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Abstract

We explore alternate solutions of Dirac equation on a lattice.

In this sector we explore the characteristics of the states

\
\

Fermilab
—_—

0 1Lk0 0034112 ?

and argue that the excltatlohggpectxum is 11£fatent.
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Fermions on a lattice is a subject of wide interest. In hig
enersvy =hvsics it 1s increasingly being used to understand
the world of hadrons!1\. The lattice version of quantum
allowed calculations into

chromodynamics, QCD, has areas

98"
of hadron physics previously inaccessible 2-3'. In condensed
matter ghysics the fermions are mostly on a lattice, and

are the basis of much of the theoretical calculations.

The states on a lattice are the 3loch functions.

"y

or a system of many particles a determinant of these states
are formed. The excitation spectrum, usually consist$of single
particles over the fermionic sea. It turns out, however,

that there are other ways of constructing multiparticle
states that have different excitation spectrum. We deal with

one such possibility in this work.

We work in the lattice version of Dirac equation.
On a lattice this leads to a hopping system, which is well
studiedfg\.

It can be diagonalised, and for the simplest

hopping the result is band states made of bloch waves. There

is, however, an infinite dimensional''0:'"’

global symmetry
hidden in the hopping system that allows us to construct
other solutions to the hopping problem. These sectors of
solutions have fermions all paired, unlike the band states,

which have single particle spectrunm.

To proceed, let us start with a simple hamiltonian
and illustrate all the ideas. At that stage we take up the
more complicated hopping scenario in staggered fermion systems

and show how the simple ideas generalize.
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1o section I a2 simple2 hopping of fermions is used
to arrive at the infinite dimensional algjebra. States are
constructed that ars bpased on this algebra. We take up the
hopping scenario 1in staggerad fermionsyiz\ in section
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aljebra and the s3tates are illustrated. It turns 2Jut
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ocne can construct another independant sét of generators,
and thus there i3 a ieqenerécy to these states. In section
II1 we d3i3cuss the 2nerjles of +hese states and explore some
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possibla excitations.

Section I . Alternate Solutions of Simple Hopping

Let us place on each site of a lattice a single

component fermi field a, {n is the site index] satisfying

The dynamics of hopping of these fermions is given by the

hamiltonian:

+ + ve. T2)
H = ‘z‘an an¢1 + an01 an ’

The equations of motion are :
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The Hamiltonian diagonalizes if we go to the bloch basis:
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where |n) ars Wannier states , k are bloch momenta, with

the relation

ika
ak{n’l) = e a, {n)

PS
w

following from Bloch's theocrem.

To pass to another sector for this hamiltonian

13
“e construct ° the jenerator
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= T 13 0 ' . where ... (&
n as in
fig.1"

i and j are nearest neighbor site indices; I is defined as.

+
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It is straightforward to show that this generator commutes

with the hamiltonian (2). Similarly, the generator,

+*
e, = e c.. (8

also commutes with (21,

From the generators e, , e_; we can construct the

algebra of invariance of (2). To construct the other



generators of this closed algebra we calculate the commutator

of e, and e_

1 1 and find it contains two invariant generators:

which is the global number of fermions, and a translation

gjenerator given by :

+ . N
hy, 'Z"n 3.2 ... 10

We can now get new invariant generators by calculating the

commutators of h1 and h2 with e, and e_; - we find, the commu-

tator of e, and h, is an invariant generator e, given below.

Clearly the algebra closes on periodic boundary conditions.

Briefly then the generators of invariance of (2}

may be grouped as follows :

fa) The h type generators :

+
h1 = Eanan;
h = a*a .
2 z n “n+2

+
hy = Z_an a,,y ---- etc. ce. 111
‘B' The e, type generators .

+ , v +
e = LTIy N ey mey.
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The set of generators h commute with one another. This may
be %t“axken as the maximally commuting set. Let us work in the
basis of the global number, h,. In this B2asis there is a
state 10», which is devoid of all fermions. Since all the
other generators of the set h operating on 10- leave |t
invariant, it is an appropriate custodial state. To cons-

\‘.:x‘uct“’_‘:D “nhe solutions of (2) we follow the procedure for

bR
constructicn of the coherent states. Thus ~° if I are a set
of complex numbers, the solutions of (2) are
12> =t expz: Z.e.-h.c.)) 10, NS A
It is important to note that the fiducial state has
been chosen as the eigenstate of h1 with eigenvaluie of zero.

The commutator of e, with h] is noteworthy, namely,

[ hy . e ] = % 2e

+ . L. 114

Thus, the generators e, change global number in much the

t
same way a’ and a do for the local number. In that sense
| 2) are states that have the number of fermions fluctuating
about seme average value, somewhat analogous to the coherent
states of optics?‘?he set | 2) are all degenerate solutions
of (2). It is also worth noting that unlike the band states,
which are single particle solutions of (2), the | Z) solgtions
have the fermions all paired up. Further, because of the
n assignment in figure 1 the size of the unit cell has been

doubled, halving the Brillouin 2zone. This might be useful

in solving the species doubling problen.



Section II : Hopping of Staggered Fermions

We now explore the Dirac equation to see if it has
similar solutions on a lattice. We workx in the hamiltonian
formalism, and for simplicity assume the fermions to be
nassless. wWe work in a two dimensional lattice, i.e., in
tW4o space dimensions. The fermions have two components,

. L2
and the continuun hamiltonian of interest is 2

H=4 5 32 .7 2 ... (15D

111 , Jj} = ZSij ... (16

We choose the representations of a-matrix in two dimenslon323

0 1 0 -1
a. = - . e 1T)
L 1 0 27t o

The hamiltonian on a two dimensional lattice may be cast as

H = {1 ZE‘ w’(j) uu( Y{3e u) - $'3- u} -..118)
j.u

where 3j = (n1 ' “2“

This hamiltonian may be ‘diagonalised' , if we define two

independent objects, ¢ and ¢* as?4.

[ ™) P2 |
v = ay " ajy R ‘ ee. (19)

: = 5 1, 1, ‘ L.l 20
The hamiltonian written in =aras of 3 and : i3
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where
f"n1 n,t
-1 T = in %he 3directisn =
at the coint j
122)
and
J
f(nl,nz) r,
(-1) a (-1 in the n, direction
s
at the point j.
t23)

If we write this out for a single plaquette, we get for the
plaquette abhg in fig. 2.

Haphg = -~1{67(a)s (b)- s*(b) sta)e o%(ar s (g)-3%(g) ofa)

«5Y(g) sthr-s"(h) 3(g)- ¥ sty a* ) 5 Y}

... (24)

Ha= Hll + Other Plaquettes.

Let us now construct a coherentised global pairing

operator,
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ey = /. Tiy0 .. 125"
where

et - ~ t +,

Tij LIS S REEMES B ...0(26)
and

THo(: = TV iy = eTY o027

ij 13 i:

If 2 in eguation (25) is chosen as shown in figure (2),
e

4 commutes with (24).

Similarly, 3_1 obtained from &,as :

-+

e, = e : ... 128)

also is a symmetry generator of (24).

From 31 and @_; , much like before, we can construct the
closed algebra of invariance of (24). To illustrate again,
if we take the commutator of ‘e, and @_; we obtain two

invariant generators, 31 and Ez given as,
]1 - z.°; ¢, . the global number operator,
i
cee (29)

szzg*(a) s(cre 6¥(b) 6(dre 6*(n) 4(g)4... ee. (30)
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which is a translation, From h, and &, we obtain, another

invariant operator, 52 , as
2, =@ sttt e 5T 5 Trg) . ST, Trone
(31
The algebra closes for periodic boundary conditions.
Is it possible to change the assignment ° in fig

2 to generate other invariant operators that ar= indegendent
of the generators of the above al;ebra? It turns out there
is just one other possible assignment that leads to indepen-
dent invariant generators. The proof of i1t is as follows.
It is clear once phases are assigned on a plaquette the
8 values of the entire lattice are fixed. We, therefore,
confine ourselves to the possible assignments on a single
plaquette. In figure 3 we show four possible £ assignments
that lead to a commuting configuration. However, 3A and 3B
are not independent, they are related by an overall sign.
Similarly 3C and 3D differ by an overall sign. Thus, we have
only two independent configurations. Therefore, much 1like
the set e , h ’ there 1is another set E and H which form
an independent closed algebra. We have states of (24) given

by,

[2) = {exp Zi (z, & -h.c)} 10 ce. (32)
a

which are exact eigensolutions of the hamiltonian. Replacing

@ by E another set of states are obtained. Note that all
/



these solutions ars degernate with 109.. In this sector the

fermions [see (25) and (26)] arz all paired up.

Section III : The Spectrum

The states 'z, , as is clear, are degenerate with the state
0- for the hamiltonians we have considered. 3ince the usual
zand states, up to half filling, ar= lower in energy than
0+ , the states I: liz on the top =2dga of 1 half-filled

band.

There isaraspect of the spectrum of aexcitations of
this sector of hopping that is worth pointing out. For simpli-
city let us get back to the first example (2) and observe
fig.1 again. Since the sign 5 , between the points 1 and
2 and between 7 and 8 are both positive, the periodic boundary
conditions cannot be implemented. Had we started with seven
points, instead of eight, there would have been no problem.
Since points on the boundary are sufficiently far away to
alter physics, we conclude that the case when two identical
signs, n, sit on neighboring links, be it on the boundary,
or somewhere in the middle, it must be in the spectrum of
the system. Thus, the case of two neighboring identical signs
is an excited state of the system. It is a phase defect exci-

tation.

The situation with respect to the second example,
(24), is more or less identical. The two 8 configurations

of fig 3 could form a boundary wall. This once again gives

!

rise to a pure phase excitation. The energy of such a pure
thase excitation we have not determined, but the opresence
of these and their mixing with other scalar objects is likely

to be a part of physics if it arises from these sectors.

So far we have discussed the case of pure hopping.
In presence of interactions do these Z: states survive?l
Many a times interactions tend to favor pairing of particles,
and in these instances, the | 2> basis could be better than
the band ones. We have shown recently- that in the Hubbard
model, with repulsive on site 1interaction of strength U,
the spin singlet coherent |Z: states are solutions. They
lie in the middle of the spin-density wave gapzs. WVhether

the |2> basis of the staggered fermions survives interactions

remains under investigation.

When self energy, i.e. mass terms, are included, these
terms are proportional to the generator h1. Since, in general
the generators eB and h, do not commute,| 2> are solutions
with a special meaning. Since the expectation value of h1
is a constant in the !z> states, the ]Z> are coherent state

26 27

solutions of the hamiltonian®’. It is in this sense that

the |2> are states of the Hubbard model.

This work started at the University of Bielefeld.
We thank the theory group, especially Professor H.Satz,

R.KOgerler and F.Faisal.
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It is to be noted the projections of !Z: onto states
2f definite global number are solutions of ‘2 , and ar=
also states of h?' “hen self energy mass terms ar=a

included these projected states are exact eigenstates.

Figure Captions :

1.

A configuration of signs,?) , that make 2, commute with the hamil-

tonian (2).

Pairs of fermions are created on =he links nf a lattice. The signs
associated with the lines {ndicate cthe choize of 53 on the links

of the line. If 2 is chosen as shown, an iavariant operator £ results.

The possible independent } assignmeats on 1 siagle plaquette. Note

that (A) and (B) differ by an overall sign; so do (C) and (D).
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