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Fer~ions  ~n a lattice is a subject of ~ide  interest. In hi9 

Quarks on a Lattice ener~y  ~hvsics  it is increasingly bei~g  used to understan 

the ~orld  of hadrons!l 
l 

The lattice version of quantu• 

chromodynamics, QeO, has allowed calculations into area 
J.Chakrabarti* In condenseof hadron physics previousl y inaccessible'2-8 ' . 

Department of Theoretical Physics ~atter physics the fermions are ~ostly  on a lattice, and 

~ndLan  ~ssociation  for the Cultivation of Science are the basis of much of the theoretical calculations._._ 1\ 
Calcutta 700 032 nmI~  

\ 
The states on a lattice are the 310ch functions. 

For a system of ~any  particles a deter~inant of these statesv 
/ 

are for~ed.  The excitation spectrum, usually consists~f  single 

particles over the fermionic sed. It turns out, however, 

that there are other ways of constructing multipartlcle 

Abstract states that have different excitation spectrum. We deal with 

We explore alternate solutions of Oirac equation on a lattice. one such possibility in this work. 

In this sector we explore the c~ara~~er..~t~ics  of the states We work. in the lattice version of Dirac equation. 

and argue that the eXC1taut ii".,,-j,,' prjct 'UI1l tr: 11ff~re11t."1 -, · I'~-i-,-j'-l On a lattice this leads to a hopping system, which 1s well 

lsi I f I' !. : stud1ed{g,. It can be diagonalised, and for the simplest 

hopping the result 1s band states made of bloch ..,aves. ThereI~gl  II I '. I ~II 
is, ho"ever, an inf1nite dlaaens1onal"O,11l global symmetry

I 't! I ' j 1 I I I in II ::::! I I ! I iii hidden in the hopping system that allows us to construct
~:! I , ~ : I I ! !Ii V-4 : . '. I t ~ ~  

other solutions to the hopping problem. These sectors of

I~ f-r~r--j -1-' '1'--1 TIl---~~~~-jI Ii solutions have fermions all paired, unlike the band states, 

!~i I I If i i ::J_i which have single particle spectrum. 
I I I ~  tt! , .;::)l"'l-r- j "1-- ...;.....,\.-i-........J
 

To proceed, let us start with a simple hamiltonian 

and illustrate all the ideas. At that stage ve take up the• I I I I ,11:Ll:Je aaail • theoph@iacs.ernet.~n i !....L-.-l 
more complicated hopping scenario in staggered fermion systems 

and sho" hoy the simple ideas generalize. 

mailto:theoph@iacs.ernet.~n
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:~  section I a Slmp:~  ~o~pi~g  of fer~ions  is ~sed  

to arrive at the infinite di~ensional  a13ebra. States are 

baseJ on this al:jebra. -iJe take up :he 
..:onstr;.lcted that are 

' 12 \ 
in section rI. 

hopping scenario in stagger~d  fer:nions 

It turns:)utThe algebra and the stat~s  are illustr3ted. 

one can construct dnother Lndepenj~nt  s~t  of generators, 

10 sectionand thus there is ,1."1egeneracy to these :states. 

~f ~h~se states and explore some"."e j:,3CUSS tr-..e :~ner]1'J5I II 

?ossl~le  excitations-

Alternate Solutions of Simple HoppingSection 1 

Let us place on eac~l  s1 to of a lattice a single 

component fermi field an tn is the site 1nd~xl  satisfying 

{ an am} o 

... .,' 
{a~  , am} 6 

nm 

Tne dynamics of hopping of these ferlUlons 1s given by the 

hamiltonian: 

• •• ' 2 \ 
H • -l(a~ a n+ 1 + a~+1  an J 

The equations of motion are 

r 3 \ 

"n� - (a + 1 + a _1 )�nn 

~ 

The Ha~iltonian  diagonalizes if we go to the bloch basis: 

.,.'k) Lak,n n) I 

where In) are ~annier  states k are bloch momenta, .... i th 

the relation 

, .) i ka I)ak,O+1 2 e dk,o 5 ' 

follo .... ing from 31och's theorem. 

To pass to another sector for this hamiltonLl:l 

1 3 
'.;e construct th~  gener~tor  

....here •. , (6 \ 

11 as 1n� 
f1g.' .� 

e, :: , 
L 
ij , T~)  , '1 

i and j are nearest neignbor s1 te indices; 'I is def ined as. 

+ + + T+· , T+" T+ ... '7 \T ij • a 1 3 j lj I'l • lj ~  • ~ lj 

It is atraightfor..ard to aho.. that this generator commutes 

with the hamiltonian '2\. Similarly, the generator, 

+
e_ 1 e, ... '8' 

also commutes with '2\. 

From the generators e, e -1 we can construct the 

algebra of 1nvariance of (2'. To construct the other 
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generators of this closed algebra we calculate the commutator 

of e, and e_
1 

I and find it contains two invariant generators: 

9h, :z L a~ an . 

which is the global number of fer~ionst  and a translation 

generator given by ; 

+ • •• ,·10·h 2 -L an a n + 2 

·..we can now get ne .... invariant generators by calculating the 

commutators of h, and h .... ith e, and e_, • We find, the commu2 

tator of e, and h 2 is an invariant generator e 2 given below. 

Clearly the algebra closes on periodic boundary conditions. 

Briefly then the generators of Invariance of (2 , 

may be grouped as follows : 

'a) The h type generators 

h, · La~ an ;� 

h�2 · r a~ a n +2 

f 1 , ) h) •••• etc. ...· La~  a n +4 

'B' The e~  type generators 

~  T+ \ + 
e, • l- ij 

I n i e_ 1 • e, . 

T+ " T+" T+" . +e 2 • 14 + + 2S - + 36 + + •••• ~.  e_ 2 • e 2 

. .. "2' 

The set of generators h commute with one another. This may 

be :J.l<en as the maxi~ally  commuting set. Le: us ·...ork in the 

basis of the global number. h,. In this basis ':;"ere is a 

state , 0, t '.hich is :jevoid of all fer:nions. Since all the 

other generators of the set h operating on '0· leave it 

invar iant it is~n  appropriate custodial state. 1'0 const 

truct' 4 - 20 t.he soLlt lons of (2' we follow the procedure for 
.,. 

construction of the coherent states. Thus -' if :: are a set 

of complex ~urnberst  the solutions of (2) are 

13) ,. I expL Z ;e:-h.c.\) 10> ... '13' 

It is important to note that the fiducial. state has 

been chosen as the eigenstate of h, with eigenvalue of zero. 

The commutator of e .... ith h, is note....orthy, namely,
t 

[ h, t e~] - ± 2e~ . .. (14) 

Thus, the generators e change global number in much the 
t 

same way a + and a do for the local number. In that sense 

I Z) are states that have the number of fermions fluctuating 

about s~me  average value, somewhat analogous to the coherent 

states of optics.
1t 

The set I Z) are all degenerate solutions 

of (2). It is also worth noting that unlike the band states, 

which are single particle solutions of (2). the I Z) solotions 

have the fermions all paired up. Further, because of the 

n assignment in figure , the size of the unit cell has been 

doubled. halVing the Bri llouin zone. This might be useful 

in solving the species doubling problem. 



Section II Hopping of Staggered Fermions 

·... e no\ol explore the rJir3.c equation to see if it has 

sLnilar solutions on a lattice. We \oIor~< 10 the hamiltonian 

formalism, and for simplicity assume the fermions to be 

~assless.  We _ork in a t.o di~ensional  lattice, i.e., in 

t.o space di~ensions.  The fer~ions  have t~o  components, 

and the continuu~  ha~iltonian  of interest i~22  ; 

H i :J 
+� . .. (15' 

... here 

1 
{ ~ i ~j) 2~ij	 · .. (16' 

l3
We choose the representations of cr-matrix in t ....o dimensions

-i) 
· .• 117)

Q2::ti O'~1  • [~ :1 t"'O 

The hamiltonian on a two dimensional� lattice may be cast as 

H i L 1b • {j , Q { :tI ( j + U 1 - l£I ~ j - lJ l} : •• (18)u
j.1J 

where j. (n, , n 2 '. 

rh1s hamiltonian may be 'dlagonalised I if we define t ....o 

independent objects, 41 and ~  +a8 24 : 

8' 

':1 :1 .....1+ + 1 ' 1� · .. ! 20'1 2 

The ha~iltonian  ~~itten  i~  ~~r~s  of ;in.:: :'3 

0: • i-' ..,
I� n., 1 . \_~ r j ) , _, , "1H i .. [;< J +� ... -;! j - ~) 1L-

j 

· .. /21' 

....here 

if
. n, :1:; 

\ 

1-1 ) .1 1:1 t~e ~l=·~ctiGn 

at. the ;:O1.:1~  j 

· .. /22\ 

and 
j 

f(n,.n ) r.,2
(-1) • (-1\� in the n 2 direction 

at the point J. 

· .. , 23) 

If we write this out for a slngle plaquette, we get for the 

plaquette abhg In fig. 2. 

+ + + +• -1 {~  {a' ~  {b} - ,~ (b 1 ~(a). ~  (a l ¢ (g l-·~  (g) ~f  a ) Habhg 

+~+(g'  ¢{hl-¢+(hl ~(9)- ~+(b\  ;(h'. ;+(hl ¢ !bl} 

• •• (24) 

H • Habhg + Other Plaquettes. 

Q,I n,1 I n 2 I� Let us now construct a coherentised global pairing 
• •• (1 g}Q2 ~  111 • operator, 
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'; ".;.+ (e, ... ij , - •. 125 \ 
.; ~ 

.J 

where 

: +, 1) ')+ ~  j ) ••• (26)-.
Tij 

and 

-.T ( , :: -. (j:) -."I'. tT ij ••• (27)ij :'j 

If ; 1n equation (2S) is chosen as shown in figure (2), 

e, commutes ~ith  (24'. 

S1ailarly, 8_ obtained froa .,as1 

-+ 
e_ 1 e 1 ..• 128) 

also is a symmetry generator of (24). 

From e, and 8_ 1 ' much like before, we can construct the 

closed algebra of invariance of (24). To illustrate aga1n, 

if we take the commutator of 8 and e_ we obtain two1 1 

invariant generators, h 1 and h2 given as, 

h 1 L 4> ~ 4> i the global nulllber operator,I 

i 

... (29) 

- + + +h 2 ;4> (a) 4>(c}+ 4> (b) 4>(dl+ 4> (n) 4>(g}+ ••• • •• (30) 

which is a translation, From h 2 and e. -,;e obtain, another 

invariant operator, e ' as :2 

..e =_, +(a) :J + (d' -; + I b' ; + e'... ,+ (iii \ ;; , g' ... :+~n\;"(O)+ 

2 

.. (311 

The algebra c:oses for periodic boundary conditions. 

Is it possi:,le to change the assi]n:nent i:1 fi-j 

2 to generate other invariant op~=ator3  t~d:  ar~  independent 

of the generators of the above aljebra ~  It turns out there 

is just one other pess ib le ,]5S i')n:nen t that l·:!ads to indepen

dent invariant generators. The proof of it is as follows. 

It is clear once phases are assigned on d plaquette the 

8 values of the entire lattice are fixed. We, therefore, 

confine ourselves to the possible assignments on a single 

plaquette. In figure 3 ....e show four possible S assignments 

that lead to a commuting configuration. Ho....ever, 3,\ and 3a 

are not independent, they are related by an overall s19n. 

Similarly 3C and 3D differ by an overall sign. Thus, we have 

only two independent configurations. Therefore, much like 

the set 'i , h , there 1s another set E and ii which form 

an independent closed algebra. We have states of (24) given 

by, 

{ exp 10 • •• (32)I Z) • l (Za ~ -h.C)} 
Q 

which are exact e1gensolutions of the hamiltonian. Replacing 

e by E another set. of states are obtained. Note that all 
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these solutions are degerna':e with 10>. In t~is  sector the 

:er~ions  [see (25) and (26)] are all paired up. 

Section III The Spectrum 

T~e  s ta. tes : / , as is clear, are dege:1er:l te '..Ii th the St3 te 

O' for the har:ll 1 tonians '..e h3'Je considered. .5i:1ce the usual 

band states, up to half filling, are :'ower in energy than 

0, the states Ii·:; on the top .~dg'~:Jf  1 ha.lf-filled 

band. 

There iSll"tlSiJC:;t of the spectr:.Jrn of excitations of 

this sector of hop~ing  that is worth pointing out. For s1~pli

city let u~  get back to the first example (2) and observe 

f 19.' aga in. Since the s 19n 1 , bet..,een the points and 

2 and between 7 and 8 are both positive, the periodic boundary 

conditions cannot be implemented. Had we started with seven 

points, instead of eight, there would have been no problem. 

Since points on the boundary are sufficiently far away to 

alter physics, we conclude that the case when two identical 

s1gns, r), sit on neighboring links, be it on the boundary, 

or somewhere in the middle, it must be in the spectrum of 

the system. Thus, the case of two neighboring identical signs 

is an excited state of the system. It is a phase defect exci

tation. 

The situation with respect to the second example, 

(24) I is more or less identical. The two 6 conf igurations 

of fig 3 could form a boundary wall. This once again gives 

rise to a pure phase exci tation. The energy of suc~  a pure 

~hase  excitation ~e  have not deter~i~ed,  but the presence 

of these and their mixing ~ith  other 5ca~ar  objects is likely 

to be a part of physics if it arises from these sectors. 

So far ~e  have discussed the case of pure hopping. 

In presence of interactions do these Z, states survive: 

~aoy  a times interactions tend to favor pairing of particles, 

and 10 these ins tances, the Z) bas\.s could be bet ter than 

the band ones. ;';e have shown recent ly' tha t in the :-iubbard 

:~el,  with repulsive on site interaction of strength V, 

the spin singlet coherent \Z; states are sol:.Jtions. They 
2<:;

lie in the midd le of the spin-dens i ty wav.! gap .;. \!hether 

the !Z, basis of the staggered fer~ion5  survives interactions 

remains under investigation. 

When self energy, i.e. mass ter~s,  a~  included, these 

terms are proportional to the generator h,. Since,1n general 

the generators e and h , do not commute, I Z> are solutions 
6 

with a special meaning. Since the expectation value of h, 

is a constant in the I Z> states, the lz> are coherent state 

26 27solutions of the hamiltonlan • It is in this sense that 

the Iz> are states of the Hubbard model. 

This work started at the University of Bielefeld. 

We thank the theory group, especially Professor H.Satz, 

R.KOqerler and F.Faisal. 
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1.� A configuration ·Jf 9igns, ~  , that :!lake ~.  ,:oomute with the hamil
27. It is to be noted the projections of !z onto states 

/ ... ,
,:)f def ini te global number are solutions of '2 and 3r~  toni:ln ~ ..:. } .� 
also st~tes  of ~1'  when self ener3Y mass t.er:ns d-.:>� 

included these projected states are exact eigenstates.� 2.� Pairs of fer:ni'Jns .1re created on ':~e  l1:1ks of 3 l1ttice. The 3i3n9 

associated ·.. i,:;' t:1e li:H!5 i:1diC:lte the choi.::e of 3 on the ;'inks
I 

of the li:1e. If 3 is chosen as sholo"n. ~n i:1·.. ·H·iant operator 2 results. 

3.� The possible independent? ass1 6fl.":3e:1ts on ,1 i1:1gle ;J13quette. 'iote 

thnt (A) and (8) differ by an overall s1gn; so do (C) and (D). 
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