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Abstract :

we find spln—singlef solutions of the Hubbard model for all

U. These solutions, called the <coherent bcnd states and
denoted by . 1Z>, lie in the middle of the Mott-Hubbard
or the SDW gap. The significance of these solutions 1is

explored.
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The states of the Hubbard Model are of interest for a number

{
of reasons‘1).

In these systems a Mott-Hubbard gap exists
at halffilling. In a mean field sense a spin density wave
gap is there for all values of on-site repulsion, U. 1In
this work we explore alternate spin-singlet soliton type
modes of these systems. Starting with a simpler system,

we build towards the Hubbard model.

A simple hamiltonian that has soliton solutions
is the hopping hamiltonian, often also called the tight-
binding model(Z). These states were 1illustrated in our
earlier work, now on referred to as I. The soliton states,
also called the coherent bond states (CBS), arise from an

underlying infinite dimensional sy=zaetry.

The hopping hamiltonian has recently been the sub-
ject of intense work in conjunction with the antiferromag-
netic (AF) hamiltonian. The resulting system, the so called
t-J model, at the mean field level, may have spin-singlet

(3)

states The gauge syametry of the AF system leads to

fluctuations that are much too large and destroy these

states; instead flux states(4)

, containing singlet variables

gauge invariantly configured on a plaquette, are stable.
On a t-J system it is also known that commensurate flux
phases are stablé?} This, however, requires t > U, where
U is the Hubbard on-site repulsion. The importance of the
t term, 4i.e., the hopping hamiltonian 1in this instance

is evident.
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‘3'*' §6i£éio;;i;;or Héailective mény—body states exist
in numerous systems, including weakly interacting ones(s).
In the case of the hopping hamiltonian the usual single
particle states are the bloch functions. One constructs

a determinant of these bloch functions to get an N particle

-~ LRI - -

state. The excitations are single particle states over

the fermi sea(7).

The exchange hamiltonian is essentially square
of the hopping, projected onto a space that does not allow

double occupancy(s).

The states of the exchange, 1i.e, the
AF solutions, appear to differ significantly from the usual
bandystates, which have a paramagnetic character. A question
naturally 4is : 4is it only the constraint of non-double

occupancy that 1leads to this difference? Or, does the

hopping hamiltonian have other states?

It 1is our assumption that the soliton states of
hopping provide some of the answers. So far we have cons-
tructed the generators of symmetries of hopping and shown

they lead to the soliton configurations(g). We have also

analysed the possible excitations(z).

On that trail we
reanalyse here the spectrum of excitations and obﬁain two
other types of states that are in the spectrum of these
states. So far much of these states were written in the

Wannier basis, but here we rewrite them in terms of the

Bloch functions. Further we analyse the suitability of

these states 1in the context of the Hubbard model. And just

as in I, even though we discuss the scenario in one dimen-

sion, the results generalize to higher dimensions.

To recall, briefly, the hamiltonian of interest

is :
+ .o (1)
H=-¢t % (Cyy Cyq * h.c.)
<1,3>
a

(2) .
The generators of symmetry are (Fig 1) =

hl, the global number

hz, translation by two lattice units
h3, translation by four lattice units
etc.

oo (A)

and e, type generators

e, = 1 Tij(n )

e = leg)
-1

+ + * (- R
e,, = Tigls) * Tasl-) + Tyl Tyql-) *

-2 = ( eZ)*

etc.

Fron these generators we can construct the soliton states:



lz> = {exp [ [(%e - h.ci)llfo>, eee (2)
g

where }0> is the state of h1 containing no particles”o).

In Bloch Basis :-

It is important to observe the generator e, in
that they have bond lengths that are odd in units of the

lattice spacing, i.e, e have elementary bond length of

+1

a (the lattice spacing); e have bond lengths of 3a and

2
so on. The generators of generation of even bond lengths

are not in the algebra. The reason is the boundary condi-

‘tions. In fig 2 we have drawn a small lattice of five polnts.

The assignment cf signs + and - on the bonds 4is such that
if the periodic bouﬁdary conditicns (p.b.c) can be satisfied
for odd bond lengths they cannot be satisfied with even
bon-d lengths and vice versa. This topological feature has

consequences that we discuss later.

So far we have represented the generators and the states
in the Wannier basis. Of course, they may equally well be
represented in terms of the Bloch states. For 4instance

the | 2> of eqn. (2) in Bloch basis is

2%
T

| 2> ={exp{ ] 2, | 2 cosl2a +» 1)ka] [}, C
azC k

Each pair has zero energy because Ex * € k7 0. In that
sense this sector of the hamiltonian is obtained from the
bloch states by appropriate pairing. The cosine factors
are arranged to yield odd bond lengths and the c.m. momentua

I of pairs ensures the sign on bonds alternate on links.

The Ground state and The Excitations :-

In I we outlined possible excitations of the |2> states.
Here we take up the issue again. The excitations discussed

in I were of three types :

1. e, - walls : where two states lz1> and lzz> form

a boundarcy.
2. Phase defects : forzed of fluctuations in sign on

of the bonds.

3. Bond Excitations : Where a sea of singlet bonds have

a few triplets in them.

This 1list needs updating on two counts. First, the e, -
walls do not appear as excitations because 2, are conti-
nuous parameters., It 1is, therefore, difficult to argue

energy is required to change the 2 values.

Second, there are two other types of excitations
that need to be included in the 1list. One, of them is a
soliton excitation shown in Fig 3. A single charge remains
unpaired, and 1is surrounded on both sides by ground state

of the system.



The other excitation is obtained as follows : We
have seen that in | 2> [eqn. 3] only odd-bond 1lengths
appear . The reason 1is topological and is explained in
Fig 2. However, instead of starting with e; we could have
equally well started with a generator E, that has pairs
of bond lengths 2a. The algebra will once again close and
we would have a new state lzeven’ made up of pairs obtained
by operating on | 0> by generators of the E type. In con-
trast the |[2> of eqn. 2 1let us renane | 2044’ A boundary

dd

wall excitation is now possible when ] 234> meets !zeveg‘

These we call odd-even excitations.
Thus, the possible excitations are
(1) Phase Defacts
(2) Bond excitations,
(3) Single particle solitons, and

(4) Odd-even excitation:.

Since the | 2> configurations are at the same energy as
the state |0>, the usual band states, at least upto half-
filling, 1lie 1lower in energy than the |[2> solitons. In
I we argued that a Peierl's type gap may come about for
fermi surface nesting due to the phase assignments on bonds.

A closer examination of the argument is given in Fig 1.
A translation by a can be compensated by an overall change
of sign. A Peierl's type possibility, therefore, appears

ruled out.

The question naturally is, if charge carriers are
introduced on a half-filled fermi surface could they go
into | 2> type states?

For many reasons in a realistic system there may
be a gap at half-filling such as due to a Mott-Hubbard
type of interaction. We investigate now if | 2> type states

are solutions of the hubbard model.

1Z> are zero-modes of the Hubbard Model :-

We show now that the | 2> states, at the mean-£field level,

are solutions of the Hubbard model.
For this let us recast the Hubbard model, usually

written as :

+
H=-¢t Y (ijcj: + h.c.)
<1,3>
c
+U 7 ngy ng , ees (4)
i

in terms of the spin variables. The spin operator is repre-

sented as :

3 I cee (5)
Sy = i'Cio Yoo » Cyo ¢

where, T are the Pauli matrices. By simple algebra, we

£ind,



2
s; = s; = s3 = 310 n, +a, - 2a,n ] ee. (6)

Therefore, the Hutbard Model may be rewritten as :(11)

H = —ti(czgcjc+h.c.)
<i,3»
(o]
2 2 eee (7
-3uy gi (7)

Using, §; = <3, > + ( 3 - 3,5, ... (8}

the meanfield hamiltonian becones,

Hyp = -t 1 (e €y + h.c.)
<i,3»
[e]
2u 2 4Y = x
+ =5 1 s>¢ - 33 § < S.>. S, . cee (9)
i i

Assume the average field <S;> 1is independent of i (this
assumption is strictly not necessary, as we explain later),
thus, <3i> may be taken outside the sum in the last term,
which now becomes proportional to the total spin operator.
Since the | Z> states are precise spin-singlets, they are
elgenstates of the total spin operator with eigenvalue
(F 1)

zero Thus | 2> is an exact eligenstate of (9) with

eigenvalue zero, i.e, |2> are the zero—modes(12). Ofcourse,

10

we know the equaticn (9) has other mean-field solutions
lixe the SDW. For half-filling there is a gap at the fermi
surface for these SDW states, and , of course, sitting

in the middle of this gap are the | 2> states.

Therefore, one might not 1like to worry about the
l2> states, because they have higher energy than the SDW

ground state. But, that would be wrong for two reasons.

1. The SCW instability 1s precisely at half-
£Llling(11). Thus, 1if charge carriers (particles or holes)
are introduced onto nested fermi surfaces, they could go

into the | 2> states.

2. More importantly, for the! Z> states, not only
are they ei;enstates of 1 51, but because they are singlets,
<Si> = 0. That =eans, no matter what ansatz (SDW, ferromag-
net . . .) we chéose for <Si) in egquation (9), the | 2>
state come mixed with all of them. Thus, the usual SD#
ansatz carries in it some mixturé of | 2>. The | 2> are

precise zero modes; no states of the system are free from

them.
Conclusions:

Starting with the tight-binding system we constructed a
zero energy solution. These solutions, the coherent bond
states, are denoted by | 2Z>. They are precise spin-singlets.

Their excitations are of four types :



1M

1. Phase defects, 2. Bond Excitations, 3. Single particle

solitons and 4. Odd-evenexcitations.

Recésting the Hubbard model in terms of the spin
variables, the on-site repulsion term 1is written in terms
of the spins. Since the | 2> states are singlets they

satisfy the conditions :

1.4 231 ) }2z> =0, and

2. <§i> in the |Z> states is zero.

Taken together we conclude that | 2> are zero nodes of

the mean-field Hubbard model. Following are the consegquences

1. Pure | 2> states lie in the niddle of the SDW
gap.
2. If charge carriers are introduced onto a half-filled
fermi surface, they could go to | 2>.
3. Because these are zero-modes, they mix with
all other states of the system. In particular, the SDW

state has 2> in them .
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Footnotes:

the global number, is one of the

F1 : Note that since hy, . "
’
tors of the algebra (A) represented by
ato
. i{s a constant jn the ! 2> states.

value of hy
" of definite hy

of |2 onto states

expectatio

rurther, projections

are also eigenstates of (1).



Pigure Caption:

Fig.1 : The phase
p s n on links that make e, =} Tiy(n),

(where T =c Y-t Yo

i3 Ciy Cy, c§+ cjf ; Tij(n) = Tij(:)=:'rij)
an invariant generator. Notice that a translation
by one lattice unit corresponds to an overall

change of phase.

Fig.2 : For a lattice of five units, even bond lengths do

not satisfy periodic boundary conditions,

Fig.3 : A single particle soliton excitation located at

site 3.

13

References :

1. P.w.Anderson, Science 235 (1987) 1196.

2. J.Chakrabarti, Degenerate Coherent Bond States, Int.J.
Mod.Phys. B7 (1993) To appear.

3. G.Baskaran, Z.Zou and P.W.Anderson, Solid st.Comm.
63 (1987) 973.

4. 1I.Affleck and J.Brad Marston, Phys.Rev. B37 (1988) 3774

5. P.Lederer, D.Poilblanc and T.M.Rice, Phys.Rev.Lett. 63
(1989) 1519.

6. J.Chakrabarti and R.Kogerler, Phys.Rev. p4s (1992) 2086.

7. C.Kittel, Introduction to Solid State Physics, Wiley,
NewYork, 1966.

8. V.Emery, Phys.Rev. B14 (1976) 2989.

9. J.Chakrabarti and R.Chaudhury, Mod.Phys.Lett. BS (1991)1525
J.Chakrabarti and F.H.M.Faisal, Mod.Phys.Lett. B5(1991)1025

10. R.J.Glauber, Phys.Rev. 130 (1963) 2529 ibid 131(1963)2766.
E.C.G.Sudarshan, Phys.Rev.Lett. 10 (1963) 277.
J.R.Klauder, J.Math Phys. 4 (1963) 1055, 1058.
A.M.Perelomov, Commun.Math Phys. 26 (1972) 222.

R.Gilmore, Ann.Phys. (N.Y) 74 (1972) 391.

For a recent review see :
W.M.zhang, D.H.Feng and R.Gilmore, Rev.Mod.Phys. 62(1990)867.

11. Field Theories of Condensed Matter Systems, E.Fradk in
(Addison Wwesley) 1991.

12. P.Wiegmann, Prog.Theor.Phys.Suppl. 107 (1992) 243.



° @ L 0
1 2 3 4 5
" Fig.1
(+) (+)——-—4l
,‘.«%\ t....__(_l. )__,! |
¢—0 o ® ®
1 2 3 4 5
Fig. 2
4+
——=o o——9 @
1 2 3 4 5
Fig. 3 '



