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Abstract· 

We show that on a lattice, chiral symmetry is C! part of a larger 

invariance algebra. In consequence, we argue, the real isations of chiral 

symmetry arc tied to this alqebra. A remarkable aspect of this 

invariance is that the Fermi-sea is destroyed, and is replaced by a 

real-space pai red quark -antiquark state. 
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Introduction 

Chiral symmetry has played an important part in our understanding of 

1
the physics of the strongly interacting matter. Since the strong 

interactions are not amenable to perturbative methods in continuum field 

theories, these systems are conveniently handled on lattices. The chiral 

symmetry and its remnants on a lattice, have in the process been 

stud ied a great 2deal • 

For Iight quarks, such as the u or the d, the H.ami Itonian 

consists of a kinetic energy term, plus the interactions. The mass term, 

i. e. self-energy, is absent in the starting Hamiltonian. The theory 

has an exact chiral symmetry. A mass term, i.e. self-energy, breaks 

chiral symmetry expl icitly. It is however bel ieved, though not 

understood, that even in the absence of an explicit mass term, chiral 

symmetry breaks spontaneously, and a mass term is generated 

dynamical Iy in the system. 

On a lattice kinetic energy leads to hopping terms that allow 

quarks to hop from site to nearest neighbor site. The self-energy, i.e. 

the mass is the onsite bi Iinear term.; then of course, we have the 

interactions. If we concentrate for now on hopping and self-energy, 

clearly there is some symmetry, akin to chiral symmetry, that the 

hopping term does not share with self-energy. It is the purpose of this 

work to explore these symmetries of the hopping term. 

3There has been, in the recent past, an exploration of the 

symmetries of hoppin~ in the context of the Hubbard model. It has been 
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shown that the kinetic energy term has a large symmetry on a lattice, 

and that symmetry generators natura II y prov ide a framework for 

construction of multiparticle stable states. Indeed, if the interactions 

are included, an interesting subset of these multipart'icle states, 

namely the singlets, continue to be solutions of this complete 

Hamiltonian. These singlet configurations, in the' instance of the Hubbard 

model~ lie in the middle of the spin density-wave (SDW) gap3. Thus, if 

particles or holes are introduced on to a half-filled state, they would 

preferably go into these coherent, singlet configurations. The other non­

singlet coherent states are not solutions of the complete Hubbard 

Hami Itonian, including interactions. 

There are three reasons for pursuing these ideas into relati­

vistic quark dynamics. First, the Hubbard model, in !ts essence, and 

the theory of quarks are based on notions of gauge theory; both have 

particle interactions spatially limited due to screening. In the case of 

the Hubbard model, the coupl ing U, even if large, it is the scale of 

fluctuations about the singlet configuration that is of relevance. For 

quark -dynamics, the theory has strong interact ions, but is 

asymptotically free. Both have metal-insulator, i.e., deconfinement 

transitions. 

Second, both the theories have real space pairing of fermions 

that show remarkable properties. For the Hubbard model these are the 

coherent states that lead to real space superconductivity. For quarks 

the property of confinment is an established article of faith. 

And third, that the Hubbard model has spin-singlet, real­

space paired coherent solutions, and similar real space pairs have been 
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shown to be solutions for the theory of Dirac quarks on a latticeII. 

There is, however, an extra symmetry of massless Dirac quarks that 

has not been discussed in this context. It is the chiral symmetry. That 

is the subject of this work. 

In Section I we discuss the symmetry basis in the context of 

the Hubbard model. The Cllgebra of the generators of this symmetry is 

explored and the reason the singlet state is a solution, in a mean-field 

sense of the complete Hamiltonian is discussed. 

In Section -II we rediscover this algebra in the context of 

Dirac equation on a lattice. It is shown that the chiral symmetry 

generator is part of this algebra. Whi Ie both the Hubbard model and 

the Dirac equation are discussed on a 1+1 D lattice, the results are 

good for arbitary dimensional systems'. 

In Section III we discuss some consequences of this symmetry. 

Section-I The Symmetry Basi s. 

Our aim is to explore the symmetries that belong to hopping, but not to 

self-energy. To that purpose we digress briefly to the Hubbard model. 

This model, proposed to elucidate the electron correlations and 

the consequent metal insulator transitions, has two parts. The 

Hamiltonian is : 

(1)H = -t [ (C;a cia + h •C•J + uLnif niL • • • • •• 

(i j )
 

n
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Where c~ creates an electron at site i, (ij) are the nearest neighbor
I 

sites, (f, the spin index; n. is the number operator at site i. 
I 

The first term allows electrons to move from site to site; the 

second denotes the repulsive energy, U, that it takes for two electrons 

to be at the same site; the electrons that are further apart do not 

interact due to screening. 

To analyse the symmetries of hopping, we concentrate on the 

3
first term of (1). It has been shown elsewhere that if we construct a 

generator, e as fo Ilows :1, 

.. (n). • • • • •• (2)
IJ 

where, 

T .. t Tl) = T .. (±) = ± T.. ••• (3)
I J I J I J 

T.. 
I J 

If 1'1 is now chosen to alternate on links, in this 1+1 dimensional 

lattice, el' then commutes with the hopping Hamiltonian. Note that e 
t 

creates a spin-singlet pair on the lattice, with identical amplitude for 

being on any Iink. The meaning of becomes clearer when we look ate l 

it in the Bloch basis. Essentially e1 is a singlet pair that moves 

through the IaU ice with a center of mass momentum of ± 1t'; therefore 

has phases that alternate on links. 

From we can construct e -1 I defined ase1 
+ 

e_ = e ••••••• (5)
l

,
1 
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Which also commutes with hopping. From e and e_1 we can generate the1 

complete global symmetry basis of the hopping term as follows. 

Considering the commutator of c'l and e -1 we obtain further commuting 

generators : 

hI = [C;OC iO ' ••••.• (6), the global number and 

L (7), i.e., a translation by two latticeh 2 = <OC(i+21 0 .... • 

un i ts • 

Now, commutator of h 2 with e±l gives us e±2' where 

e 2 = [T.I, 1+. 3(n) • • • • • • ( 8) ... 

By repeating this procedure we get a closed algebra of global generators 

under periodic boundary conditions. 

In (2) we created a spin singlet pair, but in as far as the 

hopping Hamiltonian is concerned there is notbiam special about a singlet. 

We argue short Iy, that when the interactions are present, such as in 

(1), only the singlet state continues to be a solution, in a mean-field 

sense, of the complete Hami Itonian. Thus, for hopping, we have shown; 

that generators, such as, 

,.. + + 
= (9)= l T.. th); r.. citc H,e 1 _---, I J I J
 

( i j)", 
v
v + + 

e = T.. = ( 10)LT.. I'l); c i!- c j-l­1 I J I J 

( i j )
+ + + +e = [T.. ln); T.. (n) = ( 11 )

1 IJ citci,l. +ciol-c jt ••••••I J 

(i j ) 
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all lead to closed global algebras. 

The generators e +n in (2;8) create a singlet pair that moves 

through the lattice at a center of mass momentum of ±7T. For e'+ the
l 

pair is made of two electrons separated by lattice spacing a; For e+

the separation is 3a and so on. The translation generators and the 

global number together fonn a commuting set. Note that the vacuum state, 

10) is an eigenstate of the global number with eigenvalue zero. The 

state jO) of the medium is degenerate with the zero of band energy, 

that is the middle of the band. 

At this point it is instructive to write the generators 

expl icity in Bloch basi s. The transformation that changes Wannier into 

Bloch state. is: 

(12) 

therefore, 

e+ 1 = [ (exP(ik))«tC~_k'" -<t-C~-k1') •••• (13) 

k 

Here, we have set the lattice spacing to unity. The first exponential 

factor in the sum on the right hand side of equation (13) ensures that 

the electrons separated by a single lattice spacing pair into a singlet in 

e+ • For e+ for example, this exponential factor changes to expi[3ka].2, 

Thus, if e+ is operated on 10}, from (13), we obtain a state that has1 

electrons of momentum k, pairing into a singlet with electrons of 

momentum 1f-k. The dis~ersions show that the pair has zero energy·. 

1
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The pai rs mov~ with a center of mass momentum. of Tt' • The overall 

energy of this state, as expected, is the same as JO). 

A state, such as ell 0), is an eigenstate of g Ioba I number with 

eigenvalue of two. That means a single pair is being created on the 

average. Further, since the commutator of global number, h with 'e+ is:
1

, 
-n 

(14) 

therefore, e ~ and e and global number have identical algebraic 

+ 
structure as c, c and loca I number. It is, therefore, tempt ing to 

construct a general multipair coherent state, denoted lz), of the form 

Iz) = (exP([zfjeS-h.c.»10), •••••• (15)
 

S
 

where z are a set of complex numbers. 

Following, from equation (13), such a coherent state is represented in 

Bloch basis as 

Iz) = (ex p (L zsIe x·p (i ( 2B-1 ) k ) (c~ t c : -k J. -c~~ c;-kf ) 

B k 

-h.c.) ) 10) ( 16) 

There are two aspects of these Iz> states that are remarkable. First, 

we know that for a purel y hopping model the state that we usually 

construcL is the fermi -sea IFS). The generators of symmetry of 

hopping, namel y displayed for example in eqn.~. (13), are such 

that : 

( 17) 
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Further,	 a completely filled fermi-sea, i.e., a filled band of electrons, 

has the same energy as the state 10> (si nce hal f the electrons Iie below 

and the	 other half above 10>. However, Iz) is also degenerate with 

10) • 

We, therefore, have a situation analogous to what is usually 

encountered in spontaneous symmetry break ing in that 

(1 ) we have degenerate ground states and 

(2) the usual g.round state, in this instance the IFS), is 

destroyed by some of the generators of symmetry. 

Presumab IY the IFS) and the Iz), even though degenerate in 

energy, lie in different sectors of the theory. In the sector of the 

fermi sea we have unpaired particles with its characteristic single 

particle excitation spectrum. On Iz) we have a paired ground state with 

4 
a completely different spectrum of states. The Iz) states have real-

space singlet pairs. To the hopping term we can add, if we wish, a 

self-energy, i.e. a mass term. A mass term is directly proportional to 

the global number h which as we know, is an element of the algebra.1, 

The other translation generators h commute with h 1• However, the 

pair"ing generators do not; their commutators with h are given in eqn.1 

(14). Therefore, the following scenario is obtained. The complete 

algebra is no longer a symmetry of the Hamiltonian. Interestingly, 

however, the following points need to be noted. 

A.	 Even though e ±n do not commute with h l' a state formed by 

operating e.. on 10) is an eigenstate of h 1• This is obtained 
-n
 

from eqn. (14).
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B.� In consequence, therefore, even in the absence of an expl icit 

self-energy term in the Hamiltonian, self-energy has a non-zero 

ex pectat ion va Iue in the Iz) states. Thus, a mass term is 

spontaneously generated in this Iz) phase. 

c.� Since h 1 is an element of an algebra represented by Iz}, it 

has a constant average va Iue in the Iz) states. 

Let us investigate what happens when interactions of the type specified 

in (1) are included. We show now that in a mean field sense only the 

singlet Iz) state survives : the other non-singlet Iz) states made of 

generators listed in (9-11) do not survive the gauge interactions. 

The spin-operator at site i, Si' may be represented as 

~ , + ...s. = '2c.� T ,c., (18)
1 10� 00 10 

Where c are the Paul i -matrices. Note that Iz) states are representations 

of an algebra whose elements include the global number h 1• Thus, the 

expectation value of h 1 .is a constant over the Iz) states. Thus, the 

Hami Itonian (1) may be 3recast in terms of the spin -variables as : 

H = -t [ 
+(c. c. +h.c.) 
10 Jo 

.2l2-,(-)U S.••••• 
3 1 

(19) 

Now, if we assume that the fluctuation around an average spin-state (5 i) 

is small, the mean-field Hamiltonian becomes 
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= -t Ll<aCja +H. C.) + 7uEs~ 1HMF 

~ (Sj)' Sj .......................�uL (20) 

I 

For an u~iform (5 i) = ,<5), the last term is proportional to the total 

spin operator. For the singlet Iz) state, <5 i) = 0; thus the interaction 

terms add up to zero. For the other non-singlet Il} states, they are 

not eigenstates of the total spin operator; therefore, are not solutions of 

the mean-field Hami Itonian. 

In presence of interact ions it is known that the usua I band 

splits at the middle due to spin density waves in the system. At the 

middle of this gap we therefore have this singlet Iz) state. On a 

half-fi lied band if charge carriers are introduced, they could go to 

these l;z) states. 

For a variety of reasons a symmetry that has played an 

important part in our understanding of the low energy hadronic spectrum 

is chiral symmetry, which, somewhat analogous to what we have 

discussed so far, is a symmetry of the kinetic energy (hopping), but 

not of mass (self-energy) terms. We now investigate the Dirac Hamil­

tonian on a 1+1 D lattice and rediscover the algebra that we have 

explored. We show further that the chi ral symmetry generator is an 

element of this algebra. 

We know that a real isation of chiral symmetry leads to a 

ground state with paired fermions. It thus appears that the quarks: suth 

as the u and the d, when put together do not make a fermi sea, unl ike 
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most fermions that we know. Instead quark-antiquark pairs populate the 

ground state of the system • 

We remark in passing that this scenario is to be distinguished 

from that of neutrino-matter, where pairing occurs between fermions and 

5 6 holes in the ground state' • Simi lar particle· hole paired ground state 

also occurs for electron gas 7 • 

Section-II Chiral Symmetry on a Lattice. 

The theory of strong interactions, quantum chromodynamics (QCD), because 

of chiral symmetry in Iight quark sector, has a ground state that has 

pairs of fermions. It has been argued that this indicates a spontaneous 

breakdown of chiral invariance in the up and the down sector of the 

theory. There have been numerous evidence that this paired fermion 

basis is a consequence of Goldstone realisation of chiral symmetry that 

results then in modes such as the pions. Since we do have a paired 

fermion basis, it is interesting for us to explore to what extent chiral 

symmetry is Iinked to the invariance generators that we have explored 

thus far. 

2The Dirac matrices of interest for this case are chosen as 

Yo =°3 = (~ _~); a =YS = 01 = (~~) •••••••• (21) 

A two component Dirac fermion -r may be decomposed, using the Ys 
matt-ix into two states that are eigenstates of the Ys matrix. These two 

states denoted 'I'+ and 'f_ are defi ned as : 
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• • • • • •• (22) 

Thus, 
rl+'¥2

\f' 
+ = 12 (\f1+~)2) ........................ (23)� 

and ~I 1_1112 
.- (24J(..J~ 1+ ¢2 )-'" 

1~ 
2 

The Hami Itonian for this system of massless Dirac fermions is 

H = i~+a .at (25) 

In terms of VI and 1', the Hami Itonian is expressed in the form 
+ ­

...
~I -- i~l+ a~' i til _ () If {26}+ + 

On a lattice, therefore, we can write the Hamiltonian in the form 

H ~- 2 
i 

'I' 
+
.. (n) r til +( n" 1) - tIl + ( n-1 ) ] • • • • • • • ( 27 ) 

i� 
2� 

We have, therefore, two sets of generators of symmetry, as fo Ilows • 

In respect of the l' ± ob jects we have 

.................... (28) 
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=l +h± 'l' ten) 'f±(n} ...................... (29j�1 
n 

h-- If' 
+ (n) II' (n+2) ...................... (30)2 ± ± 

+ =L 
n 

± + 
e+ 2 =L 'l': (n) '¥ (n+3) ...................... (31)�±� 

n� 

and so on. We, therefore, have recovered exactly the algebra we had 

before in the context of the Hamiltonian (1). There are-'. however, two 

concurrent identical algebras in respect of the right-handed and -the 

left -handed ob jects. Note, further, that factori ng an i out in the 

Hamiltonian (25) has resulted in the phase "l, that alternated in (2), 

becoming un i form through the links. The d i spersi ons of "± need to be 

2taken note of • We show now that the chiral symmetry generator is an 

element of the algebra we discussed in Section-I. 

±
Let us look at the elements h 1• From these two generators 

we can, by linear combination, obtain 

I l til 
+ 
+ 

()n tlJ.. ()n ' - III'Y +_( n) ~I. ( _ n) ................ (32)� 
11 

which is the generator of chiral rotations on a lattice. 

It is instructive at this point to pause to take a careful look 

at the generators (:lU-31) of the algebra. first, as we have already 
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noted the paired basis does not have the necessity of an 'I phase as in 

(2). That effectively means that the pairs, when formed, are static. In 

other words, the center of mass momentum of the pair is zero. Since 

the pairs have the same energy as 10), a fermion of momentum k 

couples to another of momentum -k, g iv ing ri se to an overall zero energy 

pair with no center of mass momentum. These static pairs contrasb with 

the pairs of the Hubbard model that travel with c.m momenta oft7t 

through the lattice. Both the pairings, be it quarks or the Hubbard 

electrons, are in real space. It is interesting that in nature the 

pairings that we find for quarks are in real space; and holds a1so for 

high -temperature superconduct iv ity" 

Second, the generators of the h type that we encountered in 

the context of the Hubbard model, even though are translation 

generators, they in them have the possibility of creating electron-hole 

pairs. In the context of the relativistic Dirac Hamiltonian, these 

generators could create in addition particle - antiparticle pairs in the 

ground state. Since these have no overall phases, such as fl, these are 

all static pairs with no center of mass momentum. Thus, for example, an 

up quark of momentum k is to pair with an antiup of momentum -k. 

G
However, to create a quark-hole or an electron-hole pair it will be 

necessary to operate the h generators onto a fermi sea IFS); not on 10). 

Since in this work we are exploring alternatives to IFS), the particle-

hole pairs need not worry us. 

,.� 
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Section -III Conclusions. 

hi (if1) chiral translation through 

Chiral symmetry on a lattice is more than the mere on-site chiral 

rotati~n generator (32) that we constructed. Indeed for any pair of 

+ 
generators we can construct a an even 

number of sites; and all these are symmetry transformations of the 

Hami Itonian. This may be done by creating the Iinear combination h: -li:. 
I I 

In a lattice, therefore, discrete translations, discrete chiral rotations 

and discrete chiral translations are symmetries. These h7 ~ loperat ions 
I 

in association with the e±i generators form a closed algebra. 

What sort of a ground state do we envisage for this system? 

Well, we can always construct the IF5} of the up and the down quarks, 

but we have discussed already that we are not interested in this sort 

of fermi liquid states. The symmetries effectively provide us a way out 

of these fermi-liquids into states of paired basis. 

The states of h are in a way special. First, 10) is an1 

eigenstate of this operator. Further, though, h 1 can create an on-site 

quark-antiquark pair, but such a pair is going to simply annihilate, 

because they are on the same site. However, in 10} we can have quark­

anti quark pai rs generated by the translation generation h, (i~l). Since 

they pa ir quarks and ant iquarks separated by an even number of 1inks, 

and the pairs are static, such an wavefunction, 10), in terms of quark 

• . + + •and antlquark creation operators a and b IS 

10> = (exP(~zBL exp (2iBk)(a~b:k - h.c.») 10) •••• (33) 

k 
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Such a state 10> is an eigenstate of global fermion number with 

eigenvalue' zero, because there -are exactly equal number of quarks and 

antiquarks. This is our fiducial state. On this we can operate with e±i 

arbitrary number of times to construct our ground state wave functions. 

Thus, the final wave function of the base state Is of the type 

Iz> = (ex p ( [ z () lex p (i( 2 a -1 ) k ) ( 'Ii ~ 'i'~k - h. c. ) ) ) I0 ). • ••• J (34) 

a k 

However, one might argue that this Z-I iquid could not perhaps exist, 

because, first it is a color .nonsinglet, and further, interactions have 

not been taken into account. 

Well, the interactions contain anomal ies, but in these 

asymptotically free theories it is possible to conceive of scenarios 

where the interactions have practically disappeared. So when the bag 

tears open, the liquid that oozes out could well be this Z. 
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