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Abstract: -

A new state is possible for a relativistic electron gas. We argue that

such a phase sets in for a value of fermi velocity close to unity.
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A dense mass of electrons is a subject of enduring novelty. Being one of
the key elements of many-body physics, it has been explored since the last
century; its usefulness spanning the design of communication systems all
the way to the design of accelerators and beyond, and has, therefore,

(l\‘

Yet, surprises have come at
/2)

been an extremely well studied subject
a pace and regularity that have defied understanding It is for this

reason that every assumption of the underlying theory must be examined

While much of the theoretical work covered relatively' low energy
plasma, of late interest has begun to focus on the relativistic gas, which
is being increasingly accessed in laboratories. In the design of non-
conventional high energy accelerators, for example, the relativistic plasma,
its wakes demand evermore precise understanding. In this work we focus
on the possibility that in this domain the gas may undergo a phase transi-

tion into an altogether new state.

That there is a good .deal of collective and coherent behaviour,
both in the nonrelativistic and the relativistic domain has been investi-
gated over the years. In the case of a low energy electron gas,with screene
interactions, the effective spin couplings lead to spin-singlet coheren

3

states lying in the middle of the spin density wave gap Again, fo

a highly relativistic case, that of neutrino matter, we have indicate

(4) :

the possibility of a condensation" '’.

The underlying procedure for exploring these aspects of many-bor
systems is as follows. The polarisation function, I , is ‘calculated a

the Green's function, G, is expanded in terms of the pclarisation as folle

G=G"+6G°
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- Since, G°, the lowést order Green'.é function is krown, and Il calculated,
“the G may be obtained. It is known that the singularities of the Green's
functions correspond to the physical states. An analysis of the divergences

of equation (1) givesus the information we want.

In this work we are in the relativistic domain. Since the excita-

tions we are :1ooking for are ‘obtained in the kinematical region of small

momentum, the usual vécuum polarisatiqn effects may be neglected in this'

analysis. These effectsv become significant for momentum of order chemical

. . L . (
potential or above, where pair creations are J.mportant~5

). For us the impor-
tant part of polarisation is the many-body effects, i.e., the particle-

hole correlations.

In this framework we explore the relativistic electron gas and
find that aside from the usual spectrum of excitation, there are other

possibilities.

The New ¥odes :

" 'In the rest frame of the system, the components of polarisation are given
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_constant g specifies the electron-photon interaction. There are other non—

zero components of I , which we have not written above, because these are

not required for the discussions here. The quantity Vp is the fermi velocity.

The lowest order Green's functions of the photon, in the Feynman

gauge is:

Gv = - _ (4)

From, {1}, 72) and (3) we have

b
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with o1 = G50 g: 61y (6

Since Ggo , Gil s Hn and EZO are all given in equaticns (4), (2) and

’3Y, it is possible to solve for G11 as is usually dore. If we solve for

Gll' as is the common practice, because Hll diverges at y = 1, &

= 11 2t
y=1 is zero. This is the staadard solution.

There is another equally plausible solution for eguation ‘1. Sincs

T bed T

dqp 0 Ay 0 d o1 all Ziverge for y=1 on the right heni side of

is dzvergent at y=l. This iz 2 consistent solution. The =ades arov=d 7=

we c2ll, for reasons <hat will “ecome clear later, {1+ =oiss,

o1 (5>



There are two possible solutions of the Schwinger-Dyson equations. Thus,

there must exist the possibility of a new phase for the electron gas.

The Excitonic Phase :

The usual longitudenal plasma excitation spectrum characterise the normal
phase of the electron gas. A few of Xi+ excitation may be innocuous in
this state. It is, however, possible to argue that in a certain domain,

~the X1+ modes lead to the possibility of a condensation,

As it is, the X1+ modes are difficult modes in the sense that long-
wavelength modes with arbitrarily small energy may mix with the ground

state of the system, destabilizing the state.

To proceed further we look at the imaginary part of the polarisa-

ticall . This quantity has been calculatei before and is of the form

Im 0y, v g2u2x2y9 SUSIE S ‘N

This indicates that modes with X > Vg zare the stable ones. The XVp are

unstable and decay into particles aund holes.

If now we approach the domain ¥,V 1, the stable Xl+ modes would
occar for X values greater than one. Such an excitation would be acausal,

(7

beczuse it would imply a mode travellizg faster than light . A way out

is o assume that the X1+ modes condense.

The Order Parameter :

Iz zalculating the many-body part of thz polarisation, I, beczuse of the

antiparticle and antiparticle-hole correlations give non-vanishing contri
butions. Since our investigation is restricted to the region k<< Ep » onl

particle-hole type correlations are important.

The X1+ are particle-hole modes, and the description of its conden
sation in terms of an order parameter was carried out in the context o

neutrino physics earlier. Identical considerations apply. The electron-

hole field is definéd» as(a)
efir,e) = Y Y, e ¢ Y
R B Yz 1 3 e (r, -t ] /8

where e is the electron field; the superscript c means charge conjugation.

The true ground state may then be characterised by a lorentz invariant

' (5
order parameter®

+ .
< e e +h.c.> g9

That this object, indeed, is a lorentz scalar has been shown in an earlie

work(‘a\ .

Conclusions :

' - . N . -
A study of the Schwinger-Dyson equations for a systea of electrons reve

that, aside froz the usual state, there is another consistent solutd

to the new one uniar thermcirv-znmic coniitions.



"and the fermi energy are close to one another. Their ratlo, the fermi
velocity, when it épproaches the vicinity of amity, stable tachyonic modes

arise in the system. These modes must condense.

The Condeﬁsation of these modes is described by an order parameter,
first discussed in the context of neutrinos"“. The particle-hole conden-

‘sation is described by an elegant lorentz-invariant quantity given in (9).

. The Green's function G11 of the photon, because of infinite particle
hole correlations, is significantly altered in the kinematical region
X > 1. They propagate in a background of stable nondecaying particle-hole

modes, the excitons.

In text books we find that for systems with massless gauge interac-
tions we have longitudinal plasma oscillatioms. For massive gauge interac-—
_tions on the other hand, we have the usual zero-sound. Since the X1+ modes
in this work are zero-sound-like, but prevail for a massless U(1) theory,

we wonder, if the U(1) theory with condensed particle-hole modes are

{
massive‘gs? Do the particle-hole modes somehow disappear into the gauge

bosons making them massive? We know now that symmetric and symmetry breaking
solutlons smultaneously exist for inmmerahs.e problems. The condensate

'(9\, it is worth noting, is not an U(l\ invariant.

We argue that the new state comes .about vhen the fermi momentum
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