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Abstract 
Standard Monte Carlo methods and Feynman Kae techniques to deter­

mine the quantum mechanical path integral are considered. Both methods 
are applied to isolate excited state eigenvalues. 
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Standard ~fonte Carlo methods and Feynman Kac techniques to determine the quantum mechanical path 
integral are considered. Both methods are applied to isolate excited state eigenvalues. 

1. Introduction 

~lany attempts have been made in recent years 
to compute excited hadronic states in lattice 
QeD (see e.g. [1]). The application of multi state 
variational techniques has been remarkably suc­
cessful. The difficulty in the Euclidean approach 
to spectrum calculations is well known: the 
discrimination of subleading exponential terms 
against the leading ground state signal. Given 
this situation it appears to be rather helpful to 
illuminate the issue in the case of Quantum ~le­
cha.nies. In this contribution. we will present 
a numerical analysis of the harmonic oscillator 
problem. 

2. Correiator Method 

Gi\'en an ensemble of quantum mechanical 
paths generated by a ~1C procedure. we calcu­
late the correlation matrix 

consisting of all possible combinations of ;V cho­
sen observables Fl. In the long time limit the 
spectral decomposition of the correlation matrix 
has the form: 

C,dr) = L e-(AE.. )T (OIF!ln)(nIFtkIO) (2) 
n;to 

which contains the energy gaps ~En of the sys­
tem. \Vell chosen polynomials F, maximize the 
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contribution of the first N excitations and mini­
mize the influence of higher ones in the correlation 
matrix. 

We apply standard heatbath algorithm to pro­
duce 2000 quasi independent paths. Time reso­
lution is set to a = 0.015 to avoid discretization 
errors. Each path consists of 214 lattice points. 
The computational effort to generate the paths 
and measure C'k(T);F' = z';N =4;r E [0,4] on 
a 8192 node CM2 is about 8 hours. 

The analysis proceeds from the generalized 
eigenvalue problem 

(3) 

by diagonalizing the correlation matrix by [2]: 

(4) 

The procedure can be viewed as a generalization 
of the familiar local mass formalism to matrices. 
The energy gaps (Fig. 1) are computed by: 

LlE =In ( A(r, TO) ) . (5)n 
A( T + 4 * a, TO) 

The reference time TO is taken as large as possible 
for the inversion of eTa to remain stable. Within 
the statistical uncertainties we verify the lower 
eigenvalues to be stable under reducing N. 

3. Feynman Kac Technique 

In the spirit of Donsker and Kac [3] the func­
tional integral is viewed as an expectation value 
based on an underlying stochastzc process that 
gives rise to a characteristic functional measure. 
\Ve will base our present work on the Wiener 
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Figure 1. Energy gaps for TO = 0.5. The solid 
Iznes are the theoretical expectatIons. 

process:?, which does not know the potential and 
thus can serve as a worst case study for the per­
formance of the Feynman Kac approach. 

The partition function can be written as an in­
tegral over an expectation value based on Brow­
nian paths starting from w(O) = x and ending at 
;,,<,,'(1) = x' [-1J: 

Z(I)= j(exp(-1IdS\/(....(S)))8r,rl)dx. (6) 

4. Updating Procedure 

The evaluation of the stochastic functional in 
eq.(6) is performed on a spatial hypercubic lattice 
with lattice spacing a = v'3di. The Markov step 

w(O) = x (7) 

xf + =~, k = 1, ... , d 

implies random numbers Zi with probability 

1 2 
P(:, = ±V3dt) = 6' P(Zi = 0) = 3' (8) 

These paths converge for small dt to Brownian 
paths. The time integral in eq. 6 is estimated 
llSlBg: 

2 Tn t he actual nwuerical simulations one improve by using 
mor(' sophisticated stochastic processes. which are better 
adapted to the particular potential under consideration. 

(9) 

This discretization scheme is of order (dt)2 and 
can be interpreted as generalization of the Simp­
son rule in the deterministic case. After each it­
eration step the expectation value 

(10) 

over all generated paths is calculated. This ob­
servable relates only to cyclic Brownian paths 
which decrease asymptotically in the number of 
iterations with P(n) ex "*. The iteration is re­
peated with several initial locations X o = x. To 
compute the partition function, ZHI (x) is inte­
grated over x. 

In the numerical simulation we generate 33.224 

Brownian paths of time length T = 7, approxi­
mated with the time discretization dt = 0.02 to 

.avoid discretization errors. We sample the start­
ing points from the interval x E [-4,4]. The com­
putational effort to generate the paths and calcu­
late the partition function on a 8192 node CM2 
is about 8 hours. 

In the Feynman Kac approach the stochastic 
process generates paths in physical time. Differ­
ent paths are entirely independent of each other, 
because no evolution in fictitious time is needed. 
unlike in standard MC techniques. 

5. Spectral Analysis 

The spectral decomposition of the partition 
function reads: 

Z(t) = [ dx(x, O\x, t) = L exp( -Eit). (11)iRtI • 
Many-parameter fits with t' E [tmin, t] of the 
form: 

n ...... 

F(Eo, ... , En) =C L exp(-E.t') (12) 
.=0 

are made to isolate the energies (c is an overall 
constant). Correlations in t' are incorporated us­
ing bootstrap analysis. It is a crucial problem 
to specif~' the combination tmin and the num­
ber nmar for which the fit gives the most reli­
able and stable results. In order to get the best 

2 



fit we vary the time cutoff tmin and search for 
the best\2/do/. tmin controls the resolution of 
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Figu re 2. Fi t results for nmaz = 5 versus tmin' 

Minimum of x. 2 Ido! = 0.989 is at t = 1.7. The 
theoretical values are En =n + ~. 

the highest exciteJ states. as illustrated in fig. 2 
by a bifurcation-like structure of the ··spectrum··. 
Tlw stability of the 100\:est lying results is veri­
fied hy variation of Tl mar .. The highest branch in 
Fig. 2 relates to two "unresolved" excited states. 
which we disentangle by a bootstrap histogram. 
as shown in Fig. 3. The histogram shows three 
maxima. which are hidden in Fig. 2. We hope 
that the knowledgeable reader will make out the 
5t h energy level. 

Conclusion 

\Ve applied correlator methods used in LGT in 
the quantum mechanical case in order to deter­
mine the spectrum. All difficulties which appear 
in the case of LGT find their analogy in the quan­
tum mechanical sit uation, which acts as a fruitful 
playground to investigate and optimize analyzing 
methods. 

Furl hermore we provided a numerical pro­
cedure based 011 the stochastic formulation of 
pathilltegrals which allows to simulate the full 
time development of the quantum mechanical 
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Figure 3. Histogram of E3 and E4 on each boot­
strap. Time cutoff is set to tmin = 1.7. 

partition function in Euclidean time. The anal­
ysis has been extended to the investigation of 
wave functions and more sophisticated underly­
ing stochastic processes [5]. 
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