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Abstract 

The analysis of the interacting fermion models with the SU (2) symmetry indicates 

the different behaviour of the splittings of opposite parity lowest energy eigenstates for 

even and odd number of fermions. The imaginary time-dependent mean field approach 

reproduces the exact results only for the even number of particles. For the odd particle 

numbers, an introduction of the universal logarithmic term to the actioll integral is 

needed. The even-odd effect appears in a wide class of models with the S U (:2) symmetry 

and is connected with the presence of p4-terms in t.he classical large - IV limit. 

PACS numbers: 21.60.-n, 21.10.Tg, 03.65.Ge. 



The notion of tunneling refers to nonperturbative quantum phenomena which are energet­

ically forbidden in the classical limit of the theory. This effect plays a very important role in 

many branches of physics. In the context of nuclear physics it manifests itself in spontaneous 

fission and fusion reactions, exotic radioactivity and band mixing in deformed nuclei. 

In many-body systems, which we usually deal with, our understanding of tunneling IS 

based on approximations. Because of the success of the mean-field concept in physics of 

atoms, atomic nuclei, metallic clusters, etc. , the time-dependent Hartree-Fock (TDHF) ap­

proximation provides the most natural approach. The description of tunneling within TDHF 

is based on the concept of evolution in the imaginary time. Using this formalism one obtains 

the barrier penetration formula. similar to the semiclassical ,t\iKB prescription [1]. 

The question is: do the available approximations reflect the whole complexity of the 

problem and possible peculiarities? 

To answer such question one needs an exactly soluble model. As such we use simple two-

level models with the SU(2) symmetry. Generally, the SU(2) models consist of two N -times 

degenerate shells which can be occupied by N fermions. The two-body interaction can move 

a pair of particles between the levels in different shells. The Hamiltonian, written in terms of 

fermion creation and annihilation operators, reads [2] : 

(1) 

where \'A~l = V( 1 - bkd and V ~ 0 . The SU(1,,") models (1\" ~ 2) . in spite of their simplicity, 

contain many features of the realist.ic shell-model Hamiltonian and has been \videly used to test 

various many-body theories. One call define the collective operators Gk1 = L:=1 a!ka.nl and 

commutation properties of angular momentum operators. In terms of these operators, the 

5U(2) Hamiltonian (1) takes the form: 

}' F (}'') I''))H = [ \0 - '2 \.:j:. + \:. , (2) 

where [ == [2 - Cl· Using the finite basis of collective, symmetric states labelled by the number 



of particles in the upper unperturbed shell one call find the exact eigenenergies and eigenstates 

by diagonalization. The diagonalization splits into two independent sectors because the two-

particle interaction does not mix states of the odd and even occupation numbers in the upper 

shell. Consequently, there are two distinct classes of states with different parity. 

Using the Hermitean linear and bilinear combinations of the quasi-spin operators, like 

metry which do not mix the even and odd parity states. So the general Hamiltonian of the 

SU(2) model can be written in the following form: 

H = [Ko + BK5 + CK+K_ + DK_f{+ + E(!{~ + !(:) , (3) 

where B, C, D \ E are arbitrary parameters. \-Vithout loss of generality, this Hamiltonian can 

be rewritten: 

(4) 

using the relation defining the Casimir operator for the SU (2) group: 

(5) 

The quantum systems with the SU(2) symmetry have a well-defined classical limit. It. can 

be constructed using the SlJ(2) coherent state representation of Slater determinants [3,4] : 

I '(j'(=)) =/ =) =exp(=*G2 d 10) , (6) 

where I 0) is a state with all particles in the lower shell and:: is the complex amplitude 

of particle-hole excitation. As the total number of particles tends to infinity N ---.... (x, , 

various coherent states become orthogonal. the quantum interference effects disappear a.nd, 

consequently, the quanlllill dynamics becomes equivalent. t.o the classical dynamics in the 

space of SlJ(2) coherent slales [;j]. In particular. the energy per particle of the quantum 

SU(2) ground stat.e in the A ---.... ,x limit ('or1'l~spollds u:actly to the energy of the classical 

Hartree-Fock (HF) state. 

Performing the suitable change of variables:
 

:: -'"
 
;3 = -.;771=+=_=_*=:: , 3* = ----;:::;=== (7)

)1 + ::*:: 
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and 

1 ,;)*.8,;3* q = ~ (;3 + ;3* ) P= -(13-(.1 ) (8)
y2 -/2 

one obtains the classical Hamiltonian 'Hel = ('l/-1 I H I '1/-')//'\"[. The equations of motion for q 

and p take the form of classical Hamilton equations and are equivalent to the time-dependent 

Hartree-Fock (TDHF) equations for the evolution of coherent states. 

For the SU (:2) quantum Hamiltonian (4) one obtains: 

(9) 

The static part of 'H el : 

V(q) = 'HcI(q,p = 0) (10) 

can be interpreted as an analog of the potential energy. Its form depends on the values of the 

parameters. For large and positive values of h, \/~ . the potentia.! V(q) displays two symmetric 

minima on both sides of the q = 0 axis, separated by a barrier whose height depends on \/1 

and \/2. The minima correspond to the HF ground state energy. 

For excitation energies such that the t.otal energy is lower than \" (0). the whole q-interval 

splits into the two classically accessible regions and the classically forbidden region under the 

barrier. In TDHF the evolution under the barrier is possible after the so-called "'lick transfor­

mation t - ir. or equivalently, p - if{ [6]. However, in general. t.his is not simply equivalent 

to the classical motion in an inverted potential as it is customary for the Hamiltonians with 

the p'!. dependence only [7]. Under this transformation the terms proportional to p'2 in (9) 

change their sign, but those involving p4 cia not. Formally. one can interpret the motion as 

taking place in an inverted non-local or momentum-dependent effective potential: 

(11 ) 

The result.ing t.unneling probabiJit.y leads to t.he energy splitt.ing ~E bet.ween t.he t.wo 

originally degenerate st.at.es. The magnit.ude of t.his splitting is given by [1]: 

~Es-: = ~exp(-;V(F) (12) 
iT 
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where w is the frequency of the motion in either of the wells and H/ = f n,c/q is the imaginary-

time analog of the classical action integral. The splitting 6..E between the lowest states of 

different parity can be calculated both quasiclassically, using formula (12) , and exactly, by 

diagonalization of the quantum Hamiltonian. 

In Fig.1 a,b we present the results for the Lipkin model (2): VI = 0, \/2 = V, for even 

(N = 30) and odd (N = 31) particle numbers. The energy splitting is plotted as a function 

of a dimensionless coupling constant \ = V(JV - 1)/[. The energy scale of the problem, 

i.e. the barrier height and the HF energy is proportional to A for large \. Hence, if one 

wants to compare the properties of the solutions for different energy scales, then the trivial 

x-dependence of the results should be cancelled out. Such a scale-independent splitting can 

be defined as: () == 6..E/y. 

One can observe the striking difference between the behaviour of the exact solutions 

expressed in terms of b (stars in Fig. 1). For even N it tends asymptotically to a finite limiting 

value for large coupling constant x, whereas for acId N it tencIs to zero. The imaginary-time­

dependent Hartree-Fock (lTDHF) result (the full line) does not distinguish even and odd N. 

It follows closely the quantum solution only for the even particle numbers. In the quasiclassical 

formula (12) N enters as a factor multiplying the action" under barrier". The action integral 

I qin the large '\ limit tends to a. constant value H'ma:r = - nlU n,maJ'dq. where (j±ma:r = ± 1,
f.J+mu.r 

n,ma:r( q) = lim\ -C'.:; n,( q) and the pl·eexponent.iaJ fact.or >oJ.; = j'2( \ '] - I) grows as \' so b tends 

to a constant.. 

Appearance of such different behaviour for the even and odd particle numbers can be 

partially related to a discrete symmetry of the quantum Lipkin model. The inversion of 

the occupation numbers in t.he two shells. i.e. the exchange of particles and holes in both 

shells. leads to the change of the parity of the wave-function for odd N 1 whereas for even N 

it does not. The classical system is symmetric with respect to the particle - hole inversion. 

Consistently, ITDHF describes better the solutions for even IV. 

The presence of the quantum discrete symmetry has no correspondence ll1 the classical 
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limit. The quantum splitting bQ tends to zero for odd A', when the energy scale of the problem 

("" X) tends to infinity. Assuming that this convergence is strong. i.e. non-logarithmic, one 

obtains immediately: 

(13) 

the modification of the classical scale-independent splitting bse == LlEse/X . This modification 

leads to the introduction of logarithmic correction to the classical action integral. 

The observed even-odd effect appears not only in the Lipkin model. This effect is present 

for many other SU(2) systems. The calculations performed for different models with positive 

values of VI and V2 give qualitatively the same result. The ITDHF curve follows again the 

exact results for even N, whereas for odd N the exact splitting has different asymptotics 

identically as in the Lipkin model. 

As it was noticed before. the ITDHF description of the energy splitting for odd N requires 

introduction of some additional terms to the classical action. In the exponent (12), one needs 

for odd particle numbers a .N - independent extra term -lnx , compensating the growth of 

the preexponential factor wand leading to the proper asymptotic value of the splitting of 

the ground states of different parities. This term is universal for all odd N, i.e. it does not 

have the character of a quantum correction, and moreover, it is generic for all 5U(2) models 

displaying the even-odd effect. Its form and the role it plays suggests connection with quantum 

fluctuations around the classical path because such processes are known [7] to determine the 

preexponential factor. Such correction is not sufficient for the whole region of A' For small 

\ the calculated splitting is too large because the semiclassical prescription used (12) is not 

valid. 

There are only three models \vith t.he Sll(L) symmetry which do not display the different 

behaviour for the odd and even N: 

I \' OJ 

H =d\'o - - (1\'+ + ]\'- r ' (14)
'2 

H~.'2 = [1\0 - ~. (J\'~ + 1\':' + 2I\±1\=F) , (15) 

For these particula.r models t.he classical Hamiltonia.ns do not. contain p4-terms. Instead, some 
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p2-terms are multiplied by the nontrivial, q-dependent "mass parameter". For these cases the 

ITDHF calculations match the exact results very well for both even and odd N. For the first 

of the models (14) the splitting tends to zero (Fig. 2 a, b). \vhereas for the second and third 

model (15) it tends to sorne small constant value (Fig. 2 c,d). 

The models, for which one can observe the even-odd effect have always p4-terms in the 

classical limit. The second common feature of these models is the characteristic behaviour of 

the admixture of the higher static HF (SHF) state I q, 2) (constrained HF equations solved 

at q with p = 0) in the ITDHF single-particle state I z, 1) under the barrier. These states 

and their overlaps for the Lipkin model are discussed more in details in ref. [8]. Both of the 

two SHF single-particle states are equally present in the ITDHF single particle state at q =0 

in the limit of large coupling constants (Fig. 3 a), i.e. the overlap of the single-particle SHF 

excited state and ITDHF state tends to ~. Such form of the overlaps indicates the presence 

of the single particle level-crossing at q = O. The overlap has completely different character 

for the modified Sll(2) models which do 1I0t pOSSt'SS p4-t.erm in t.lw classical limit.. It is small 

during the whole evolution under the barrier (Fig. ;) b,c). 

To sum up, the analysis of the different models with the SlJ (2) symmetry indicates that 

the even-odd effect is observed for all the models possessing in the classical limit the p4-terms. 

Then, the evolution under the barrier is equivalent to the evolution in the inverted effective 

potential - fT(q,p) == - f'(q, 1'\:) which is momentum-dependent or equivalently non-local. 

Although the nuclear int.eractions at low energies can be fitted using the static potentials 

depending only on the coordinates, there are also many indications, mainly from the opti­

cal model analysis of the scattering data, of the presence of the velocity dependent terms. 

Potentials of this type were used in the analysis of the nucleon-nucleon scattering [9]. In­

dependently, one can argue that the self-saturating system of independent. fermions must be 

described by the velocity (momentum) dependent potent.ial [10]. The effective t.wo-particle 

interaction between Ilucleolls [11] in ullouupied shells, which contain contrihutions from the 

virtual excitations of rest of nucleons, ha\"(' much higher syllll1wt.ry than t.he forces between 
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nucleons in free space. This permits the existence of the potentials containing different terms 

with the higher momentum powers. So far they were not considered in the investigations of 

the structure of heavy nuclei, in particular in the connection to the tunneling phenomenon. 

The anomalies which may accompany the presence of such terms in the nuclear potential can 

manifest themselves in the nonapplicability of the classical limit of the shell model (SHF) in 

the description of tunneling for certain configurations of valence shells and for some nucleon 

numbers. 

The requirement of introduction of an additional universal term to the classical action 

for odd N in the broad class of the SU(2) models for which the level-crossing occurs, may 

suggest a close relation of the above problem to the anomalies. Construction of the effective 

theory leads to the appearance of some additional terms in the lagrangian [12], which usually 

have a topological origin and are closely related to Berry's phase [13]. The anomalies are 

associated with the discrete symmetries, non localities and degeneracies, but it is not obvious 

that all those related problems can be explained in terms of anomalies and Berry's phase, 

especially for the imaginary-time evolution. A deeper underst.anding of the even-odd effect in 

tunneling for momentum dependent potentials and its connection to the anomalies remains 

a challenging problem for further investigat.ions. 
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Figure captions 

Fig. 1 

The rescaled energy splittillg b == D..Eh... bet\\'een t.he two lowest st.ates of different parity in 

the Lipkin SU(2) model for different number of particles: (a) N=30; (b) N=31. The stars 

and solid lines denote exact solutions and ITDHF results respectively. 

Fig. 2 

The rescaled energy splitting b == D..EIx between the two lowest states of different parity 

in the modified SU(2) models for different number of particles: (a) N=lO (eq. (14), H'); 

(b) N=l1, (eq. (14), H'); (c) N=10 (eq. (15), H;); (cl) N=ll, (eq. (15), H;). The stars 

and solid lines denote exact solutions and ITDHF results respectively. 

Fig. 3 

The admixture of the higher I)'ing SHF stat.e to t.he ITDHF st.atl' under t.he barrier is plotted 

as a function of (} for different values of \ for: (a.) the Lipkin SLJ(2) model, (b) the modified 

SlJ(2) model (eq. (14), HI), (c) the modified SU(2) model (eq. (15), H;). Solid lines 

correspond to y = 3, dashed lines to X = 10 and dotted to \ = 10000. 
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