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Abstract 

We have studied a model star cluster enclosed in a spherical container 
with reflecting walls. The stars form a mixture of two species with one 
free parameter, the ratio of the stellar masses of the two species. With 
this parameter fixed, there are two other dimensionless free parameters 
which can be varied in order to perform thought experiments in a lab
oratory containing bottled star clusters. These two parameters can be 
chosen from a large number of candidates, such as the total energy and 
temperature (in units of their Jeans values), the density contrast be
tween center and edge, the ratio of core radius and container radius, or 
the ratio of total masses in both species. In a space spanned by three 
or more of these parameters, the two-parameter family of solutions of 
isothermal equilibrium takes on highly complicated shapes, often lead
ing to multivalued constraints on their projections, as we illustrate with 
a number of examples of special interest. 

Although less realistic than Spitzer's analysis of his mass stratifi 
cation instability in an open system, our model has the advantage of 
not involving any approximation. Our main results are: 1) a thermody
namic discussion of the series of equilibria which can be a . lined; 2) a 
quantitative verification of the range of validity of Spitzer's analytic ap
proximations; 3) an interpretation for the series of equilibria in Spitzer's 
analysis, with a determination of the limits to their physical realization. 
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1. INTRODUCTION
 

Two-body relaxation is the dominant internal mechanisms driving the evolution of a 
star cluster. It is caused by the cumulative effects of many two-body encounters, most of 
them wide and therefore weak. In the limit in which all stars have equal mass, relaxation 
tends to drive the stellar velocity distribution function towards a Maxwellian. This goal, 
however, is unattainable since the stars in the high-velocity tail escape from the cluster. 
The resultant leak prevents the cluster from ever establishing equilibrium, and the resultant 
heat loss leads to a contraction of the central parts of the cluster. After the density 
contrast between center and halo has increased sufficiently, the negative heat capacity of 
self-gravitating systems causes the contraction to become unstable on a central relaxation 
time scale, much shorter than the half-mass relaxation time scale. This gravothermal 
catastrophe would result in the attainment of an infinite central density in a finite time, 
if two-body relaxation was the only mechanism. In reality, a variety of other physical 
processes will prevent such an unphysical singularity to be reached. For recent reviews, 
see Spitzer (1987), Binney and Tremaine (1987), Hut (1991). 

In the more realistic case, in which stars can have a range of individual masses, the 
evolutionary picture becomes more complicated. Before escape can significantly affect the 
structure of the star cluster, mass segregation begins to dominate the initial phases of the 
evolution. If the stars are born with comparable velocities, as seems likely from a common 
origin in molecular clouds, they are initially distributed in a similar way throughout the 
cluster. However, in the attempt to reach equipartition of energy, the more massive stars 
tend toward lower velocities, which causes them to drift toward the center of the cluster. 
The increased central density in due time then leads to the onset of the gravothermal 
catastrophe. 

The simpler problem, in which stars have equal masses, has been studied in great 
detail in a variety of analytical and numerical approximations, as well as through a variety 
of simulations. The more realistic problem in which stars have a realistic mass spectrum, 
in contrast has received much less attention since it is much less amenable to analytic 
approximations. However, now that large-scale simulations are becoming increasingly de
tailed (ef. Hut 1991 and references therein), the problem of understanding the underlying 
basic physical processes, such as mass segregation, is becoming more acute. With this 
motivation, we have re-investigated the analytic treatment given by Spitzer (1969). His 
discovery of the mass stratification instability, in the simplest case in which stars come in 
only two species, has been the most important contribution to our basic understanding 
of mass segregation. It has been our goal to shed more light on the character of the ap
proximations he used, as well as to gi"e an overall description of the behavior of a general 
two-mass system. 

1.1. Construction of Equal Mass Models 

When all stars are given equal mass, it is possible to build many elegant equilibrium 
models for the simplest type of star clusters, which are spherically symmetric, and isotropic 
in their velocity distribution. For a star cluster, an equilibrium model is defined as a model 



which is in equilibrium on a dynamical time scale, and only evolves slowly on a time scale 
of two-body relaxation. In spherical isotropic models, the stars have a phase space density 
in the form of a one-dimensional distribution function j(E), dependent only on the energy 
of the stars (see Binney and Tremaine 1987 for a recent discussion of star cluster models). 

Spherical isotropic models are relatively easy to construct numerically. Examples 
are the one-parameter families of polytropes and King models. There are even several 
analytical solutions known, where we define a model as analytical if we can write the 
potential and density explicitly as a function of the radius, and in addition the distribution 
function as an explicit function of the energ,-y. If we allow infinite mass, and in addition a 
centrally diverging density, the simplest analytical model is the singular isothermal sphere. 

Requiring a finite total mass, and finite central density, we have two classes of solu
tions, for finite and infinite radial extent. An example in the first class is the polytrope with 
polytropic index n = 1, discovered by Ritter (cf Chandrasekhar 1939). Examples with a 
non-zero density out to infinity are: the polytrope with polytropic index n = 5, discovered 
independently by Schuster and Emden and called the Plummer model (cf Chandrasekhar 
1939); and the isochrone model discovered by Henon (1960). Interestingly, both of these 
models were recovered as members of a single family of analytical models by Dejonghe 
(1984), together with a third member, described in his eq. (31). In addition, he presents a 
whole series of other analytical models in the form of a one-parameter family, as described 
in his eq. (36) [Note that our lanalytical models' are called 'complete analytical models' 
in his terminology]. 

Requiring a finite total mass, but allowing infinite central density, while excluding a 
central mass singularity (no 'black hole'), we can call Jaffe's (1983) model analytical, if we 
allow Dawson's integral into the class of Iknown' function. More recently, an analytical 
model resembling Jaffe's, but with a simpler distribution function, was given by Hernquist 
(1990). 

1.2. Stability and Evolution of Equal Mass Models 

On a relaxation time, all star clusters are unstable. While two-body encounters at 
tempt to establish an isothermal distribution function, this attempt is thwarted by unavail
ability of the high-energy tail of a Maxwellian velocity distribution: stars moving faster 
than the escape velocity will leave the system. The presence of a tidal galactic field will 
speed up the escape process, by lowering the potential barrier. In addition, tidal shocking 
by passing molecular clouds (for galactic clusters) or passages through the disk or near 
the galactic bulge (for globular clusters) will lower the lifetime of star clusters. Recent 
discussions of the evolution of the galactic globular cluster population, which include envi
ronmental effects of the galaxy, are gi\"en by Aguilar, Hut & Ostriker (1988), and Chernoff 
& Weinberg (1990). 

In the context of our present paper, we will concentrate on the idealized problem of 
an isolated star cluster in which all stars can be treated as point masses. We refer to the 
clear and concise monograph by Spitzer (1987) for a general introduction to the subject 
of dynamical evolution of star clusters. Another recent introduction can be found in Ch. 
8 of Binney and Tremaine (lD87). For a short review of globular cluster dynamics, see 
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Elson et aI. (1987). Here we will just mention a few of the salient points of the evolution 
of an idealized cluster model, consisting of a self-gravitating collection of point masses all 
of which have the same mass. For a more complete overview of the literature, we refer the 
reader to the above three references. 

As a result of the escape mechanism, the outer regions of such a star cluster, where 
the escape velocity is lower, will have a lower effective temperature. Two-body relaxation 
will respond with a heat flow from the inner regions outward. This loss of energy causes 
the central regions to contract, and as a result the temperature will increase. The latter 
effect is a consequence of the virial theorem, applied to the inner area. Such an application 
is valid, even though the virial theorem is a global relation valid for the system as a whole, 
since the inner regions have a much smaller relaxation time than the outer area. This 
implies that we can regard the outer area as approximately frozen on the time scale of 
evolution of the central part of a star cluster. When the increase in temperature in the 
central regions is higher than the increase in the surrounding regions, the contraction will 
accelerate. 

The instability of the inner dense regions of a star cluster can be studied in an idealized 
thought experiment by placing the inner regions in a spherical container. The walls of the 
container reflect the outgoing stars back in again, but the mass and therefore the gravity of 
the container wall is neglected. An even simpler model for such a system can be obtained 

lif we replaced the stars by an ideal gas. Antonov (1962) analyzed such a self-gravitating 
isothermal ideal gas, surrounded by a fixed spherical adiabatic wall. He found that this 
system was stable as long as the central density p(O) was not too high, compared to the 
density near the edge of the container, peR), where R, the radius of the boundary. In that 
case, any small perturbation in the heat distribution throughout the system would decay, 
and the system would return to the original isothermal state. However, he found that 
there exists a critical value for the central density, Per(O) = 709p(R). For p(O) > Per(O), 
the system is linear unstable against perturbations, and a small initial heat flow outwards 
from the center will caused an increasingly rapid contraction. 

Antonov's instability was studied in more detail, and illustrated with many physical 
considerations and different types of thought experiments by Lynden-Bell & Wood (1968). 
They introduced the term 'gravothermal catastrophe' for the ever-accelerating contrac
tion of the inner regions, leading to a gravitational collapse. Inagaki (1980) and IpseI' & 
Kandrup (1980) showed that the instability criterion derived by Antonov for a gas sphere 
also holds for a stellar dynamical system. Cohn (1980) performed a numerical simulation 
in which he followed the evolution of a star cluster in a Fokker-Planck approximation. 
He convincingly showed the operation of the gravothermal catastrophe, leading to a self
similar contraction in the late stages of the collapse. A detailed analysis of the self-similar 
contraction in a gas sphere model was given by Lynden-Bell & Eggleton. Recently, Makino 
and Hut (1991) studied the detailed behavior of the collapse of the core in a linear stability 
analysis of a gas sphere for different types of heat conduction. 

1.3. Two-]..t[ass ]..t[ode1s 

No analytic models have yet heen constructed for any genuine two-mass model, or 
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any other set of several masses or of a continuum mass distribution. Of course, trivial 
models can be found easily by taking any equal-mass model, and interpreting an arbitrary 
fraction of the mass density as being made up of particles which have different masses but 
which all share the exact same velocity distribution. But beyond this, it would be highly 
desirable to have non-trivial models, either for an isothermal equilibrium between two or 
more mass species, or for any other non-trivial set of velocity distributions. 

Numerical models can be constructed rather easily, by taking the prescription for the 
distribution function of an equal-mass model, and generalizing it in some straightforward 
way to apply to several mass groups. Poisson's equation now has to be solved for the 
simultaneous presence of all these mass groups, which together determine the run of the 
cluster potential. One often-used example is that of multi-mass King models, in which 
each species is assigned the same (pseudo- )temperature (King 1989, Pryor et al. 1989). 

The dynamical evolution of multi-mass systems is complicated, and cannot be approx
imated by a series of thermal equilibrium models. Starting from initial conditions in which 
all stars are drawn from the same velocity distribution, the more massive stars do tend 
to slow down, but at the same time they tend to aggregate in the collapsing core which 
then decouples thermally from the rest of the system while undergoing a modest local rise 
in temperature. For reviews, and references to the literature, see Spitzer (1987) and Hut 
(1991). 

1.4. Our Approach 

In this paper we aim at a deeper understanding of Spitzer's mass stratification in
stability. To do so, we truncate our star cluster by imposing a rigid boundary at a finite 
radius. Stars simply bounce off from this adiabatic wall, which allows neither stars nor 
heat to leak out. While this prescription is of course artificial, it has two great advantages: 
it allows the system to remain in equilibrium, and it allows us to solve numerically for all 
thermodynamic variables to arbitrary accuracy. 

In §2 we briefly discuss the analogous situation of an equal-mass system enclosed 
within an adiabatic wall, before extending the description to a two-mass system. We then 
graphically illustrate the two-paranleter family of equilibrium distribution, in order to get 
some insight in the complex and non-linear relationships between the different extensive 
and intensive thermodynamic variables. Our work extends earlier investigations of general 
two-component isothermal spheres by Taft" et al. (1975), and of enclosed two-component 
isothermal spheres by Saito oS.: Yoshizawa (1975), Lightman (1977), and Yoshizawa et al. 
(1978). An alternative approach to the construction of finite two-mass models is to drop the 
requirement of strict isothermality, by introducing lowered Maxwellian distributions. One 
example of such approach is the construction of King models, mentioned above. Merritt 
(1981) showed that in this way counterexamples to Spitzer's mass stratification instability 
could be found, but he also pointed out that they do not apply to realistic stellar systems, 
a point which was further clarified by Katz & Taft" (1983). 

In §3 we first discuss the different approximations made in Spitzer's (1969) approach. 
We then compare this results with the analogue situation in our bounded models. In order 
to highlight the main qualitatiw fcatures, we introduce a toy model in which the density 
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is very much simplified. Using this model, we show the physical interpretation of the 
different regimes discussed in Spitzer's approach. Specifically, we discuss which fraction of 
his parameter regime can be realized. In §4 we sum up, and discuss our results. 

2. TWO-MASS MODELS IN A REFLECTING CONTAINER 

2.1. The Equal-Mass Case 

Before we discuss the general multi-mass case, let us briefly review the equal-mass 
case. When we solve Poisson's equation for an isothermal, self-gravitating ideal gas, we 
find a dependence of density on radius as plotted in Fig. 1 (a more detailed discussion 
will be given in §2.2). Looking at the shape of the figure, there is essentially only one 
isothermal sphere, apart from scaling in mass and radius. But when we enclose our system 
in a spherical container, we introduce a new scale length, in the form of the radius R of 
the container, besides the core radius re • As a result, we obtain a one-parameter family of 
physical solutions, the properties of which were studied in great detail by Lynden-Bell & 
Wood (1968). 

In Fig. 1, the core radius is defined as 

9 
(1)

41l"Gp(0),8 , 

where ,8 is defined as a measure for the inverse temperature: 

m 
(2),8 = kT· 

In these equations, G is the gravitational constant, p(O) is the central density, m is the 
mass of an individual particle, k is Boltzmann's constant, and T is the temperature of 
the system. For further motivation for these definition, see the more detailed discussion 
following Eqs. (4, 10). 

In Fig. 2 we present this family of solutions in an energy-temperature diagram, fol
lowing the approach of Binney So: Tremaine (1987). The quantities plotted along the axes 
are made dimensionless, through the addition of the proper powers of M, the total mass of 
the system (the mass of the walls is neglected). The total energy of the system is denoted 
by E. In astrophysical terms, we have plotted the energy and temperature in units corre
sponding roughly to the Jeans energy and the Jeans temperature. In these units, energies 
or temperatures much larger than unity imply that the system approaches an isothermal 
gas, for which self-gravity is unimportant. An example is provided by point A in Fig. 2, 
for which E ==: ~ ~ kT. 

In Fig. 1 the left-most vertical line corresponds to the position of the confining sphere 
which corresponds to this near-ideal-gas point A. The radius of the wall is less than a core 
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radius, and therefore the density contrast between center and edge of the gas distribution is 
less than a factor three. \Vhen we move the confining wall out to larger radii, for example 
to position B in Fig. 1, the density contrast increases significantly. This is a clear sign that 
self-gravity has now become important. Indeed, the corresponding point in Fig. 2 indicates 
a negative energy, which implies that the total gravitational potential energy exceeds the 
kinetic energy in magnitude. Moving the wall out further in Fig. 1, to points C and D 
causes the system to move correspondingly along the curve in Fig. 2, ultimately reaching 
the center of the spiral when the wall recedes to infinite distance. 

The spiraling behavior in Fig. 2 of the series of isothermal equilibria, which appears 
for large density contrasts within our container, is a consequence of the slightly wavy 
character of the run of the density in Fig. 1. The latter in turn is a consequence of the 
nature of Poisson's equation, being a second-order differential equation (see Chandrasekar 
1939 for a detailed analysis of this behavior). In order to highlight the essential qualitative 
characteristics of the isothermal sphere, we present in Appendix A a toy-model in which 
the spiraling behavior is absent, while the property of a negative heat-capacity (see below) 
is maintained. The results of this toy-model are plotted in Fig. 3. 

There are many interesting thermodynamic thought experiments which one can per
form, when one views the enclosing sphere as a black box, or better a black bottle, con
taining initially an equilibrium isothermal sphere. One can picture the sphere to be filled 
either with an ideal gas or with a stellar dynamical system of stars. Apart from the need 
of a somewhat larger container (and a larger lab) in the second case, the physics is the 
same, as long as all changes in external parameters are made on timescales which are very 
long with respect to the internal relaxation time scales. 

One set of experiments could be done by placing the bottle in a heat bath, correspond
ing to the statistical description of a canonical ensemble. Specifying the temperature in 
Fig. 2, the energy could then be read off from the graph. The part of the curve descending 
past A would be stable, up to the point B. No isothermal equilibria would be available for 
lower temperatures, and the system would undergo core collapse. 

Alternatively, one could use an adiabatic wall, corresponding to the statistical descrip
tion of a microcanonical ensemble. Here once could descend through a series of equilibrium 
states, while changing the total energy in small decrements at each step. In this case the 
temperature would be the dependent variable. Stability will be insured until we reach the 
point C, below which no isothermal equilibrium with lower energy can be found (Antonov 
1962). At this point we would again encounter core collapse. Note that the heat capacity 
of the system as a whole has become negative along the trajectory BA. For more details, 
and a host of other thought experiments, see Lynden-Bell & Wood (1968). We now pro
ceed to the more general case in which we allow different species of particles to be present, 
each with a different particle mass. 

2.2. The l\fulti-:Mass Case 

Let us again take a isothermal, spherically symmetric distribution of stars, enclosed in 
a reflecting spherical wall, with radius R. At first we will choose R very large, much larger 
than the region under consideration. And since we will only study equilibrium situations 



in the present paper, we can replace our stellar dynamical system by that of an ideal gas. 
In the following we will summarize the most important expressions describing the various 
equilibrium states. For more details, we refer the reader to Binney & Tremaine (1987) and 
Spitzer (1987), as well as to previous papers on two-mass models (e. g. , Taff et al. 1975, 
Saito & Yoshizawa 1976, Lightman 1977, Yoshizawa et al. 1987). 

To start with, let us take a general multi-mass system, with N different types of stars, 
so that each star has a mass mi, with ml < m2 < ... < mN. All stars are drawn from 
distributions sharing the same temperature T. The mass density Pier) of star of type i as 
a function of radius r depends on the gravitational potential .,p(r) as 

Pier) = ei p(O)exp[-,Bi .,p(r)]. (3) 

Here we have introduced a measure ,Bi for the inverse temperature: 

mi 
(4),Bi = kT' 

The central density Pi(O) is expressed as a fraction ei of the total density: 

Pi = ~iP(O), (5) 

which implies Ei ei = 1. 
The gravitational potential can be written as the sum of contributions from the indi

vidual mass components: 
t,ber) = L .,pi(r), (6) 

where each contribution satisfies Poisson's equation 

(7) 

with G denoting the gravitational constant. Eq. (7) must have as a boundary condition 
.,pHO) =d.,p;/dr = 0, based on symmetry. In addition we will choose as a gauge the extra 
boundary condition V\(O) = O. Thus tNr) measures the height of the potential well as 
measured from the bottom, and t,!·;(r) measures the separate contribution from stars of 
type i. 

The mass of all the stars of type i, enclosed within radius r, follows from integrating 
Eq. (7) as 

r 

Af;(r) = 411" l p;(i)i2 di = ~ .,p~(r). (8) 

We will now rewrite Poisson's Eq. (7) in terms of dimensionless quantities. First we 
define a formal measure of inverse temperature 

13 = Lmi/kT. (9) 
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This is done purely for mathematical convenience, since there is no physical significance to 
summing up the individual particle masses. If there is one type of star with a mass much 
larger than that of the other types, /3 measures mainly the contribution of that heaviest 
species of stars, /3 ~ /3N, even if the total mass Mi in all the stars of that type would be 
very small. Second, we introduce a scale length r c as a measure of a core radius: 

9 
(10)

47rGp(O)/3 ' 

in analogy with the King radius (cf. Binney & Tremaine 1987), to which this expression 
reduces in the limit N = l. 

We now switch to a dimensionless radius 

(11) 

and a dimensionless potential 
<1>( x) = /31/;(r). (12) 

Similarly, we can define the individual potential contributions to be 

(13) 

which implies <I>(x) = Ei <l>i(X). 
Finally, we can relate /3 to the individual measure of inverse temperature /3i by intro

ducing another formal measure of relative mass 

J.li =mil L mj, (14) 
j 

an expression which again only has a bookkeeping function, and no physical meaning. It 
is only given here to allow us to connect the individual masses with individual inverse 
temperatures: 

(15) 

In terms of the above quantities. the dimensionless version of Poisson's equation now reads: 

(16) 

2.3. Tbe Two-l\1ass Case in tbe Limit J.l2 ~ J.ll and ~2 ~ ~l 

Consider a system with only two species of stars, which we will address as heavy and 
light stars. In addition, let the individual heavy stars be far more massive than the light 
ones, i. e. J.l2 ~ J.ll, or 11-2 =::: 1. Furthermore, let us start with the case in which the heavy 
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stars dominate the central mass density: P2(0) ~ Pl(O). In this extreme case, the halo of 
the heavy stars will still be contained within the core of the light stars. We can distinguish 
four different radial regimes: an inner core for the heavy stars, an inner halo region in 
which the heavy star density starts drop fast but still dominates the local mass density, 
an outer core region in which the local star density is dominated by the nearly constant 
density of the light stars, and an outer halo in which the light star density starts dropping 
fast as well. 

To be more specific, let us introduce a measure for the core radii r ci for the individual 
mass speCIes: 

9 
rei = (17) 

in analogy with Eq. (10). In addition, we will need an extra intermediate radius in the 
case that the heavy stars dominate the central density, to denote the radial position at 
which the local mass densities in the two species become comparable. As we will see below, 
in §2.3.3, a measure for this cross-over radius is given by the mixed expression 

(18) 

It is convenient to introduce an extra dimensionless parameter 

y =r/rcl (19) 

for measuring length in units which are taylored to the distribution of the lighter particles. 
The equivalent parameter for the heavy parameters to first approximation the same as our 
global parameter x defined just before Eq. (16): r/re2 ~ r/re = x. 

Finally, for our two-mass system we can introduce a more compact notation for the 
mass ratio 

(20) 

and the ratio of central densities 

(21) 

To summarize, we list the two approximations we have made in our limiting case of 
interest, followed by some of their their consequences 

Jt ~ 
1 

-
PI 
~ P2 ~ 1, (22) 

1 
~ ~ -

~1 
~ ~2 ~ 1, (23) 

;3 ~ 82 = P/31 ~ /31 (24) 
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p(O) ~ P2(0) = (PI (0) ~ PI (0) (25) 

r e ~ r e2 = ((J.1.)-1/2 rcl « reb (26) 

x ~ «(J.1.)1/2 y ~ y. (27) 

Finally, we have the following identity: 

_ ~1/2 -1/2 
r e -.. re2 = J.1. reI' (28) 

2.3.1 The regime r < rc2 

We are now ready to analyze the four regions. In the innermost region, the inner core, 
we have J.1.l cP(x) ~ J.1.2 cP(x) ~ 1, and Eq. (16) gives us a good parabolic approximation for 
both potential contributions, while the densities in both species remain roughly constant: 

for x ~ 1. (29) 

2.3.2 The regime rc2 < r < r e 

In the second region, the inner halo (of the heavy particles), the heavy stars shows 
the characteristic'" x-2 density drop-off of an isolated equal-mass isothermal sphere, with 
the associated logarithmic potential. Well outside the core radius of the heavy stars, the 
coefficients 9/2 given below follow directly from a substitution of a logarithmic potential 
in Eq. (16). Meanwhile, the density of the lighter stars remains roughly constant (for a 
analysis of the deviations from constant density, see §3). Therefore, the contribution of the 
light particles to the potential continues to raise quadratically. To sum up, in this regime 
we have J.1.2 <p}(x) ~ 1 ~ J.1.2 cP2('1'). which leads to: 

for 1 ~ x ~ .Ji., (30) 
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2.3.3 The regime T e < T < Tel 

In the third region, the outer core (of the light particles), the density of the heavy 
particles drops off exponentially. A physical reason for the onset of this very steep drop 
in density is that the potential is dominated by the light stars, which in turn requires 
that PI(X)/P2(X) :» 1. The mathematical reason can be seen from Eq. (16), where the 
suppression of the heavy stars by the light potential requires J1.2 <PI (x) :» 1. The first 
condition results in T:» V2/3Te , while the second gives T:» .j2J3Te • 

Obviously, the difference of a factor of V3 between the two above expressions is ir
relevant, and in any case we could have chosen other factors than unity in the two :» 1 
inequalities. Neglecting these factors, both criteria simply require T :» T e • We have used 
this freedom in the exact defini tion of T e in such a way as to keep the analogy with the 
definitions of Tel and T c2 as close as possible. 

Meanwhile, the density and potential contribution of the lighter stars continue as 
before, but are now expressed in the more natural variable Y rather than x. To sum up, 
we now have J1.I <PI(X) ~ 1 ~ J1.2 <PI (x), which leads to: 

<PI(Y) ~ ¢(y) ~ ~ J1.y2 
2 

¢2 (y) ~ In (~ ~ ) 
for (31) 

PI(y) ~ p(y) ~ Pl(O) 

P2(y) ~ p(O) exp ( - ~ J1. y2) 

2.3.4 The regime r > rel 

In the fourth region, the outer halo, the light particles now show the characteristic 
"'oJ y-2 density drop-off of an isolated equal-mass isothermal sphere, with the associated 
logarithmic potential, and the same coefficients of 9/2 found before in §2.3.2. For the heavy 
particles, the previous exponential drop-off now changes into a power-law. The expression 
below is given here only for completeness, because the exponential cut-off factor, inherited 
from the previous regime, makes the contribution of the heavy stars outside the core of 
the lighter stars utterly negligible. To sum up, we have J1.I ¢l(X):» 1, and we get: 

c/>l(Y) ~ ¢(y) ~ II In (~y2) 

c/>2(Y) ~ In (~() 
for y:» 1. (32) 

Pl(Y) ~ p(y)::: 9
2 

pdO) y2 
1 

('>1)"P2 (y) ~ p( 0 ) =9 y2 
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2.4. General Two-Component Models 

Because of the rapid increase of the gravitational potential of the light particles, the 
density distribution of heavy particles has an effective cut-off at the radius of T ~ Te • The 
total mass of the heavy particles can therefore be approximated by Eq. (8): 

r; 2 reI ()

M 2 ~ G 1P2 Te = G f32 • (33) 

This approximation is accurate to within 30%, for the whole range ~ > 2, as we determined 
from a comparison with direct numerical integration. 

A natural scale with which to compare M 2 is the core mass of the light particles: 

(34) 

where the value of TJ ~ 0.517 follows from a numerical integration of the density profile 
of the regular isothermal sphere. Using this scale, we obtain the following dimensionless 
expression characterizing the total mass in heavy stars: 

(35) 

when JI. = Jl.2/ Jl.1 ~ 1 and ~ = ~2/6 ~ 1. In this expression we have neglected the 
numerical factor 1.3 on the right hand side, since the accuracy of Eq. (34) is of a comparable 
30%, making the last digit not significant. 

For each choice of stellar components, i. e. for each choice of the stellar mass ratio 
JI., we can integrate Eq. (16) to obtain the gravitational potential and the density profiles 
of two-component isothermal gas spheres. The only free parameter left is the ratio ~ of 
central densities. The results are plotted in Figs. 4 and 5. Fig. 4 shows the density profiles 
Pi(r). The ratio JI. between the heavy particle mass and the light particle mass was chosen 
to be 100, 10, 5, and :2 in Figs. a, b, c, and d, respectively. 

Each of the panels in Fig. 4 is a superposition of six different models, each of which 
is characterized by a different value of (, the ratio of the central densities in the heavy 
and the light components. The short-dashed line applies to ~ = 108 , the dotted line to 
~ = 106 

, the short dash-dotted line to ~ = 104, the long-dashed line to ~ = 102 
, the solid 

line to ~ = 1, and the long dash-dotted line to ~ = 10-2
• For each ~ value, two lines are 

drawn, one each for the density Pi(r) for the two components i = 1,2. The densities are 
normalized with respect to the central density PI (0) in the light component. The radii are 
normalized with respect to the core radius reI of the light particles, defined formally in 
Eq. (17). As shown in Fig. 4a for J1 = 100, the density distribution of the light component 
is not noticeably affected by the presence of the heavy component, even for very high ( 
values. Note also that the hea",y particles are confined to a radius comparable to the cut-off 
radius r e = JI.-I/2 rc1 = 0.1 rei, as we derived in the analysis of §3.3. 

The shape of the potential well ¢>i( r) for the four different particle mass ratios is 
shown in Fig. 5. In each panel \"e have assumed a central density ratio of ~ = 10. The 
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full lines indicate the total potential ¢>(r), while the separate contributions of the light and 
the heavy particles is indicated by the dotted and dashed lines, respectively. The dotted 
lines are vertically shifted by the amount of ¢>2((0). With this shifted representation, the 
total potential approaches that of the heavy particles for r ---. 0 and that of the light 
particles for r --t 00. Note that for large J.L values the total potenti~ is hardly affected by 
the presence of the heavy particles. For example, in Fig. 5a we can see that the parabolic 
approximation for the potential contribution of the lighter particles, which continues till 
rlrel """ 1, will be nearly everywhere in the core far larger than the total contribution of 
the heavier particles (of order J.L = 100 at the lighter particle core radius, according to the 
analysis in §3.3). 

2.5. A Spherical Container 

The previous models have had infinite extent, and infinite total mass in the lighter 
component. We now proceed to finite models by imposing the constraint that we only 
investigate our models for radial values r < R. The physical interpretation of this cut
off value is that we consider the whole stellar system to be enclosed within an spherical 
container, i. e. a sphere with a perfectly reflecting wall. 

2.5.1. The Virial Theorem 

As we discuss in greater length in Appendix C, for each species i we can write a virial 
theorem as 

L lVjj(R) = Bi(R) - 2Kj(R), (36) 
) 

which relates the potential energy contribution at the left with the kinetic energy of the 
species i at the right. Here the boundary terms Bj(R) is related to the boundary pressures 
Pj(R) by 

(37) 

while the kinetic energy in each species i is given by 

(38) 

The potential energy sum in Eq. (36) can be interpreted as the energy released during 
the infall of particles of species i, if we build up our system from the core outwards. Each 
term Wij gives the contribution to this sum of one of the species j: 

(39) 
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Note that for two different species, the total interaction energy between these two species, 
in the form of their contribution to the total binding energy of the whole system, is given 
by the sum Wij + lVji' although Wij =1= Wji (see Appendix C, Eq. C17). 

Adopting units in which G = R = 1 and using the Virial theorem (Eq.[36]), we can 
write the total energy of the system as 

E = L Ki(R) +L Wij(R) =L Bi(R) - L Ki(R). (40) 
i,j 

With the dimensionless boundary radius Xb = RITe, we can rewrite the total mass as (cf. 
eq.[8]) 

(41) 

and the system energy can be calculated from Eqs. (3,8, 10, 37, 38, 40, 41): 

(42) 

where 
. _( _ 1I1i (xb) _ 4>H Xb) 

(43)
.\ I x b) - 111(X b) - 4>' (X b) • 

We scale the temperature relative to the stellar mass of the light particles, T1 - f3I 1


kTlml' which can be written as 

T1 1 
(44)

AI(x b) - JL 1 Xb 4>'(x b)' 

Effectively, we have here chosen to express our results in units in which k = ml = 1. 

2.5.2. Exploratory Investigations 

Previously, in §2.1 and Fig. 2, we have studied an equal-mass system under laboratory 
conditions: we considered our sphere to have either a fixed energy (as in a micro-canonical 
ensemble, with an adiabatic boundary), or to be kept at a fixed temperature (as in a 
macro-canonical ensemble, with a boundary which admits heat transport). In the present 
case, we have one extra degree of freedom, due to the presence of the second mass species, 
as we saw from a comparison of Fig. 1 and 4. The simplest way the visualize this extra 
freedom is to treat each graph in Fig. 4 separately, i. e. to choose fixed values for the central 
density contrast (. 

Note, however, that this approach is not a physical laboratory equivalent of our anal
ysis in Fig. 2, since there is no way to reach inside the sphere in order to keep the central 
density ratio constant upon a variation of energy or temperature. Instead, this analysis 
is a purely mathematical one. in order to make us more familiar with the behavior of the 
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two-parameter family of solutions to the isothermal two-mass system. In §2.5.3 we will 
come back to more realistic laboratory experiments. 

In Fig. 6, we plot several energy-temperature diagrams for our two-mass system, one 
each for the mass ratios j1. = 100, 10,5, 2. In each diagram we show the separate graphs 
for each of the six different choices for the central density ratio ewhich we used earlier 
in Fig. 4. For each choice of j1. and e, there is a remaining choice for the dimensionless 
boundary radius Xb. 

For Xb - 00, the central region containing the heavy stars becomes very small com
pared to the enclosing sphere. As a consequence, the total mass in heavy stars becomes 
negligible. Indeed, using the results of §2.3.4, we get B(00) = -2 E(00) = 0.5 M 2 , and 
T1(00) = 0.5 M, which is the same result as we obtained in §2.1 for an equal-mass system 
(cf Fig. 2). Indeed, at the left-hand side of all panels of Fig. 5 we see the lines spiraling 
in to the same limiting point. 

For Xb - 0, the self-gravity of the stars becomes negligible, and we reach the limit of 
an ideal gas. As in Fig. 2, the corresponding part of the graphs extend beyond the upper 
right hand side, asymptotically reaching the ideal gas relation E = 3MT/2. What is 
strikingly different, in comparison with the equal-mass case, is the much more complicated 
transition between a very concentrated system and the ideal gas limit. In many cases, the 
graphs make a detour through the positive energy area before plunging to negative energy 
once more, but this time at higher T1 / AI, in order to complete one or more extra loops, 
before finally rising towards the ideal-gas limit. 

This complicated behavior can be readily explained from the run of the densities, as 
is illustrated in Fig. 7 for the particular case j1. = 10 and e= 104 • This figure is analogous 
to Fig. 1 for the equal-mass case, although we have chosen the positions of the letters A, 
B, C, and D somewhat differently, in order to make contact with Fig. 6b, where the same 
letters are plotted. 

Let us investigate what happens when we start with a very large boundary radius, 
beyond the right-hand side of Fig. 7. In Fig. 6b that would correspond to the inner part 
of the left-most spiral. Shrinking the boundary past point D in Fig. 7 would decrease 
the density contrast in the light stars between center and edge, and therefore move the 
system up towards positive energy, past point D in Fig. 6b. Moving further past point C, 
the presence of the heavy stars begins to make themselves felt, as can be seen in Fig. 7 
from the the fact that we are beginning to approach the radius r e at which both densities 
become roughly equal. 

By the time we reach point B, the heavy particles dominate in density already at the 
edge, and much more so in the inner parts. Therefore, the total mass in light stars has 
become negligible. Comparing the heavy star distribution in Fig. 7 with an equal-mass 
system (cf Fig. 1), we see that point B is still well inside the spiral part at negative 
energies, and we have to go all the way to A before we escape from the spiraling area into 
the ideal gas limit. Indeed, this expected behavior is replicated in Fig. 6b. We now also 
understand why the topmost two graphs do not dip towards a second looping area: these 
correspond to e= 0.01 and ~ = 1, which excludes the possibility that the heavy stars will 
dominate the total mass for small values of Xb. 
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2.5.3. Laboratory Experiments 

We are now in a position to switch to a more realistic, physical setting. Rather than 
keeping econstant, we keep the total mass in each species constant. In other words, we 
prepare our system by choosing the total number of heavy stars and the total number 
of light stars. After throwing these inside our sphere, we close our container, and wait 
till isothermal equilibrium is established (or, better, we gently inject our stars, with the 
required Maxwellian distribution of energies, through a narrow opening in the container). 
We now have no longer any control over the central density ratio e. The only freedom left 
is the variation of the total energy and/or temperature, just as in the equal mass case, 
since the laboratory setting is identical when we consider the container as a black box 
(black bottle). 

The results of a number oflaboratory experiments is reported in Figs. 8-11. Note that 
we often encounter a qualitatively similar behavior as in the equal-mass case (c/. Fig. 2). 
However, there are several differences. Sometimes the spiral part of the solution is not 
realized, because that part of the corresponding trajectories in Fig. 6 would have required 
a different total mass ratio as what was given to the system in the beginning. Note also 
that in many cases the total energy remains positive, for all values of the temperature 
(Lightman 1977). This generally happens when the total mass in the heavy component 
exceeds Spitzer's limit, but not by such a large extent that the light component becomes 
negligible. In this case a removal of the boundary sphere would have left the whole system 
unbound, which is another way in which the unphysical nature of such an isothermal 
system, violating Spitzer's bound, shows up. 

3. SPITZER'S INSTABILITY 

We now turn to a discussion of the mass stratification instability, derived by Spitzer 
(1969). Starting with a fixed background of lighter stars, Spitzer studied the effect of 
introducing a small fraction of heavier stars. As we have seen in the preceding section, for 
a sufficiently large mass ratio the equilibrium distribution of heavy stars is almost entirely 
confined within the core of the lighter stars. Approximating the potential of the latter 
as parabolic, based on their near-constant density, Spitzer showed that a small amount of 
heavier particles can be accommodated in the bottom of that potential well, as long as 
the binding energy of the heavy stars does not become too large. He gave a quantitative 
estimate for the limiting value of the total mass allowed in heavy stars. If the mass 
contained in heavier stars would exceed this value, the self-energy of these stars would 
prevent equilibrium to be attained. In this case, he argued, the heavier stars will continue 
to contract. As a consequence, the temperature of the heavy stars will continue to increase, 
excluding the possibility of reaching equilibrium with the cooler lighter stars. 

In this section we will start with a reinterpretation of Spitzer's instability. In §3.1, 
instead of comparing the ratio of the total amount of mass in heavy and light stars, we will 
focus only on the core region of the lighter stars. We recast Spitzer's result in such a way 
that the outer region drops out altogether, paving the way for a replacement of the halo by 
a rigid boundary. In §3.2 we construct a toy model, in the form of an idealized algebraic 
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density distribution which allows analytic treatment, instead of the numerical solution of 
Poisson's equation. We show how the qualitative results of Spitzer follow directly from this 
model, and we indicate the region of applicability of Spitzer's original derivation. Finally, 
in §3.3 we give the full numerical results of our system, an isothermal two-mass model 
enclosed in a spherical container. 

3.1. Local refonnulation of Spitzer's TI-eatment 

For a discussion of the mass stratification instability, we refer to Spitzer (1969) for 
the original description, or to Spitzer (1987), Ch. 3.4, for a somewhat more streamlined 
description, which we will follow in this section. Equations quoted below as Eq. (53-50), 
etc., refer to the corresponding equations (3-50), etc., in Spitzer (1987). 

The condition for the existence of an isothermal equilibrium configuration is given by 
Eq. (53-55) as 

x < Xmar = 0.16 (45) 

where X has been defined as 

X == M2 (m2 ) 3/2 . (PhdPh2)1/2 
(46)

M I	 ml = (1 + OtPhdph2)3/2 

Here M i and mi are the total mass and the individual star mass in species i, respectively, 
with i = 1 for the lighter stars, and i = 2 for the heavier stars. The half-mass density Phi 
is defined for each species as the mean density within the half-mass radius Thi, the radius 
enclosing half the total mass in that species. The parameter Ot is given by Eq. (S3-52) as 

Ot ==	 ~ pdO) (T;2) . (47)
4 PhI T h2 

Here PI (0) is the central density of the lighter stars, and T m 2 is the root mean square 
value of the radial position T for the heavy stars. Spitzer uses a Maxwellian approximation 
for the velocity distribution in a parabolic approximation for the potential well, to obtain 
Tm2/Th2 ~ 1.13. This value can be derived as TmdTh2 = .j3fi/x, where x ~ 1.088 is the 
solution the equation lex) = 1, with lex) given by 

8 IX 2 .. 2 4 x 2 rf
l(x)	 = ft }0 oS e - ds = - ft xe - + 2e x = 1, (48) 

which results in TmdTh2 ~ 1.12G. 'Ve have tested this value for the extreme mass ratio of 
p. = 100. For <~ 1, we find the same result to within 1% accuracy. For <= 1, we find a 
slightly larger value of 1.157. For much larger values, ~ ~ 1, we find values in the range 
1.3 -	 1.6. 

A number of other approximations have been made in earlier steps in Spitzer's deriva
tion. For example, the gravitational self-binding energy W22 of the heavy stars was esti
mated by using the approximation c ~ 0.4 in Eq. (51-10): 

lV22	 = c GAl? (49) 
Th2 

18
 



This is indeed a good approximation within the level of accuracy of the overall discussion, 
as we have verified by direct numerical integration of isothermal two-mass models. We 
find for J.l > 5 that 0040 < c < 0.50, for all values of e, from e~ 1 to e~ l. 

By far the most serious approximation made by Spitzer stems from the uncertainty in 
the shape of the halo of the light stars. The parameter a depends mostly on the choice of 
density contrast p(0) / p( r h) between center and half-mass radius of the star cluster. For a 
Plummer model, which has a lower density contrast than most globular clusters, a = 7. If 
we take a more strongly concentrated model with p(O)/perk) ~ 100 - 1000, corresponding 
to some of the more concentrated clusters observed, we would have a ~ 160 - 1600. 

This is clearly the most drastic of the different approximations made. However, even 
the uncertainty of nearly three orders of magnitude in a does not affect the physical 
significance of Spitzer's treatment, as we now demonstrate by reinterpretation in terms of 
core parameters only. 

Substituting rm2/rh2 = 1.126 in Eq. (47), we can write 

(50) 

If we substitute this in Eq. (46), we can introduce a local substitute for X in the form of 
Xc, with 

Xc = M2 (m 2) 3/2 _ ( Ail )(~) 1/2 (Pl(O)) 1/2 (1 + 1.585 PI (0)) -3/2 (51)
M CI mI AiCl PI (0) Ph2 Ph2 

where Mel is defined in Eq. (34) as the core mass for the isothermal distribution of the 
light stars in the limit in which the heavy stars can be neglected. 

Note that the first two factors in Eq. (51) scale in such a way that the dependence 
on central concentration nearly drops out. To illustrate this, we can even take the limit of 
an infinite isothermal sphere for the mass distribution of the light particles. In this case, 
we can use the results of §2.3.4, together with Eqs. (8) and (34), to obtain 

1/2
All ~ _? 11 (52)

( .\I ] ) ( PI (0) ) - _.e 

This leads us to an alternatiYe formulation of the mass stratification instability. In
stead of limiting the ratio of total masses, Eq. (46), we limit the total mass in heavy stars, 
expressed as a fraction of t!l(' cart-' mass of the light stars: 

/ /
A12 2 = 2.1 (Pl(0))1/2 (1 + 1.6 P1 (0))-3 2(m 2 )3 (53)

Xe =Ate1 m 1 Ph2 Ph2 

Here we have chosen to use the constant derived in Eq. (52), which is the natural limit for 
an advanced state of core collapse. If we would be more interested in a less concentrated 
star cluster, we could take the example of a Plummer model, for which the constant at the 
right hand side of Eq. (52) is 2.46. 
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The physical interpretation is as follows. Since the heavy stars couple dynamically 
only with those light stars which are well withing the core, the stability criterion should be 
independent of the mass distribution of the light stars in the halo. Thus, the only natural 
scale to compare the upper limit for the total mass in heavy stars is the core mass of the 
light stars. As a consequence, a shrinking of the core reduces the total mass of the heavy 
stars in proportion to the decrease of the core mass. 

3.2. Toy Model in Enclosing Container 

We are now in a position to compare Spitzer's (1987) derivation directly with our 
models. But before doing so, we first simplify our models in order to highlight the basic 
physical structure. The resulting family of toy models is defined by the density profiles 
plotted in Fig. 12a. For the lighter stars, the core density is taken to be constant up to 
the core radius rel, with a drop-off oc r-2 outside the core. For the heavier stars a similar 
approximation has been applied, with the extra feature that a drop-off steeper than oc r- 2 

has been approximated by a cut-off. 
Specifically, we have: 

for r ~ rel; 
(54)

for r ~ reI' 

and 
for r ~ r e2;
 

for r e2 ~ r ~ r e; (55)
 
for r ~ reo
 

There are two qualitatively different configuration. Either the heavy stars dominate 
in mass density in the center (dash-dotted line), which implies ~ ~ 1, in which case the 
cutoff occurs around the point where both densities become comparable, or the light stars 
dominate already in the center (dashed line), in which case the heavy stars are given a 
constant density distribution until they reach the cut-off. In the latter case, there are only 
two regimes described by Eq. (t2): with re2 = r e the intermediate regime is not present. 

What are the relations between the three parameters reI, re2 and r e ? In the accurate 
models presented in §2.3, we found reI = (~J.l)1/2re2 and r e = e/2 r e2' In our approximate 
model defined by Eq. (tI, t2), we expect these relations to hold approximately. However, 
since Eq. (tI, t2) are not exact, we have some freedom in our definitions of the relations 
between rel, r e2 and r e. Rather than repeating the definitions of §3.2 exactly, we can 
use this freedom to guarantee that our toy model obeys the virial theorem exactly. The 
resulting calculations are somewhat lengthy, and are therefore presented in Appendix B. 

Our toy model is a reasonable approximation for models with J.l ~ 1, which can be 
verified directly by a comparison of Figs. 4a and 12a. Let us now compare the behavior 
of our toy model, enclosed in a spherical container, with that of Spitzer's treatment of a 
free cluster. We keep the radius R of the container and the temperature T constant, as 
well as the total mass M I and the central density PI (0) of the light stars. As an adjustable 
parameter, we only yary tlw central density ratio P2(0)jpI(0). Fig. 12c shows the resulting 
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total mass M2 in heavy stars, expressed in the units used by Spitzer, for the specific choice 
I-l =m2/m I = 100 and T1 =kT/rnl = 0.45M. 

For low central densities in heavy stars, P2(0) ;S PI (0), we have MdMI ex: P2(0)/PI (0). 
This increase flattens off soon after the heavy stars begin to dominate the central den
sity, reaching the maximum value M2/M1 = 1.88 X 10-4 for P2(0)/PI (0) = 5.59, where 
Ph2/PhI = 20.8. Thereafter, M 2 declines slightly, by about 10%. This qualitative behavior 
is in accord with Fig. 12a: in the limit P2(0)/PI (0) --+ 00, the descending part of the dash
dotted line, where most of the mass in heavy stars resides, remains nearly constant, since 
the cut-off radius r e is only weakly dependent on the central density (see Appendix B). A 
similar behavior is clearly visible in Fig. 4a. 

When we plot the total mass ratio as a function of the ratio of half-mass densities 
Ph2/PhI, we obtain Fig. 12b. The variation is entirely due to that of Ph2, since the density 
distribution of the light stars is fixed in our toy model. We see that even for P2(0)/PI (0) --+ 

00, the density ratio reaches a finite value Ph2/PhI --+ 35.9. This is again a consequence of 
the fact that the bulk of the mass distribution of the heavy stars in Fig. 12a is not affected 
in taking this limit. 

We are now in a position to make a direct comparison with Spitzer's approximate 
analytic derivation. In Fig. 12d we have plotted Eq. (46), corresponding to Eq. (3-54) 
of Spitzer (1987). As we discussed above,the parameter a is highly model-dependent. 
Spitzer's preferred choice is a = 5.6, in the middle of the range for polytropes with poly
tropic index n between 3 and 5. We have plotted three curves to bracket his choice, for 
a values of 4, 6, and 8, all corresponding to cluster models with relatively little central 
concentration. 

It is clear that Fig. 12d gives a very reasonable qualitative agreement with Fig. 12b, 
especially for the value a = 4. However, the extreme right hand sides of the curves in 
Fig. 12d are unphysical, and cannot correspond to equilibrium states attainable for our 
toy model, no matter how high the central density in the heavy stars. This does not effect 
the validity of Spitzer's derivation, since the curves are not affected around the position of 
the maximum value of the mass ratio. 

3.3. Real Afodels in Enclosing Container 

Returning to our numerical solutions of the exact equations for isothermal equilibrium, 
we can repeat the analysis of the previous section. The results are given in Fig. 13 for 
T1 = 0.45 M. The results are plotted for the solutions of the lower energy branch shown in 
Fig. 6, thus, the system contains mostly the light component, and is self-bounded (E < 0). 
In the first panel, apart from the damped wave shape at the right hand side, the run of the 
total mass ratios is very similar to the corresponding panel in the case of our toy model, 
Fig. 12d. Fig. 13b shows how our alternative treatment of the Spitzer instability, in terms 
of the core mass rather than total mass in light stars (§3.1), indeed gives very similar 
results. The behavior at the limit ~ --+ 00 confirms our analytic estimate in Eq. (35). 
Fig. 13c shows how insensitive the half-mass density in light particles is. Even an increase 
in central density ratio of eight orders of magnitude leads to a decrease in PhdPI (0) of 
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only 15%. This provides justification for the approximation made in our toy model, where 
this ratio was artificially held constant. 

The comparison with Spitzer's analysis is finally given in Fig. 13d. A comparison 
with Figs. 12a,c shows that the toy model has indeed captured the basic physics, and 
that the downward sloping lines at the right-hand side of Fig. 12d cannot be reached. 
The spiraling behavior of Fig. 13d is related to the slightly wavy character of the correct 
drop-off in density, visible in the right-hand side of Fig. 4a, and related to the fact that 
Poisson's equation is a second-order differential equation (Chancirasekar 1939 gives an 
analytic approximation for this behavior in the limit of large radii). 

The last two panels of Fig. 13 reinforce our conclusions. Fig. 13e shows again how 
the approximation of a fixed light star density profile is quite accurate, with only a small 
change in light star core radius expressed as a function of the fixed radius R of the enclosing 
boundary. Fig. 13f is given here in conjunction with Fig. 13c in order to provide complete 
information, enabling the reader to complete the translation from Fig. 13a to Fig. 13d step 
by step. 

For comparison, a similar analysis for less extreme mass ratios leads to Figs. 14-16. 
Notice that already in Fig. 14b, the flattening off of the M 2 in units of the light star 
core mass M I is lost. The reason can be gleaned from Fig. 4b. Rather than reaching a 
limiting density profile for P2(0)/PI (0) -+ 00, the density ratios at any fixed point inside 
the core of the light stars keep creeping up noticeably. This is caused by the break-down 
of the constant-density approximation for the density in the light stars. While the heavy 
stars are virtually all confined to the core of the light stars for J.l = 100, this is no longer 
strictly the case for J.l = 10, and even less so for lower J.l values, as can be seen from Figs. 
4c,d. Consequently, the total mass ratios keep growing in Figs. 14b, and even more so in 
Fig. 15b. Fig. 16b also tends to a steep growth at first, but then stops abruptly, because 
no equilibrium solutions are present for J.l = 2 with the required T1 / M = 0.45 for evalues 
larger than about 1/3. This follows from Fig. (6d). 

Another indication that the toy model approximations, valid for high J.l values, break 
down for J.l ;S 10 can be seen in Figs. 14c and 15c, where the half-mass density in light 
stars begins to drop sharply with respect to the light star central density. Fig. 16c shows 
the opposite behavior. The reason here is that the potential of the heavy component is no 
longer a small perturbation at TdAf = 0.45, as can be seen in Fig. 4d, where the notion 
of a core radius for the light stars loses its meaning for e~ l. 

The reason that all lines in Fig. 16 are truncated follows from the behavior of the 
lines in Fig. 6d. There we see that for relatively low values of T1 / M, such as our case 
in which 10g(TdM) = -0.347, only relatively low values of ecan be realized; higher e 
curves all are located in the higher temperature region of Fig. 16d. To give at least some 
impression of the complexity of discussing laboratory experiments, we have added Fig. 17 
to show the effect of slightly raising the temperature, to T1 / M = 0.49, corresponding to 
10g(Tl / M) = -0.310. 

In this last case, an interesting new phenomenon occurs: there is a gap for 1.6 < e< 
3.4 which can be traced back to the counterintuitive behavior of the lines in Fig. 6d. In 
that figure, we have added the line ~ = 2.5 to illustrate how our temperature choice in 
Fig. 17 avoids this line. Thus, what makes the gap possible is the fact that the line for 
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~ = 2.5 does not lie neatly in between the lines for e= 1 and e= 100. Ultimately, this 
in turn is a consequence of the fact that for evalues of order unity we cannot analyze the 
system qualitatively as being centrally dominated by one of the two mass groups. 

Finally, comparing Spitzer's analysis with our models for lower J.t values, we find from 
Figs. 14d and 15d that the total mass ratios behave in a way qualitatively similar as for 
higher J.l values, the break-down of our toy model approximations notwithstanding, as long 
as we choose a temperature value Td1l1 such that we allow high density contrast models 
to form. 

4. CONCLUSIONS 

Multi-mass systems are notoriously difficult to treat analytically, even in approxima
tion. The discovery by Spitzer (1969) of the mass stratification instability was a remarkably 
creative tour de force. It has provided a central guideline for our understanding of the evo
lution of realistic, multi-mass star clusters. In its qualitative features, this instability has 
been observed in a variety of large-scale simulations of star clusters. However, mass segre
gation always competes with the overall dynamical evolution of the star system as a whole, 
since both processes occur on time scales comparable to the two-body relaxation time. As 
a result, it has been difficult to investigate the instability in a quantitative fashion. 

We have presented an alternative form of a quantitative investigation of the mass 
stratification instability. We have enclosed our star cluster within a spherical adiabatic 
wall, thereby giving the cluster the opportunity to reach exact isothermal equilibrium. 
The set of all possible equilibrium solutions, apart from scaling in mass, length, and time, 
forms a two-parameter family (for a fixed ratio of stellar masses). If we consider our 
cluster-in-a-bottle as a piece of laboratory apparatus, it is natural to fix the total mass in 
each of the two species of stars. 'Vith this constraint, we are left with a one-parameter 
family of equilibria. This enabled us to plot relations between the various thermodynamic 
quantities describing the system, such as the temperature and the energy. The results are 
given in §2, and plotted in Fig. 6. 

We then investigated in detail in §3 the various assumptions made by Spitzer in his 
derivation of the mass stratification instability. We started by recasting Spitzer's analysis 
into a local form, by using only quantities defined inside the core of the light stars. This 
enabled us to bypass the largest uncertainty, caused by the freedom in choosing the shape 
of the halo of the light stars. "Te then introduced an toy model, containing the essential 
features of a two-mass model but with a highly simplified set of density distributions. 

Within the context of our toy model, we showed how Spitzer's analysis of a maximum 
mass in heavy stars can be interpreted as a one-dimensional series of isothermal equilibrium 
solutions. This series is physically attainable up to, but not substantially past, the point 
were the maximum amount of heavy stars is realized. This behavior is shown in Fig. 12b. 
Spitzer's original derivation is plotted in Fig. 12d. In both cases, low values of Ph2, the 
density of the heavy stars as averaged over the region enclosed by the half-mass radius rh2, 

correspond to small values of 1112 , for a (nearly) fixed distribution oflight stars. Increasing 
Ph2 first leads to higher M 2 , until a maximum is reached. 
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The physical reason for the existence of a maximum mass M 2 , as explained by Spitzer, 
is that the self-binding energy of the heavy stars has become comparable to the interaction 
energy between the heavy and light stars. The simplest interpretation of Fig. 12d would 
suggest that for much higher values of Ph2, the downturn of the graphs at the right-hand 
side would de dictated by the need to avoid raising the velocity dispersion of the heavy 
stars, something which can only be achieved by lowering M 2 for increasing Ph2. However, 
this interpretation is not correct, simply because the right hand part of Fig. 12d cannot 
be physically realized. Fig. 12c shows how M 2 remains nearly constant when the central 
density is raised. The explanation for this difference in behavior is that the half-mass 
density Ph2 reaches a finite limit when the central density P2(O) -+ 00. 

The same qualitative behavior is shown for the numerical solutions of the fully self
consistent isothermal two-mass models, given in Figs. 13-16. Note from the first panel of 
each figure that their is little variation in the maximum values of J.L3/2 M2/M1 as a function 
of J.L, confirming the accuracy of Spitzer's procedure. A comparison with the second panel 
in each of these figures shows that our local analysis in terms of core quantities is only 
valid for very large mass ratios (Fig. 13b), and becomes increasingly less useful for smaller 
ratios. This follows from the increase in break-down of the approximation of constancy for 
the central density of the light stars (cf Fig. 4). 

The behavior for small mass ratios, such as J.L = 2, is more complex, since there are 
ranges in ~ which cannot be reached for fixed TI/M. This explains the truncations in 
Fig. 16, and the gaps in Fig. 17. The appearance of these restrictions are discussed at the 
end of §3.3. 

Summing up, we have presented a number of detailed terrain maps of the complex 
landscape of isothermal two-mass systems, enclosed in a fixed container. Although our two
mass system is still much simpler in structure than the general multi-mass or continuous
mass-distribution systems, its behavior is complex enough to shed light on a number of 
issues which do not show up in the simpler equal-mass case. Therefore, these maps will 
provide useful assistance in the interpretation of the detailed output of present and future 
simulations of star clusters containing a stellar mass spectrum. 

We thank Lyman Spitzer for his comments on the manuscript. 
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Appendix A: The Equal-Mass Toy Model 

We consider the following extremely simple approximation for the density distribution 
in an equal-mass isothermal system: 

p(O) for r::; rei 

(A1)per) = ( r )-2{ p(O)	 - for r ~ r e • 
r e 

The mass enclosed within radius r is 

i
T	

3 
{ Me y for y ~ 1; 

M(r) = 411" r2 df peT) = (2) (A2) 
o	 3Me ,y - 3 for y > 1, 

where we have introduced y = rlre as a dimensionless radius, and 

(A3) 

as the core mass. Assuming that the system is enclosed by a spherical boundary of radius 
R, with R > r e , we can write the total mass of the system as 

(A4) 

where Yb = Rlre is the dimensionless radius of the boundary. Using Eqs. (A1), (A2) and 
(A3), we can calculate the potential energy of the system to be 

R 

l1-' = -411"G i rdr p(r)1I1(r) 
(A5) 

3Yb GM2 

2(15Yb -101nYb -14)-R . 
5 (3Yb -	 2) 

The kinetic energy of the system is defined as (Eq.[3S]) 

/{ = 311/. (A6)
2/3 

where 13 = mlkT, and T the temperature of the system. According to the virial theorem 
(Eq.[36]), the potential energy is related to the kinetic energy by 

1V = B - 2K,	 (A7) 

where the boundary term B is proportional to the pressure P at the boundary (Eq.[37]): 

(AS) 
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Thus, Eq. (A7) can be written as 

w = _ 6(Yb -1) M. (A9)
3Yb - 2 f3 

Comparing Eq. (A5) with (A9), we obtain 

(AI0) 

The total energy of the system is then 

E = K + W = B _ J( = _ 3 (Yb - 2) M. (All)
2 (3Yb - 2) f3 

Or using Eq. (AI0), we can write 

ER 3 Yb (Yb - 2) 
(A12)GM2 = - 20(Yb -1)(3Yb _ 2)2(15 Yb -lOlnYb -14). 

The temperature-energy diagram, defined by Eqs. (AI0) and (A12), is plotted in Fig. 3. 
In the limit of a very large density contrast between the center and the edge of our enclosed 
system, we have Yb -+ 00, and we find that our system to approach the limiting values 
R/(GMf3) = 1/2 and ER/(G.~12) = -1/4. 
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Appendix B: The two-mass toy model 

We now extend the model of Appendix A to a system containing stars with two 
different stellar masses, ml and m2, with ml < m2. As before, the density distribution of 
the light stars is given by 

for r:5 reI; 

(BI) 
for r;::: reI' 

For the density of the heavy stars, there are two qualitatively different configurations. 
In the first case the heavy stars dominate in mass density in the center, we approximate 
their density distribution as 

~ PI (0) for r :5 re2; 

P2(r) = ~ PI(O) ( ..:...)-2 re2 :5 r :5 reifor (B2a) 
T e2 

0 for r ;::: r e , 

where the density ratio ~ at the center is greater than the density ~e I at the cutoff'V 

radius r e at which point the densities of the two types of stars become comparable. At this 
point we still have some freedom in the exact choice for the parameter r e, which determines 
the value ~e' Rather than giving a somewhat arbitrary definition here, we can use this 
freedom to guarantee that the virial theorem will be satisfied exactly. This will introduce 
a dependency of T e and ~e on the the mass ratios J.L and the boundary radius R, as we will 
show explici tly below, following Eq. (B15). 

In the second case the light stars dominate already in the center (in a sense which 
will be made quantitatively precise below, see Eq. B23 for a specific example). Here we 
approximate the density distribution of the heavy stars as being constant until reaching 
the cut-off: 

for r:5 rei 
(B2b)

for r;::: r e , 

The core radius r e2 of the heavy stars is related to that of the light stars r cl by 
Eq. (17), i.e., 

reI = v;t. rc2· (B3) 

By integrating Eq. (BI), we obtain the mass of the light stars enclosed within radius 
r: 

for Y :5 1;{ MolY' 
lHI (r) = (B4) 

3l\1cl (Y - ~) for Y;::: 1, 
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where Y = rlre1 is the dimensionless radius, and 

(B5) 

is the core mass of the light stars. Similarly, the mass of the heavy stars enclosed within 
radius r is 

(Mel y 3 for Y ~ 
1 

vfiiE.; 

M 2 (r) = ~Mcl (Y- 3~) for 
1 

vfiiE. ~ Y < Ye; (B6) 

~Mcl (Ye - 3~) for Y ~ Ye, 

where Ye = re/rel is the dimensionless cutoff radius, and we have assumed that ( ~ (e' 
Assuming further that 

(B7) 

we can write the total mass of the light stars as 

(B8) 

where Yb = Rlre1 is the dimensionless radius of the boundary. For the heavy stars, we 
have 

(B9) 

By using Eqs. (39) and (Bl-6), we can calculate the relevant potential energy terms needed 
in the various forms of the virial theorem, as discussed in Appendix C: 

W = _ 3CM;) Yb [_ 2 -5/2 c-3/2 + ! 1I-1y3 ] . 
21 R 15J.l... 3"" e' 

W22 = - 3G~:/)Yb [_ ~4J.l-5/Z~-1/Z + 3J.l- zYe _ 2J.l-5/2~-1/21n(~Ye)]; 

- 3CM;l Yb [ 14 l] (BIO)W11 - - R - 5" + 3Yb - 2 n Yb ; 

W - 3CM;1 Yb [ 1 -5/2 c-3/2 1 -1 3 + 3 -1 -3/2~-1/2 
)2 - - R -'5J.l ... -"§.J.l Ye '2J1. Ye - J1. ... 

+(3J'-)Ye - 2Jl-3/2~-)/2)ln Vb] , 

29 



for e > ee, and 

(Bll) 

for e s; ee. 
We are now in a position to write the virial theorem (Eq.[36]) by using Eqs. (B8-11). 

First, let us consider the case e ~ ee' Since there is no boundary term for the heavy stars, 
the virial theorem for the heavy stars reads 

kTR RJl
 
GMm1 - 3GMM2(-W21 - W22 )
 

_ Yb [_~ -3/2C-3/2+~ 3 
3 Ye- (3Yb - 2 + 3Jl-1 Ye - 2J..l-3/2e- 1/ 2)(3Jl- 1 Ye - 2Jl-3/2e-1/ 2) 15 Jl 

I"
 

- ~4 Jl- 3
/

2e- 1
/ 

2 + 3Jl- 1Ye - 2Jl-3/2e-1
/
2 ln(M Ye)] .
 

(B12) 
The boundary term B 1 for the light mass is 

B 1 = 47rR3p(R) = 47rR3Pl~R) = 3Yb M cl kT. (B13) 
~1 m1 

Thus the virial theorem for the light stars can be written as 

kTR R 
--- - (-lVll - W 12 )
GMml 3GM(M1 - YbMcl) 

= Yb [_14 + 3Yb _ 2lnYb _ ~Jl-5/2(-3/2 
(3Yb - 2 + 3Jl- 1Ye - 2Ji-3/ 2e- 1/ 2 )(2Yb - 2) 5 5 

_~Jl-Iy~ + ~J..l-IYe - jl-3/2f,-1/2 + (3j.L- 1Ye - 2j.L-3/2f,-1/2)ln Yb ] . 

(B14) 
Equating Eq. (B12) with (B14), we obtain 

(2Yb - 2) [_~Ji-3/2(-3/2 + ~y3 - 14 j.L-3/2e- 1/ 2 + 3j.L-1Ye - 2Jl-3/2f.-l/21n(M Ye)]
15 3 e 5 

1 3/2 -1/2 [ 14 1 -5/2 -3/2 1 -1 3 = (3j.L- Ye - 2j.L- e ) -5" + 3Yb - 21nYb -"5Jl e - 2Jl Ye
 

+~Jl-IYe - Jl-3/2e- 1/2 + (3Ji- 1Ye - 2Ji-3/2e-l/2)lnYb] .
 

(B15) 
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When Yb » 1 and ~ » 1, Eq. (BI4) gives kTR/(GMmd = 1/2. From Eqs. (BI5) and 
(B2), we find Ye = 3/V2iJ" and P2(re ) = ~ PI(O). These turn out to be exactly identical 
to the results we found in § 2.3.2. 

In the second case, with ~ ~ ~e, we can write the virial theorem for both components 
as 

(BI6) 

and 

Equating Eq. (BI6) with (BI7), we get 

(BI8) 

We are now in a position to determine the value of ~e' We can do this by starting 
with the special intermediate case in which e= ee, in which both Eqs. (BI5) and (BI8) 
should be both satisfied. For each pair of values for Jl and Yb, we can then solve for both 
~e and Ye directly from Eqs. (BI5) and (BI8). 

We will illustrate this procedure with the specific example of Jl = 100 and kTR/(GMml) =. 
0.45. In this case, Yb » 1, and Ye "" 1/~ ¢: 1. Since ~e "" 1, Eq. (BI4) becomes 

(BI9) 

which has a solution for the boundary radius of Yb ~ 10.6. For convenience, we define a 
new parameter z = ~Ye, which is of order of unity. Eq. (B9) can then be written as 

(B20) 

Combining Eqs. (BI5) and (BI8), we get the approximate result 

6.40 Z3 - 15.2 == ~-1/2 [38.4 In( v1. z) + 5.20 + 2.56 ~-1], (B21) 

6 2 
(B22);; = J1 : ( 

for ~ ~ ~e' By combining Eq. (B21) and Eq. (B22) we get the cut-off value 

~e = 0.185, (B23) 
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and z = 2.31 at ~ = ~e. In general, given a central density ratio ~, we can calculate the 
cutoff radius z from Eqs. (B21) and (B22). The radius z decreases monotonically with 
increasing ~, but is restricted to lie within the interval 2.51 > z > 1.55 for 0 < e< 00. 

From Eqs. (B8) and (B20), we can derive the half-mass mean densities, as 

~ = 108 3X 
b - 2 , (B24)

PI (0) (3Xb + 2)3 

and 

~, for e:5 9z
16 

2 ;
Ph2 (B25)

PI (0) = 108 ~(3J€ z - 2) r > 16{ lor ~ - 9z2 ' (3J€ z + 2)3 ' 

The results from Eqs. (B8), and (B20-25) are plotted in Fig. 12b and 12c. Substituting 
Yb = 10.6 into Eqs. (B8) and (B24), we get MI = 29.8 Mel, and PhI = 0.083 PI (0). 
M2/MI reaches the maximum value M2/MI = 0.186J.l-3

/ 
2 for P2(0)/PI(0) = 9.77, where 

Ph2/PhI = 22.6. When ~ ~ 1, from Eqs. (B21), (B20), and (B25), we get z = 1.55, 
M 2 = 4.63J.l-3

/ 
2 Mel = 0.156J.l-3

/ 
2M I , and Ph2 = 4.99PI(0) = 60.0 PhI. All these values 

are remarkably close to the results for the real isothermal models with J.l = 100 and 
kTR/(GMmI) = 0.45 (Fig. 13). 
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Appendix C: The virial theorem applied to individual species. 

The virial theorem tells us how large the average velocity has to be for each species, 
in order to maintain equilibrium, i.e. to avoid imploding or exploding. This balance, on 
average, of centripetal and centrifugal forces (gravity and inertia) takes the simplest form 
in the circular Kepler orbit, where the gravitational force obeys: 

(el) 

For an elliptic orbit, v = vet) and r = ret), but here too we can check explicitly that: 

(C2) 

Let us consider a spherical star cluster, of mass M, containing stars of a finite number 
of species, each having a total mass Mj and an individual stellar mass mj. For such a 
system, the above equation generalizes to 

(G3) 

with F = dip/dr, the force acting on particles of species i at position rio The equation 
above follows directly from the identity 

. .. d ( .)r· r = -r· r + - r· r (C4)
dt 

The last term vanishes when averaged over in an equilibrium system. 
In a spherical cluster, with !vI(r) the mass enclosed within a shell of radius r, the 

radial force on a unit mass is F(r) = G1t1(r)/r2 , which implies 

(G5) 

This is the potential energy which is released during the infall of particles of species i, if 
we build up the system (gently) from the core outwards. Note that the integrand contains 
contributions from all species. 

If we now define 
1 2

1',. = -1t1·(v.), 2 ' , (G6) 

and 

(G7) 

we can write 
2Tj = - L Wij (G8) 

j 
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where T j is the kinetic energy of species i and Wij is the energy released during the assembly 
by particles of species i, due to the attraction of particles j (at a position inside the latest 
shell of matter being assembled). 

The sum of all W ij is the total potential energy: 

(Cg)
ex> ex> 

=~ LJ J2 .. 
I] 0 0 

In the last expression, each term occurs twice, upon exchanging i and j, and therefore the 
factor 1/2 has been added. 

An alternative decomposition of the potential energy is to write 

Epot = V =L Vij (CIO) 
j~j 

where Vij is the potential energy due to the interaction of species i and j. Specifically: 

u .. _ ~ ~ GM; 
YII - L...J (Cll) 

2 ab Tab 

with a and b running over all particles of species i, and 

u .. _ ~ Gmimj 
YI] - L...J (CI2) 

ab Tab 

with index a running over particles of species i, and index b over particles of species j =1= i. 
To avoid the factor t in the Vii definition, we can also introduce the symmetric 

expreSSIOns: 

Epot = U = L Uij (CI3) 
ij 

with 
(CI4) 

In spherically symmetric continuum language: 

(CI5) 

Note that the previous l¥ij can be written in particle language as 

.. _ ~ Gmjmj
W (CI6)I] - L-

Tabr.<r. 
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which implies 
W ij + Wji = Uij + Uji (G17) 

with Uij = Uji, but in general W ij =I Wji 

An Example 

Consider a thin spherical shell of particles of species 1, each with mass mI and total 
mass M I = N I mI' The shell has radius rl' All particles move in circular orbits, with 
arbitrary orientation of their orbital plane. We can find their velocities in two ways. 

First, let us consider a typical particle inside the thin shell. On average, it will feel only 
half the mass of the shell, namely that part of the shell which is inside the instantaneous 
location of the particle. Kepler law gives then 

(G18) 

Secondly, we can apply the virial theorem, which reads 2TI = -Ull with 

(GIg) 

and 
rl+~ 

2Ull = ~ JPIer) 41l"r {4>I(r) - 4>I(OO)} dr (G20)
2 

where 2c is the thickness of the shell. Since the force in the shell is finite, and the thickness 
c -+ 0, the potential difference 4>( rl + c) - 4>(TI - c) = O(c) -+ 0, and we can write 

(G21) 

Indeed, the virial theorem gives 
~1 2 _ GMf 

.II IV I --  (G22) 
rj 

in agreement with our first. more intuitive treatment. 
Let us now introduce a second shell of matter, of particles of species 2, at radius r2' 

Our Kepler orbit arg;ument now gives 

(G23) 

since now the mass M 1 is completely internal for each particle of species 2, whereas only 
half the mass M 2 is internal, on average, for such a particle. A more careful derivation, 
using the virial theorem, gives the same result. 
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Note that the speed of the first shell of particles cannot have been influenced by the 
assemblage of the second shell, since the force inside a hollow shell is alway zero, even 
if it contracts or expands. Indeed, in our expressions we see that VI = VI (MIl rd and 
V2 = v2(MIl M2, rz). The interaction between particles of type 1 and 2 increases the 
velocity of particle 2 only. In our previous notation: 

GMZUn = Wn = __1 
2rj 

GM?
UZ2 = W22 =-

2rz 
GMIMz (C24)

[lIZ = UZI = --
2rz 

W I2 =0 

W = GMI M2 
ZI 

r2 

Indeed, the kinetic energy obeys: 

(C25) 
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FIGURE CAPTIONS
 

Fig. 1. The density profile of an isothermal gas sphere. r c is the core radius, defined as 
being three times larger than the structural length scale (eq. 111). The letters A,B,C 
indicate fiducial radial positions of an enclosing wall, for a comparison with Fig. 2. 
Fig. 2. Relation between energy and temperature for an isothermal gas sphere, plotted in 
units in which the total mass M, the radius of the enclosing sphere R, and the gravitational 
constant G are all unity. The letters A,B,C correspond to radial positions of the enclosing 
wall indicated in Fig. 1. 
Fig. 3. Relation between energy and temperature for an isothermal gas sphere, in the 
approximation of our toy model, as discussed in Appendix A. 
Fig. 4. Density profiles in two-component isothermal gas spheres. The ratio p. between 
the heavy particle mass and the light particle mass is 100, 10, 5, and 2 in Figs. a,b,c, 
and d, respectively. Each figure is a superposition of six different models, each of which is 
characterized by a different value of e, the ratio of the central densities in the heavy and 
the light components. The short-dashed line applies to e= 108 , the dotted line to e= 106 , 

the short dash-dotted line to ~ = 10\ the long-dashed line to e= 102 , the solid line to 
e= 1, and the long dash-dotted line to e= 10-2 • For each evalue, two lines are drawn, 
for the density Pier) for each of the two components i = 1,2. The densities are normalized 
with respect to the central density PI(O) in the light component. The radii are normalized 
with respect to the core radius rcl of the light particles, defined formally in Eq. (17). 
Fig. 5. Shape of the potential well for four different particle mass ratios p.. In each 
case the central density ratio e= 10. The potential is given in the dimensionless units 
introduced in §2.2, while the radial normalization is the same as that used in the previous 
figure. The full lines indicate the total potential, with the contributions of the light and 
the heavy particles indicated by the dotted and dashed lines, respectively. 
Fig. 6. Energy-temperature diagram for two-component isothermal spheres. For the 
meaning of the different lines and symbols, see Fig. 4. In Fig. 6b, the letters A,B,C,D 
correspond to radial positions of the enclosing wall indicated in Fig. 7. In Fig. 6d, we have 
added one extra line for e= 2.5, in order to provide insight in the behavior of Fig. 17. In 
all panels, the normalization of the axes is defined in terms of the total mass M of the 
system. We have used units in which G = R = ml = k = 1, for the gravitational constant 
G, the radius of the wall R, the stellar mass ml of the lighter stars, and Boltzmann's 
constant k. 
Fig. 7. Density profiles for the particular two-component isothermal gas sphere defined 
by a particle mass ratio p. = 10 and a central density ratio e= 104 

• The letters A,B,C,D 
indicate fiducial radial positions of an enclosing wall, for a comparison with Fig. 6b. Nor
malization as in Fig. 4. 
Fig. 8. Energy-temperature diagram for two-component isothermal spheres. This figure 
is similar to Fig. 6a, in that the particle mass ratio is kept constant at p. = 100. However, 
instead of keeping efixed, we now keep the ratio fixed of the total mass in heavy particles 
M 2 and that in light particles MI' Each panel indicates a different value for this ratio, 
from 10-6 in Fig. a till 104 in Fig. f. 
Fig. 9. As Fig. 8, but for a particle mass ratio of p. = 10. 
Fig. 10. As Fig. 8, but for a particle mass ratio of J1 = 5. 
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Fig. 11. As Fig. 8, but for a particle mass ratio of J1. = 2. 
Fig. 12. Fig. a: Density ratios for our toy-model. Fig. b: Ratio of total masses for our 
toy model, as a function of half-mass density ratio. Fig. c: Ratio of total masses for our 
toy model, as a function of central density ratio. Fig. d: Ratio of total masses in the heavy 
and light components, according to Spitzer's (1987) approximations, as a function of the 
half-mass density ratio, for three different choices of the parameter a defined in Eq. (47). 
Fig. 13. Fig. a: Ratio of total masses in the heavy and light components, as a function of 
the central density ratio, for our exact solutions in the case of two-component isothermal 
gas spheres, enclosed in a spherical boundary. This particular case corresponds to a tem
perature TI = 0.45 and a particle mass ratio J1. = 100. Fig. b: The equivalent curve for the 
mass ratio between the total heavy mass M2 and the core mass Mel of the light particles. 
Fig. c: The half-mass density for the light particles, as a function of central density ratio. 
Fig. d: The total mass ratio as a function of the half-mass density ratio. Fig. e: The core 
radius of the lighter mass particles, as a fraction of the radius of the enclosing sphere, as 
a function of central density ratio. Fig. f: the half-mass density for the heavy particles, as 
a function of central density ratio. 
Fig. 14. As Fig. 13, but for a particle mass ratio of J1. = 10. 
Fig. 15. As Fig. 13, but for a particle mass ratio of J1. = 5. 
Fig. 16. As Fig. 13, but for a particle mass· ratio of J1. = 2. 
Fig. 17. As Fig. 16, but for a temperature TdM = 0.49. For comparison, the results for 
TdM = 0.45 are given as dashed lines. 
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