied about 28%. One tap of a FIR filter composed of these units fit in a single 
XC4010 and delivered 20Mflops. 

Cook et al. (1995) have implemented an N-body accelerator on the Altera RIPP-lO board 
which contains eight Altera FLEX81188 FPGAs plus 2MB of static RAM. This accelerator 
employs a direct method inverse-square law force calculator pipelined across all eight FPGAs. 
The arithmetic implemented (Louca et al. 1996) is single precision IEEE compatible floating 
point. Using a digit-serial approach, Louca was able to achieve a peak performance of 2.5 
Mflops per floating point multiplier, which is the rate limiting operator. The entire system 
of 8 FPGAs runs at 10 MHz to deliver 2.5 million force calculations per second, for a peak 
performance of 40 Mflops. 

In the area of special-purpose machines for computational science, only QCD systems 
such as QCDSP and APE offer performance comparable to the Grape series. QCDSP, a 4th 
generation special-purpose QCD machine designed by Christ and coworkers at Columbia 
University, should be completed soon. It will consist of 16384 TI DSP chips (50 Mflops each, 
for 800 Gflops theoretical peak and 200-300 Gflops actual performance), with a total cost 
of some $3 million. The current generation of the Italian APE project (APE-IOO) should 
ultimately consist of 2048 custom chips each delivering 50 Mflops peak performance. Of 
these, 1024 have been installed so far. The next-generation system (APEmille) will have a 
total budget of $13 million and performance in the 1-2 Tflops range. 

The Grape-4 and the proposed new LSI chip are superior in performance to these cur­
rent and planned QCD systems. On the other hand, the QCD machines offer some degree 
of programmability, and therefore have broader applicability than Grape-4. However, the 
hybrid architecture in Grape-6 significantly widens the range of application of our system. 

General-purpose systems are in many senses complementary to our project, as we need 
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a high-speed, general-purpose computer as a front end. However, the performance require­
ments for our host system are in the tens of gigaflops, rather than the multi-teraflops range 
that will represent the state of the art in 2000. No general-purpose system currently under 
consideration (and, specifically, none of the general-purpose systems funded by the present 
NSF Petaflops Point Design program) is likely to achieve speeds in the 100 Tflops-1 Pflops 
range before around 2010. The probable leaders in general-purpose high-performance com­
putation over the next few years, the massively parallel ASCI Red and Blue systems, will 
have peak speeds in the 2-3 Tflops range, with longer-range targets of 10 Tflops by 1999 
and 100 Tflops by 2002. 

8. Summary 

The project described here significantly advances the state of the art in the application of 
reconfigurable logic to computational science by developing new methods and architectural 
structures through the direct design and implementation of a proof-of-concept system. The 
driving premise is that hybrid structures of custom high-density processing components and 
programmable reconfigurable logic devices can be used to realize physical structures with 
the cost and performance of special-purpose systems and the flexibility of significantly more 
general systems. 

The bases for this significant advance are the Splash 2 and Grape-4 projects, which rep­
resent leading developments in reconfigurable and special-purpose systems, respectively. We 
expect significant advances in system architecture, algorithm to hardware layout, software 
tools, and hardware structures to come from this work. The resultant techniques and devices 
will directly impact achievable computation of a specific class of problems, and will provide 
the means of realizing other comparable system structures for a wide range of computational 
domains. 

The application driven focus of our research is the general class of particle simulation 
problems that range from astrophysics and cosmology to molecular dynamics and may relate 
to plasmas, magneto-hydrodynamics, materials, computational fluid dynamics, and many 
other realms of scientific and engineering inquiry. Of these, gravitational simulation, molec­
ular dynamics, and CFD will be pursued as detailed areas of concentration to apply and 
evaluate the concepts and technologies to be developed as part of this research project. 
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