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A dense mass of electrons is a subject of enduring novelty. Being one 
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Abstract: 

A new state is possible for a relativistic electron gas. We argue t.'lat 

such a phase sets in for a value of fermi velocity close to unity. 
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the key elements of many-body physics, it has been explored since the last 

century; its usefulness spanning the design of communication systems all 

the way to the design of accelerators and beyond, and has. therefore, 

been an extremely well studied subject(1). Yet, surprises have come at 

fZ 
a pace and regularity that have defied understanding ). It is for this 

reason that every assumption of the underlying theory must be examined 

While much of the theoretical work covered relatively low energy 

plasma, of late interest has begun to focus On the relativistic gas, which 

is being increasingly accessed in laboratories. In the design of non

co~ventional  high energy accelerators, for example, the relativistic plasma, 

its wakes demand evermore precise understandi....'lg. In this work we focus 

on the possibility that in this domain the gas may undergo a phase transi

tion into an altogether new state. 

That there is a good deal of collective and coherent behaviour 

both in the nonrelativistic and the relativistic dOClaU has been investi 

gated over the years. In the case of a low energy electron gas,with screene 

interactions, the effective spin couplings lead to spin-singlet coheren 

states lying in the middle of the spin density wave gap (3) . Again, f 

a highly relativistic case, that of neutrino matter, we have indicat 

the possibility of a condensation(4). 

The underlying procedure for exploring these aspects of :nany-bo 

systems is as follows. The polarisation function,:: , is 'calculated 

the Green's function, G, is expanded in terms of the ;vlarisation as foll 

G = GO + GO TI GO .,. 
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Since, (;G, the lovest order Green' sfunction is lafown, and "rr·calculated, 

the G may be obtained .It is known that the singularities of the Green 's 

functions correspond to the physical states. An analysis of the divergences 

of equation (1) givesus the information we want. 

In thisvork we are in the relativistic domain. Since the excita

tions we are .looking for are obtained in the kinematical region of small 

IDOIlIentua, the usual vacuum polarisation effects may be neglected in this 

analysis. These effects become significant for momentum of order chemical 

potential or above, where pair creations are important(5). For us the impor

tent part of polarisation is the many-body effects, Le.. the particle-

bole correlations. 

I:1 this framework we explore the relativistic electron gas and 

find that aside from the usual spectrum of excitation, there are other 

possibilities. 

The New &des 

In the :rest frame of the system, the components of polarisation are given 

by(5,6) 

2 2
gU _ (2)II = - 2 { X In 1J±L r - 2 } 

00 ~  4IT y-1 

'J ~  

TIE X- ;'00 ; JI - X fr
Ol IT 10 OO (3 \ 

v.:.. kr;_ = These are nUd i.:: the region k x. The coupling~< sF' Y 7 F ~ 

~,.,..{l .. 
J.. 4 

constant g specifies the electron-photon interaction. Tnere are other non

zero components of n , which ve have not written above, because these are 

not required for 'the discussions here. The quantity v is the fermi velocity,
F 

The lowest order Green I s functions of the photon, in the Feynman 

gauge is: 

g 
__~Y.....  

~v  (41 
k2 

From, (1), (2) and (3) ve have 

GIl GIl + Gil J 11 Gn 

+ Gll =10 GOl (5) 

with GOl G~o IT OI Gll (6) 

Since G~o'  GIl ' 11 11 and li lO are all given in equations (4), (2) and 

(3', it is possible to solve for G as is usually done. If we solve forll 

GIl' as is the common practice, because II 11 diverges at y = I, G at 
ll� 

y=l is zero. This is the standard solution.� 

There is another equally plausible solution for equation (1\. Since 

:1 11 ' J: 1O ' IT 01 all civerge for y= 1 on the right he.::: side 0: ('u j . 

is ai '..argent at. y=l. T~lis  ",52. consistent solution. T::e ::::odes ere'.:::d J=

we cell, for reasons ~~~t  ~i::  ~ecome  clear later, X1+ ::0.:25. 
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There are two possible solutions of the Schwinger-Dyson equations. Thus, 

there must exist the possibility of a nev phase for the electron gas. 

The Excitonic Phase 

The usual longitudenal plasma excitation spectrum characterise the normal 

phase of the electron gas. A few of Il+ excitation may be innocuous in 

this state. It is, however, -possible to argue that in' a certain domain, 

'the 11+ modes lead to the possibility of a condensation~  

As it is, the X1+ modes are difficult modes in the sense that 10ng

1i8v»-length modes with arbitrarily small energy may mix with the ground 

sta~e  of the system, destabilizing the state. 

To proceed further we look at tte imaginary part of the polarisa

tion II . This quantity has been calculated before and is of the form 

2 2 2 'e I f71rm IT 11 tV g i.1 x y fl - I Y , 

This indicates that modes with I ) V are the stable ones. The X<V areF F 

unstable and decay into particles and hol:s. 

If now we approach the domain 'iF tV 1; the stable 11+ modes would 

~  for X values greater than one. Such an excitation would be acausal, 

beceuse it would imply a mode travellbg faster than light(7). A way out 

is ~o  assume that the X1+ modes condense. 

'The Order Parameter 

.....:::alculating the :J'.any-body part Gf t.:.~ polaris~tion, J:, '::>e'.:c.~se  Qf thE 

pc:.~:;  structu:re of the fermion ?r::::::.gat~r:  particle-no::, ~articl~-

antiparticle and antiparticle-hole correlations give non-vanishing contri

butions. Since our investigation is restricted to the region k« sF anI: 

particle-hole type correlations are important. 

The X1+ are particle-hole modes, and the description of its conden

sation in terms of an order parameter was carried out in the context oj 

neutrino physics earlier. Identical considerations apply. The electron

hole field is defined ag(8) 

eh(r,t) C 
y 2 y 1 y 3 e (r, -t' , '8" 

where e is the electron field; the superscript c means charge conjugation. 

The true ground state may then be characterised by a lorentz invariant 
(4 ) 

order parameter' 

< e+ e h + h.c. -) f9 

That this object, indeed, is a lorentz scalar has been shown in an earli 
(4\

work' '. 

Conclusions 

A study of the Schwinger-Dyson equations for a syste::t of electrons nove' 

that, aside fro;: the usual state, there is anotner consistent sol::tj 

to the p=Qblem. :t is, there:~re.  possible for t~e  usual state to transit 

to the nc-... one T'.:er -:~erillc;i:<-::2.::Jic  con:i.tiop.=. 
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We� argue that the new state COllieS about when the ferini momentum .References 

and� the fermi energy are close to one another. Their ratio ~  the fermi 

" 
I� ..� 

velocity, when it approaches the vicinity of anity, stable tachyonic modes 

arise in the system. These modes must condense. 

The condensation of these modes is desc:rl.bed by an order. parameter, 

first discussed in the context ~f  Deutrinos( 4). The particle-hole conden

sation is described by an elegant lorentz-invariant quantity given in (9). 

The Green's function G of the photon. because of infinite particle
U 

hole correlations, is significantly altered in the kinematical region 

1 '> 1. They propagate in a background of stable nondecaying particle-hole 

modes, the excitons. 

In text books we find that for systems with massless gauge interac

tions we have longitudinal plasma oscillations. For massive gauge interac

tions on the other hand, we have the usual zero-sound. Since the 11+ modes 

in this work are zero-sound-like, but preYail for a massless Un) theory, 

we wonder, if the Un) theory with condensed particle-hole modes are 

massive(9'? Do the particle-hole modes SOIIIehow disappear into the gauge' 

bosons making them !llaSsive? We know now that symuetric and symmetry breaking 

solutions simultaneously exist -for :lnnmrierabl.e problems. The condensate 

(9), it is worth Doting, is not an U(l) inTariant. 
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