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Quantum response of finite Fermi systems and the relation of Lyapunov exponent to 
transport coefficients 

Klaus Morawetz 
LPC.ISMRA, BId Marechal Juin, 14050 Caen and GANIL, BId Becquerel, 14076 Caen Cedex 5, France 

Within the frame of kinetic theory a response function is derived for finite Fermi systems which 
includes dissipation in relaxation time approximation and a contribution from additional chaotic pro
cesses characterized by the largest Lyapunov exponent. A generalized local density approximation 
is presented including the effect of many particle relaxation and the additional chaotic scattering. 
For small Lyapunov exponents relative to the product of wave vector and Fermi velocity, the largest 
Lyapunov exponent modifies the response in the same way as the relaxation time. Therefore the 
transport coefficients can be connected with the largest positive Lyapunov exponent in the Same 
way as known from the transport theory in relaxation time approximation. 

The problem of irreversibility is one of the still open 
questions. Two approaches basically can be distinct. One 
approach considers the many particle theory as a suit
able starting point to understand the increase of entropy 
as a result of many random collisions leading to irre
versible kinetic equations like the Boltzmann equation. 
The other approach considers the theory of determinis
tic chaos with the characteristic measure of Lyapunov 
exponent to understand the occurrence of irreversibility. 
While the many particle approach can be easily extend 
to quantum systems the quantum chaos is still a matter 
of debate about the correct term. 

If both approaches describe some facet of irreversibil
ity, what we will anticipate in the following, it should 

. be possible to give relations between them. While the 
characteristic measure of many body effects is the re
laxation time and the transport coefficients, the rele
vant measure for chaotic systems is the Lyapunov ex
ponent as a measure of phase space spreading of trajec
tories. Considerable efforts have been made to connect 
the transport coefficients with the Lyapunov exponent 
[1-4]. In [1,4] the fact, that the spreading of a small 
phase space volume is given by the sum of Lyapunov 
exponents c5V(t) = c5V(O) exp (L: Ai)t, is used to give a 
relation between Lyapunov exponents and viscosity. This 
was possible to show with the help of the contact to a heat 
bath in the equation of motion ensuring constant inter
nal energy. In [2,3] the relation between transport coef-· 
ficients and Lyapunov exponents was presented in terms 
of Helfand's moments. The interlink was possible to es
tablish by reinterpretation of the Helfand's moments as 
stochastic quantities such that the mean variance of the 
time derivatives represents just the transport coefficients. 
In [5] the authors derive a density expansion of largest 
Lyapunov exponent for hard sphere gases from a gen
eralized Lorentz-Boltzmann equation. This has demon
strated the intimate relation between transport coeffi
cients and dynamical quantities like the Lyapunov expo
nent. 

Here we like to show that there exists a simple con
nection between the concept of Lyapunov exponent and 
the dissipation leading to irreversibility for interacting 
Fermi systems. It will be shown that if the largest pos
itive Lyapunov exponent is smaller than the product of 
Fermi velocity times wavelength in a Fermi system, the 
Lyapunov exponent appears in the same way as the relax
ation time of the system. Therefore all expressions known 
from kinetic theory, expressing the transport coefficients 
in terms of the relaxation time, can be considered as an 
expression in terms of the Lyapunov exponent. 

The concept of response of an interacting many body 
system starts conveniently from the one - particle density 
distribution function !(p, r, t) satisfying the appropriate 
kinetic equation. The space dependent density is then 
given by integration over momentum 

J dp
n(r,t) = go (21rn)3!(p,r,t) (1) 

where 9 is the spin, isospin, .. degeneracy of th~ system. 
The linearization of the kinetic equation for ! yields the 
response to an external disturbance. First we discuss 
the semiclassical response and generalize later to quan
tum response. The starting semiclassical kinetic equation 
reads 

Ot!(p, r, t) + !?-Or!(P, r, t)
m 

~ ( ())~ ° !o(p,r) - !(p,r,t)() (

-Ur \lind r,t + ~xt r,t up! p,r,t) = -..:....-----:..-.........;--~
 
T 

(2) 

with the self-consistent mean-field potential given as a 
convolution between the two-particle interaction Vo and 
the density \lind = f dfVo(r, f)n(f, t), the external dis
turbance lIext and a typical relaxation time T. The re
laxation time approximation serves here as the simplest 
form of collision integral to describe dissipative processes 
by internal collisions of the particles. 
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Besides this chaotization by mutual collisions we want 
to discuss in the following how additional chaotic pro
cesses, e.g. caused by boundary conditions, surfaces etc., 
are influencing the response of the system to external 
perturbation Vext . 

When the equation (2) is linearized with respect to the 
external perturbation, the selfconsistent potential Vind 
gives a linear density contribution <5n via <5Vind = Vo<5n. 
Defining the total polarization function as the connection 
between induced density variation and external pertur
bation 

6n(x,w) = j dx'II(x,x',w) 6Vext (x',w), (3) 

one finds the relation between the polarization function 
including the effect of the selfconsistent potential, II, and 
the polarization without selfconsistent potential, II.,., as 

II(x, x') = II.,. (x, x') + }XdX II.,. (x, x) Vo(x, x)II(x, x'). 

(4) 

In other words it is sufficient to concentrate on the re
sponse function II.,. to an external potential without self
consistent potential Vind. The selfconsistent response II 
is then given by the solution of the integral equation (4). 
The following derivation of II.,. is adapted from [6]. 

Introducing the Lagrange picture by following the tra
jectory x(t), p(t) of a particle in phase space 

d p
-X=
dt m 
d 
dt P = -ax~xt (5) 

we linearize the kinetic equation equation (2) around the 
stationary state fo according to f(x, p, t) = fo(x, p) + 
<5f(x, p, t)e- t /.,. and obtain 

d
dt <5f(x(t) , p(t), t) = opfo Ox(t) ~xt. (6) 

This can be integrated to yield 

<5f(x, p, t) = 
o 00 

-2m jdt' jdx' d~,<5(x' - x(t')) op'Jfo(p2 
, x') ~xt(x', t + t'). 

. -00 -00 

(7) 

Integrating over p, the density" variation <5n caused by 
varying the external potential is obtained as 

6n(x,w) = -2mg j dx' j (:::).a.'/O(p2,x') 
o 

x j dt'e- it'(w+f)l1, (x' w)!!...-<5(x' - x(t')) (8)ext , dt' . 

where 9 denotes the spin-isospin degeneracy. Comparing 
the expression (8) with the definition of the polarization 
function II.,. in (3) and (4), we are able to identify the po
larization of finite systems including the relaxation time 
as 

, , i
II.,.(x,x ,w) =IIo(x,x ,w +-) (9)

T 

with 

(10) 

Further simplifications are possible if we focus on the 
ground state fo(p2 , x) = E>(pJ (x) - p2 ) of the Fermi sys
tem with the local Fermi momentum P!(x). The modu
lus integration of momentum can be carried out and the 
Kirzhnitz-formula [6,7] appears 

IIo(x, x', w) = m:::~:) [O(X' - x(O») 

+iw ] dt'e-it'w j d~ 6(x' - X(t'))], (11) 
-00 

where the angular integration of dp remains as dQp • This 
formula represents the ideal free part and a contribution 
which arises by the trajectories x(t) averaged over the 
direction at the present time DpP! = mx(O). In princi
ple, the knowledge of the evolution of all trajectories is 
necessary to evaluate this formula. Molecular dynami
cal simulations can perform this task but it requires an 
astronomical amount of memory to store all trajectories. 
Rather, we discuss two approximations which will give us 
more insight into the physical processes behind. First the 
most radical one shows how the local density approxima
tion emerges. In the next one we consider the influence 
of chaotic scattering. 

The local density approximation appears from (11) 
when we perform two simplifications. Introducing 
Wigner coordinates R = (x + x')/2, r = x - x' we have 
to assume 

1. gradient expansion 

(12) 

2. expansion of the trajectories to first order history 

x' - x(t') ~ -r - t'x + O(t'2) = -r - t'P! n p . 
m 

(13) . 
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00 

With these two assumptions we obtain from (11) after 
trivial integrations 

(14) 

where k = mw/(qpf(R)). This can be further integrated 
with the help of 

J 'k siny .
dyeS 11 -y- = arctan (1m k - ~Re k)-1 

o 

= 2iln (~~:) +1r[Sgn(l+k)+sgn(l-k)]! 
Imk-40 

(15) 

to yield the standard Lindhard result (28) in the classical 
limit 

inf mgpJ { (1 + k)ITo (q,PJ,w) =- 47l'2 /i3 1- 2k In 1- k 

+ ih [sgn (1 + k) + sgn (1- k)]} (16) 

where k = mw / (qpf ). We recognize the ground state re
sult for infinite matter except that the Fermi momentum 
PJ (R) has to be understood as a local quantity corre
sponding to local densities so that we get with (9) 

IT~DA(q, R,w) = IT~nf (q,PJ(R),w + ~). (17) 
T 

For extensions beyond the local density approximation 
see [7,8]. 

Now we focus on the influence of an additional chaotic 
scattering which will be caused e.g. by a surface bound
ary. In order to investigate this effect we add to the 
regular motion (13) a small irregular part Llx 

x' - x(t') ~ -r - t,PJ up + Ax. (18) 
m 

The irregular part of the motion we specify in the direc.
tion of the current movement lasting a time At and given 
by an exponential increase in phase-space controlled by 
the largest Lyapunov exponent ..\. Therefore we can as
sume [t' < 0] 

PJnLlx ~ --pLlt exp[-..\(t' - Llt )] + const. (19) 
m 

Since we are looking for the largest Lyapunov exponent 
we can take (19) at the maximum At = -1/..\. Further, 
we require, that in the case of vanishing Lyapunov expo
nent we should regain the regular motion (13). We have 
for (18) therefore 

, (t') PJ' [1 - exp( -..\t')]x -x ~ -r--n (20)m p ..\ . 

With this ansatz one derives from (11) instead of (14) 
the result 

mgpJ(R)
IT>.(q, R,w) = 3 

41r2 /i 

OO. ( k )iW/>.-l] 
x [1+ ik 0 dy"l: y 1+ :).. , (21)J�

which for ..\ -+ 0 resembles exactly (14). The further 
integration could be given in terms of hypergeometric 
functions but this is omitted here. 

With this formula (21) together with (9) and (4) we 
have derived the main result of a polarization function 
including the influence of many particle effects and ad
ditional chaotic processes characterized by the Lyapunov 
exponent ..\. In figure 1 the dimensionless integral of (21) 
is plotted and compared with the case without Lyapunov 
exponent. We see that an oscillating behavior is induced 
similar to the effect of an external electric field [9]. 
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FIG. 1. The dimensionless polarization 

function n = - m::l~'f) [1 + ik4)('\, k, w)J versus frequency for 
q = 1/VF and two different Lyapunov exponents. The up
per panel shows the real part and the lower the imaginary 
part of~. The result (21), solid line, is plotted together with 
the approximation (23), long dashed line. The result without 
Lyapunov exponents (15) is plotted as well for comparison, 
dotted line. 

For the condition 

A« qvp (22) 

with vJ = PJ /m the Fermi velocity and q the wave vector 
we can use lim (1 + a/x)'; = exp(a) under the integral

,;-400 

of (21) and the final integration is performed with the 
result of (17) but a complex shift 
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We obtain by this way just the known Matthiessen rule 
which states that the damping mechanisms are additive 
in the damping r = t + A. 

In figure 1 we compare the dimensionless integral 
of (21) for different approximations. The approxima
tion of small Lyapunov exponents which leads to the 
Matthiessen rule averages the oscillating behavior and 
reproduces the gross feature for the condition (22). 

Next we discuss the quantum response function and we 
will see that all discussions outlined above can be straight 
forward applied to the quantum response function. In
stead of the quasiclassical kinetic equation (2) we start 
now from the quantum kinetic equation [10] 

p 1 f dp' [ s
8t !(p, r, t) + m 8r !(p, r, t) - i ds (21rli)3 U(r + 2) 

-U(r _� ~)] e*-s(p'-p)!(p', r, t) = !o(p, r) - !(p, r, t)� 
2 T� 

(24) 

with U = \lind + Vext . The gradient expansion in U leads 
to first order the quasiclassical expression (2). We fol
low now exactly the same linearization as above and in
troduce the Lagrange picture. The trajectories are now 
described instead of (5) by the following set 

d p 
-x=
dt m 
d s s 

s dt P =U(r + 2") - U(r - 2") (25) 

where the arbitrary vector s shows the infinite possibil
ities of trajectories by quantum fluctuations. The re
sulting polarization function for a finite quantum system' 
reads now instead of (9) 

. , 9 dp sin(ksp)f f� 
IIo(x, x� ,w) = 1r2 li3 (21rli)3 ds S 

.� 1 0 

x8,� (sm(:BP/)) f dt'e-;t'wd(x' - x(t'} - i}. (26) 

-00 

Compared with (10) we see that due to quantum'fluctu
ations an additional integration s appears. Eq.. (26) is 
the quantum generalization of the quasiclassical Kirzh
nitz formula (11) for the response function in finite sys
tems. 

Applying now the same gradient approximation (13) 
we derive from (26) with the help of 

.f d sin( tsp) 8 i .!qs(Sin( kSp! )) 2t s 6 e = s� . S 

1r
2li3 [8(pJ - (p - ~ )2) - 8(pJ - (p + ~ )2)] (27) 

in local density approximation. 
The ansatz about additional chaotic processes (20) 

leads then to exactly the same expression (23) under the 
condition (22) but with the quantum response (28) in
stead of IIbnf . 

We like to point out that this result has far reaching 
consequences. With the assumption (22) we. have shown 
by this way that the linear response behavior is the same 
if dissipation comes from the relaxation time via collision 
processes in many - particle theories or from the concept 
of chaotic processes characterized by the Lyapunov ex
ponent. We can therefore state that for small Lyapunov 
exponent compared to the product of wave vector and 
Fermi velocity in a many particle system, the largest Lya
punov exponent behaves like the relaxation time in the 
response function. 

Since the transport theory is well worked out to calcu
late the transport coefficients in relaxation time approx
imation we can express by this way the transport coeffi
cients in terms of the Lyapunov exponent alternatively. 
This illustrates the mutual equivalence of the concept of 
Lyapunov exponent and dissipative processes in many
particle theories. 

Pavel Lipavsky and Vaclav Spicka are thanked for 
many enlightening discussions and A. Dellafiore for 
bringing the Kirzhnitz formula to my attention. 
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