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I. INTRODUCTION to study the phase transition. 
The plan of the chapter is as follows: in the next sec­

tion the isospin dependent Lattice Gas model will beOne of the most important challenges of heavy ion 
introduced and its thermodynamics calculated from anphysics at intermediate bombarding energies is the iden­
exact evaluation of the various entropies and partitiontification and characterization of the nuclear liquid-gas 
sums associated with the different ensembles; section 3 phase transition [Si83]. With the increasing availability 
will be devoted to a discussion of the different ways to ex­of quasi complete and exclusive data on the deexcitation 
tract thermodynamical signals, in particular using :O.uc­of well identified single nuclear sources in heavy ion reac­
tuations. Our main results on the thermodynamics oftions [Ma91], different indirect evidences of such a trans­
the lattice gas model are summarized in section 4. Theition are rapidly accumulating. On one side, the sudden 
cluster observables at subcritical and supercritical dens­opening of the multifragmentation [Bi93,Sc96] and va­
ities with a special emphasis on finite size distortions ofporization [Ri96] channels can be interpreted as the sig­
the critical parameters and on the effect of the isospinnature of the boundaries of phase mixture [Gr97,Gu97]. 
degree of freedom will be presented in section 5; The dis­This is reinforced by the fact that at the correspond­
tillation of isospin asymmetric systems will be discusseding excitation energy values the caloric curve [P095] 
in section 6 and finally section 7 will be devoted to con­shows a structure similar to a first order phase trans­
clusions and outlooks.ition [Bo98,Gu97]. On the other side, the observation 

Further results obtained within this same model can be of critical. exponents like power laws in the charge dis­
found in the contribution of S.Das Gupta to this book. tribution of the multifragmenting system [Ra96] can be 

interpreted as an evidence of the transition. 
An important property of nuclear maUer is the fact 

II. THERMODYNAMICS OF THE LATTICE GASthat it is built out of two different fluids: protons and 
MODELneutrons. This new degree offreedom is important to un­

derstand the properties of the equation ofstate. The first 
theoretical calculations of the phase transition within The Lattice Gas Model of Lee and Yang [Ya52] has 
finite systems were performed [Ca97,Pa95,Ca98] in the successfully described the liquid-gas phase transition for 
isospin symmetric case. It is well known that in a system atomic systems. This same model has already been ap­
with two conserved charges (baryon number and isospin, plied to nuclear physics for isospin symmetric systems in 
in the nuclear case) the nature itself of the liquid-gas the gran-canonical ensemble [Oa98,Ca97], with an ap­
phase transition is modified: the transition is continu­ proximate sampling [Mu97] of the canonical ensemble 
ous, phase separation is driven by isovector as well as [Pa95], and for isospin asymmetric systems in the mean 
isoscalar instabilities, the value of critical parameters is field approximation [Ra97,Pa96]. The isospin dependent 
modified [Mu95,Ra91]. Since most of the multifragment­ Lattice Gas Model is isomorphous to a spin 1 Ising model 
ing systems produced by heavy ion collisions are far from with dipolar and quadrupolar interactions [Si75]. The 
being isospin symmetric, the comparison of experimental N sites of a lattice are characterized by an occupation 
charge distributions with theoretical size distributions number T which is defined as T = 0 for a vacancy, and 
can be misleading. Using an exactly solvable model of T = 1(-1) for a proton(neutron). Particles occupying 
the liquid-gas phase transition, in this chapter we shall nearest neighboring sites interact with an energy €Tj,T·. 

The Hamiltonian is given by Jshow that if one drops out the mean field approximation, 
the critical parameters of the phase transition depend 
only slightly on the asymmetry and this dependence is 

(1)probably hardly detectable for experimentally available 
NjZ ratios. However a phenomenon analogous to dis­
tillation occurs in the fragmentation of a finite piece of where the second sum runs only on the neighboring sites 
matter containing two fluids. This distillation of neutron .Ni of the site i. The coupling constants €Tj,Tj are fixed 
matter characterizes the transition. This means tha.t the such as to reproduce the volume and symmetry part of 
isospin degree offreedom can be used as a new observable the liquid drop model parametrization, €l,l =€-l,-l == 
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fd =o. MeV, f1,-1 :; f 6 = -5.5 MeV. When no isospin 
dependence is introduced we use Cd = f 6 =-5.5 MeV. In 
all the calculations shown below the numerical realization 
of the model is a three-dimensional cubic lattice of size 
S= L3. 

With the finite range interaction defined above the 
thermodynamical limit does exist for the infinite system. 
In this limit all the different statistical ensembles COD­
verge to a unique thermodynamics. However, for finite 
systems the various statistical ensembles are not equival­
ent because fluctuations cannot be neglected. Therefore, 
the equations of state will be different from one ensemble 
to the other. Then we are forced to carefully discuss the 
various statistical ensembles and their adequacy to the 
nuclear physics experimental situation. 

A. Canonical isochore ensemble 

large ensemble of preliminary events (typically 2 . 107) is 
first generated in order to reach statistical equilibrium. 
Then many configurations (typically 2.104 ) are produced 
using the same Metropolis algorithm before a single one 
is stocked to avoid event-to-event correlations and the 
occupation probability distribution is constructed via 

P{j(E) = Nf3(E) (3)
No 

Here, N{j is the number of events falling in the energy 
bin of size AE around E, and No is the total number of 
sampled events. The bin size aE is chosen small enough 
that the results are independent of AE. 

We have checked that an inversion of eq.(2) leads to 
an a posteriori estimation of the temperature strictly 
equal to the input one [Gu99a]. From the comparison 
of the occupation probabilities at two different temper­
atures /31, /32 one then has 

In the liquid-gas phase transition, since the order para­
meter is the density difference between the two phases, 
the volume is essential in determining thermodynamical 
properties. A constant volume ensemble can be trivially 
generated by considering a fixed constraining cubic box. 
Many studies have been performed considering periodic 
boundary conditions in order to avoid the effects of the 
surface [Ca98]. Systems in a fixed cubic volume have also 
been investigated [Ca97]. In this section periodic bound­
ary conditions will be systematically applied, while the 
discussion of surface effects will be postponed to section 
II E where more realistic spherical systems will be con­
sidered. 

In the canonical isochore ensemble the system is char­
acterized by a linear size L, a fixed number of particles 
A =N +Z (or equivalently a density piPo =AIL3 ), and 
a temperature /3-1. Statistical averages are taken over 
events obtained with a standard Metropolis sampling 
[Me53] of the lattice in the canonical ensemble. In this 
section, we shall limit our analysis to isospin symmetric 
systems N = Z = A/2. 

The canonical thermodynamics of the model is calcu­
lated from a direct evaluation of the partition sum Z via 
an iterative procedure. At a temperature /3-1, the occu­
pation probability of an energy state E is 

1
Pf3(E) =-W(E)e- f3E (2)

Zf3 

where WeE) is the degeneracy of the state. In order to 
have an exact calculation of the equations of state and 
of the partition properties of the system we use a stand­
ard mass conserving Metropolis method to sample events 
according to the canonical probability eq.(2). Starting 
from a lattice configuration characterized by an energy 
E, the occupations of two randomly selected. sites are 
exchanged leading to a new configuration of energy E' 
with a probability exp(-/3AE) with aE = E' - E. A 

(4) 

Since this equation is valid for every energy E it can be 
used to control the algorithm. Then a best fit of Zl can 
be derived. This can be done iteratively with an initial 
Dormalization to the infinite temperature limit where the 
partition sum is analytical. Once the partition sum is 
known, all thermodynamical quantities can be computed 
from the standard statistical definitions in the canonical 
ensemble. 
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FIG. 1. Chemical potential as a function of pressure at dif­
ferent temperatures for a cubic lattice of size L = 6 calculated 
from the exact partition sum (circles) and with the mean field 
approximation (dotted line). 

2 



As an example, in figure 1 a few isotherms are shown 
in the chemical potential versus pressure plane for a lat­
tice of size L = 6 with a number of particles varying 
from A =10 to A = 210. Even for such small systems, 
a very clean liquid and gas branch is seen for temperat­
ures up to about 6.5 MeV. Since the crossing point of 
the two branches represents the coexistence boundary, 
the coexistence line can be evaluated very precisely from 
figure 1 leading to a critical temperature Tc =6.7 MeV 
and a critical exponent {3 = 0.31 for the temperature 
dependence of the order parameter. This value has to 
be compared with the mean field approximation [Pa9S] 
(shown as dotted line in figure 1) {3 =0.5, Tc =8.1 and 
with the expected value in the thermodynamical limit 
(300 = 0.33, Tgo = 6.16. It is clear that the finite size 
of accessible nuclear systems does not imply a drastic 
deformation of thermodynamical parameters (the corres­
ponding values for L = 8 are Tc = 6.6 and (3 = 0.31). 
However the speed ofconvergence towards the thermody­
namicallimit strongly depends on the observable studied 
[Ca97]. 
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FIG. 2. Coexistence zone computed from the anomaly in 
the pressure versus chemical. potential diagram. for & linear 
size of the lattice L=6 (solid line) and L=8 (dashed line). 

B. Microcanonical isochore ensemble 

A more fundamental statistical framework for actual 
applications is the microcanonical ensemble. This en­
semble is directly related via its entropy to the element­
ary density of states. Moreover the microcanonical en­
semble is relevant for the analysis of experimental data 

because of the absence of a heat bath and since us­
ing calorimetry techniques the excitation energy can be 
measured on an event-by-event basis; the events can thus 
be sorted in constant energy bins, i.e. in microcanonical 
ensembles. An easy and exact way to access microcanon­
ical quantities is to sort the canonical events according to 
their total energy. It is important to notice that this pro­
cedure may be in some cases numerically time consuming 
but it is always an exact method to generate constant en­
ergy events with the correct microcanonical weight (see 
eq.(5) below). At a given canonical temperature f3- 1 , the 
number Np of events falling in the energy bin E is pro­
portional to the canonical distribution (2), Pf3 (E) , and 
to the total number of events No : 

Nf3 (E) = W (E) exp (-f3E) (5)
No Zp 

Equation (5) can be inverted in order to extract the dens­
ity of states W (E) leading to the entropy 

S (E) == log (W (E» (6) 

This allows a direct estimation of the microcanonical cal­
oric curve 

T- 1 (E) = as (E) = a 810g Np (E) (7)- aE fJ + aE 
which is valid for every {3. With a single canonical 
sampling at an arbitrary (3 it is in principle possible to 
directly compute the whole microcanonical caloric curve 
(7). However for a given f3 the energies far away from 
the canonical average E({3) are hardly sampled in the 
canonical ensemble. To minimize numerical efforts and 
statistical errors it is therefore more convenient to per­
form many canonical samplings at different {3 associated 
with average energies scanning the energy region under 
study. 

c. Isobar ensemble: enthalpy properties 

In actual nuclear physics experiments, even if differ­
ent sources with different excitation energies can be pre­
pared, the other thermodynamical parameters can not 
be independently controlled on an event by event basis 
even if in some cases they can be measured. In partic­
ular the volume is not defined through boundary condi­
tions but is an experimental observable known at best 
in average. For example the average radius of a selected 
ensemble of events can be estimated through interfero­
metry or through comparisons with statistical models. 
From a theoretical point of view one is therefore forced 
to consider a statistical ensemble for which the volume 
can :fluctuate from event to event. In terms of informa­
tion theory this implies that at equilibrium the entropy 
of the system should be maximized under the constraint 
of a specific value for the average volume. In the absence 
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of a prefered. direction, an average volume can be defined 
through the one-body observable 

47r ~ 3
V

A = -L...JriTi (8) 
3 i=l 

where ri is the distance to the center of the lattice. 
Introducing first a canonical description in which the 

energy observable :E as well as the volume V are known 
in average we have to introduce the associated Lagrange 
multipliers (3, A so that the partition function reads 

Z{3,).. =~ exp ( -.8E(n) - Av(n») (9) 
(n) 

where the sum runs over all possible partitions. Here, 
E(n) and v(n) are the expectation values of the operators 
:E and V in the nth event, f3 is the inverse of the canonical 
temperature, and the quantity P = -AIf3 has the dimen­
sion of a pressure. In other words, the experimental fact 
that the volume is known only in average means that the 
pressure, interpreted as the Lagrange multiplier associ­
ated with the volume observable, can be considered as 
the relevant state variable. The associated statistical en­
semble of events can easily be generated through a canon­
ical sampling using a constrained Hamiltonian H =E-P 
V where P V can be considered as a constraining one­
body external field. The constrained energy H = E - PV 
can be interpreted as an enthalpy. The actual value of 
the pressure parameter must be defined to get the desired 
average volume. 

When the pressure is fixed we can sort the events as a 
function of the constrained enthalpy H. Then at a given 
canonical temperature (3, the canonical distribution of 
enthalpies reads 

Pf3 (H) = Nf3 (H) = W (H) exp (-f3H) (10) 
No Zf3 

where Nf3 (H) is the number of events falling in the en­
thalpy bin H out of the total number No of sampled 
events. Using the general relation S == log W we can es­
timate the microcanonical caloric curve via T- 1 (H) = 
8H S (H) as in section II B above. 

In the calculations shown in this section and in sec­
tion II D below an isospin symmetric system is considered 
with a fixed A =216 number ofparticles. The qualitative 
results ofour analysis are not modified by varying the size 
of the system; however the actual values of the temper­
ature and heat capacity do depend on A due to finite size 
effects [Gu99]. For these constrained calculations the size 
of the lattice is chosen large enough so that the boundary 
conditions do not affect the numerical sampling. For the 
results displayed in this section S = 8000 is used while 
in section II D where weaker pressures are considered a 
lattice size as large as S = 125000 is needed. The nu­
merical technique is the same as described in section II A 
but the lattice occupations are sampled according to the 
partition function (9). 
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FIG. 3. a) Total constrained enthalpy distributions associ­
ated with various canonical 13 • b) Microe&nonical temper­
ature as a function of the enthalpy per particle from various 
canonical samplings at the difFerent {3 shown above (symbols) 
and the corresponding average (line). c) Microcanonical spe­
cific heat. 

To illustrate a first order phase transition the pressure 
P is first chosen in such a way that the isobar crosses the 
canonical coexistence line at about the half of the critical 
temperature. Figure 3a presents the energy distributions 
at different (3. According to equation (10) the logarithm 
of these probabilities directly gives the entropy apart 
from a linear correction. Far from the coexistence region 
the distribution presents the expected Gaussian behavior. 
When we get close to the coexistence region the observed 
double bump is a direct evidence of the convex intruder 
expected in the entropy in the case of a finite microca­
nonical system undergoing a first order phase transition. 
This can be better seen on the associated microcanonical 
caloric curve presented in Figure 3b. For each canon­
ical ensemble the total energy exhibits large fluctuations 
allowing the calculation of the microcanonical temper­
ature over a wide range of energies using equation (7). 
The fact that the microcanonical temperatures defined 
from various canonical ensembles at different f3 all agree 
within the statistical error bars is a demonstration of the 
accuracy of the Metropolis sampling. The microcanon­
ical caloric curve presents the expected back-bending in 
the coexistence region due to the anomalous convexity of 
the entropy. This induces a negative branch in the mi­
crocanonical heat capacity [Th70] C = (oET)-l as shown 
in Figure 3c. The anomalous curvature of the thermo­
dynamical potential is a clear signature of a first order 
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phase transition, the distance between the two poles be­
ing a direct measure of the latent heat. Increasing the 
pressure, the two poles get closer up to the critical point 
where they merge before they disappear. 
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fall in the energy region corresponding to the canonical 
temperature jump are hardly sampled by the canonical 
ensemble, but are accessible in the microcanonical en­
semble. Therefore, the microcanonical sorting of events 
allows to study regions of the phase diagram which are 
forbidden in the canonical formalism. These regions are 
characterized by specific properties such as negative heat 
capacities which will be studied in more detail in the next 
section. In particular it is important to identify exper­
imental observables which can directly inform us about 
these peculiar properties. 

D. Isobar ensemble: volume and energy properties 

In the previous section we have concentrated the dis­
cussion on the enthalpy properties. However, if the pres­
sure is not fixed, as it is most probably the case in the 
experimental situation, one should discuss energy and 
volume independently. The corresponding microcanon­
ical statistical ensemble is defined through the partition 
function 

Z>.(E) =EWv(E)exp(-AV) (11) 
v 

FIG. 4. Microcanonical caloric curve (full line) compared 
with the most probable (dots) and average (line) canonical 
enthalpy for each {3. 

It is interesting to compare the microcanonical and ca­
nonical caloric curves as shown in Figure 4. In finite 
systems two canonical caloric curves can be defined, cor­
responding to the average and most probable energy as­
sociated to a given (3. In infinite systems these two ener­
gies are equal because fluctuations can be neglected. Far 
from the phase transition the canonical and microcanon­
ical curves agree. Indeed as seen in Fig. 3a the canon­
ical energy distribution is Gaussian showing that the two 
ensembles only differ through minor fluctuation correc­
tions. Moreover, from equation (7) we can see that the 
most probable canonical energy is characterized by the 
equality of the microcanonical and canonical temperat­
ures. In the coexistence region however the predictions 
of the two ensembles differ in an noticeable manner. The 
canonical caloric curves are by definition monovaluated 
while this restriction does not apply to the microcanon­
ical case: in the back-bending region the canonical caloric 
curve associated with the most probable energy presents 
a discontinuity equivalent to the Maxwell construction. 
The observed energy jump is directly related to the lat­
ent heat of the first order phase transition. Because of 
fl.uctuations the average energy presents a smoother be­
havior with however a clear slope change in the transition 
region. It should be noticed that the partitions which 

with Wv (E) = exp (8 (E, V» the density of states with 
an energy E and a volume V . This partition function 
of the isobar microcanonical ensemble can be computed 
in an exact way from a standard Metropolis sampling of 
the corresponding canonical ensemble as in the previous 
sections. 

In the statistical ensemble with fiuctuating volume in­
troduced above the energy E and the Lagrange conjugate 
of the volume A represent the two state variables of the 
system. It should be noticed that A can still be form­
ally related to a pressure via P =T>.A, They are associ­
ated to two equations of states, giving the microcanonical 
temperature T;l == OE log Z>. and the average volume 
< V >= -o>.logZ>. as a function of E and A. The 
temperature can be evaluated from the energy derivat­
ive of the logarithm of the canonical energy distribution 
Np,>.(E) 

No 
Np,>.(E) = Z>. ((3) Z>.(E) exp (-{3E) (12) 

where No is the number of states canonically sampled 
with a given constraining A, for any thermal Lagrange 
multiplier (J, and the temperature is given by 

T - 1 (E) = 88>.(E) =/3 810gN/3,>. (E) (13)>. - BE + BE 

Again since this equation is valid for every {3, we can 
use many canonical samplings at different f3 to derive 
the same microcanonical caloric curve. The agreement 
between the different curves provides a strong test of the 
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numerical sampling [Gu99b]. < V > is calculated by av­
eraging at a given A over microcaD?nical event~, which 
are obtained through an energy sorting of canomcal par­
titions. 

FIG. 5. Correlation between pressure and volume for a sys­
tem of 216 particles in the microcanonical ensamble with ftuc­
tuating volume. The microcanonical temperature is indicated 
on each isotherm. The thick line gives the critical isotherm. 

The (AT, < V » diagram of the system display~ in 
Figure 5 shows a striking similarity with the classical 
(P-V) equation of state of a Van der Waals gas. Far 
from the coexistence region the curves P(< V » at con­
stant temperature are monotonous. However, when we 
get close to the coexistence region ~e. observe an an0;M­
alous backbending in the EOS. This mduces a negative 
branch in the compressibility which has already been ob­
served in canonical lattice gas calculations at constant 
volume [Gu99,Gu99a]. The physical origin of this an­
omaly is completely different from the backbendings sys­
tematically found in the mean field approximation which 
simply retied the instability of the homogenous system 
respect to phase separation. In our exact calculation 
which naturally includes inhomogeneous partitions con­
versely this feature corresponds to equilibrium under spe­
cific conservation laws (here mass number and energy) 
[Gu99,Gu99a]. In the microcanonical case the ~e an­
omaly is apparent in the equation of state proVlding the 
temperature T as a function of the state variables (A,E) 
as shown in the two-dimensional caloric curves displayed 
in figure 6. The backbending of the temperature surface 
induces a negative branch in the microcanonical heat ca­
pacity at constant A : C~l = aT>. (E) jaE. 
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FIG. 6. Temperature as a function of the energy per 
particle and the Lagrange parameter for a system of 216 
particles in the microcanonical ensamble with ftuctuating 
volume. 

E. Discuaaion of the different shapes 

The use of the Lagrange multipliers A in the con­
strained calculation introduced above leads to a difFuse 
spherical density distribution shown in figure 7 for two 
different temperatures and average volumes [Du99]. In 
order to study the role of the surface conditions, we can 
compare the constrained calculation with a sharp bound­
ary condition imposed on a spherical surface. The lines 
in figure 7 represent the respective density profiles for 
a boundary condition adjusted in such a way that the 
two calculations lead to identical mean volumes. In the 
upper pan of figure 7 the volume of the sharp sphere is 
defined to be twice the mass considered so that at high 
temperature the value of the density conesponds to the 
critical density P =Pe =Po/2. In the lower part of the 
figure the volume is doubled to consider a more realistic 
freese out condition for nuclear fragmentation. In all fig­
ures ro represents the elementary mesh me of the lattice. 
At T =3 MeV the densities are surprisingly close. This 
demonstrates the preeminence of the interaction on the 
boundary conditions. Indeed, the fluid forms a drop of 
liquid which develops a self consistent density profile in­
dependently of the surface conditions. At higher temper­
ature the boundary conditions start to be important. At 
T = 15 MeV the system with an imposed sharp boundary 
finally becomes uniform. 
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FIG. 7. Density profiles for a system of 108 particles at 
two temperatures T = 3 MeV (left) and T = 15 MeV (right). 
Symbols: Metropolis sampling with a Lagrange pressure such 
that < V >= 108 (upper part) and < V >= 216 (lower part). 
Full lines: sharp boundary conditions in spherical symmetry 
for the same values of T, < V > as the symbols. 

III. PHASE TRANSITION SIGNALS IN THE 
ISOBAR MICROCANONICAL ENSEMBLE 

It has been recently proposed that the microcanonical 
latent heat can be measured using partial energy fluctu­
ations [Ch99]. The total energy E of the considered sys­
tem can be decomposed into two independent compon­
ents, its kinetic and potential energy: E = Ek + Ep • In a 
microcanonical ensemble with a total energy E the total 
degeneracy £actor W (E) = exp (S (E» is thus simply 
given by the folding product of the individual degener­
acy £actors Wi (Ei) = exp (Si (Ei» ofthe two subsystems 
i = k, p. One can then define for the total system as well 
as for the two subsystems the microcanonical temperat­
ures n and the associated heat capacitieS Ci. Since we 
are dealing with a classical gas the kinetic equation of 
state is simply given by Ek = 3ATk/2 and the kinetic 
heat capacity is a constant, Ck = 3A/2. If we now look 
at the kinetic energy distribution when the total energy 
is E we get 

Using Eq.(14) we directly get that the most probable 
partitioning of the total energy E between the potential 

and kinetic components is characterized by a unique mi­
crocanonical temperature 'i' == Tk (E:) = Tp (E - En. 
Therefore the most probable kinetic energy E: can be 
used as a microcanonical thermometer. Using a Gaus­
sian approximation for pf (Ek) the kinetic energy vari­
ance can be calculated as [Le67] 

2 1'2 CkCp (15)Uk = Ck+C p 

where Ck and Cp are the microcanonical heat capacities 
calculated for the most probable energy partition. Equa­
tion (15) can be inverted to extract from the observed 
fluctuations the heat capacity 

(16) 

When Cp diverges and then becomes negative, u~ re­
mains positive but overcomes the canonical expectation 
uZ = 1'2Ck • This anomalously large kinetic energy fluc­
tuation is a signature of the first order phase transition. 
This means that kinetic energy fluctuations are an exper­
imentally accessible measure of the heat capacity which 
indicates divergences and negative branches character­
istic of the phase transition. 
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FIG. 8. Normalized kinetic energy fluctuations as a func­
tion of the energy per particle and the Lagrange parameter 
for a system of 216 particles in the microcanonical ensamble 
with fluctuating volume. 

Ifwe now turn back to the £act that the nuclear EOS is 
two dimensional, two conjugated pairs of thermodynam­
ical variables are needed, one describing the energy part 
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and the other one the volume. The normalized fluctu­
ations uk/T2 obtained in the microcanonical ensemble 
with a constrained volume are shown in the energy-A 
plane in figure 8. From figures 6 and 8 it is apparent 
that the phase transition signal is visible in the temper­
ature as well as in the fluctuation observable. 
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FIG. 9. Thermodynamical quantities in the microcanon­
ical ensemble for a transformation at constant pressure (left 
part) and at constant volume (right part). Upper panels: cal­
oric curve. Lower panels: normalized kinetic energy fiuetu­
ations compared to the canonical expectation (lines). Medium 
panels: specific heat (symbols) compared to the estimation 
through eq.(16) (lines). 

However the experimentally measured caloric curves 
are not bidimensional. Indeed, since experimentally the 
freeze out volume cannot be measured on an event by 
event basis, fragmentation data can be sorted in excit­
ation energy bins but not in volume bins. This means 
that experiments are sampling a monodimensional curve 
on the equation of state surface. The resulting caloric 
curve therefore depends on the actual transformation i.e. 
on the actual path followed in the thermodynamical para­
meters plane. As an example the behavior of the tem­
perature as a function of energy at a constant pressure 
or a constant average volume in the subcritical region 
are displayed in the upper part of figure 9. At constant 
pressure the caloric curves are steeper than the ones at 
constant A presented in figure 6 when the system is in 
the liquid or in the vapor phase; in the coexistence re­
gion the isobars are almost identical to the iso-A's since P 
and Adiffer only by the temperature which is almost con­
stant in the phase transition region, and a backbending 

is clearly seen. On the other hand at constant volume a 
smooth behavior is observed with a slope change entering 
the gas phase, as expected from general thermodynam­
ics (see also [Ca97,Ca99]) . This is due to the fact that 
the A parameter varies rapidly in the coexistence region 
(see fig.5). From these examples one clearly sees that 
the various transformations leads to very different caloric 
curves. More generally, it is clear that the backbending 
of the temperature surface can be avoided depending on 
the path of the considered transformation and the phase 
transition signal can be hidden in the observation of the 
caloric curve. 

On the other side partial energy fluctuations are a state 
variable which does not depend on the transformation 
from one state to another and can directly give access 
to the equation of state. From figure 8 we can see that 
in the whole phase transition region the microcanonical 
fiuctuations present a strong maximum which exceeds the 
canonical value: an anomalously large fiuctuation signal 
will be always seen if the system undergoes a first or­
der phase transition, independent on the path. As an 
example the lower part of figure 9 shows a constant p or 
< V > cut of the bidimensional fiuctuation surface shown 
in figure 8. The quantitative behavior of the specific heat 
as a function of energy will depend on the specific trans­
formation, but at each point the specific heat extracted 
from fiuctuations will be a direct measure of the underly­
ing equation of state. This is clearly demonstrated in the 
medium part of figure 8 where the symbols which repres­
ent the specific heat C>.. extracted from the equation of 
state eq.(13) are in very good agreement with the lines 
which correspond to the fluctuation estimation eq.(15). 

IV. CONCLUSIONS ABOUT� 
THERMODYNAMICAL SIGNALS� 

To summarize the two preceding sections, when finite 
systems are discussed the statistical ensemble of events is 
essential to determine the equation ofstate of the system. 
In all cases a first order phase transition can be unam­
bigously signed by a convexity anomaly of the relevant 
thermostatistical potential [Gr95]. This anomaly can be 
accessed from the study of specific observables depend­
ing on the sorting variable which defines the statistical 
ensemble. In particular, a negative heat capacity is a 
well defined signal of a first order phase transition only if 
events are sorted in constant excitation energy bins. In 
the case of the liquid gas phase transition one is forced 
to introduce a second thermodYnamical variable in order 
to specify the volume of the system. Then a monodimen­
sional curve such as the measured caloric curves provides 
insufficient informations to measure the equation of state 
and can be misleading. On the other hand, kinetic en­
ergy fiuctuations are independent of the actual trajectory 
followed in the parameters sPace and represent a direct 
measure of the EOS. Considering a statistical ensemble 
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of states characterized by total energy and an average 
volume we have shown that abnormal fluctuations are a 
robust signal ofa first order phase transition. In this case 
kinetic energy fluctuations in the phase transition region 
are indeed related to the isobar heat capacity Cp which 
is known to diverge [Ly98]. 

The connection to experimental fragmentation data 
is straightforward. The microcanonical ensemble is rel­
evant for the analysis of experimental data because of 
the absence of a heat bath and since using calorimetry 
techniques the excitation energy can be measured on an 
event-by-event basis. As far as the freeze-out volume is 
concerned, the absence of a constraining box implies that 
this variable can be known at best in average. Therefore, 
we expect that the partial energy fluctuations will present 
a strong anomaly if the multifragmenting nuclear system 
is undergoing a liquid gas phase transition [Ag99]. 

v. FINITE SIZE SCALING 

6 ,....,...-r,--r--r-rl"'""T""'T""T-'--'r"'I'" ,-'--T""T,-,--,.....,...-r,"""""I-r-,-'T'"""T

5 -� ­

FIG. 10. Slope (filled circles) and corresponding X2 (open 
circles) of the size distribution as a function of temperature 
for two difFerent system sizes at the critical density. Dashed 
lines: 'Tmaz extracted from the maximum production yields 
(see text) and corresponding critical temperature interval. 

Following the well known example of critical opales­
cence for macroscopic fluids, we can expect that also 
in the nuclear case important density fluctuations will 
characterize the proximity of the critical point leading to 
a large variety of multifragment configuration patterns. 

Then the properties of fragment partitions should carry 
important informations on the presence of a phase trans­
ition. 

The definition of clusters in the lattice gas combines 
a site and bond percolation algorithm: two particles are 
bonded if they 

•� a) occupy neighbor sites 

•� b) the kinetic energy of their relative motion if;. /2J1. 
does not exceed the binding energy {Ti,T;. 
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FIG. 11. Scaling function for clusters of size ranging from 
4<A<30 and temperature 2<T<20 obtained from eq.(17) 
with critical exponents extracted with methods 1 (a), 2 (b), 
and 3 (c,d) described in the text. In figure 3c (d) Tc is given 
by the lower (upper) bound of the critical temperature region 
of figure 10. 

For details about the definition of clusters we report 
the reader to refs. [Ca97,Pa95]. Remark that condition 
b) implies that the fragments produced are relatively 
cold, i.e. their thermal excitation energy is lower than 
the threshold of particle emission; their finite excitation 
energy is given by their shape rather than by internal de­
grees of freedom. This definition of clusters guarantees 
that the thermodynamical critical point exhibits critical 
fragment size distributions [C080] and that in the prox­
imity of the critical point the size distribution scales as 
[St92,Fi67,Ca88] 

~~ (A,T) =A-T f(AC7 (T - Te») (17) 

where f is a universal scaling function and T, (j are critical 
exponents. 
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It has already been observed that power laws in the 
size distribution are not characteristic of the critical point 
solely, but occur also at supercritical densities along the 
Kertesz line [Ke89,Ca97] and at some subcritical dens­
ities at lower temperatures [Pa98a]. In order to better 
quantify this statement and study the distortions due to 
finite size effects, we have checked the validity of eq. (17) 
for different densities and lattice sizes. Different tech­
niques can be proposed to extract the value of the T expo­
nent. A first possibility [Ha96] (method 1) is to plot the 
slope of In(dN) versus In(A) as a function of temperat­
ure; the minimum of this curve (Tmin) gives the exponent 
T and the corresponding temperature is identified with 
Te • Alternatively [Pa95,Pa98a] (method 2) one can use 
the fact that at T =Te the X2 of the power law fit should 
be minimum, and the corresponding slope TX of the fit 
gives the value of T. Another method (method 3) consists 
in plotting the maximum production yield dNmax(A) of 
a species of size A as a function of A; one can see from 
eq.(17) that this quantity should behave as a power law of 
exponent Tmax . Then Te can be obtained as the temper­
ature at which the power law fit to the size distribution 
dN/ dA(A) gives an exponent T = Tmax. Note that two 
solutions may fulfil this requirement. 

A. Scaling in the isochore ensemble 

These three methods lead to approximately the same 
value of T, as it is shown in figure 10; however the corres­
ponding Tc (and consequently the value of (j) are quite 
different. The values of T and Tc found systematically lie 
inside the "critical region" (bounded by the dashed ver­
tical lines of figure 10) obtained with the third method 
introduced above. This is not a smoothing effect due to 
the finite size of the system (a well defined critical point 
of an infinite system being replaced by a wider critical 
region in the finite one) but it is rather due to the in­
trinsic imprecision of the methods. As a matter of fact 
finite size scaling is clearly violated by the use of method 
1 (figure 11) implying that this method cannot be used 
to define the critical point. By requiring that the scaling 
is verified, the critical temperature can be determined 
within 0.5 MeV even for a system of a typical nuclear 
size. 

Finite size scaling holds with the same quality at dif­
ferent freeze out densities and lattice sizes. A critical 
behavior is clearly seen at supercritical densities as well 
as at subcritical densities. Figure 12 presents the evolu­
tion of the critical temperature as a function of the dens­
ity for a lattice size L =8. This line passes close to the 
thermodynamical critical point. At high density p ~ 1 
this line reaches the bond percolation critical point. Be­
low the critical point a critical behavior is also seen for 
a first order phase transition. In this sense there is no 
contradiction between the scenario of fragmentation at 
low density inside the coexistence or the spinodal region 

(first order phase transition) and the observation of crit­
ical signals characteristic of a second order phase trans­
ition. This property is specific of small systems because 
it disappears when the volume goes to infinity. Indeed, 
when the system is very large an infinite fragment is al­
ways present in the system for all temperatures up to the 
coexistence line. 

10 
.......

...� 

8 ........� 
......� .....�

6 ..........� . .... 
4 .... 
2 

0.1 0.2 0.3 0.4 O.S0.60-Pip: 

FIG. 12. Full line: coexistence line from thermodynamics 
(see section 1); symbols: critical curve from fragment size 
distributions for a cubic lattice of linear dimension L =8. 

If the critical temperature is extracted from data by 
verifying that finite size scaling is respected, critical para­
meters depend only very slightly on the mass for typical 
nuclear sources ranging from A ~ 50 to A ~ 300 and rel­
evant thermodynamical informations can be extracted in 
spite offinite size effects (figure 13). It should be noticed 
that at low density in the (experimentally inaccessible) 
limit of very large systems, scaling becomes very poor. 
The extracted critical temperature gets close to the co­
existence line. This means that in the coexistence region 
the apparent power laws are not connected to the exist­
ence of critical fluctuations of all sizes but rather to the 
disappearance of the infinite cluster on the coexistence 
line. Finite size scaling at low densities is therefore a 
specific property of small systems perfectly compatible 
with the presence of a first order phase transition. In the 
thermodynamical limit this scaling is violated as it can be 
seen by directly looking at the fragment size distribution 
and as it is shown by the fact that the critical exponents 
deviate from the expected value of their universality class 
[Du89] (figure 13a, 13b). 
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around the critical point fragment production should ex­
hibit a finite size scaling allows to define unambiguously 
the critical temperature within less than 0.5 MeV even 
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FIG. 13. Critical parameters as a function of the linear size 
of the lattice (lower scale) or of the mass of the system (upper 
scale) at different freeze out densities. 

B. Role of the volume deflnition 

Besides the role of the finite size, one may wonder 
about the effects of the surface on the cluster partitions. 
In order to study the influence of the surface conditions 
on critical behaviors we have compared the following dif­
ferent systems with the same number of particles : 

•� a finite cubic system with periodic boundary 
conditions at half normal density correspond­
ing to the critical density ; 

•� a finite cubic system without periodic bound­
ary conditions with the same volume as in (1) 

•� a finite sphere with the same volume as in (1) 
and sharp edges ; 

•� a finite sphere with a difFuse surface obtained 
using a constraint on the average volume, the 
volume being fixed to be the same as the av­
erage one of case (3). 

The universality of the critical behavior is tested for 
the diffuse sphere calculation in figure 14. One can see 
that all the different data points collapse on a single 
curve demonstrating the validity of the universal scaling. 
As already observed above, using the requirement that 

for a finite system of a typical nuclear size. 
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FIG. 14. Scaling function f (see text) extracted from the fi­
nite size scaling analysis for a spherical system with Ao = 108 
with a difFuse surface for temperatures 3 :5 T ::; 10 MeV and 
fragment masses 4 ::; A ::; 20. 

The quality of the critical exponents fit is comparable 
for all the surface conditions examined and the resulting 
critical parameters are presented in table 1. The slight 
variation of the critical temperature can be related to the 
variations of the density profiles inside the system. If the 
density of the system is varied between po/10 and Po, the 
critical exponents remain almost unchanged as well as the 
agreement between the different surface conditions; only 
the critical temperature extracted from scaling analysis 
is seen to decrease monotonically with increasing volume 
as in the case of periodic boundary conditions (see figure 
12). 

System T Tc(MeV) u 
Cubic periodic 2.0±0.1 6.5 ± 0.4 0.8± 0.2 
Cubic non periodic 2.0±O.1 6.0± 0.4 O.7±0.2 
Sharp sphere 1.9 ± 0.1 6.2± 0.4 O.7± 0.2 
Diffuse sphere 2.1 ± 0.1 6.1 ± 0.4 0.6±0.2 

TABLE I. Critical parameters for the different surface con­
ditions of a system of 108 particles at the critical density 
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In other words, it is apparent that the change of the 
surface shape only slightly affects the detailed structure 
of the scaling function and does not change qualitatively 
the critical behavior. Power laws in the fragment size dis­
tributions are also found in the microcanonical ensemble, 
at the energy corresponding to the peak of the kinetic 
energy fluctuations (i.e. at approximately the middle of 
the negative branch of the heat capacity). Due to the dif­
ferent sorting of events in the microcanonical ensemble 
however the value of T is slightly deformed respect to the 
expected critical exponent of the liquid-gas universality 
class [Gu99b]. 

For a realistic application to fragmentation data 
however other physical ingredients have to be added to 
the model. In particular the persistence of signals must 
be verified respect to the long range Coulomb interac­
tion. The fact that minor violations to the scaling in 
the size of the largest cluster are observed in the mac­
roscopic microcanonical statistical model MMMC [Ja91] 
which includes the Coulomb field is in this sense very 
encouraging. 

c. Protons and neutrons partitions 
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FIG. 15. Fragment mass, neutron number and charge dis­
tributions around the critical temperature at half the satur­
ation density for a 8x8x8 cubic lattice with an isospin asym­
metry y =0 (upper part) and y =0.25 (lower part). 

The results presented in the preceding section have 
been obtained by assuming an isospin symmetric system, 
y = (N - Z) / A = 0 and considering size distributions. 

Of course the measurable quantity is the charge rather 
than the mass distribution. Figure 15 shows that mass, 
neutron number and proton number distributions exhibit 
a power law behavior at the same critical temperature. 
We can also study the proton or neutron distribution 
for isospin symmetric and asymmetric systems. For an 
y =F 0 system in the presence of a symmetry energy, i.e. 
a different coupling for isoscalar and isovector pairs, the 
nature itself of the phase transition is modified [Mu95]. 
Just to mention a few well known features from macro­
scopic thermodynamics with two conserved charges, the 
coexistence curve is transformed into a surface which im­
plies that no discontinuity is observed passing through 
the phase transition, i.e. as far as transformations are 
concerned the transition is second order instead of first 
order; phase separation is triggered by isovector as well 
as isoscalar instabilities; the isotopic composition of the 
liquid and gas phase differ. Figure 15 shows that crit­
ical behaviors are observed for all the difFerent isotopic 
composition of the source. 
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FIG. 16. Critical parameters as a function of the isospin 
asymmetry of the system for a 8x8x8 cubic lattice at critical 
density. Open symbols: isospin independent interaction. 

The asymmetry dependence of the critical parameters 
at the critical density is presented in figure 16 for a sys­
tem of mass A =256. The critical temperature has been 
obtained with the method 3 of section 4. For comparison, 
the values obtained in a system of the same size with 
isospin independent interactions f$ = fd = -5.5MeV 
are also given. The same results within error bars are 
obtained if the parameters are extracted using instead of 
the total mass of the fragment the total charge or neutron 
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number. 
As expected from universality the critical exponents 

do not depend on the isospin asymmetry. The observed 
deviation of T respect to the isospin independent case is 
due to the di1£erent influence of finite size effects. This 
can be understood since in an isospin dependent case the 
fragments lie close to the bottom of the stability valley 
N ~ Z ~ AI2 while in the isospin independent case no 
restrictions are expected on the partitioning of A nucle­
ons into Z protons and N neutrons. For AIA o « 1 this 
reduction of the partitions number is an increasing func­
tion of A which means that from a combinatorial point 
of view it is harder to make a big clnster in the isospin 
dependent system even if the system is isospin symmet­
ric. The di1£erence vanishes as A -t 00 but for the finite 
system IMF size distributions are naturaJIy steeper, i.e. T 

is larger than the expected value of the Ising universality 
class. This result is qualitatively in agreement with the 
findings of ref. [Pa96]. 

The critical temperature shows an approximate quad­
ratic dependence on asymmetry (lower part of figure 16) 
similar to the mean field calculations ofrefs. [Mu95,Ra97] 
Te(y) - Te(O) <X 'if with ~ ~ 2. It should be noticed that 
since y does not correspond to an order parameter in 
the considered case the coefficient ~ should not be con­
sidered as a critical. exponent. Considering the limited 
variation of y in experiments, even for very exotic nuc­
lei and extremely precise measurements the asymmetry 
dependence of the critical temperature would be barely 
visible. On the other hand, the results shown in figure 
16 imply that fragmentation data obtained from systems 
with different· asymmetries can be analysed together for 
a better determination of critical parameters, isospin ob­
servables being used to pin down the phase transition 
and measure thermodynamical quantities. 

VI.� DISTILLATION OF ISOSPIN ASYMMETRIC 
SYSTEMS 

Isospin can be not only viewed as a degree of freedom 
but also as an observable: we Can hope that next genera­
tion detectors for multifragmentation, measuring masses 
as well as charges of the reaction products, will supply ns 
with a richer two dimensional information reducing the 
ambiguities of the existing signals for the phase trans­
ition. One intriguing possibility is the expectation that 
for an y :f:: 0 system inside the coexistence region the 
vapor phase should be more asymmetric than the liquid 
phase [Mu95]. 
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FIG. 17. Distribution of fragments around the critical tem­
perature as a function of their neutron and proton number. 
Top (bottom) part: y = 0 (ll = 0.25). Left (right) part: 
€d = €. = -5.5 MeV (€d = 5.5 MeV, €. = 0 MeV). Lines: 
stability N =Z line and isotopic ratio of the initial source. 

Figure 17 presents the isobaric distribution of frag­
ments in the proximity of the critical temperature as 
a function of their neutron and proton number. For 
an isospin symmetric source the distribution is centered 
around the N = Z line. When the interaction does not 
depend on the isospin the observed isobaric distribution 
is only due to a combinatorial effect. For an isospin de­
pendent interaction the distribution is narrower because 
the di1£erent isobars do not have the same binding energy. 
In fact the bottom of the stability vaJIey in our simple 
model which neglects Coulomb effects lies on the N = Z 
line. Therefore, in addition to the simple combinatorial 
coefficient the statistical weight due to the variation of 
the binding energy along an isobaric line leads to a nar­
rowing of the distribution. In the case of an asymmetric 
source the fragments appear to have the same N / Z ratio 
as the initial source when the interaction does not distin­
guish between protons and neutrons. However, when the 
isospin dependent interaction is switched on we observe 
that the heavy fragments get closer to the bottom of the 
stability vaJIey while the light ones present a stronger 
asymmetry. 

13 



a genuine signal of phase coexistence one CaD argue that 
any model including secondary decay should exhibit the 
same feature and it may be difficult to disentangle the 
two effects. 
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FIG. 18. Ratio between neutron N and proton Z number of 
produced clusters with N > 40 as a function of temperature 
for a. fragmenting system with No = 160 and Zo = 96 at 
P = Po/2. Upper (lower) part: Coniglio-Klein (Ising) clusters. 
Left part: interaclion energy f. = fd = -5.5 MeV. Right part: 
interaclion energy f. = -5.5, fd = O. MeV. 

This feature is better visible in figure 18 which displays 
the isotopic composition of heavy fragments (i.e. of the 
liquid fraction) as a function of temperature for a system 
with y::: 0.25. H the interaction energy is assumed inde­
pendent of isospin, at all temperatures the distribution 
is centered on the N/ Z of the source. This effect is again 
purely combinatorial and the broadening of the distri­
bution approaching the critical temperature reflects the 
maximum of fluctuations at the critical point. H sym­
metry energy is taken into account, the distribution is 
centered on a value the closer to stability (N/ Z = 1 in 
the model, independent on the mass) the higher is the 
temperature. 

The algorithm for cluster definition in the lattice gas 
model explained in section V guarantees that the ex­
citation energy per nucleon is lower than the threshold 
of particle emission [Ca97,Pa95], i.e. the fragments pro­
duced are relatively cold and secondary evaporation is (in 
average) taken into account. One can then wonder if the 
observed proton richness (relative to the isotopic compos­
ition of the source) of the fragments does not trivially re­
flect secondary decay. H we construct clusters simply by 
connecting neighbour occupied sites (Ising clusters), then 
the average isotopic distribution is given by the lower 
part of figure 18, which is centered on the combinator­
ial expectation except at very low temperature. There­
fore, even if the cluster proton richness in the model is 
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FIG. 19. Relative production yield of light isobars as 
a function of temperature for a fragmenting system with 
No = 160 and Zo = 96 at p = Po/2. Full (dashed-dotted) 
lines: interaction energy f. = -5.5, fd = O. MeV; Co­
niglio-Klein (Ising) clusters. Dashed lines: interaclion energy 
f. =fd =-5.5 MeV; Coniglio-Klein clusters. 

A clearer signal of phase coexistence with two con­
served charges CaD be obtained from the analysis of the 
vapor isotopic composition. Figure 19 shows the ratio 
between the production yields of different light isobars 
as a function of temperature with and without isospin 
dependent interactions. Only at supercritical temperat­
ures the combinatorial value R::: N /Z =2.1 is achieved, 
and the trend is opposite respect to the expected effect of 
secondary decay. Figure 20 shows the isobaric ratio for 
different light masses as a function of the asymmetry of 
the fragmenting system. Above the critical point one can 
see that this ratio tends toward the isotopic ratio of the 
source while below the critical point the initial isotopic 
ratio is strongly enhanced. This very strong enrichment 
CaD be related to the existence of two conservation laws, 
one acting on the proton and the other one on the neut­
ron number. In the presence of a large fragment, i.e. 
below the critical point, very few protons are free to be 
captured by the light particles. Indeed, a heavy fragment 
as close as possible to the bottom of the stability valley is 
strongly favored from the energetic point of view. Then, 
as shown by figure 18 above starting with a neutron rich 
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source we get an almost equilibrated large cluster. Only 
a few protons are left to be shared between the light 
fragments leading to the observed strong enhancement 
of neutron rich "gas"-particles. This is the distillation of 
neutron matter. It should be noticed that this is a clear 
signature of the thermodynamical nature of the phase 
transition. 

T=4 T=7 
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FIG. 20. Relative production yield of light isobars as a 
function of the N / Z of the fragmenting source and for two 
different temperatures. 

VII. CONCLUSIONS 

In this chapter we have looked for relevant signals of 
the nuclear liquid-gas phase transition within an isospin 
dependent Lattice Gas model. An exact calculation of 
the microcanonical and canonical partition function has 
allowed us to compute the critical point and coexistence 
line exactly in finite systems. We have also shown that 
the study of energy partition fluctuations can be a source 
of information and can provide a measure of the heat ca­
pacity. In particular abnormal fluctuation are related 
to negative heat capacities which are a clear signature 
of ~t order p~ase transition. The critical temperat­
ure 15 also aCCessIble from the fragment production yield 
as well as the universal critical exponents of the tran~ 
ition. A full agreement between thermodynamical and 
fragment variables is obtained if the parameters are ex­
tracted from a systematic analysis of size distributions 
at different temperatures. In this case finite size scal­
ing is remarkably verified over a wide range of sizes and 
temperatures. The presence at the same time of first 

and second order transition signals can be understood 
within a detailed analysis of phase transitions in finite 
systems. In particular we have demonstrated that a crit­
ical behavior in fragment observables can be consistent 
with the thermodynamics of phase coexistence and the 
occurrence of a low freeze out density due to finite size 
effects. Indeed, at variance with the supercritical regime, 
critical behavior at subcritical densities is a side effect of 
the finite size of the system which disappears in the in­
finite limit. However, the dependence with mass being 
smooth, the observation of critical signals from multi­
fragmenting systems at low densities can provide useful 
informations on the characteristics and the parameters of 
the transition. The fact that the critical behavior is not 
confined to a single thermodynamical point, but can be 
seen along a whole critical line implies that the temperat­
ure and density of the multifragmenting source have to be 
inferred at the same time from experimental data. Then 
an interesting observable to better localize the system 
in the T - P plane is given by the isotopic composition 
of the fragments. We have shown that in the coexist­
ence region the vapor fraction is more asymmetric than 
the liquid fraction and the signal is not washed out by 
secondary decay. We have also shown that critical para­
meters are presenting only a weak dependence on nuclear 
asYmmetry demonstrating that meaningful informations 
can be extracted from the multifragmentation study of 
different N / Z sources. Moreover both charge and mass 
distributions can be used to extract critical behaviors 
and to sign the distillation phenomenon of asYmmetric 
nuclear matter. 

Even if qualitatively the neutron distillation signal has 
already been experimentally observed (Ye96], for a real­
istic application to fragmentation data the persistence of 
signals must be verified respect to the Coulomb interac­
tion. 
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