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ABSTRACT 

The distance to the Large Magellanic Cloud, DUdG, plays a major role in the 
uage-ol-the-universe" problem because Hotsc ex DLii~, where Ho is the Hubble 
parameter and tic is the age of the globular clusters. Panagia et a1. (1991) have 
measured DLMC = 50.1 ± 3.1 kpc from the fluorescence of the ring around SN 
1987A. Using this distance together with widely accepted methods of estimating 
Ho and tic, one finds Hot,c ;::. 1.2, in contradiction to all conventional cosmological 
models. Ire-calculate DLMC using the supernova-ring method both with and 
without the assumption that the ring is circular. For a circular ring, I find DLMC = 
53.2 ± 2.6 kpc, 3 kpc larger than the result of Panagia et al. If the assumption of 
a circular ring is relaxed, then this estimate ol DLMC is transformed into an upper 
limit. The 2 (T upper limit (58.4 kpc) is sufficiently high to remove the age problem 
lor a low-O universe with or without a cosmological constant. 

Subject Headings: distance scale, Magellanic Clouds, astrometry 
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1. Introduction� 

Panagia et al. (1991) have derived a distance to SN 1987A in the Large Magel­

lanic Cloud (LMC) from the light curve of the ring illuminated by the supernova. 

They find a distance of 51.2±3.1 kpc. Correcting for the position of the supernova 

relative to the LMC center of mass, they find a distance to the latter of 

DLMC = 50.1 ± 3.1 kpc (Panagia et a1.). (1.1 ) 

Because this distance determination has small error bars and relies on relatively 

straight forward physics, it has begun to take precedence over other methods of 

measuring DLMC. For example, RR Lyraes were formerly regarded as providing a 

fairly reliable measure of DLMC. In this method, one calibrates the luminosity of 

local (Galactic) RR Lyraes using statistical parallax, then measures the flux from 

RR Lyraes in the LMC. However, Walker (1992) has recently argued that because 

the distance to the LMC is so well determined, one should reverse this process and 

calibrate the RR Lyrae luminosity from RR Lyraes in LMC globular clusters. He 

concludes that RR Lyraes are O.m3 brighter than the Galactic calibration would 

indicate. Walker cites the supernova ring measurement [eq. (1.1)] as well as the 

Galactic Cepheid calibration (see below) as the basis for his confidence in the LMC 

distance measurement. 

The measurement of the distance to the LMC plays a crucial role both in the 

measurement of the Hubble parameter, Ho, and in the measurement of the age 

of the globular clusters, tgc' Most methods of determining distances to distant 

galaxies rely directly or indirectly on the Cepheid period-luminosity relation (see 

Jacoby et 801. 1992 for a review). This relation is calibrated from LMC Cepheids. 

Hence, any change in DLMC translates into a proportional change in the measured 

distance to all other galaxies, and so 

Ho ex DL~C. (1.2) 

Similarly, the distances to the Galactic globular clusters are measured from their 
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RR Lyraes or more generally from the horizontal branch (e.g. Chaboyer, Sarajedini, 

& Demarque 1992). If RR Lyraes are calibrated in the LMC, then the distances to 

the globular clusters rise and fall with DLMC' According to equation (1) of Walker 

(1992), log t ge = -0.41 + 0.37Ml1 (TO) - 0.43Y - 0.13[Fe/H], where Ml1 (TO) is the 

absolute magnitude of the turnoff and the remaining terms account for helium and 

metal abundance. Hence, a change in DLMC, implies a change in tile of 

D -19t Ie ex U1C' (1.3) 

Furthermore, both Ho and tie enter directly into the so-called age-of.the­

universe problem (see e.g. van den Bergh 1992). Within standard cosmology 

Hoto = Ct, where to is the age of the universe and Ct is a parameter that de­

pends on the cosmological model. For n = 1, Ct = 2/3, where n is the density of 

the universe in units of the closure density. For n ¢: 1, a ,..., 1. Since the universe 

is presumably older than the globular clusters, we have 

(1.4) 

If one takes Ho ,...., 80kms-1Mpc-1 (e.g. Jacoby et al. 1992) and tIe ~ 15 Oyr 

(e.g. Walker 1992), both obtained under the assumption DLMC ,...., 50 kpc, then 

Hotle ~ 1.2, in contradiction to equation (1.4). However, equations (1.2) and (1.3) 

imply 

D -2.9Rot Ie ex LMC' (1.5) 

If it turned out that the LMC were really at 55 kpc rather than 50 kpc, the age 

problem would be removed for n <: 1. If DLMC ,..., 60 kpc, then the age problem 

would be removed for n = 1 as well. 

Therefore, it is important to determine just how secure the value DLMC ­

50 kpc really is. As mentioned above, Walker cites two methods of determining 

DLMC' One is by Cepheids calibrated in nearby open clusters. This method 
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is fundamentally rooted in the distance to the Pleiades, the nearest young open 

cluster. Using a distance to the Pleiades of 130 pc (as measured by comparing 

A and F stars in the Pleiades with similar nearby stars which have trigonometric 

parallaxes) and assuming that the Pleiades are not in some way anomalous, Walker 

finds DLMC "J 51 kpc in agreement with equation (1.1). However, Gatewood et al. 

(1990) have recently measured the distance to Pleiades by trigonometric parallax 

and find a distance of 150 ± 18 pc. Thus it remains possible that the distance to 

the Pleiades has been underestimated. Moreover, until there are direct distance 

measurements to several open clusters, one cannot be certain that the Pleiades are 

not anomalous. 

The second method cited by Walker is the supernova-ring method, which is also 

open to some question. It rests on a number of model-dependent assumptions. In 

this paper, I analyze the assumptions underlying the supernova-ring method to de­

termine the strength of their observational and theoretical support. I show that the 

only assumption that lacks strong support is that the ring is intrinsically circular. 

I re-analyze the distance determination both with and without this assumption. 

When the ring is assumed to be circular, I find a distance to the LMC of 

DLMC = 53.2 ± 2.6 kpc (circular ring). (1.6) 

The difference between this value and that given by Panagia et a1. [eq. (1.1)] is 

due to two approximately equal effects. First, I have made a more careful analysis 

of how the observations of the ring should be combined to obtain a best estimate 

of the distance to SN 1987A. Second, I have adopted the value used by Jacoby 

et a1. (1992) for the relative distances of SN 1987A and the center of mass of the 

LMC. I show that when the assumption of a circular ring is relaxed, equation (1.6) 

is transformed from a best estimate into an upper limit. That is, if the ring is 

eccentric, the distance estimate can only be reduced. 
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2. The Panagia et al. Measurement� 

The measurement of the distance to SN 1987A by Panagia et a1. (1991) rests 

on three assumptions: 

1)� The observed ring of illuminated gas is indeed a thin planar structure, rather 

than a density caustic in a three-dimensional (e.g. ellipsoidal) structure. 

2)� The caustics in the ionized emission curves seen at ...., 83 and ...., 413 days 

identify the extreme light travel times for the paths going from supernova to 

ring to observer. 

3)� The ring is actually circular and appears elliptical because it is seen in pro­

jection. 

Briefly, the argument given by Panagia et a1. is as follows. For a circular ring, 

the light travel times to the far and near sides of the apparent minor axis (less the 

light travel time directly from the supernova) are 

d ( ..)t+� = - 1 + smt , (2.1)
2c 

and 

d ( ..)t_� = - 1- SInt , (2.2)
2c 

where d is the physical diameter of the ring and i is the angle of inclination of the 

plane of the ring to the line of sight. The first term in these equations is the travel 

time from the center to the circumference of the ring. The second term is the travel 

time from the plane of the ring to the plane of the sky at the ring circumference. 

From these equation (2.1) and (2.2), one finds 

(2.3) 

Alternatively, one may estimate the angle of inclination from the apparent axis 
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ratio of the ring 

(2.4) 

where 8± are the major and minor angular diameters of the apparent ellipse. 

Panagia et al. model the light curves to determine t± and find 

t+ = 413 ± 24 days, L = 83 ± 6 days. (2.5) 

From these and equation (2.3), they make one measurement of the inclination, 

i = 420 ± 50. They then use the ellipse diameters measured by Jakobsen et 0.1. 

(1991 ), 

8+ = 1!'66 ± O!'03, 8_ = 1!'21 ± O!'03, (2.6) 

and equation (2.4) to make another measurement of the inclination, t _ 430 ± 

30. (I estimate smaller error bars on both inclination measurements. See § 3). 

They combine the two measurements to form an average value (i) = 42°.8 ± 2°.6, 

substitute into equation (2.1) to find d, and compute the distance to SN 1987A, 

dj8+ = 51.2 ± 3.1 kpc. 

Before proceeding to an examination of the assumptions that underlie this cal­

culation, 1 note that equations (2.1) and (2.2) play symmetric roles in the distance 

derivation and either might have been used in the penultimate step to derive the 

physical ring diameter, d. If Panagia et 0.1. had used equation (2.2), they would 

have found djB+ = 54 kpc, almost 1 (T higher than the value derived using equation 

(2.1). 1 return to this point in the next section. 

1 now turn to the assumptions. The ring appears planar, but as Dwek & Felton 

(1992) have emphasized, one should be cautious. Planetary nebulae are ellipsoidal 

shells and often appear as ellipsoidal rings in projection. Crotts & Heathcote 

(1991) have measured the redshift of the ring emission and find expansion along 

the minor axis, but essentially no expansion along the major axis. This is conllistent 

with a ring seen with an inclination vector that is approximately aligned with the 
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apparent minor axis, but not with an ellipsoid. Dwek & Felton (who appear to 

have originally preferred an ellipsoid model) now agree that a planar structure is 

favored. They adduce a second argument that the ring structure is indeed planar, 

namely that there is a delay of'" 80 days between the supernova. and the beginning 

of the fluorescent emission. This is characteristic of an open topology such as a 

ring tilted to the line of sight, but not a closed topology such as an ellipsoid. To 

these, let me add a third argument. The hourglass appearance of the "Napoleon's 

Hat" nebula near SN 1987A (Podsiadlowski, Fabian, & Stevens 1991) shows that 

gas has indeed been blown out along the directions orthogonal to the ring. Only if 

an ellipsoid had formed after the Napoleon's Hat nebula, could it have maintained 

its structure. Finally, Panagia et al. argue that there appears to be very little 

light coming from the interior of the ring. This argument could be made into a 

quantitative test as follows: While the density contrast of the ring produced by an 

ellipsoid in projection can be arbitrarily high, the integrated light should be roughly 

equally distributed between the inner 3/4 ofthe area and the outer 1/4. One could 

fit the supernova. and the ring to the point spread function (PSF) and the PSF 

convolved with a ring, subtract them off, and see whether the inner 3/4 of the ring 

really accounts for 1/2 of light. However, at this point, the other arguments seem 

so compelling that this additional test appears unnecessary. 

Another non-planar geometry should also be considered. The ring may well 

be a "belt" around the center of the hourglass in the Napoleon's Hat nebula. In 

this case, there might be a near-cylinder of gas extending out of the ring plane. 

However, since the ring is inclined at '" 45 0
, such a cylinder would appear almost 

exactly like a ring with finite thickness in the plane, and the effect on the timing 

arguments would likewise be almost exactly the same. Thus, to the extent that 

this geometry is allowed, it has no special consequences for the problem. 

Once the geometry is established as planar, the meaning of the caustics seen 

in the light curve (see Fig. 2 of Panagia et a1.) is clear: A burst of light incident on 

an arbitrary, smooth, convex, reflection nebula will always produce caustics in the 

light curve at the extreme times of reflection. The supernova. ring does not reflect 
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but rather fluoresces, and therefore the (theoretical) reflection light curve mud be 

convolved with a transfer function which characterizes the fluorescence. However, 

only a pathological transfer function could create, destroy, or move the caustics 

in the underlying reflection light curve. The one possibility that really must be 

considered is that the fluorescence has an extremely slow start up and peaks very 

quickly well after the burst of illumination. While it may be possible in principle 

to construct physical models which would have this slow start-up character, one 

would then expect the transfer function to have a broad peak, at least of order the 

start-up delay and probably longer. However, the data show an extremely rapid 

drop immediately following the second caustic, which excludes such a broad peak 

in the transfer function. (Note that to the small extent this effect is allowed by 

the light-curve data, it would tend to cause one to overe~timate the distance to the 

supernova. ) 

I conclude that two of the three assumptions used by Panagia et al. are well 

founded in the data. The third assumption, that the ring is intrinsically circular, 

is less secure. Panagia et al' give two arguments for circularity. First, they say 

that "it is phy~ically very hard to produce a high-eccentricity structure centered on 

its source." Second they point to the agreement in the inclinations as calculated 

from equations (2.3) and (2.4) as being consistent with the hypothesis of a circle. 

Neither of these arguments is compelling. 

The fact that the inclinations as calculated from equations (2.3) and (2.4) are 

consistent with a circular ring does not make the ring circular. I construct explicit 

counter-examples below. The fact that we cannot think of a mechanism to produce 

an ellipse does not mean that an ellipse is excluded; nature is more clever than 

we are. There are several reasons for believing that the ring may have a low or 

moderate eccentricity. First, the gas in the ring is clumpy which may result from 

inhomogeneities in the medium into which it is expanding. Such inhomogeneities 

might deform an initially circular ring to be elliptical. Second, the model of the 

Napoleon's Hat nebula constructed by Podsiadlowski et a1. (1991) shows the axis 

of the hourglass inclined at 19° to the apparent axis of the ring. This could be 
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---------------- -

because the ring actually lies in the plane perpendicular to the hourglass but has 

intrinsic ellipticity that makes it appear to lie in an inclined plane when the ring is 

treated as circular. Alternatively, the ring may not lie in the hourglass plane, but 

then the very presence of two planes shows that some physical process has broken 

the symmetry about the ring axis. This same process may have produced some 

ellipticity in the ring. Thus, there is no reason to exclude a priori the possibility 

that the ring has some intrinsic ellipticity. I therefore investigate to what extent 

the distance determination may depend on the ellipticity of the ring. Before doing 

so, I re-examine the circular case. 

3. Calculation For A Circular Ring 

Here I recalculate the distance to SN 1987A under the assumption that the 

ring is circular. In doing so, I introduce most aspects of the formalism that will be 

required for the non-circular case. The value that I derive for the distance is 1.5 

kpc larger than that derived by Panagia et al. 

First, I define four new multiplicative combinations of the measured quantities, 

t x =Jt+L = 185 ± 9 days, (3.1 ) 

ex == Je+e- = 1!'42 ± 0!'02, (3.2) 

L 
11t =- = 0.201 ± 0.019, (3.3) 

t+ 

and 

8_ 
119 =- = 0.729 ± 0.022 (3.4)

8+ 

The correlation coefficients of t x with 11t and ex with 119 are 0.15 and 0.3 re6pec­

tively. The four other pairs of quantities are independent. 
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From equations (2.1) and (2.2), one finds that t x = (d/2c) cos i. Equation (2.4) 

implies that Ox = (d/ DSN h/cos i, where DSN is the distance to the supernova. 

Hence, 

DSN = DxG(i), (3.5) 

where 

t xDx == c- = 22.6 ± 1.1 kpc, (3.6)
Ox 

and 

G(i) = 2Jseci. (3.7) 

Under the assumption that the ring is circular, the inclination can be measured by 

two independent methods. First, from Tf9 using equation (2.4), 

(3.8) 

and second from Tft, using a transformation of equation (2.3), 

(3.9) 

In both cases, I have determined the error bars by using the chain rule. Since the 

methods are independent, they can be combined to yield i = 42.°5 ± 1.°4, or 

G(i) = 2.329 ± 0.025 (3.10) 

The quantities D x and G(i) are virtually independent (correlation coefficient '" 

0.01), so the errors in equation (3.5) can be combined in the standard way to yield 

DSN = 52.7 ± 2.6 kpc. (3.11) 

Note that this result is 1.5 kpc larger than that found by Panagia et al. based on 

the same data. The reason for the difference is that by using equation (2.1) alone 
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rather than averaging over equations (2.1) and (2.2), Panagia et a1. in effect gave 

higher statistical weight to some data than others. By transforming to the new 

variables, t x , (Jx, 1ft, and 1f9, I have been able to carry out the calculation with all 

measured quantities weighted according to their observational errors. 

To find the distance to the LMC, Panagia et a1. assumed that SN 1987A lies 

1.1 kpc further from us than does the center of mass of the LMC. However, Jacoby 

et a1. (1992) point out that the eastern side of the LMC disk is known to be closer, 

so that if (as seems plausible) 30 Dor lies in the plane of the LMC, then SN 1987A 

lies 0.5 kpc closer than the LMC center of mass. I adopt this correction and find, 

DLMC = 53.2 ± 2.6 kpc. (3.12) 

4. Calculation For An Ellipticailling 

The formalism developed in the previous section for a circular ring can be 

generalized to the elliptical case. The resulting equations can be solved analytically 

in limit of small eccentricity, e, that is for e2 <t:: 1. To first order in e2, the 

distance measurement is unchanged from the circular case. To second order, a 

finite eccentricity moves the LMC closer by a fractional amount,..., 0.4( e2)2. This 

systematic effect becomes significant (relative to the statistical errors) when e2 ~ 

0.3, that is, for axis ratios bja ::; 0.85. As far as I know, no measurements exclude 

such axis ratios. A numerical solution confirms these analytic results. 

Suppose that the ring has major and minor semi-axes, a and b, and that the 

unit vector normal to the plane in which it lies is inclined to the line of sight at 

an angle i. Let ¢ be the position angle of the minor axis relative to the line in 

the plane which is maximally inclined to the line of sight. The geometry of the 

ellipse is then characterized by its distance DSN, its physical scale, a, and three 
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dimensionless parameters, i, <p, and e where, 

b2 

e2 = - 1 -2' (4.1 ) 
a 

Projected on the sky, the ellipse will appear as a smaller ellipse with projected 

major and minor semi-axes a' and b'. The product of these axes is proportional to 

the area of the projected ellipse, that is 

a'b' = ab cos i. (4.2) 

After Borne algebra, one finds that the ratio of the axes is 

~: = f(i,<p,e) - VP(i,¢,e) -1, (4.3) 

where 

f(i, ¢, e) = ~ (~ +~) (seci +cosi) +~ (~ - ~) (seci - cos i) cos(2¢). (4.4) 

Let 'Y be the position angle of an arbitrary point on the ellipse. The distance 

from the supernova to that point is then given by 

(4.5) 

The light travel time from the supernova to an arbitrary point to the observer (less 

the time of travel directly from the supernova) is 

T( .. )t = - 1 + SIn 1. cos 'Y . (4.6) 
c 

This equation may be rewritten as 

yQ; (. A. )t = --g t, 'f" e, 'Y , (4.7) 
c 
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where 

2e
9(i,¢J,e,;) =Ji+l(l +sinicos;) 1 - 2 _ e2 cos(2; - 2¢J), (4.8) 

and 

e= (a - b)2 "" e
4 

(4.9) 
2ab 8 

The caustics in the light curve occur at extreme times, which are found by differ­

entiating equation (4.7), and setting dt/ d; = O. Thus, the caustics lie at the; 

which solve the equation, 

2 

sin; = e 2 [cscisin(2; - 2¢J) + sin(3; - 2¢J)]. (4.10) 
2-e 

This equation has at least two solutions. The cases that have more than two 

solutions correspond to light curves with more than two caustics. Since the actual 

light curve has only two caustics, I will ignore the more complicated case8~ I label 

the coordinates of the two solutions ;:1::, and define 9± by 

9±(i,¢J,e) =9(i,¢J,e,;±).� (4.11) 

The measurable quantities defined in the previous section may now be written 

in terms of the parameters of the ellipse: 

yQ; 
t x = -J9+9-, (4.12) 

c 

L1 vf;j r-: 
17x = 2- V cos t, (4.13)

D SN 

*� Numerically I find that the regions of parameter space with more than two caustics are 
adjacent to the regions that are permitted with low probability. They have lower inclinations 
than the permitted regions. 
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9­
TJt =� -, (4.14)

9+ 

and 

718 =� f - Jp - 1, (4.15) 

where f and 9± are given by equation (4.4) and (4.11). Hence, one may generalize 

equation (3.5), and write 

DSN� = DxG(i,<p,e), (4.16) 

where 

. ff±OSl�G(l, <p, e) == 2� --. (4.17) 
9+9­

The problem can now be solved by using the observed values of TJt and 719 together 

with equations (4.14) and (4.15) to constrain the ellipse parameters i, <p, and e. 

For the allowed parameters, one may evaluate G and so the distance DSN using 

equations (4.16) and (4.17). 

Of course, it is impossible to evaluate the three ellipse parameters with only 

two equations. Even with perfect data there would be one degree of degeneracy 

in the allowed range of these parameters. However, the primary interest is not 

in these parameters per se, but only in the distance that they imply. In order to 

explore the nature of this degeneracy and its implications for DSN, I begin with 

a perturbative solution to the equations, expanding in the parameter € = e2 . For 

simplicity, I assume that the data are perfect and that the measured values of TJt 

and 719 imply the same inclination i o when a circular ring is assumed [see eqs. (3.8) 

and (3.9)]. 
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4.1. ZEROTH ORDER 

From equation (4.10), 1+,0 = 0 and 1-,0 = 7r. The position angle <P is indeter­

minate, that is all values are equally acceptable. For purposes of continuity with 

the first order equation, however, I choose <Po = 7r/4, cos(2<Po) = O. From equation 

(4.8),9+,09-,0 = cos2 io. 

4.2.� FIRST ORDER 

From equation (4.10), 

1+,1 = -~(cscio + 1), 1-,1 = 7r + ~ (csc io - 1). (4.18) 

Note that for an elliptical ring, the caustics do not come from opposite sides of the 

ring, that is 1-.1 - 1+,1 f:. 7r. From equation (4.8), I find 

9-,1 = 1 - sini1 (4.19) 
1 + sin iI'9+.1 

which implies that to first order there is no change in the inclination, 

(4.20) 

Equations (4.4) and (4.15) require that 

f. 2 .
cos(2<Pd = -4(2 csc to - 1), (4.21) 

and I choose tPl ,..., 7r/4. With this result, equation (4.8) implies that 

2� .
9+,19-,1 = cos to·� (4.22) 

Inserting equation (4.22) into equation (4.17) and comparing with equation (3.5), 

we see that to first order in e2 , the distance determination is independent of ec­

centricity. 
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4.3. SECOND ORDER 

Substituting the first order parameters into equation (4.8) yields 

1 + esc to 2 2 .2')
9+,29-,2 = ( 1 + 4 € cos to· (4.23) 

This implies that to second order the distance is reduced by a fraction 0.40 e4 : 

(4.24) 

4.4. GEOMETRICAL INTERPRETATION 

There are two observational constraints on the geometry of the ellipse: the 

apparent axis ratio and the timing ratio. Suppose that these are consistent with 

a circular ring at inclination i. Any ellipse that lay at this inclination and had 

its minor axis aligned with the inclination would have a larger apparent axis ratio 

than the observed one. If the major axis of the ellipse were aligned with the 

inclination, the apparent axis ratio would be smaller. Hence, there will always be 

some intermediate position angle where the ellipse has the same apparent axis ratio 

as a circle with the same inclination. The above perturbative analysis tells us that 

this occurs when the position angle is 7r /4+ O( e2 ), that is, halfway between the 

axes. For an ellipse in this position, the timing ratio is very similar to the circular 

case, exactly the same to first order in e2 . The reason is that while the positions 

with extreme delay times no longer lie along a diameter, the change in the light­

travel times from the diametric case is second order in the angular displacement 

and hence O(e4 ). For an ellipse with position angle </> = 7r/4, the relevant linear 

dimension for light travel is J a'lI sec i. Since the physical scale of the ring is 

judged from the de-projected area 7rD~N8+8- sec i, one infers essentially the same 

distance for an elliptical ring as one would for a circular ring. As the eccentricity 

becomes large, however, two effects come into play. First, the light path deviates 
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considerably from a straight line across the ellipse. The observed time delays are 

therefore longer than would be the case if the two extreme trajectories lay along a 

single straight line. One therefore overestimates the distance to the supernova if 

one assumes a circular ring (for which the light paths do lie along a single straight 

line). Second, the position angle that reproduces the observed projected geometry 

lies slightly closer to the major axis than to the minor axis. Hence the projected 

diameter which most closely approximates the extreme light trajectories is slightly 

larger than 2)a' 11. The light travel time is therefore longer than it would be for a 

circular ring having the same apparent size. This also causes one to overestimate 

the distance. 

4.5. NUMERICAL SOLUTION 

It is straight forward to solve equation (4.10) numerically. One may then 

find the predicted values for 71t and 719 for any set of ellipse parameters i, 4>, and 

e. The likelihood of the data given the model can be evaluated by assuming 

gaussian measurement errors. In principle, one should multiply this probability by 

the prior probability of the set of ellipse parameters, and sum over the whole of 

parameter space. The prior probability of the orientation parameters i and 4> is well 

determined: We have no prior knowledge of how the ellipse is oriented, so the prior 

distribution is uniform in sin i and in 4>. By contrast, there is no generally agreed 

upon prior probability for the eccentricity. For example, Panagia et al. believe that 

it is Uphysically very hard" to produce high eccentricity. I gave several arguments 

why the ring might be eccentric. I avoid this controversy by summing over the 

orientation angles, but reporting the differential distribution in eccentricity. 

Figure 1 shows likelihood contours for G/ Go versus e2 , where Go = 2.33 is the 

best estimate of G for the circular case (e2 = 0). The contours form a sharply 

peaked ridge. For a given eccentricity, the measurement uncertainty of G is small 

compared to the uncertainty of D x , and it can therefore be ignored. However, the 

systematic uncertainty due to the possible eccentricity of the ring may be impor­

tant. To find the most likely value of G, one must estimate the prior probabilities 
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Figure 1. Likelihood contours as a function of e 2 and G/Go, where e is the ec­

centricity, G(i,,p, e) is a parameter which enters the determination of DLMC, and 

Go = 2.33 is the value of G for a circular ring (e = 0). Likelihoods are averaged 

uniformly over the angular variables sin i and ,p. The contourll m = 1, 2, and 3 are 

shown as 60lid curves, where exp( _m2/2) = L/Lmax and L is the likelihood. The 

second order perturbation result, G/Go = 1 - 0.40 e4 is shown as a da.6hed curve. 

Note that for fixed e2 , the uncertainty in G is small compared to the uncertainty of 

D x , the other quantity that enters DLMC. 

2of e2 and sum over this variable. H one believes that the probability of e ~ 0.2 is 

extremely low, then G = Go. However, even if one relaxes all prior constraints on 

e2 , one still obtains a hard upper limit, 

G < Go = 2.33 (4.25) 

Substituting this equation into equation (4.16), I find an upper limit on DSN I and 
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therefore an upper limit on DLMC of, 

DLMC < 53.2 ± 2.6 kpc, (4.26) 

5. The Age Of The Universe 

As I discussed in the introduction, the determination of the distance to the 

LMC is a crucial step in deciding whether there is indeed an age.of-the-universe 

problem because the parameter Hotge ex DLii~. Recall that for typical values 

currently discussed for Ho and tge (derived under the assumption that DLMC = 

50 kpc), we have Hotge '" 1.2. Table 1 lists values of a = Hoto for a few sets of 

cosmological parameters. In this table, n is the density of the universe and ~ is 

the cosmological constant, both expressed in units of the closure density. 

TABLE 1 

Age Parameter For Model Universes 

a =Hoto 
0.0 0.0 1.00 
0.1 0.0 0.90 
0.2 0.0 0.85 
0.3 0.0 0.81 
1.0 0.0 0.67 
0.1 0.9 1.28 
0.2 0.8 1.08 
0.3 0.7 0.96 

Equation (4.26) allows at the 2 u level a 17% increase in DLMC relative to the 

presently accepted value. According to Table 1 and equation (1.5), this is sufficient 

to accommodate most models of the universe, but not a closed universe (n = 1). 

I conclude that the Clage-of-the-universe" problem is a genuine problem only 

if n = 1. For other models of the universe, the uncertainties in DLMC alone are 

sufficient to account for the apparent discrepancy. 

19 



Even though there is at present no clear age problem, such a problem might 

re-emerge in the future. First, continued measurements of the distance to the 

Pleiades and other nearby open clusters may constrain DLMC to a value lower 

than its present 2 u upper limit. Second, recall that the Galactic calibration of 

RR Lynes yields DLMC '" 44 kpc, which is "" 17% closer than the supernova ring 

method. As it stands, this result is troubling and needs to be explained. However, 

the result would be substantially more troubling if DLMC were near its 2 u upper 

limit. Third, Lee (1992) has recently argued that the Galactic bulge is "" 1.30yr 

older than the globular clusters and has suggested that the central parts of larger 

galaxies may be even older. If Lee's results are confirmed, the age of the universe 

would be even larger than presently estimated. Finally, observational evidence 

might develop that n = 1. These are all important questions which should be 

addressed. Nevertheless, based on the present best estimate (and 2 u upper limit) 

for DLMC, there is no age problem. I reach this conclusion even without considering 

additional uncertainties in Ho (Jacoby et al. 1992) and tgc (Walker 1992). 
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