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Abstract. The use of spectrum generating algebras in the description of the nuclear 
many-body system is reviewed. General notions of symmetry and dynamical symmetry 
in quantum mechanics are introduced with the help of simple examples. It is then 
indicated how techniques based on symmetry considerations can be used to find the 
analytical solutions for the problem of an aggregate of interacting particles (bosons 

and/or fermions). Some older ideas due to Wigner, Racah and Elliott are succinctly· 

summarised to put more recent advances in a proper perspective. It is then shown that 
similar techniques are used in a model of the nucleus in terms of interacting bosons 

due to Arima and Iachello. Subsequent extensions of this model to odd-mass nuclei 
lead to the consideration of mixed systems of bosons and fermions and, most notably, 
to supersymmetry. 
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1. Introduction 

The attractive feature of the nuclear many-body problem is that it is too hard to be 
solved exactly; and, even if exact solutions were available, they would be too complex 
to be of value to the average nuclear physicist. The challenge-and the charm­
of nuclear physics is that it requires judicious approximations, good enough to leave 
intact the essential features of the solution (which may change with the particular 
application under consideration) yet leading to an amenable problem. The nuclear 
models considered in this review all share this property: they are simple enough to 
be analytically solvable yet they retain enough realism to bring forward at least one 
essential feature of nuclear structure. They also share another property, namely the use 
group theoretical methods. 

The title of this review promises more than can be delivered: since the birth of 
quantum mechanics the idea of symmetry has acquired such a central role in physics 
that it is clearly beyond the scope of any reasonable review to summarise its impact 
on a particular subfield such as nuclear structure physics. The scope of this review is 
rather to reflect on the use of symmetry techniques in the building of nuclear models 
and, specifically, the use of dynamical symmetries and spectrum generating algebras. 
In general terms, the concept of a dynamical symmetry of a many-body system (e.g., 
the nucleus) is based on the assumption of a 'primary' symmetry with an associated 
dynamical algebra which has the property that the hamiltonian of the system can be 
expressed in terms of its generators. The hamiltonian reduces this primary symmetry to 
a lower, true symmetry [the angular momentum algebra 0(3) in the nuclear case] and 
generates in this way the energy spectrum. For this reason the dynamical algebra is also 
referred to as the spectrum generating algebra. An important aspect of this process of 
reduction to the true symmetry (or of spectrum generation) is that it sometimes can be 
achieved analytically, that is, while preserving the solvable character of the many-body 
problem. 

A comprehensive overview of all applications of dynamical syrnmetries in nuclear 
physics still remains a gargantuan task and no attempt at that is made here either. This 
review, however, aims to be comprehensive in time: early applications of symmetries 
that go back to the very beginnings of nuclear physics are summarised and presented 
from a modern and coherent perspective. These early ideas due to Wigner, Racah 
and Elliott can be considered as precursors to the more modern models of spectrum 
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generating algebras such as the interacting boson model of Arima and Iachello. Of 
the early developments, only the most important are summarised. Throughout the text 
many examples are given which show that, even if these ideas are old, they still continue 
to inspire experiments at the forefront of todaY-'s research in nuclear physics. 

2. Symmetry in quantum mechanics 

2.1. Symmetry 

A hamiltonian iI, invariant under a set of infinitesimal transformations {gil which 
together form a Lie algebra G, that is 

for gi E G, (2.1) 

is said to have a symmetry G or, alternatively, to be invariant under G. An ingredient 
borrowed from group theory concerns the construction of operators like H in (2.1) that 
commute with all elements of G. Such operators are called Casimir operators [1] and 
are denoted here as Cn[G], the index n referring to the order of the operator in gi. 

2.2. Degeneracy and state labelling 

A well-known consequence of a symmetry is the occurrence of degeneracies in the 
eigenspectrum of H. Given an eigenstate la} of iI with energy E, the condition (2.1) 
implies that the states gi la} have the same energy. An arbitrary eigenstate of iI can thus 
be written as If')'}, where the first quantum number f is different for states with different 
energies and the second quantum number')' is needed to label degenerate eigenstates. 
The eigenvalues of a hamiltonian that satisfies (2.1) depend on f only, 

(2.2) 

and, furthermore, the transformations gi do not admix states with different f: 

gil f ')'} = La~/./i)lf')"}. (2.3) 
"I' 

2.3. Dynamical symmetry breaking 

The concept of a dynamical symmetry can now be introduced, for which (at least) 
two algebras GI and G2 with GI :J G2 are needed. The eigenstates of a hamiltonian 
H with symmetry GI are labelled as Ifl')'l}. But, since GI :J G2 , a hamiltonian 
with GI symmetry necessarily must also have a symmetry G2 and, consequently, its 
eigenstates can also be labelled as If2')'2}. Combination of the two properties leads to 
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the eigenequation t 
(2.4) 

where the role of II is played by r 2/2. Hence the eigenvalues depend only on r 1. If the 
condition of G1 symmetry is too strong, a possible breaking of the G1 symmetry can be 
imposed via the hamiltonian 

(2.5) 

which consists of a cornbination of Casimir operators of G1 and G2 . The symmetry 
properties of the hamiltonian iI' are now as follows. Since [iI', gil = 0 for gi E G2 , 

iI' is invariant under G2 • The hamiltonian iI' generally does not, however, commute 
with all elements of G1 and for this reason the G1 symmetry is broken, the extent 
of the symmetry breaking depending on the ratio "-2/"-1. Furthermore, since iI' is a 
combination of Casimir operators of G1 and G2 , its eigenvalues can be obtained in­
closed form: 

("-lOnI [G1]+"-2Cn2 [G2 ]) If1f 2/2 ) = ("-IEnI (ft}+"-2En2Cr2)) Irl r 2/2}.(2.6) 

The conclusion is thus that, although iI' is not invariant under Gl , its eigenstates are 
the same as those of iI in (2.4). The hamiltonian iI' is said to have G1 as a dynamical 
symmetry. The essential feature is that, although the eigenvalues of iI' depend on f 1 

and r 2 (and hence G1 is not asymmetry), the eigenstates do not change during the 
breaking of the G l symmetry: the dynamical symmetry breaking splits but does not 
admix the eigenstates. 

Example: The isobaric multiplet mass equation 

Many concrete examples exist in physics of the abstract idea of dynamical symmetry. 
Perhaps the best known in nuclear physics concerns isospin symmetry and its breaking 
by the Coulomb interaction. 

After the discovery of the neutron by Chadwick, Heisenberg realised that the 
mathematical apparatus of the Pauli spin matrices could be applied to the labelling 
of the two nucleonic charge states, the proton and the neutron [2]. Although 
he thus lead the foundation of an important development in physics-the use of 
symmetry transformations in abstract spaces-Heisenberg did not realise at that time 
the connection between his formalism and the requirement of charge independence of 
nuclear forces. This point was emphasised by Wigner some years later [3] who defined 

t In (2.4) the representation [r2] is assumed to occur only once in [r1], otherwise an additional quantum 

number 0: would have been needed to uniquely label the states as If10:f2'Y2). For the purpose of 
illustrating the concept of dynamical symmetry, however, this technical complication can be ignored. 
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isospin for complex nuclei as we know it today and who also coined the name of 'isotopic 
spin'. 

If, in first approximation, the Coulomb interaction between the protons is neglected 
and, furthermore, if it is assumed that the strong interaction does not distinguish 
between protons and neutrons, the resulting nuclear hamiltonian iI is isospin invariant. 
Explicitly, invariance under the isospin algebra SU(2) = {Tz , T±} follows from 

(2.7) 

The Tj.£ operators are sums over single-particle operators, Tj.£ = Ek tj.£(k), where tz(k) 
gives -~ for a proton and +~ for a neutron while t±(k) transforms a proton into a 
neutron or vice versa. The conditions (2.7) give rise to many-particle eigenstates of 
iI with good isospin symmetry classified as laTMT ) where T is the total isospin of 
the nucleus obtained from the coupling of the individual isospins ~ of all nucleons, M T 

is its projection on the z axis in isospin space, MT = ~(N - Z), and a denotes any 
additional quantum number. If isospin were a true symmetry, all states laTMT ) with 
MT = -T, -T + 1, ... , +T (and with identical other quantum numbers a) would be 
degenerate in energy; for example, proton and neutron would have the same mass. 

The Coulomb interaction between the protons destroys the equivalence between the 
nucleons and hence breaks isospin symmetry. It can be shown (see chapter 10 of [4]) 
that the bulk effect of the Coulomb interaction can be represented as 

AI A A 2H = "'0 + "'lTz + "'2Tz , (2.8) 

for some particular coefficients "'0, "'I and "'2. In the notation G1 ::J G2 introduced 
in subsection (2.3), this can be viewed as a dynamical symmetry breaking of the type 
SU(2) ::J 0(2) ={Tz }. The hamiltonian iI' splits but does not admix the eigenstates 
laTMT) with MT = -T, -T + 1, ... ,+T, and has the eigenspectrum 

iI/laTMT ) = ("'0 + "'l MT + "'2 M¥)laTMT ). (2.9) 

The expression (2.8) is but an approximation to the true Coulomb interaction; it 
represents the diagonal part of it, with the T-mixing isovector and isotensor parts 
being neglected. In that approximation isospin remains a good quantum number. The 
excitation spectra of the different nuclei belonging to the same isospin multiplet (with 
the same T but different MT) are identical but their ground states do not have the same 
binding energy. 

The energy formula (2.9) was derived by Wigner [5] who introduced the name of 
isobaric multiplet mass equation (IMME). Early applications of IMME were considered 
by Wilkinson [6]. Countless experimental examples of nuclear isospin multiplets are 
known at present [7]. A recently measured one where the idea has been tested to high 

angular momentum, is shown in figure 1 [8]. The ground-state energies of the two nuclei 

of the T = ~ isospin doublet (~~Cr25 with M T = +~ and ~;Mn24 with MT = -~) are 



6 

20 ••• 
~0 • •- -31/2­

~Ex ••(keV) 
-27/2­•• •
-100 -23/2­7 15 23 31 

2J 
-17/2- -19/2­

-15/2­- 31/2­-29/2- -13/2­10 
-11/2­-25/2- -9/2­

E -27/2- -7/2­-5/2­
(MeV)
 

-21/2- -23/2- 49 

2SMn24 
-17/2- -19/2­

(Mr = -!)
-15/2­

-13/2­
-11/2­-9/2­
-7/2­0 -5/2­

49 

24Cr25 

(Mr = +~) 

Figure 1. Level schemes of the mirror nuclei 49Cr and 49Mn relative to the ground 

state of the first nucleus. Levels are labelled by their angular momentum and parity J1f . 
The inset shows the difference in excitation energy .6.Ex == E x ( 49Cr; J) - E x ( 49Mn; J) 
as a function of 2J . 

shifted with respect to each other but the excitation energies of yrast states are indeed 
very similar as required by isospin (dynamical) symmetry. (The non-observation of the 
J1r = 21/2-, 25/2- and 29/2- states in 49Mn has experimental reasons.) Nevertheless, 
the spectra are not identical as is clear from the inset in figure 1 where the difference in 
excitation energy is plotted as a function of the angular momentum J. The deviations 
from zero signal a break down of the dynamical symmetry approximation (2.8) to the 
Coulomb interaction and, specifically, reveal subtle differences in alignment properties 
of the protons and neutrons in the two mirror nuclei [9]. 
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2.4. Selection rules 

The most important consequence of a symmetry, which remains valid under the process 
of a dynamical symmetry breaking, is the existence of conserved quantum numbers. 
Frequently, these quantum numbers give rise to selection rules in electromagnetic 
transition or particle transfer processes. The measurement of transition or transfer 
probabilities is thus a method to establish the goodness of quantum nurubers and this 
in turn indicates to what extent a given (dynamical) symmetry is valid. 

The link between symmetries and selection rules can be given a precise quantitative 
formulation through a generalisation of the Wigner-Eckart theorem. This theorem is 
well known for the case SU(2) :J 0(2) with associated labels of angular momentum J 
and its projection MJ . The generalisation involves an arbitrary labelling of the type 

G1 :J G2 

l ! , (2.10) 

r / 
where below each algebra the associated label is given. Suppose the calculation is 
required of a transition or transfer matrix element between an initial state Iri / i ) and 
a final state Iff/f). To find the corresponding matrix element, it is first necessary to 
determine the tensor character of the operator associated with the transition or transfer 
which generally is achieved by writing the operator as Lr-y a~t~r). Each piece t~r) can 
now be dealt with separately by the generalised Wigner-Eckart theorem [1] which states 
that t 

(2.11) 

The matrix element can be written as the product of a generalised coupling coefficient 
(denoted as (.. ··1··)) and a reduced matrix element (written as (,11,11,)), The essential 
point is that all dependence on the quantum numbers associated with the subalgebra 
G2 is contained in the generalised coupling coefficient. The calculation of the latter is 
a purely algebraic problem that boils down to a matrix diagonalisation. In addition, 
selection rules follow from (2.11): if [ff] is not contained in the product [fi ] x [f], the 
generalised coupling coefficient is zero and the matrix element vanishes. 

Example: El transitions in self-conjugate nuclei 

A well-known example of the idea of selection rules concerns electric dipole transitions 
in self-conjugate nuclei [10, 11], that is, nuclei with an equal number of protons and 

t Technical complications due to multiplicities are ignored here for simplicity. These can be twofold 
in this case: i) [fr] may occur more than once in the product [fiJ x [f]; ii) [7] may be contained more 
than once in [f]. 
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neutrons (Z = N). The E1 operator is, in lowest order of the long-wave approximation, 
given by 

TJl(E1) 
A 

= L ekrJl(k), (2.12) 
k=l 

where the sum runs over all nucleons in the nucleus. Since the charge ek of the kth 

nucleon is e for a proton and zero for a neutron, the E1 operator (2.12) can be rewritten 
as 

(2.13) 

where Tz(k) =2tz(k) gives -1 for a proton and +1 for a neutron. The first term RJl 
in (2.13) is the centre-of-mass coordinate of the total nucleus and does not contribute 
to an internal E1 transition. (It is responsible for Thomson scattering off a nucleus.) 
The conclusion is that the electric dipole operator is, in lowest order of the long-wave 
approximation, of pure isovector character TZr:~. Direct application of the Wigner­
Eckart theorem (2.11) in isospin space gives 

A(1) A(1)
(afTfMTf ITo lai1iM11 ) = (1iM11 10ITfMTf )(afTfllT Il a i1i). (2.14) 

The coupling coefficient here is the usual Clebsch-Gordan coefficient associated with 
SU(2) :J 0(2). Self-conjugate nuclei have M11 = MTf = 0 and, as a consequence of 
(2.14), exhibit a simple selection rule: E1 transitions are forbidden between levels with 
the same isospin Ti = Tf = T because of the vanishing Clebsch-Gordan coefficient, 
(TO 101TO) = O. 

This selection rule has been verified to hold approximately in light self-conjugate 
nuclei [12] (see also chapter 1 of [13]). Deviations occur because of higher-order terms 
in the E1 operator but also, and more importantly, because isospin is not an exactly 
conserved quantum number. Isospin mixing can be estimated in a variety of nuclear 
models. They all show that the mixing (i.e., the non-dynamical breaking of isospin 
symmetry) is maximal in Z = N nuclei and rapidly decreases with proton or neutron 
excess; in addition, the mixing increases with nuclear mass. This is illustrated in figure 2 
where a simple estimate [14] of the admixture peT = MT + 1) in the ground state 
of even-even nuclei is plotted as a function of nuclear charge Z for neutron numbers 
N = Z, Z + 4 and Z + 8. This quantity gives the square of the component with isospin 
T = M T + 1 in the ground state of a nucleus with isospin projection M T . Isospin 
mixing effects, caused mainly by Coulomb, should thus be looked for in heavy Z = N 
nuclei where they are largest. The spectrum of the heaviest Z = N nucleus studied 
so far in this respect, ~~Ge32' is shown in figure 3. The crucial transition is the El 
from 5- to 4+ (indicated by the down arrow) which should be strictly forbidden if the 
isospin (dynamical) symmetry were exact. A small B(E1; 5- -+ 4+) value is measured 
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Figure 2. Calculated isospin mixing peT = MT +1) in the ground state of even-even 
nuclei as a function of nuclear charge Z for neutron numbers N = Z, Z +4 and Z +8. 

nevertheless [15] and this is explained through the mixing with higher-lying 5- and 4+ 

levels in 64Ge with T = 1. Although an estimate of the isospin mixing ca:n be made 
(P ~ 1.2% [16], in agreement with figure 2) the analysis is hampered by experimental 
uncertainties: a competing E3 transition from 5- to 4+, the fact that the T = 1 states 
in 64Ge have not been measured but rather inferred from their isospin analogue states in 
64Ga, etc. A reliable measurement of isospin admixtures as a function of Z = N is still 
very much a declared goal of the current experimental efforts with radioactive beams. 

3. Symmetries of interacting fermion models 

The nuclear many-problem consists in finding the solution of the A-body Schrodinger 
equation 

iIW(I, 2, ... , A) = EW(I, 2, ... ,A). (3.1) 

The hamiltonian iI can be written as 
A A 

iI = L (t(k) + U(k)) + L V(k, l), (3.2) 
k=l k<l=l 

where t(k) is the kinetic energy of nucleon k, U(k) is the mean field felt by the kth 

nucleon and V(k, I) is the residual interaction between nucleons k and l. 
A simple but reasonably adequate form of the mean-field potential consists of a 

three-dimensional harmonic oscillator corrected with a spin-orbit and an orbit-orbit 
term, 

(3.3) 
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Figure 3. Level schemes of the nuclei in the A = 64 isospin triplet 64Ga, 64Ge and 
64As relative to the ground state of the first nucleus. Levels are labelled by their 
angular momentum and parity J7r. The observed 5- -+ 4+ El transition between 
T = 0 states in 64Ge is explained through mixing with the T =1 states, indicated by 
the arrows. The levels in broken lines are inferred from the isospin analogue levels in 
64Ga. 

where m is the nucleon mass and w th~ angular frequency, assumed to be identical for 
protons and neutrons. An attractive spin-orbit term (Vl s < 0) is required to achieve shell 
closures at the observed magic numbers. An orbit-orbit term with Vu < 0 pushes down 
single-particle states with high orbital angular momentum 1 which is one of the main 
effects if the schematic harmonic oscillator mean field is substituted by the more realistic 
Woods-Saxon potential. The residual interaction, on the other hand, can approximately 
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be written as pairing-pIus-quadrupole: 

V(k, 1) = ~airing( k, 1) + Vquadrupole(k, 1).	 (3.4) 

For particular values or limits of the parameters in the mean field and the residual 
interaction, the eigenproblem (3.1) can be solved analytically. Three situations can be 
envisaged: 

(i)	 No residual interaction. If V(k,1) = 0, the solution of (3.2) reduces to a Slater 
determinant built from harmonic oscillator eigenstates. 

(ii)	 Pairing interaction in jj coupling. In case of a strong spin-orbit coupling (VIs 

large) a jj-coupling scheme is obtained. If, in addition, the residual interaction 
has a pairing character ((~airing) ~ (Vquadrupole)) Racah's SU(2) model of pairing 
results. 

(iii)	 Quadrupole interaction in L8 coupling. In caSe of a weak spin-orbit coupling (VIs 

small) an L8 or Russel-Saunders coupling is obtained. If, in addition, the residual 
interaction has a quadrupole character ((Vquadrupole) ~ (Vpairing)) Elliott's SU(3) 
model of rotation results. 

The situation can be represented schematically as in figure 4: the vertices correspond 

independent-particle 
shell model 

SU(2) pairing SU(3) rotation 
in jj coupling in L8 coupling 

Figure 4. Schematic representation of the shell-model parameter space with its three 
analytically solvable vertices. 

to the three limits that can be solved analytically while an arbitrary point of the triangle 
corresponds to a general hamiltonian of the schematic form (3.2)-(3.4). 

A hamiltonian of the top vertex yields uncorrelated Hartree-Fock type 
wavefunctions. This limit is reached if the single-particle energies (€j in j j coupling or €I 

in L8 coupling) are large in comparison with a 'typical' matrix element K of the residual 
interaction. The transition between jj and L8 coupling is controlled by the ratio vIsl!{, 
the strength of the spin-orbit coupling over the strength of the residual interaction. The 
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search for the correct coupling scheme was one of the central questions in the early days 
of the nuclear shell and soon it transpired that VIs/ K is the crucial parameter in this 
respect [17, 18]. The transition from SU(2) pairing to SU(3) rotation not only involves 
the ratio VIs/ K but in addition requires a change of the residual interaction from pairing 
to quadrupole. The character of the residual interaction depends on the numbers of 
protons and neutrons in the valence shell: it is, essentially, a pairing interaction between 
like nucleons while the quadrupole component becomes dominant if sufficient numbers 
of both protons and neutrons are active (Le., are valence nucleons). 

The uncorrelated limit is not further discussed here. A brief expose of the other 
basic symmetries of the shell model now follows, preceded by a discussion of Wigner's 
supermultiplet model which is at the basis of the nuclear LS coupling scheme. 

3.1. Wigner's spin-isopin or SU(4) symmetry 

Some five years after Heisenberg's suggestion [2] of isospin symmetry in nuclei, Wigner [3] 
(and, independently of him, Hund [19]) proposed a beautiful extension of this idea by 
assuming nuclear forces to be invariant under rotations in spin as well as isospin space. 
This invariance is expressed by the following commutation relations: 

A A A 

[H, 2: s~(k)] = [H, 2: t~(k)] = [iI, E s~(k)tv(k)] = 0, (3.5) 
k=l k=l k=l 

where s~(k) and t~(k) are the spin and isospin components, respectively, of nucleon k. 

The 15 operators L:ks~(k), L:kt~(k) and L:ks~(k)tv(k) generate the Lie algebra SU(4). 
According to the discussion in section 2, any hamiltonian satisfying the conditions (3.5) 
has SU(4) symmetry. Because of the first two conditions in (3.5), the eigenstates of 
any such hamiltonian must also have total spin S and total isospin T as good quantum 
numbers. Furthermore, the additional requirement of rotational invariance, 

A A 

[iI, 2:j~(k)l = [iI, 2: (lt4(k) + s~(k))] = 0, (3.6) 
k=l k=l 

then also implies the conservation of total orbital angular momentum L SInce 
cOlnbination of (3.5) and (3.6) yields 

A 

[iI, E l~(k)] = O. (3.7) 
k=l 

As a consequence of the invariances (3.5), the A-particle eigenstates of iI can be 
labelled as follows: 

W(I,2, ... ,A) = WaLML(rl,f2, ... ,fA)W(.~~v)SMsTMT(I,2,... ,A), (3.8) 

where the coupling of Land S to total angular momentum J and projection MJ is not 
shown. The first part on the right-hand side of (3.8) depends on the spatial coordinates 
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of the A nucleons while the second part involves their spin-isospin coordinates. Besides 
the labels L, Sand T associated with OL(3), SUs(2) and SUT(2)t, and the magnetic 
sublabels associated with their respective 0(2) subalgebras, there appear in (3.8) also 
the labels (Ap,II) connected with SU(4). They can be defined mathematically in terms of 

U(4) Young tableaux [20,21] with lengths 11, 12, 13 and 14 which are related to (Ap,lI) 
through A == 11 - 12, P, == 12 - 13 and 11 == 13 - 14. The complete wavefunction 'l1 is 
totally antisymmetric; the separate wavefunctions 'l1 a LML and 'l1P..J.tv)SMsTMT , however, 
are not but must have conjugate symmetry in the sense that rows and columns are 
interchanged in their respective Young tableaux. 

To further clarify the meaning the SU(4) labels, it is instructive to analyse the two­
particle case which is summarised in table 1 for the sd shell. Total antisymmetry of the 

Table 1. Classification of one and two particle(s) in the sd shell. 

particle spatial L spin-isospin (AJ.lll ) (S,T) 
number symmetry symmetry 

1 0 0,2 0 (100) (~,~) 

2 00 (5)
8 (A) 

02,22 ,4 
1,2,3 

8 (A) 
00 (5) 

(010) 
(200) 

(0,1) (1,0) 
(0,0) (1,1) 

Note: S stands for symmetric, A for antisymmetric. 

wavefunction ensures in this case that the spatial part is symmetric and the spin-isospin 
part antisymmetric or that the spatial part is antisymmetric and the spin-isospin part 
symmetric, with the corresponding values of L, Sand T as given in the table. This 
can be generalised to an arbitrary number of particles and the result emerges that the 
SU(4) quantum numbers (Ap,II) specify the way in which the overall antisymmetry is 
distributed over the spatial and spin-isospin parts of the wavefunction. 

The relevance of the classification (3.8) is its connection with the short-range 
attractive nature of the residual interaction as a result of which states with spatial 
symmetry are favoured energetically. To see this point, one may return once more to 
the example of two particles and consider an extreme form of a short-range interaction, 
namely a delta interaction. It can be shown that (see chapter 11 of [22]) 

that is, the interaction matrix element vanishes identically for (AJ-lV) == (200). Intuitively 
this must be so since a spatially antisymmetric two-particle state has zero probability of 

t Since L is always integer while Sand T can be both integer and half-integer, the associated algebras 
are denoted by 0(3) in the former and by SU(2) in the latter case. 
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having Tl = r2' In contrast, the matrix element is attractive in the spatially symmetric 
case (AI-lV) = (010). Again, this result can be generalised to many particles, leading to 
the conclusion that the energy of a state depends strongly on (AI-lV). This statement 
can be quantified (see chapter 29 of [22]) by constructing a Majorana space exchange 
operator [related to the Casimir operator of SU(4)] that 'measures' the symmetry of the 
spatial part of the wavefunction. 

Wigner's supermultiplet model is a nuclear LS coupling scheme. With the advent 
of the nuclear shell model the importance of the spin-orbit coupling has become clear 
and, as a result, the SU(4) model is now largely abandoned. In spite of its limited 
applicability, Wigner's idea remains important because it demonstrates the connection 
between the short-range character of the residual interaction and the spatial symmetry 
of the many-body wavefunction. The break down of SU(4) symmetry is a consequence 
of the Zk • Sk term in the nuclear mean field (3.3) which does not satisfy the second 
and third commutator in (3.5). The spin-orbit term breaks SU(4) symmetry [in a 
non-dynamical manner in the sense that SU(4) representations are admixed by it] and 
does so increasingly in heavier nuclei since the energy splitting of the spin doublets 
I - ! and I + ! increases with nuclear mass nurrlber A. In addition, SU(4) symmetry 
is also broken by the Coulomb interaction [which has a non-vanishing first and third 
commutator in (3.5)]-an effect that also increases with nuclear mass-and it is broken 
by spin-dependent residual interactions. 

At the time of Wigner's original suggestion insufficient data were available to test 
his SU(4) symmetry hypothesis. Many years later, in 1963, Franzini and Radicati [23] 
suggested the use of a combination of nuclear masses as a test of the symmetry and 
showed that the observed values agree rather well the SU(4) predictions for nuclei up 
to mass A ~ 110. It was demonstrated subsequently [24], however, that the particular 
combination employed in [23] is not very sensitive to SD(4) symmetry breaking and 
hence does not provide a critical test of the symmetry. More recent analyses regarding 
Gamow-Teller f3 decay [25] and nuclear masses [26] clearly indicate the break down of 
SU(4) symmetry with increasing nuclear mass. This is also confirmed by realistic shell­
model calculations [27]. The following example discusses the evidence from Gamow­
Teller (3 decay. 

Example: Gamow-Teller (3 decay along the Z = N line 

In lowest-order approximation the operator for Gamow-Teller f3 decay is given by 

A A 

T;(GT) = 2gA L SIL(k)t±l(k) = IfgA L O"IL(k)T±l(k), (3.10) 
k=l k=l 

where ± applies to f3± decay, 9A is the axial-vector coupling constant (9A = 1.267) and 
0"IJ. and TjJ. are the Pauli matrices in spin and isospin space. Since T;(GT) is a generator 
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of SU(4) it follows that Gamow-Teller 13 decay cannot take place between two different 
SU(4) representations. [A generator cannot change representation, see (2.3).] This gives 
rise to a very characteristic prediction for the Gamow-Teller {3+ decay into Z = N nuclei 
as a function of nuclear mass number A [25]. It can be shown (see chapter 29 of [22]) 
that the ground state of an even-even nucleus has SD(4) labels (Ap,v) = (OTO) and that 
those for an odd-odd nucleus are (Ap,v) = (1, T - 1, 1) except for an odd--odd Z = N 
nucleus for which they are (Ap,v) = (010). With reference to figure 5, the Gamow-Teller 

(010) (101)
0+ J7r 

4n+2x 4nX I 
2n+2 2n 2n+l 2n-l l (000)

I 
(010) I J7rr 4 

I 
1+ L J7r2 3I 

I J1tI" 2 
L J7rIt 1

4n+2y 4ny2n+l 2n+l 2n 2n 

Figure 5. The {3+ decay into a Z = N nucleus for an even-even (left) and an odd­
odd (right) parent. Nuclei are denoted by 1XN. Levels are labelled by their angular 

momentum and parity J1r, and by the supermultiplet labels (>"j.tv). 

13+ decay from an even-even nucleus with Z = N + 2 into an odd-odd Z = N nucleus 
takes place between SU(4) representations (010) and should be strong. The decay from 
an odd-odd nucleus with Z = N + 2 into an even-even Z = N nucleus, on the other 
hand, goes from (101) to (000) and should be forbidden. The resulting zig-zag pattern 
for the Gamow-Teller strength B(GT) [in units (47r)-lgl] is compared with the data [28] 
in figure 6 up to mass A = 40. (The decay into the doubly magic nuclei 1~08 and ~gCa2o 

is excluded from the present considerations because the odd-odd parent nucleus involves 
a proton particle and a neutron hole in different oscillator shells and, consequently, in 
these cases the (3 decay is first forbidden with a change in 1or occurs through cross-shell 
correlations.) The analysis of the 0+ -+ 1+ decay into an odd-odd nucleus is fairly 
straightforward: significant decay proceeds to very few 1+ states at low energy in the 
daughter nucleus (never more than two) and the summed strength is shown in figure 6. 
The decay into an even-even nucleus is more delicate to analyse because the strength 
is considerably more fragment~d to higher energies. The figure shows the sum of all 
observed strength. This can be an underestimate if some of the fragmented strength is 
not observed; it can also be an overestimate if some strength is included to states that 
do not belong to the favoured SU(4) multiplet (000). In spite of the shortcomings of 
this analysis, the message from figure 6 is clear: a zig-zag is observed in the summed 
Gamow-Teller strength but it fades away with increasing mass especially towards the 
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Figure 6. Observed Gamow-Teller ,a-decay strength for (T = 1) - (T = 0) 
transitions as a function of nuclear mass number A compared with the SUe4) prediction_ 

end of the sd shell. This is an experimental proof of the breaking of SUe4) symmetry as 
a result mainly of the strong spin-orbit coupling in heavier nuclei. A similar conclusion 
is reached from nuclear binding energies [26]. 

3.2. Racah '8 SU(2) pairing model 

If the coefficient Vls of the spin-orbit term in the mean-field potential (3.3) is sufficiently 
large, a j j-coupling scheme arises. Suppose initially that the splitting between the 
different j states is large compared to the residual interaction strength, so that 
only nucleons in the last j shell must be considered as valence particles. Suppose, 
furthermore, that the residual interaction among those valence nucleons has a pairing 
character which is attractive for two particles coupled to angular momentum J = 0 and 
is zero otherwise, 

( -2JM Il% .. 1- 2 JM) = { -~(2j + l)G, if J = 0 (3.11)J J pa.mng J J 0, if J f; 0 . 

This is a schematic albeit reasonable approximation to the residual interaction between 
identical nucleons and hence can only be appropriate in semi-magic nuclei. Under the 
above assumptions the schematic shell-model hamiltonian (3.2) reduces to 

(3.12) 

where Eo represents a constant energy contribution from all nucleons in shells below the 
valence j shell. 

The hamiltonian (3.12) can be diagonalised analytically [29] in a space of n identical 
fermions in a j shell by noting the second-quantised form of the pairing interaction, 
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(3.13) 

where atil' creates a p~rticle in the (l~)j shell with projection m and the bracket 
2,Jm 

denotes the coupling of the angular momenta j. If, in addition to S±, also the operator 

Sz = H2n - 2j - 1) = ~ Ctj 2ar!,jmaz!Jm - 2j - 1) (3.14) 

is considered, then the following commutation relations hold: 

(3.15) 

This shows that the set of operators {Sz, S±} forms an SU(2) algehra, which is referred 
to as the quasi-spin algebra. Because of this relation with the quasi-spin SU(2) algebra, 
the pairing hamiltonian can be solved. From the commutation relations (3.15) it follows 
that S+S_ = 52 - 5; +5z , which shows that the pairing hamiltonian can be written as 
a combination of Casimir operators belonging to 

SU(2) ~ 0(2) 

t t (3.16) 

The associated eigenvalue problem can be solved instantly. The quantum numbers s 

and m s can be put in relation to the more usual ones of seniority v [30] and (valence) 
particle number n, 

s = ~(2j - 2v + 1), m s = ~(2n - 2j - 1). (3.17) 

The interpretation of the seniority quantum number v (found by repeated action of S+ 
on a state with n = v) is that it gives the number of nucleons not in pairs coupled to 
angular momentum zero. 

The above concepts of seniority and quasi spin have found repeated application in 
nuclear physics and have been the subject of fruitful generalisations. An important 
extension is due to Flowers [31] and concerns the seniority classification of protons and 
neutrons in j j coupling; in doing so the concept of reduced isospin t is established, 
which is the isospin of the nucleons not in pairs coupled to angular momentum zero. 
This brings about the generalisation of the quasi-spin algebra from SU(2) to 0(5) with 
properties thoroughly investigated by Hecht [32, 33]. 

Another generalisation concerns that towards several orbits. In case of degenerate 
orbits this can be achieved by making the substitution S+ ~ Lj 5+(j) which leaves 
all previous results such as the algebraic structure (3.15) unchanged. The ensuing 
formalism can then be applied to semi-magic nuclei but since it requires the assumption 
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of a pairing interaction with degenerate orbits, its applicability is limited. A much 
more generally valid model is obtained if one imposes the following condition on the 

shell-model hamiltonian: 

(3.18) 

where ~ is a constant interpreted as the pairing gap. This condition of generalised 

seniority [34] is much weaker than the assumption of a pairing interaction and, in 
particular, it does not require that the commutator [8+,8_] yields (up to a constant) the 
number operator which is central to the quasi-spin formalism. In spite of the absence 

of a closed algebraic structure, it is still possible to compute the exact ground-state 
eigenvalue of hamiltonians satisfying (3.18). 

A third extension towards isoscalar pairing which is of current topical interest is 
discussed in the example subsection. 

Example: The 0(8) model of T = 0 and T = 1 pairing 

The pairing interaction considered so far acts between identical nucleons in a j shell 

coupled to angular momentum J = 0 and isospin T = 1. If protons and neutrons 
are considered, the isospin of a pair of nucleons is not necessarily T = 1 but can also 
be T = 0, and the pairing interaction can be generalised correspondingly. One way of 
doing so is to consider the LS coupling limit of the shell model with a set of degenerate 1 
shells and a pairing interaction between pairs of nucleons coupled to total orbital angular 
momentum L = O. According to the discussion of subsection 3.1, overall antisymmetry 
implies for L = 0 that S = 0, T = 1 or S = 1, T = o. Thus the pairing interaction can 
be of spin-scalar, isovector or of spin-vector, isoscalar type. This leads to a generalised 
pairing interaction of the form 

" 1 "'" "10 "10 1 "'" "01 "01
~airing = -2(1 - x)G L..J S+,IJ.S_,I-' - 2(1 + X)G L..J S+,I-' 8_,1-" (3.19) 

IJ. I-' 

with 

8"10 - !1"'" . ~l1 ( t t )(010)+,1-' - V'2 L..J V L.l + 1 all l x all l 0p.0 ,
1 2 2 22 

"Ol fl"", .~l1 ( t t )(001)S+,1-' = V"2 L..J V L.l + 1 all.! x all.l OOjj , (3.20) 
1 22 22 

where aimzlrnslmt creates a partcile in t.he 1 shell with quantum numbers as indicated 
2 2 

and the bracket denotes coupling in orbital angular momentum, spin and isospin. The 
pairing interaction contains two parameters: an overall strength G and a parameter x 

which determines the relative strengths of isovector and isoscalar pairing. For x = +1 
(x = -1) pure isovector (isoscalar) pairing is obtained while for x = 0 both pairings are 
of equal strength. 
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To recognise the algebraic structure of this model, one considers, in addition 
to the pair creation and annihilation operators (3.20), particle-number conserving 
operators [35, 36]. This is similar to the construction of the SU(2) quasi-spin algebra 
where the pair creation and annihilation operators S± are supplemented with Sz to 
obtain a closed algebraic structure, only in this case, to ensure closure, one is compelled 
to add several operators of the form 

it = 2L J2f+T (ai.!! x al!.!)~~~O), 
I 22 22 

81l- = L v'21 + 1 (ah! x al!!)~~~O), 
I 22 

Til- = L: J2f+T (ai!! x al!!)~~~l), 
I 22 22 

" ~ . / ( t - )(011)YJ,tv = L.J v 2l + 1 all! X al!! Oil-V , (3.21 ) 
I 22 

where the a1ml!ms!mt are annihilation operators with correct transformation properties 
2 2 

under rotations in orbital, spin and isospin spaces, 

(3.22) 

" 10 "01 ,., " " " .
The set of 28 operators {S±,Il-' S±,J,t' n, SJ,t, TJ,t, YJ,tv},., forms t~e LIe algebra 0(8) [35]; 
besides the pair creation and annihilation operators Sl~J,t and S~~I-£ it contains the number 
operator n, the spin and isospin operators 81-£ and TJ,t, and the operators YIl-V that 
are vectors in spin and isospin. Physically relevant classifications in the 0(8) model 
conserve spin Sand isospin T and hence one is interested in algebraic reductions of 
0(8) that contain SUs(2) @ SUT (2). Three such limits (or dynamical symmetries, in 
the terminology of section 2) exist and they are specified by the lattice of algebras 

05(5) ® SUT(2) ) 
0(8) :J SU(4) :J SUs(2) ® SUT (2), (3.23) 

OT(5) ® SU5(2)1 
"'0'" "" A AA A 

where 05(5) = {Sl,ll-' n, SJ,t}, OT(5) = {S~~J,t' n, TJ,t} and SUe4) = {SJ,t, Tj.£? YJ,tv}' 
Mathematical details of these classifications are given in [35, 36] and are not of concern 
here. Their physical significance is rather easily understood from the hamiltonian (3.19). 
The upper and lower limits in (3.23) are obtained in the case of pure isoscalar (x = +1) 
and isovector (x = -1) pairing, respectively. The middle limit is obtained with equal 
pairing strengths (x = 0) in which case it turns out that the hamiltonian (3.19) can be 
written in terms of the generators of Wigner's SUe4) algebra. The entire range of pairing 
strengths can thus be simulated by varying x and the extreme situations are analytically 
solvable. These properties make that 0(8) is a schematic model that can be used to 
study the question of T = 0 versus T = 1 pairing and therefore it receives currently 
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renewed attention in relation to Z ~ N nuclei (see, e.g., [37]). It can, however, only have 
limited applicability since it assumes an LS classification and no spin-orbit coupling. 
Once a spin-orbit term is added to the hamiltonian (3.19), the subspace constructed 
out of L = 0 pairs no longer is decoupled and one again is forced to a solution of the 
eigenproblem in the full shell-model space. 

3.3. Elliott's BU(B) model of rotation 

In Wigner's supermultiplet model no statement is made about the nature of the 
classification of the spatial part of the wavefunction (3.8) except that the total orbital 
angular momentum L is assumed to be a good quantum number. Additional labels are 
left unspecified as indicated by Q. The main feature of Elliott's model [38] is that it 
provides an orbital classification scheme which incorporates rotational characteristics. 
Elliott's SU(3) model of rotation presupposes Wigner's SU(4) classification and assumes 
in addition that the residual interaction has a quadrupole character. The latter is a 
reasonable hypothesis if both protons and neutrons are filling the valence shell. In 
terms of the schematic hamiltonian (3.2) one requires that it reduces to 

A APk. 1 2 2A ( 2 )= E 2m + "2 mw rk (3.24)H + ~uadrupole, 

where Vquadro.pole = KQ .Qcontains the quadrupole operator given by 

Q~ == If (t(fk x fk)~) /b2 + b
2 t(Pk x Pk)~) /h 2

) , (3.25) 

in terms of coordinates fk and momenta Pk, and where b is the oscillator length 
parameter, b = JIi/mw. Note that Q. Qcontains one-body (k = 1) as well as two-body 
(k # 1) terms. 

To recognise that the shell-model hamiltonian (3.24) is analytically solvable, it is 
best to write it in second-quantised form. Because of its symmetric structure in if and p, 
the quadrupole operator Qp, does not couple to states outside a given valence shell and 

particle operators aiml~m8~mt can be assigned 1quantum numbers of that shell (e.g., s, 

P, sd, ... ), together with the spin and isospin labels. The quadrupole operator (3.25) 
can then be rewritten as 

A "" _ / ( ) ( Nt )(200)Qp, = LJ V 8 21 + 1 a11. 1. X a1~ ~ p,00 , (3.26) 
l 22 

since it must be scalar in spin and isospin. Likewise, the orbital angular momentum 
operator 

A 

Lp, = ~(fk A pk)p,/n, (3.27) 
k=l 
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becomes in second quantisation 

til- = L J41(l + 1)(21 + 1)/3 (aill x alll)~O~O). (3.28)
I 22 22 

The hamiltonian (3.24) can be rewritten as 

fI = nw (n + ~) + K;Q •Q, (3.29) 

where it is the number operator. For a given number of nucleons in the valence shell 
the first term in (3.29) reduces to a constant; the second term, however, generates a 
spectrum as can be seen as follows. 

The hamiltonian (3.24) satisfies the commutation relations (3.5) and hence has 
SU(4) symmetry. Its additional symmetry character depends somewhat on the orbital 
space available to the valence particles. Denoting the orbital degeneracy by f2 (Le., 
f2 = 1,3,6, ... for the s, p, sd, . .. shells), the orbital-spin-isospin decomposition of the 
wavefunction (3.8) is equivalent to the algebraic reduction 

U(f2) ® 

l (3.30) 

[11121314] 
As pointed out in subsection 3.1, the overall antisymmetry [1 M ] of the wavefunction 
requires conjugate symmetries for U(f2) and U(4). The operators LIl- and QIl- are scalar 
in spin and isospin and hence are generators of U(f2). Furthermore, from their explicit 
expressions, equations (3.26) and (3.28), one derives the commutation relations 

[LIl-' Lv] = - v'2 (11l 1v \11l + v)LJL+v, 

[LIl-'(JvJ = -V6 (111 2v\2JL + v)QIl-+v, 

[QIl-' QlI) = 300 (211 2Vl1JL + v)LJL+lI , (3.31) 

which show that they generate an SU(3) Lie algebra that must then be a subalgebra of 
U(f2). From the commutation relations (3.31) it can also be shown that the quadratic 
combination ~Q. Q+~t. t commutes with all generators of SU(3). It then follows that 
the hamiltonian (3.24) implies the orbital reduction 

U(f2) ~ SU(3) ~ 0(3) 
1 1 1 (3.32) 

[11/21314] (5..{L) KL 

and represents an example of dynamical symmetry breaking: the degeneracy within a 
given Wigner supermultiplet (AIlV) is lifted (dynamically) by the quadrupole interaction. 

The importance of Elliott's idea is that it gives rise to a rotational classification of 
states in the context of the shell model through mixing of spherical orbits. The quantum 
number K emerging from his analysis is associated with the projection of total orbital 
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angular momentum on the axis of symmetry. As such, the SU(3) model established 
a link between the nuclear shell model of Mayer (39] and of Jensen et aI. [40], and 
the droplet model of Bohr and Mottelson (41] which up to that time (1958) existed as 
two separate views of the nucleus. It is telling that this connection was made through 
an analytically solvable, algebraic model rather than via some cumbersome numerical 
diagonalisation. 

Given that Elliott's SU(3) model uses Wigner's supermultiplet classification as a 
starting point, it likewise breaks down as a result of the spin-orbit term in the nuclear 
mean field and it cannot be applied to heavy nuclei. Since in the sand p shells the SU(3) 
model reduces to Wigner's supermultiplet theory, the first real test case where orbital 
mixing and associated deformation may occur, is for nuclei in the sd shell. Elliott's 
SU(3) model has thus found its main application in sd-shell nuclei (42, 43]. 

Example: Quasi BU(3) symmetry in heavy nuclei 

Although Elliott's model shows how deformed, non-spherical shapes may arise out of 
the spherical shell model, the argument is not a priori applicable in heavy nuclei where 
the spin-orbit coupling causes a considerable rearrangement of the single-particle levels. 
Over the years several schemes have been proposed with the aim of transposing the 
SU(3) scheme to those modified situations. One such modification (others are discussed 
in subsections 3.4 and 3.5) has been suggested recently by Zuker et alp [44] under the 
name of quasi SU(3). These authors start from the observation that in jj coupling the 
single-particle matrix elements of the quadrupole operator are largest for ~j = 0, ±2, 
those with ~j = ±l being significantly smaller (see table 2). As a result, the spaces 

Table 2. Matrix elements of the quadrupole operator Q20 in LS and jj coupling. 

LS coupling 1~lml 

1(l+1)-3m2 1 
(lmlQ2ol lm) = -? 

(2f - 1)(21 + 3) 4 
3[(1 + 1)2 - m 2]l/2[(1 + 2)2 _ m 2]l/2 3 

(Im1Q2o If + 2 m) = -? 

2(21 + 1)1/2(21 + 3)(21 + 5)1/2 8 

jj coupling j~lml 

j(j + 1) - 3m2 1 
(jmIQ2oljm) = -? ­

4j(j + 1) 4 
3m[(j + I? - m2p12 3m ...... 0(jmlQ2oli + 1 m) = 4j(j + 1)(j + 2) 

-?

4j 
3[(j + 1)2 - m 2]l 2[(j + 2)2 - m2p12 3 

(jmlQ2oli + 2 m) = -? 

8(j + l)(j + 2) 8 

built from j = I + ~ and j = 1- ~ are effectively decoupled. Furthermore, as table 2 
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shows, the numerical values of the quadrupole matrix elements do not differ too much in 
L8 and j j coupling. With reference to figure 7, the diagonalisation of Q20 in the spaces 
j = ~,~,~, ... (or j = ~,~, ...) and 1= 0,2,4, ... (or 1= 1,3, ... ) yields similar results. 
This argument has been invoked by Zuker et ale [44] as an explanation of the rotational 

SU(3) quasi 5U(3) 

I-- 3S1/ 2 --3S1/ 2 

I --2d3/ 2 
2d3/ 2 I
2ds/2 --2ds/2 I 

I 
--197/2I 

__ 197/2 I 
--199/2 I

--199/2 
I 
I 

Figure 7. Single-particle spaces of SU(3) and quasi SU(3) for the example of the sdg 

shell. In SU(3) Vis = 0 while in quasi SU(3) Vis = 2Vll is taken. The dashed line in 
quasi SU(3) separates the two spaces that are approximately decoupled. 

behaviour even in the presence of a large spin-orbit splitting. It is also instrumental as 
a guiding principle in the choice of an appropriate shell-model space. 

3.4. Pseudo spin symmetry 

A very successful way of extending applications of the SU(3) model to heavy nuclei (and 
to high angular momentum) is based upon the concept of pseudo spin symmetry. The 
starting point for the explanation of this symmetry is the single-particle part of the 
hamiltonian (3.2), 

2" P 122 - -­
h = 2m + "2 mw r + vIsl • S + vlll • l, (3.33) 

where for notational simplicity the particle index k is omitted. For VZs = Vll = 0 a 
three-dimensional isotropic harmonic oscillator is obtained which exhibits degeneracies 
associated with U(3) symmetry; for arbitrary non-zero values of VIs and Vll this symmetry 
is broken as argued in previous subsections. However, for the particular combination 
VZs = 4Vll some degree of degeneracy, associated with a so-called pseudo spin symmetry, 
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is restored in the spectrum of h. To understand the nature of pseudo spin symmetry, 
consider the unitary transformation 

" 2.:5· f 
U = 2--, (3.34) 

r 

and apply this transformation to the single-particle hamiltonian (3.33). One finds [45] 

1" P
2 

1 2 2 - - ­u- hit = 2m + "2 mw r + (4Vll - VIs)l' s + vl/l·l + nw - VIs +2Vll. (3.35) 

It can be concluded that the hamiltonian 

A, P2
1 2 2 - - ­

h = 2m + '2 mw r + (4Vll - VIs)l . :5 +vl/l . 1 (3.36) 

has the same excitation spectrum as the original one h since they are related, up to the 
constant nw - VIs + 2vu, by a unitary transformation. In particular, it shows that for 
VIs = 4Vll the spectrum of h is identical (up to a constant) to that with only an orbit ­
orbit and no spin-orbit term. This results from the single-particle levels with j = I + ~ 

and j = (1 + 2) - ! being degenerate for aU values of l. These single-pa~ticle levels 
can be considered as originating from a pseudo orbital angular momentum l = 1+ 1, 
in the presence of zero pseudo spin-orbit splitting I . s. This is illustrated in figure 8 
for the sd9 shell: with the appropriate choice of VIs = 4Vll the levels (2d5/ 2 , 197/2) and 
(3S1/ 2 ,2d3/ 2 ) occur in doublets and can be considered as originating from l = 3 and 
1= 1, respectively. Note, however, that there is no partner for 199/2 in this scheme. 

SU(3) pseudo SU(3) 

__ 3S1/ 2 =} 
__ 2ih/2

-- 3S 1/ 2 --~--2d3/2 2P3/2 
__ 2d3/2 
--2d5 / 2 __ 2ds/2 =} =!ls/2

--197/2 117/2 

__ 197/2
 
--199/2
 

--199/2 ----199/2 

Figure 8. Single-particle spaces of SU(3) and pseudo SU(3) for the example of the 
sdg shell. In SU(3) VIs = 0 while pseudo SU(3) requires VIs = 4Vll in which case the 
level degeneracies can be interpreted in terms of a pseudo spin symmetry. 



25 

Pseudo spin symmetry has a long history in nuclear physics. The existence of nearly 
degenerate pseudo spin doublets in the nuclear mean-field potential was noted already 
thirty years ago by Hecht and Adler [46] and, independently, by Arima et ale [47]. These 
authors also realised that, because of the small pseudo spin-orbit splitting, pseudo LS 
(or IS) coupling should be a reasonable starting point in medium-mass and heavy 
nuclei where LS coupling becomes unacceptable. With Is coupling as a premiss, 
an SU(3) model can be constructed in much the same way as Elliott's SU(3) model 
can be defined in LS coupling. The ensuing pseudo SU(3) model was investigated 
seriously for the first time in [48] with many applications following afterwards (for a 
review, see [49]). Although the pseudo SU(3) model is probably the most important 
emanation of pseudo spin symmetry, it must be emphasised that the latter is a broader 
concept than just pseudo SU(3), as is illustrated in the example of this subsection. The 
formal definition of the pseudo spin transformation (3.34) in terms of a helicity operator 
was given by Bohr et ale [45] and later generalised by Castaiios et ale [50], to include 
transformations that not only act on the spin-angular part of the wavefunction-as does 
(3.34)-but also on its orbital part. An important development was the application of 
pseudo spin symmetry to superdeformed nuclei [51] and its possible relevance in the 
explanation of identical bands [52, 53]. Finally, it is only recently that an explanation of 
pseudo spin symmetry was suggested in terms of the relativistic mean-field model of the 
nucleus. First, the condition Vis = 4Vll was found to be approximately valid in numerical 
calculations [54] and later the pseudo spin symmetry was proven to be a symmetry of 
the Dirac equation which occurs if the scalar and vector potentials are equal in size but 
opposite in sign [55, 56]. 

A vanishing pseudo spin-orbit splitting does not necessarily imply the validity of Ls 
coupling which can be broken by pseudo spin dependent terms in the residual interaction. 
The assumption of Is coupling can be verified by analysing the wavefunctions of a shell­
model calculation with realistic interactions. An example of such an analysis is given 
in [58] and leads to the conclusion that Ls coupling is a reasonable ansatz for nuclei 
in the mass A ~ 60 region. Intuitively, this result is a combined effect of the short­
range nature of the residual interaction (cfr. the discussion in subsection 3.1) and the 
fact that nucleons interact predominantly at the surface of the nucleus. Because of the 
latter property, matrix elements of the residual interaction are not very sensitive to the 
radial structure of the wavefunction at the interior of the nucleus. As a result, the 
problem of n nucleons in a pseudo harmonic oscillator shell is approximately equivalent 
to that of n nucleons in a normal harmonic oscillator shell. In fact, this equivalence 
is exact for the surface delta interaction [59, 60] which is known to be a reasonable 
approximation to the true effective interaction in nuclei. 
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Example: Pseudo SU(4) symmetry in A ~ 60 nuclei 

Just as the SU(2) symmetries of spin and isospin can be combined to yield the larger 
SUe4) symmetry, one can equally well combine the SU(2) symmetries of pseudo spin 
and isospin to give what can be called a pseudo SU(4) [or SU(4)] symmetry [57,58]. A 
hamiltonian with pseudo SU(4) symmetry satisfies the following commutations relations: 

A A A 

[if, L slt(k)] = [if, L tlt(k)] = [if, L sJL(k)tv(k)] = 0, (3.37) 
k=l k=l k=l 

where sJL is the transformed spin operator, sJL = u-1sJ,tu. For example, the schematic 
shell-model hamiltonian (3.2) satisfies the commutation relations (3.37) if Vis = 4vu. 
The hamiltonian in (3.37) has eigenstates labelled by I(A/lV)LSJT} and conserves the 
total pseudo orbital angular momentum L and the total pseudo spin S, which result 
from the separate coupling of all individual pseudo orbital angular momenta lk and 
pseudo spins Sk. The labels (A/lV) are associated with pseudo SU(4) in direct analogy 
with Wigner's supermultiplet scheme. 

The existence of a pseudo SU(4) symmetry requires minimally that the valence shell 
coincides with a pseudo oscillator shell. A region where this is possibly the case concerns 
Z ~ N nuclei at the beginning of the 28-50 shell where the dominant orbits are 2Pl/2' 

2P3/2 and 1/5/ 2 which can be considered as a pseudo sd shell. 
It is instructive to compare the predictions of pseudo SUe4) symmetry concerning 

Gamow-Teller (3 decay with those of SU(4). A typical example of the latter, the (3+ 
decay of l~NelO' is shown in figure 9: the Gamow-Teller decay proceeds to two 1+ states 
in 1~F9 with log(ft) values of 3.1 and 4.5, respectively. In SU(4) these correspond to 
transitions within the supermultiplet (010); the first occurs without change of orbital 
structure (l So ~ 3Sl) and is fast, while the second eSo ~ 3DI) is forbidden. The 
SU(4) classification thus provides a qualitative understanding of Gamow-Teller (3 decay 
in 18Ne. 

The analysis of the analogous problem in pseudo SU(4) is more complicated because 
the Gamow-Teller operator is not a generator of pseudo SU(4). The situation is 
illustrated in figure 9. The transition without change in orbital structure (l So ~ 3 Sd is 
about one order of magnitude weaker than the corresponding one in SU(4) (4.0 versus 
3.0). Furthermore, the second transition (ISo ~ 3 D1 ) no longer is forbidden. Its matrix 
element depends upon the amount and character of orbital mixing; the numbers shown in 
the figure (3.3 rv 3.7) represent a typical range between prolate and oblate deformation. 
It is also seen that the observed ft values in the decay of ~gZn28 [61] strongly differ from 
those for 18Ne, and are more akin to the pseudo SUe4) prediction. 
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Figure 9. The log(ft) values for Gamow-Teller matrix elements in the (3+ decay of 
l 8 Ne and 58Zn as contrasted with the corresponding values in standard and pseudo 

SU(4). 

3.5. The fermion dynamical symmetry model 

An important property of Racah's pairing hamiltonian is that it does not couple states 
constructed out of 8 pairs (3.13) to the rest of the shell-model space. Thus, for example, 
the state with seniority v = 0, entirely built from S pairs, is an eigenstate of the 
pairing hamiltonian 5+5_, and hence decoupled from all other states. The question 
now arises whether this property of decoupling can be generalised to more realistic 
scenarios. In particular, given the important role of the quadrupole degree of freedom 
in nuclei, one would like an extension of this idea towards a decoupled space in terms 
of monopole S and quadrupole D pairs. A systematic procedure for constructing such 
hamiltonians was devised by Ginocchio [62], drawing on earlier ideas by Hecht et ale [63] 
and using a m~thod which resernbles that of pseudo spin [46, 47]. The theory was later 
developed under the name of fermion dynamical symmetry model or FDSM by Wu and 
others [64, 65]. 

The starting point of the method is the separation of the nucleon angular momentum 
j into a pseudo orbital part k and a pseudo spin part z: j = k + z. This is similar to 
the pseudo spin scheme of subsection 3.4. By convention, k is taken integer and i half­
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integer but no other condition is imposed a priori. This separation carries with it the 
definition of the particle creation operatorst 

at,jmj = L (kmk imiljmj)a!mkimi'	 (3.38)
mkmi 

where a!mkimi is related as follows to the usual (l!)j-coupled creation operators: 

akmkimo = L:(kmk imiljmj)atll' o.	 (3.39)
, . 2,Jm; 

Jm; 

Pairs of particles can now be defined in a K I-coupled instead of a jj-coupled basis, the 
two being related through 

" (KI JM ) - ( t t )(KI,J)B+ , J = aki x ak'i' MJ 

_ k..,k' K] t t (J)- L Z z I (all' x al'l ")MJ'	 (3.40) 
..	 2,J 2,J
))' [ j j' J 

where the coefficient between square brackets represents the transformation from the 
coupling Ikk'(K)ii'(I); J) to Iki(j)k'i'(j'); J) and is related to a nine-j symbol [22]. Any 
two-body nucleon interaction can be written equivalently in terms of either jj-coupled 
or K I -coupled pair creation and annihilation operators since these are connected by the 
unitary transformation (3.40). In addition to the two-particle creation operators (3.40) 
and their hermitian conjugates, a closed algebraic structure requires multipole operators 
or the form 

P"(KI JM ) - (t - )(KI,J)	 (3.41 ) ,	 J = aki x ak'i' MJ ' 

where the annihilation operators akmkimi have the correct transformation properties in 
pseudo orbital and pseudo spin space, 

(3.42) 

It is now a matter of straightforward algebra to work out the commutation relations 
between the operators B+ (KI, J M J), their hermitian conjugates B_ (KI, J M J) and 
P(KI, J MJ ). These will depend on the choice of k and i, and their coupled values K 
and	 I, and a judicious choice will define a set of pairs that decouple from all others. 

The	 search is now on for sets of pair operators that include a monopole S and a 
quadrupole D pair and close under commutation to an algebra which is smaller than 
the one that spans the entire shell-model space. Two such algebras can be defined [62]. 

(i)	 The 0(8) algebra. This case is obtained from K-scalar pairs with i = ~. The 
choice of k is free (different values are allowed) but they should couple to K = 0 

t As only one kind of nucleon is considered in this subsection, isospin indices are omitted. 
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In all pairs. Overall antisymmetry then requires even I and leads to either 

J = I = °(8) or J = I = 2 (D). The set of pairs that decouples from all 
others consists of the pair operators S+ = B+(K = 01 = 0, J = 0 MJ = 0), 
D+ _ B+(K = 01 = 2, J = 2 MJ ), their hermitian conjugates S_ and D_, and 
the multipole operators i\ (K = 0 I, J = I M J ), I = 0, 1,2,3. These 28 operators 
generate the Lie algebra 0(8). 

(ii)	 The Sp(6) algebra. This case is obtained from I-scalar pairs with k = 1. Due 
to 9verall antisymmetry the coupling to I = 0 requires either J = K = 0 (8) or 
J = K = 2 (D). The set of pairs that decouples from all others consists in this case 

of S+ =B+(K = 01 = O,J = OMJ = 0), D+ =B+(K = 21 = O,J = 2MJ ), their 
hermitian conjugates S_ and D_, and the multipole operators P+(K 1 = 0, J = 

K MJ), K = 0,1,2. These 21 operators generate the Lie algebra Sp(6). 

What is required for the above algebraic realisations and the associated decoupling 
from the rest of the shell-model space to occur? First, it needs the appropriate single­
particle orbits which should be consistent with the representation in terms of k and i. 
Cases of relevance to the nuclear shell model are summarised in table 3. All combinations 

Table 3. Possible combinations of single-particle orbits in the FDSM. 

0(8) (i = ~) 

k 1 2 0+3 1+5 
135 135 7 1 3 9 1 3 13 
2'2'2 2'2'2'2 2' 2"'" 2 2'2"'" 2" 

Sp(6) (k = 1) 
1 
2 

3 
2 1+1

2 2 
~+~
2 2 

1 3 
2'2 

135 
2'2'2 

1 3 9 
2'2""'2 

1 3 
2'2'" 

11 
., 2" 

j = !' ~, ... ,jmax are possible, sometimes in two different ways, but note that this 
sequence does not include the unnatural-parity orbit which should thus be dealt with 
separately. A far more restrictive condition concerns the decoupling of part of the shell­
model space. This req~ires that the hamiltonian be written in terms of generators of 
a single algebra, either 0(8) or Sp(6). This condition, in fact, may lead to unrealistic 
hamiltonians. 

Once the algebraic structures, 0(8) and Sp(6), are identified, analytically solvable 
limits can be studied following the generic procedure outlined in section 2. This amounts 
to finding algebraic embeddings that reduce to the angular momentum algebra 0(3); 
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they can be specified by the lattices 

0(5) ® SU(2) ) 
0(8) :) 0(6) :) 0(5) :) 0(3), (3.43) 

0(7)I
 
and 

SU(3) } (3.44)Sp(6) ::) { SU(2) ® 0(3) ::) 0(3). 

The condition that the hamiltonian be expressed in terms of Casimir operators of a 
single reduction chain places further restrictions on its form which depend on the precise 
realisation of the various algebras in terms of pair and multipole operators. The analysis 
of the different limits, the classification of states, the wavefunction analysis, etc. is rather 
involved and is not pursued here. More details can be found in [49] and references 
therein. 

A valuable aspect of the FDSM-which it shares with all other models discussed in 
this section-is that the Pauli principle is correctly treated without any approximation. 
A vivid illustration of this feature can be obtained in the SU(3) limit of Sp(6) by 
studying the allowed SU(3) representations as a function of particle number in a given 
set of shells. The example of the j = ~,~, ... , ~ shells is shown in table 4 [66]. For 

Table 4. Classification of n identical particles in shells with j = !, ~ ,... ,~. 

n (AJ.l ) 

0 (00) 
2 (20) 
4 (40) (02) 
6 (60) (22) (00) 
8 (80) (42) (04) (20) 

10 (10,0) (62) (24) (40) (02) 
12 (82) (44) (06) (60) (22) (00) 
14 (64) (26) (80) (42) (04) (20) 
16 (46) (62) (08) (24) (40) (02) 
18 (28) (44) (60) (06) (22) (00) 
20 (0,10) (26) (42) (04) (20) 
22 (08) (24) (40) (02) 
24 (06) (22) (00) 
26 (04) (20) 
28 (02) 
30 (00) 

particle numbers n smaller than one third of the shell size, n :::; in, the leading SU(3) 
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representation is stretched with A = nand J-L = O. Beyond ~n this representation is 
Pauli forbidden and the leading one has f-t f:. O. This situation should be contrasted 
with the SU(3) limit of the IBM (see subsection 4.1) where the leading representation 
is always (AD). An effective way of dealing with this problem in the IBM, is to convert 
to a hole representation of the bosons once the number of particles exceeds more than 
half the shell size. This amounts to interchanging A and J-L and corrects the neglect of 
the Pauli principle at the top of the shell. Nevertheless, as is clear from table 4, for 

~n < n < ~n the leading SU(3) representation has A f:. 0 and J-L f:. 0, a result with 
which the IBM is at variance. 

On the negative side in the evaluation of the FDSM is that the structure of the pairs 
is algebraically imposed. This is clear from the expression (3.40) for B+(KI, J M J ) which 
gives a well-defined expansion in terms of the usual jj-coupled pairs. In exceptional 
cases the algebraic pairs might correspond to those favoured by the nuclear interaction; 
more often they will not. In such situations the FDSM can only be viewed as a useful 
shell-model truncation scheme. 

3.6. Non-compact extensions 

The models discussed so far all share the property of being confined to a single shell 
[a j shell in the case of the pairing model, an oscillator shell in SU(4), a pseudo 
oscillator shell in pseudo SU(4), etc.] It is well known, however, that a full description 
of nuclear collective motion requires correlations that involve configurations outside a 
single shell. The proper framework for such correlations invokes the concept of a non­
compact algebra. 

The idea is perhaps best illustrated [67, 68] starting from Elliott's SU(3) model. The 
algebraic quadrupole operator (3.25) of SU(3) is chosen such that it reproduces exactly 
the matrix elements of the real collective quadrupole operator 

A 

Q~ = V6 :L(fk X fk)~2) jb2
• (3.45) 

k=l 

This is true as long as the matrix element involves states of the same oscillator shell 
such as those shown in table 2. By construction, the matrix elements of QI-L between 
different oscillator shells vanish, and it is precisely this property which gives rise to 
the algebraic SU(3) structure. The real quadrupole operator Q~, however, has non­
zero ~n = ±2 matrix elements and those are the ones responsible for the increased 
quadrupole collectivity. For the sake of constructing a closed algebra these correlations 
are thus lost from the SU(3) model. 

Can this situation be restored by extending SU(3) to a larger algebra that is capable 
of accommodating cross-shell effects? The answer is yes, by embedding SU(3) into the 
symplectic algebra Sp(3,R). The essence of this idea is contained in the following relation 
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between the algebraic and collective quadrupole operators [49]: 

Q~ = Q~ +If CB~,~ + B:,~), (3.46) 
, ' 

where Bl,~ are quadrupole 2nw raising and lowering operators. 
" " "0 "2

is comprised of {n, L~, Q~, B±,o,B±,~} where n is the number 

The Sp(3,R) algebra 
" " 

operator, !'~ and Q~ 

are the angular momentum and quadrupole operators forming SU(3) and Bt~ are the 
monopole (I = 0) and quadrupole (I = 2) 2nw raising and lowering operators. These 
operators close under commutation and the collective quadrupole operator (3.45) can 
be constructed in terms of them. The resulting algebra is called non-compact since the 
(unitary) representation space is infinite-dimensional (because particles can be raised 
ad infinitum). 

The symplectic extensions of the SU(3) and pseudo SU(3) models have been applied 
to sd-shell, and rare-earth and actinide nuclei, generally accounting for the observed 
correlation effects. 

4. Symmetries of interacting boson models 

Although the symmetry techniques employed in section 3 are of a general nature, the 
discussion of that section is entirely focussed on the nuclear many-body system: the 
choice of mean field is appropriate for nuclei, the interactions are chosen as to mimic the 
residual nucleon-nucleon interaction in the nuclear medium, etc. It is clear, however, 
that the symmetry methods explained there are quite general and can be applied to 
other fields of physics. For this reason the work of Wigner, Racah and Elliott without 
any doubt remains of undisputed importance. Unfortunately, only a limited number of 
nuclei correspond to the analytically solvable vertices of figure 4 (or other analytically 
solvable situations discussed in section 3). The vast majority of nuclei are somewhere 
in between ('transitional') , requiring the numerical solution of an eigenvalue problem 
which generally is of a formidable complexity. Hence, the direct impact of fermionic 
symmetry methods, measured by the number of nuclei that can be described with them, 
has remained limited. 

The interacting boson model (IBM) of Arima and Iachello [69] proved to be much 
more useful in this respect. In this model, proposed in 1975, the nucleus is described in 
terms of interacting sand d bosons. Again, as in the shell model, for particular choices 
of boson energies and boson-boson interactions, the ensuing eigenvalue problem can be 
solved analytically. For an IBM hamiltonian with up to two-body interactions between 
the bosons, three different classes of analytical solutions or 'limits' exist: the vibrational 
U(5) limit [70], the rotational SU(3) limit [71] and the ,-unstable 0(6) limit [72]. This 
is illustrated in figure 10: the vertices correspond to analytically solvable limits while 
an arbitrary point of the triangle corresponds to a general IBM hamiltonian. Moreover, 
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Figure 10. Schematic representation of the boson-model parameter space with its 
three analytically solvable vertices and its analytically solvable edge. 

as shown by Pan and Draayer [73], the U(5) and 0(6) vertices are connected by an 
analytically solvable path in terms of an SU(l,l) algebra. 

There is an important practical difference between the triangles in figures 4 and 10: 
while a numerical solution of the shell-model eigenvalue problem in general rapidly 
becomes intractable, the corresponding bosonic problem remains tractable at all times, 
requiring the diagonalisation of a matrix with dimension of no more than 1"V102 • 

One of the main reasons of the success of the IBM is that it provides a workable, 
albeit approximate scheme which allows an easy description of transitional nuclei. Its 
descriptive power of a wide range of nuclear structure data is indeed impressive, as is 
argued, for example, in the review of Casten and Warner [74]. 

Another important aspect of the IBM is its geometrical interpretation [75, 76]. 
Geometry is derived from the algebraic description by taking the limit of infinite boson 
number; this leads to a Bohr-Mottelson type hamiltonian with kinetic and potential 
energy terms in the variables j3 and , that parametrise quadrupole vibrations of the 
nuclear surface around a static equilibrium shape [77]. An analysis of this type shows 
that the three limits of the IBM have simple geometric counterparts that are frequently 
encountered in nuclei. First, the geometric interpretation of the U(5) limit is the 
anharmonic vibrator model of Brink et al. [78]; in fact, in this case the equivalence 
is exact even for a finite number of bosons. Second, the SU(3) limit for infinite boson 
number becomes equivalent to a statically deformed droplet that exhibits quadrupole 
oscillations around an axially symmetric shape which is a well-established description 
of the nucleus since the work of Bohr and Mottelson [41]. Third, the 0(6) limit yields 
a ,-unstable rotor known as the Wilets-Jean model [79]. Finally, the entire SU(l,l) 
limit [or U(5)-0(6) transition] has a geometric counterpart in the ,-unstable model of 
Elliott et ale [80]. 

Many of the group theoretical aspects of the IBM go back to those developed for 
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the collective model of the nucleus introduced by Bohr and Mottelson [41]. In fact, 
an explicit and complete determination of states characterised by U(5) :J 0(5) :J 0(3) 
is given by Moshinsky and collaborators in [81] with the aim of providing the group 
theoretical background of the collective model. As shown in [82] these results are 
immediately extendable to the U(5) limit of the IBM while a full analysis of the other two 
limits, SU(3) and 0(6), requires the derivation of additional transformation brackets, 
also given in [82]. The conclusion of the work by Moshinsky's group is thus that an 
analysis of the symmetry properties of the IBM can be considered as including those of 
the collective model. 

The 0(6) symmetry still stands out as an excellent example of the value and power 
of symmetry methods. It emerged from the formalism as the third limit of the IBM; 
its origins were purely algebraic, but its structure was later found to resemble that of 
a ,-unstable rotor. Its predictions were found to correspond closely to the empirical 
structure of some Pt nuclei [83] and indeed, the transition between SU(3) and 0(6). 
was found to provide a natural explanation for the entire region of Os-Pt nuclei [84], 
which had always been regarded as one of the difficult challenges in nuclear structure. 
Since that early work, it has become increasingly evident that the 0(6) symmetry in 
fact represents the third commonly occurring class of nuclei, which have been identified 
in several regions, most notably around A = 130 [85]. 

The following subsections do not aim to give a comprehensive overview of all 
ramifications of the IBM-with well over a thousand papers published to date concerning 
the IBM that would be a hard task indeed! Instead, the most important developments 
are sketched and illustrated with recent examples. The important extension to odd-mass 
nuclei is, for reasons of logical consistency, deferred to section 5. 

4.1. The interacting boson model 

In the original version of the IBM, applicable to even-even nuclei, the basic building 
blocks are sand d hosons [86]. Unitary transformations among the six components 
occurring in the model (st and dtn, m = 0, ±1, ±2) generate the Lie algebra U(6). A low­
lying collective state of an even-even nucleus with 2N valence nucleons is approximated 
as an N -boson state. Although the separate boson numbers n s and nd are not necessarily 
conserved, their sum n s + nd = N is; this implies a total-boson-number conserving 
hamiltonian of the generic form 

H = Ho + HI + H2 + H3 + ... , (4.1) 

where the index refers to the order of the interaction in the generators of U(6). The 
first three terms are the ones routinely included: 

•	 a constant 

flo = Eo!; (4.2) 
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• the one-body part 

fI1 = €sn s + €dnd, (4.3) 

where t s and €d are the single-boson energies of the sand d boson, respectively; 

• the two-body interactionst 

H2 = L vtl2lF~ V2L + 1 ((bi, X bt,)(Ll x (bl; x bldLltl ,(4.4) 
11121~1~L J(1 + 8h12 )(1 + 81~1~) 0 

where the v coefficients are the interaction matrix elements between normalised 
two-boson states, 

vt121~1~ - (1112;LMLlfI211~1;;LML)' (4.5) 
Since the bosons are necessarily symmetrically coupled, allowed two-boson states 

are s2 (L = 0), sd (L = 2) and ~ (L = 0,2,4). Thus, seven independent two-body 
interactions v can be found: three for L = 0, three for L = 2 and one for L = 4. Note in 
particular the possibility of off-diagonal interactions, V8022 and V5222' which are crucial 
for the SU(3) and 0(6) limits. 

This analysis can be carried further to hi~her-order interactions. Specifically, one 
may consider 

• the three-body interactions 

vt12131~1~1~ = (111213 ; LMLlil311~1;1;; LML). (4.6) 
The allowed three-boson states are S3 (L = 0), s2d (L = 2), s~ (L = 0,2,4) and d3 

(L = 0,2,3,4,6), leading to 6+6+ 1+3+ 1 = 17 independent three-body interactions for 
L = 0,2,3,4,6, respectively. Note that any three-boson state sid3- i is fully characterised 
by its angular momentum L; this no longer is the case for higher boson numbers. 

The number of possible interactions at each order n is summarised in table 5 for up 
to n = 3. Some of these interactions exclusively contribute to the binding energy and 
do not affect the excitation spectrum of a single nucleus. To determine the number of 

such interactions, one notes that the hamiltonian NHn - 1 for constant N (i.e., a single 
nucleus) essentially reduces to the (n - I)-body hamiltonian fIn - 1 . Consequently, of 

the N"n independent interactions of order n contained in fIn' N"n-1 terms of the type 
NfIn- 1 must be discarded if one wishes to retain only those that influence the excitation 
energies. This argument leads to the numbers quoted in table 5. 

Any IBM hamiltonian (4.1) can be solved numerically with relative ease involving 
the diagonalisation of matrices of modest size. The procedure for doing so has 

t The customary notation of Ii for the boson angular momenta and L for their coupled value is followed 
here. Note, however, that L corresponds to the total angular momentum usually denoted by J and not 

to the orbital angular momentum. In fact, in IBM-l,2,3 the character of the boson angular momentum 
(i.e., orbital or spin) is left unspecified; this connection with underlying fermion quantum numbers is 
made more explicit in IBM-4 (see subsection 4.3). 
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Table 5. Enumeration of interactions in the IBM. 

order of number of interactions 

interaction total BEG Eb 
x 

n=O 1 1 0 
n=1 2 1 1 

n=2 7 2 5 

n=3 17 7 10 

GInteractions that do not influence excitation spectra. 
bInteractions that do influence excitation spectra. 

been implemented for the most general hamiltonian up to and including three-body 
interactions [87] and can, if needed, be extended to higher orders. 

The characteristics of the most general hamiltonian which includes up to two-body 
interactions are by now well established and, specifically, its symmetry properties are 
understood. Three different types of dynamical symmetries occur in IBM, associated 
with the algebraic reductions 

U(5) ~ 0(5) } 
U(6) ~ SU(3) ::) 0(3). (4.7) 

0(6) ~ 0(5)1 
The algebras appearing in (4.7) are subalgebras of U(6) generated by operators of 
the type bimbZ'm" the explicit form of which is listed, for example, in [86]. With the 
subalgebras U(5), SU(3), 0(6), 0(5) and 0(3) there are associated one linear [of U(5)] 
and five quadratic Casimir operators. This matches the number of one- and two-body 
interactions quoted in the last column of table 5. The total of all one- and two­
body interactions can be represented by including in addition the operators (\ [U(6)], 
C2 [U(6)] and Cl [U(6)]Cl [U(5)]. The most general IBM hamiltonian with up to two-body 
interactions can thus be written equivalently in terms of Casimir operators. Specifically, 
the hamiltonian reads 

H1+2 = Kl Cl [U(5)] + K2C2 [U(5)] + K3C2 [SU(3)] + 
K4C2[0(6)] + KsC2[0(5)] + K6C2[0(3)] 

=Hl +2{ Kl, K2, K3, K4, KS, K6}, (4.8) 

which is just an alternative way of writing iIl + iI2 of (4.3) and (4.4) when omitting 
interactions that contribute to the binding energy only. 

The representation (4.8) is much more telling when it comes to the symmetry 
properties of the IBM hamiltonian. If some of the coefficients Ki vanish such that 
Hl +2 contains Casimir operators of subalgebras belonging to a single reduction in (4.7), 
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then, according to the discussion of section 2, the eigenvalue problem can be solved 
analytically. Three classes of spectrum generating hamiltonians can be constructed of 
the form 

HI +2 [U(5)] == KI CI [U(5)] + K2C2 [U(5)] + KSC2 [0(5)] + K6C2[0(3)],
 

HI +2[SU(3)] == K3C2[SU(3)] + K 6C2 [0(3)],
 

HI+2[0(6)] == K4C2 [0(6)] + KsC2[0(5)] +K6C2[0(3)]. (4.9)
 

The dynamical symmetries of the IBM thus arise if combinations of certain 
coefficients Ki vanish. The converse, however, cannot be said: even if all parameters 
Ki are nonzero, the hamiltonian HI +2 still can exhibit a dynamical symmetry and be 
analytically solvable. This is a consequence of the existence of unitary transformations 
U which preserve the eigenspectrum of the hamiltonian HI +2 (and hence its analyticity 
properties) and which can be represented as transformations in the parameter space 
{Ki}. It can be shown [88] that two such transformations exist for the IBM: 

(i)	 The transformation associated with ul l StUI == st and ulldtul = -dt . The 
hamiltonian (4.8) is transformed into 

Ul l HI+2{ K}, K2, K3, K4, Ks, K6}UI 

= H I+2{Kl + 2K3, K2 + 2K3, -K3, K4 + 4K3, KS - 6K3, K6 + 2K3}.(4.10) 

(ii)	 The transformation associated with U2lstU2 == st and U21dfu2 == i df which can 
be defined if K3 = O. Up to a constant contribution, the hamiltonian (4.8) is 
transformed into 

U21HI+2{Kl, K2, 0, K4, KS, K6}U2 

= H1+2{KI + 2(N + 2)K4' K2 - 4K4, 0, -K4, KS + 2K4, K6}' (4.11) 

The transformations Ul arid U2 that leave invariant the eigenspectrum have been 
known for some time [89, 90] in the specific case of the IBM. The results of Shirokov et 
ai. [88] constitute a systematic procedure for finding all such transformations (or 
parameter symmetries) which can, in fact, be applied to any hamiltonian describing 
a system of interacting bosons and/or fermions. The enumeration of all symmetries of 
a hamiltonian system [which includes symmetries obvious from reductions such as (4.7) 
but also hidden symmetries revealed through parameter transformations] is important 
for a proper understanding of its chaoticity character [91, 92L 

As implied by the reduction (4.7), the only subalgebras of U(6) that contain the 
angular momentum 0(3) algebra are U(5), SU(3), 0(6) and 0(5). Other algebras that 
are no subalgebras of U(6) can, however, be represented not as linear combinations of 
the generators b}mb[1mf of U(6) but in terms of the creation and annihilation operators 
bim and b[1mf themselves. This idea can be used to find the image of various fermion 
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symmetries (such as those discussed in subsection 3.5) in terms of the sand d bosons 
of the IBM [93]. The boson hamiltonian found in this way generally is not hermitian 
but can be made so through a similarity transformation. The end result is that a 
hermitian IBM hamiltonian IS found with eigenvalues that exactly correspond to those 
of the original fermion hamiltonian. This is a somewhat artificial result in the sense that, 
although the eigenenergies of a particular fermion symmetry are reproduced exactly, the 
wavefunction must necessarily correspond to one of the three IBM limits. For example, 

the eigenenergy expression of the 0(7) limit of the Ginocchio's 0(8) model [62] can 
be reproduced with an IBM hamiltonian with a U(5) dynamical symmetry through a 
complicated N dependence of the coefficients Ki. This correspondence can be extended 
to other observables by considering higher-order terms in the relevant operators in 
IBM [93]. 

It is argued in section 2 that the concept of a dynamical symmetry can be viewed 
as a generalisation and refinement of that of a symmetry. Yet a further enlargement 
can be proposed which leads to the idea of a partial dynamical symmetry. As the name 
suggests it concerns hamiltonians of which only a subset of eigenstates is analytically 
solvable. The procedure for finding all partial dynamical symmetries can be stated as 
a general algorithm [94]: given a dynamical symmetry, its associated partial dynamical 
symmetries can be constructed through a tensor decomposition of the interaction. The 
existence or non-existence of partial dynamical symmetries is crucially related to the 
order of the interactions. The example of the partial SU(3) dynamical symmetry is 
discussed below but it must be emphasised that this is only a specific illustration of the 
generic procedure outlined in [94]. 

While many if not all of the properties of two-body boson interactions are 
understood, geometrically as well as algebraically, those of third order are much less 
known. In the limit of infinite boson number it can be shown [95, 96] that static triaxial 
shapes (i.e., 1 -=1= 0° and 1 -=1= 60°) may occur with cubic interactions, which is not the 
case for lower orders. Furthermore, a few phenomenological studies are available where 
a specific (and to some extent arbitrary) cubic interaction in the d bosons is used to 
improve energy fits [97, 98]. A systematic understanding of the parameter space of 
the three-body interactions is still very much an open problem. This might become 
increasingly relevant since with recent advances in experimental detection techniques 
it is possible to probe ever higher multi-phonon structures in vibrational [99] as well 
as rotational [100] nuclei, which are particularly sensitive to higher-order interactions. 
Besides their relevance to phenomenological IBM studies, higher-order interactions may 
yield some surprises when it comes to symmetry properties of the IBM as example 2 
illustrates. 
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Example 1: Partial SU(3) dynamical symmetry 

The starting point in this example is the SU(3) hamiltonian in (4.9), the eigenstates of 
which can be classified according to 

U(6) :J SU(3) :J 0(3) :J 

l l l (4.12) 
[N] (Ap) KL 

or I[N](Ap)KLML ) in short. The structure of the spectrum with SU(3) dynamical 
symmetry is illustrated in the left-hand panel of figure 11 where the lowest (ground, 
f3 and ,) rotational bands are shown. This spectrum is obtained with two Casimir 

SU(3) DS SU(3) PDS 

(2N, 0) (2N - 4,2) (2N, 0) (2N - 4,2) 
K=O K=2 K=2 

--7+ -'-7+ 

--6+ --6+ --6+E --4+ 
(MeV) -10+ --5+ --10+ -2+ --5+ 

1 - --4+ --4+ -0+ --4+ ­
--3+ --3+f3--2+ --2+ --2+

--0+ , ,
--8+ --8+f3 

--6+ 

--4+ --4+ 

--2+ --2+ o '- --0+ --0+ ­
g g 

Figure 11. Partial eigenspectrum of a hamiltonian with SU(3) dynamical symmetry 

(left) and with partial SU(3) dynamical symmetry (right). 

operators, 62 [SU(3)] and 62 [0(3)]; any additional one- or two-body term leads to a 
non-solvable hamiltonian. It is, however, possible to find an interaction that preserves 
the analyticity of some of the states. 

To construct this interaction, it is first necessary to perform an SU(3) tensor 
decomposition of the two-body interaction. The two-boson operators bimbj'm' can be 
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coupled to definite SU(3) quantum numbers, 

B1A/-£)LML ex l:((20)1 (20)1'I(A~)L)(br x bi,)~l, (4.13) 
ll' 

where (.. .. I ..) is a generalised coupling coefficient associated with SU(3) :) 0(3) 
[see (2.11)]. Expressions for such coefficients are given in [101] whence the normalised 
two-boson SU(3) tensors shown in table 6 are derived. Any interaction in H2 between 

Table 6. Normalised two-boson SU(3) tensors B[>-I-')LML. 

B[40)00 = Ifs (st x st)~O) + /J (dt x dt)~O)
 
B[40)21-' = If (st X dt)~2) - ~ (dt X dt)~2)
 
Bt = 111 (dt x dt)~~)(40)41-' V~.2 ,..
 
B[02)00 = II (st x st)~O) -Il! (dt x dt)~O)
 

B[02)21-' Ii (st X dt)~2) + Ils (dt X dt)~2)
 

two-boson states (bt x bi
2

) ~l can now be written equivalently as an interaction between 
the BlA/-£)LML; the two-body hamiltonian H2 in (4.4) can thus be rewritten as 

A """ L ( t - ) (0)H 2 = L.J V(A/-£)(A1/-£/) V2L +1 B(A/-£)L X B(A'/-£/)L 0 ' (4.14) 
(A/-£)(A'/-£')L 

in terms of v coefficients that are the interaction matrix elements between normalised 
two-boson states with good SU(3) labels, 

(4.15) 

A hamiltonian with partial SU(3) dynamical symmetry can be constructed by 
considering a subset of SU(3) interactions with (A~) = (A'~') = (02), involving the 
two matrix elements V(02)(02) and V(02)(02). The resulting hamiltonian, denoted here as 

H2 [pSU(3)], 

(4.16) 

has the property that it gives zero acting on specific SU(3) eigenstates such as the 
ground-band states I[N](2N, O)LML ), 

(4.17) 

This is so because the action of B(02)LML leads to an (N - 2)-boson state and none of 
the representations (A~) contained in [N - 2] can be coupled with (02) to (2N, 0): 

(4.18) 
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The hamiltonian (4.16) can now be rewritten as 

(4.19) 

where 

1 ( 0 2) (4.20) V1 = ;6 (V(02)(02) + V(02)(02)) , V2 = 2 V(02)(02) - V(02)(02) , 

and use is made of the identity 

B102 )o· B(02)O + Blo2)2 • B(02)2 = 11S (2N(2N +3) - 62 [SU(3)]) . (4.21 ) 

The conclusion of this lengthy derivation is that the hamiltonian 

(4.22) 

has I[N](2N, O)LML ) as eigenstates. In fact, it can be shown [94] that all states of the 
type I[N](2N - 2k, k)K = k LML), k = 0,2,4, ... are eigenstates of H1+2 [pSU(3)]; other 
SU(3) states, however, are not. For the lowest bands of an SU(3) spectrum it means 
that the ground and the, bands are analytically solvable but that the f3 band is not (see 
right-hand panel of figure 11). The hamiltonian H1+2 [pSU(3)] clearly is more general 
than H1+2 [SU(3)] (it contains one more free parameter) but a subset of the former's 
eigenstates is analytically solvable and coincides with those of the latter. 

Example 2: A rotational 0(6) limit 

A simple but extremely useful parametrisation of the IBM hamiltonian is of the form 

(4.23) 

where L", is the boson angular momentum operator and Q~ the boson quadrupole 
operator depending on a parameter X, 

(4.24) 

To calculate nuclear E2 transitions, the same Q; can be taken as E2 operator whence 
the name consistent-Q formalism or CQF [102]. The beauty of CQF is its economy: 
with just three parameters (~2, ~~ and X) a wide variety of nuclear structures can 
be described. In fact, scale-independent energy properties (such as ratios of energies) 
depend on just two (/1,2/ /1,~ and X), and wavefunctions and E2 transition rates on just 
one (X). In addition, two of the three limits of the IBM are recovered naturally in CQF, 
namely SU(3) for X = ±~.J7 and 0(6) for X = o. 
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One may now ask the question how higher-order interactions can be accommodated 
in CQF and how those will modify the symmetry properties of H1+2 in (4.23). The most 
obvious extension is of the form 

H1+2+3 = "-2Qx . QX + "'3 ( QX x QX X QX)(O) + ,,-~L .L, (4.25) 

which introduces an additional parameter K,3. For X = ±~V7, the hamiltonian H1+2+3 

has SU(3) symmetry; the wavefunctions of the states remain unchanged with respect 
to the SU(3) limit of H1+2 but the spectrum can be made anharmonic in the f3 and I 
vibrations with an appropriate choice of "-2 and "'3. For X = 0, 0(6) is still a symmetry 
of H1+2+3 but in this case the structure of the wavefunctions depends on the ratio "-3/"'2. 
The reason is that, while QO . QO preserves 0(5) symmetry, (Qo x QO x QO)(O) does not. 

As a result, the geometric analogue of the cubic term is not I unstable but rather axially 
symmetric. 

The spectral properties of the hamiltonian (4.23) are illustrated in figure 12 for 
"'2 = 0, which thus corresponds to the extreme form of the rotational 0(6) limit. Only 
the lowest bands of the 0(6) multiplet with (J' = N are shown; they compare rather well 
with the observed spectrum of 1~~DY96 [28]. This agreement extends to E2. transitions 
from the K1r = 2+ I band to the K1r = 0+ ground band, which are shown in figure 13 by 
way of a so-called Michailov plot [103]. The B(E2) value for a transition KjJj ~ KfJf 
is divided by its geometric estimate (JjKi 2Kf - Ki1JfKf)2 and the square root of this 
ratio is plotted as a function of Jj(Ji + 1) - Jf(Jr + 1). The slope of the line thus 
obtained is indicative of K mixing: a horizontal line corresponds to no mixing and 
requires rigid axial symmetry, a steep slope indicates large K mixing. For finite boson 
number no IBM hamiltonian ever corresponds to a pure rigid rotor because of finite-N 
fluctuations. Figure 13 provides an illustration of this mechanism, and also shows that 
the mixing thus obtained is of the order of the one observed [104] in the specific case of 
162Dy. Although the hamiltonian (4.25) gives rise to a minimum at I = 0°, indicating 
static, axially symmetric deformation, a non-zero slope is obtained in the Michailov plot 
for the 7 ~ g transitions. In fact, for "-2 = 0 and X = 0 the slope is independent of the 
other two parameters "'3 and "'~ in the hamiltonian (4.25) and is uniquely determined 
by N. Since for N ~ 00 the plot becomes flat, any K mixing in this example must be 
entirely due to finite-N fluctuations. 

4.2. Protons, neutrons and F spin 

The bosons of the IBM are interpreted as correlated pairs of nucleons, that is, pairs of 
nucleons with many components distributed over single-particle orbits coupled to J = 0 
(s) and J = 2 (d). Since these components are mainly confined to the valence orbits, the 
number of bosons is taken as half the number of valence particles. Given this microscopic 
interpretation of the bosons, a natural extension of the simplest version of the IBM is 
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Figure 12. Partial eigenspectrum of the hamiltonian (4.25) with ~2 = 0, ~3 = 2.9 keY, 
~~ = 8 keV and X = 0 for N = 15 bosons and its comparison with observed levels of 
162Dy. Levels are labelled by their angular momentum and parity J1r, and all belong 

to the 0(6) representation (j = N. 

to assume two different types of bosons, proton and neutron bosons, giving rise to the 
proton-neutron interacting boson model or IBM-2 [105, 106]. The total number of 
bosons N is the sum of the proton and neutron boson numbers, N1r and Nv, which are 
conserved separately. The appropriate algebraic structure of IBM-2 is a product of U(6) 
algebras, U1r (6)®Uv(6), consisting of proton b!lmb7l"llml and neutron b!lmbvllml generators, 
respectively. Likewise, the model space of the IBM-2 is the product of symmetric 
representations [N7l"] x [Nv] of U1r(6) ® Uv(6); in this model space the most general, 
N1r , Nv-conserving, rotationally invariant IBM-2 hamiltonian must be diagonalised. 

The IBM-2 gives a successful phenomenological description of low-energy collective 
properties of virtually all medium-mass and heavy nuclei. A comprehensive review 
of the model and its implications for nuclear structure can be found in [107], while 
in [108, 109] its microscopic foundation (in terms of the nuclear shell model) is discussed. 
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Figure 13. Michailov plot for I -+ g E2 transitions in 162Dy. The line is obtained 
from calculated B(E2) values using the quadrupole operator QX with X = 0 in the 
hamiltonian (Qx x QX x QX)(O) and in the E2 operator. The boson number equals 

N= 15. 

The classification and analysis of its symmetry limits is considerably more complex 
than the corresponding problem in IBM-l (see, for example, chapter 9 of [21] for an 
enumeration of all limits). Nevertheless, properties of the most important limits which 
are of relevance in the analysis of nuclei, are well known from [110]. These points are 
not repeated here but rather the two main features of IBM-2 are highlighted. 

The first important aspect is that the existence of two kinds of hosons offers the 
possibility to assign an F-spin quantum number to them, F = ~, the boson being in 
two possible charge states with Fz = +~ for protons and Fz = -~ for neutrons [106]. 
Group theoretically F spin is defined by the reduction 

U(12) ~ U(6) ® U(2) 
(4.26) ~ ~ ~ 

[N] [N - f,f] [N - f,f] 

with F = ~[(N - f) - f] = ~N - f. The algebra U(12) consists of the generators 
b~'mbplllml, with p, p' = 1r or v, which also includes operators that change a proton into 
neutron or vice versa (p =f: p'). Under this algebra U(12) bosons behave symmetrically; 
as a result the representations of U(6) and U(2) are identical. This should be contrasted 
with the corresponding situation for fermions where, because of overall antisymmetry, 

representations are conjugate [see, for example, equation (3.29)]. 
The mathematical structure of F spin is entirely similar to that of isospin. An 

F-spin SU(2) algebra [which is a subalgebra of U(2) in (4.26)] can be defined which 
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consists of the diagonal operator Fz = ~(N1I" - Nv ) and the ladder operators F± that 
transform a proton boson into a neutron boson or vice versa. These are the direct 
analogues of the isopin generators Tz and t ±. The physical meaning of F spin and 
isospin is different, however: the mapping onto the IBM-2 of a shell-model hamiltonian 
with isospin symmetry does not necessarily yield an F -spin conserving hamiltonian. 
Conversely, an F-spin conserving IBM-2 hamiltonian mayor may not have eigenstates 
with good isospin. In fact, if the protons and neutrons occupy different shells, so that 
the bosons are defined in different shells, then any IBM-2 hamiltonian has eigenstates 
that correspond to shell-model states with good isospin, irrespective of its F-spin 
symmetry character. If, on the other hand, protons and neutrons occupy the same 
shell, a general IBM-2 hamiltonian does not lead to states with good isospin. The 
isospin symmetry violation is particularly significant in nuclei with approximately equal 
numbers of protons and neutrons (Z ::::: N) and requires the consideration of more 
elaborate boson models discussed in subsection 4.3. As the difference between the 
numbers of protons and neutrons in the same shell increases, an approximate equivalence 
of F spin and isospin is recovered [111] and the need for such elaborate boson models 
disappears. 

Just as isobaric multiplets of nuclei are defined through the connection implied by 
the raising and lowering operators T±, F -spin multiplets can be defined through the 
action of F± [112]. The states connected are in nuclei with N1I" + Nv constant; these can 
be isobaric (constant nuclear mass number A) or may differ by multiples of a: particles, 
depending on whether the proton and neutron bosons are of the same or of a different 
type (which refers to their particle- or hole-like character). 

The relation between levels belonging to an F-spin multiplet depends on the F­
spin symmetry character of the hamiltonian which comes down to a question of IBM-2 
phenomenology. Specifically, a hamiltonian with a true F -spin symmetry requires 

(4.27) 

and implies that all nuclei in the F -spin multiplet have equal binding energies. This is 
clearly inappropriate and the condition should be relaxed to one of a dynamical F -spin 
symmetry, 

(4.28) 

which still implies a classification in terms of F and Fz but now with non-degenerate 
ground-state energies given by 

(4.29) 

The excitation spectra (i.e., the energies relative to the ground state) of the F = Fmax 

states of nuclei belonging to an F -spin multiplet are identical for a hamiltonian satisfying 
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(4.28). Empirical evidence for F-spin multiplets has thus two aspects: (i) To what extent 
can ground-state binding energies be described by the F -spin multiplet mass equation 

or FMME (4.29)? (ii) Are low-energy excitation spectra of F-spin multiplet nuclei 
identical? 

The first aspect is illustrated in table 7 where the experimental [113] binding energies 
of nuclei belonging to an F-spin multiplet with N1r + Nil = 12 are compared to results 
obtained with (4.29). The FMME is seen to agree with a precision of about 50 keY or 

Table 7. Binding energies in an F-spin multiplet with N1( +NIl =12. 

binding energy (MeV) 
nucleus N1( Nv Fz Expta Error FMMEb 

1~~DY90 8 4 2 1278.025 0.007 1278.025 
1~~Er92 7 5 1 1304.274 0.050 1304.290 

1~6Yb94 6 6 0 #1329.930 0.100 1329.926 

1~~Hf96 5 7 -1 #1354.960 0.100 1354.932 

1~~W98 4 8 -2 #1379.350 0.270 1379.309 

l~~OSlOO 3 9 -3 #1403.040 0.200 1403.055 

1~~PtlO2 2 10 -4 #1426.090 0.200 1426.173 

1~6HgI04 1 11 -5 #1448.710 0.200 1448.660 

a Energies with # are derived from systematics. 
bWith parameters KO =1329.926, Kl =-25.321, K2 = -0.315, in MeV. 

better. 
The second aspect is illustrated in figure 14 which shows the observed excitation 

spectra [28] of the nuclei in the same N1r + Nil = 12 F -spin multiplet. With some 
exceptions levels are seen to be remarkably constant in energy as implied by a dynamical 
F -spin symmetry. The exceptions concern the first-excited 0+ level, indicating that this 
state possibly is of (quasi)particle nature while the IBM can only account for collective 
excitations involving many nucleons. Similarly, it is seen that the spectrum of 1~~HgI02 

strongly differs from that of all other isotopes in the F -spin multiplet; this is a result 
of the propinquity of the Z = 82 shell closure which makes the excitations of that 
particular isotope less collective. 

The phenomenology of F -spin multiplets is similar to that of isobaric multiplets [7] 
but for one important difference. The nucleon-nucleon interaction favours spatially 
symmetric configurations and consequently nuclear excitations at low energy generally 
have T = Tmin = ITzl; boson-boson interactions also favour spatial symmetry but that 
leads to low-lying levels with F = Fmax = ~(N1r + Nil). As a result, in the case of an 
F-spin multiplet a relation is implied between the low-lying spectra of the nuclei in the 
multiplet while an isobaric multiplet (with T ~ 1) involves states at higher excitation 
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Figure 14. Level schemes of nuclei belonging to an F-spin multiplet with N 7r +Nil = 
12. Levels are labelled by their angular momentum and parity J1r. Underneath each 
isotope are given the proton and neutron boson numbers (N'Trl Nv ). 

energies in some nuclei. 
The second important aspect of IBM-2 is that it predicts states which are additional 

to those found in IBM-1 [114]. Their structure can be understood in terms of the F-spin 
classification (4.26). States with maximal F spin, F = ~N, are symmetric in U(6) and 
are the exact analogues of IBM-l states. The next class of states has F = !N - 1 
and is no longer symmetric in U(6) but corresponds to the representation [N - 1,1]. 
Such states are observed experimentally [115] and seem to be a persistent feature of 
nuclei [116]. 

In even-even nuclei the existence of non-symmetric 1+ states excited in (e, e') or 
(" I') is by now well established. Their characteristic excitation is of magnetic dipole 
type. The IBM-2 prediction for the Ml strength towards the 1+ state is [110] 

3 
B(Ml; ot -7 It) = -(g1': - gl/)2 j(N)N1':NI/' (4.30)

47r 

where 91': and gl/ are the boson 9 factors. The subscript '8' refers to the 'scissors' character 
of the 1+ state which is the pictorial image one has of it in the case of deformed nuclei. 
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The function f(N) is known analytically in the three principal limits of the IBM-2, 

o U(5) 
8 

SU(3)f(N) == (4.31 ) 2N-l 
3 

0(6)
N+l 

Equation (4.30) gives a simple and reasonably accurate estimate of the total Ml strength 
of orbital nature to 1+ states in nuclei. As schematically illustrated in figure 15, this M1 

strength is observed around an excitation energy of 3 MeV but typically is fragmented 
into several levels. 

B(Ml; ot -7 It) (/-l~) 
l­4 S NS ­

!!!!!!..... 
I­E 3 -1+s ­

(MeV) =­
2 - ­

'­1 ­

I- ­o -ot Th Expt 
I I 

1 o 1 

Figure 15. Schematic representation of observed and calculated scissors Ml strength 

in a typical deformed nucleus. 

The geometric interpretation of non-symmetric states can be found by taking the 
limit of large boson number [117]. From this analysis emerges that they correspond to 
linear or angular displacement oscillations in which the protons and neutrons are out of 
phase, in contrast to the symmetric IBM-2 states for which such oscillations are in phase. 
The occurrence of such states was first predicted in the context of geometric two-fluid 
models in vibrational [118] and deformed [119] nuclei in which they appear as proton­
neutron counter oscillations. The IBM-2 thus confirms these geometric descriptions but 
at the same time generalises them to all nuclei, not only spherical and deformed, but 'Y 

unstable and transitional as well. 
The IBM-2 description of non-symmetric states has been seen to agree with the 

data, sometimes to a remarkable extent. Figure 16 shows the example of ~iMo52 and 
compares recently measured E2 and M1 transition rates in this nucleus [120] with a 
simple IBM-2 calculation in the 0(6) limit with (dynamical) F-spin symmetry. As 
the structure of the wavefunctions is fixed by the dynamical symmetry, the calculated 
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Figure 16. Observed and calculated E2 and Ml transition rates in 94Mo. Levels are 
labelled by their angular momentum and parity J7r. The B(E2) values are in units of 
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transition matrix elements depend solely on the electromagnetic operators, which in 
this particular example involve an effective proton boson charge, e7!' = 9 efm2 

, and an 

effective proton boson gyromagnetic ratio, 971' = 1 J.LN, the latter value being suggested 
by microscopic considerations. 

Many of the ideas and algebraic techniques developed for IBM-2 are applicable to 
two-component systems in general. Numerous applications in physics exist; two nuclear 
physics examples are discussed in the following subsections. 

Example 1: Particles, holes and I spin 

The microscopic interpretation of the bosons of the IBM is one of correlated pairs of 
particles in the valence shell of the nucleus. Consequently, all elementary versions of the 
model (IBM-1,2,3,4) provide a description only of (collective) excitations of particles 
in the valence shell and assume a totally inert core. In many nuclei this assumption 
is not justified in the sense that core excitations do occur at a relatively low energy 
comparable to that of valence excitations. This situation arises in particular in nuclei 
where one type of nucleon has a closed or almost closed-shell configuration while the 
other type is at mid shell. 

Consider as an example 1~gSn66. This nucleus is magic in the protons (Z = 50) and 
is exactly in between the neutron closed-shell configurations N = 50 and N = 82. With 
1~gSn5o as inert core, valence excitations correspond to rearrangements of the neutrons 
in the 50-82 shell. It is, however, well established [121] that this nucleus exhibits a 
two-particle-two-hole (2p-2h) J7!' = 0+ excitation of the protons at Ex = 1.757 MeV 
(the second-excited state above the J7!' = 2+ level at 1.294 MeV), which corresponds 
to a core-excited or intruder configuration. The characteristic feature of this nucleus­
rather typical for nuclei in which one type of nucleon has a closed or almost closed shell 
configuration-is that the core-excited states occur at an energy comparable to that of 
the usual valence excitations. 

A complete description of the low-energy states of such nuclei should thus include 
both particle excitations in the valence shells as well as hole excitations in the core 
shells. In even-even nuclei these will predominantly occur as pair excitations and, as a 
result, the situation can be described neatly in the IBM through the introduction of two 
types of bosons: particle bosons (particle pairs in the valence shells) and hole bosons 
(hole pairs in the core shells). One is thu~ again confronted with a system of interacting 
bosons of two types to which the formalism of IBM-2 can be applied. Specifically, one 
may assign an I-spin quantum number to the bosons, I = !' with I z = -! for a particle 
boson and I z = +~ for a hole boson [122]. The F-spin formalism of subsection 4.2 
can be adopted in its entirety to deal with I spin: the I-spin invariance and symmetry 
of the IBM hamiltonian can be investigated, I -spin multiplets can be defined, etc. As 
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an example, the action of the I -spin raising and lowering operators i± (transforming 
a particle into a hole boson or vice versa) is illustrated in figure 17 and compared to 
the corresponding actions of F± which transform a neutron into a proton boson or vice 

versa. In both cases the total number of bosons is conserved; in an F -spin multiplet 

7f V 7f V 7f V 7f V... +- ....- ....- .....- ...F+ F+ F+ 
~ ---+ 
+--

~ 

+-­- - +-- - ­F_ F_ F_ 

P P P P
• • • i+ • • i+ • i+ 

---+ -----7 ~ 
+-- +-- -E-­

i_i- i­
h h h h 

Figure 17. Schematic illustration of the action of the F-spin and I-spin raising and 
lowering operators on a system of N = 3 bosons, where N is either the number of 
proton plus neutron bosons, N =N1r + N v , or the number of particle plus hole bosons, 

N=Np+Nh. 

this sum is made up from proton and neutron bosons while in an I-spin multiplet it 
consists of particle and hole bosons. 

In spite of the formal equivalence between F -spin and I -spin multiplets, there is one 
difference in their application which can be made clear from figure 17. Action of F± on 
the ground state of a nucleus in an F-spin multiplet leads to the ground state of another 
member of the multiplet. This is not necessarily so in an I-spin multiplet: the action of 
i+ on the three particle bosons on the left hand side leads to a 2p-lh boson state which 
is an excited configuration in a nucleus with a pair of nucleons in the valence shell. In 
this respect I -spin ffiultiplets are akin to isospin multiplets. 

An example of an I-spin multiplet with I == ~ is shown in figure 18. It is seen 
that a (dynamical) I-spin symmetry (which gives rise to identical excitation spectra) is 
only approximately valid. Deviations arise due to the difference in microscopic structure 
between the particle and hole pairs that correspond to the bosons. 

Example 2: Neutron-skin nuclei as three-component systems 

One of the advantages of algebraic methods is the ease with which they can be extended 
to deal with more complex situations. A nice illustration of this feature concerns the 
physics of very neutron-rich nuclei, a topic of intense debate in today's nuclear structure 
research. Microscopic nuclear models predict that such nuclei develop a neutron 'skin' 
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118Te 

(0,3) (1,2) (2,1) (3,0) 

--(6+) -(~+ --(4)+ --(4+)
E --(4+) 4 --6+ --(3+)

(MeV) --3+ --(6+)
1 ­ __ (3)+ --(2+) ­

--12+-(3+) , 
--(4)+ __(4+)--2+ 

--(2+) --4+ --(4+) 

o - --0+ ~O+ ~O+ --0+ ­

Figure 18. Level schemes of nuclei belonging to an I-spin multiplet with N;+N; = 3. 
Levels are labelled by their angular momentum and parity J1r. Underneath each isotope 
are given the particle and hole proton boson numbers (N;, Nh). The levels are drawn 
relative to the lowest I = ~ state; in the I z = ±! nuclei 114Cd and 118Te these are 

excited states with an energy as indicated on top of the level. 

implying that the neutron density extends further than that of the protons. Whether 
this neutron skin sufficiently decouples from the rest of the nucleus for it to exhibit 
independent oscillations is not clear at the moment, but if one assumes it does, the 
consequences can be studied straightforwardly in an algebraic approach [123]. 

The starting point is a triple product of U(6) algebras associated with the protons 
1r, the core neutrons Vc and the skin neutrons Vs , respectively, 

U11" ( 6) ® Ulie ( 6) ® Ulis ( 6) 
111 (4.32) 

[N11"] [NlIcJ [NlIsJ 

where each U(6) algebra is characterised by a number N p of symmetrically coupled 
bosons. The fact that the skin neutrons are assumed to interact weakly with the core 
protons and neutrons, which interact strongly with each other, is represented in the 
reduction of (4.32) by coupling the corresponding U(6) algebra of the neutron skin after 



53 

tho~e describing the core nucleons. The reduction thus proceeds as 

(4.33) 

The algebra U1!"VcVs (6), obtained by summing the generators of the different U(6) 
algebras, has a subalgebra structure familiar from IBM-I. By virtue of the presence 
of U1!"VcVs (6) it is assumed that an identical mixture of U(5), SU(3) and 0(6) is valid for 
all three subsystems 1r, Vc and V S • More general situations, where the deformations of 
the subsystems are different, can also be envisaged in an algebraic treatment. 

In the reduction (4.33), U1!"Vc(6) is characterised by representations [Nc - f, f], where 
Nc = N1!" + Nvc is the number of nucleon pairs in the core. The lowest states are 
contained in [Nc,O] which denotes the totally symmetric coupling. The lowest non­
symmetric states are in the next representation [Nc - 1,1]. The algebra U1!"VcVs(6) is 
characterised by up to three rows; the lowest couplings arising from [Nc,O] x [Nvs ] are 
[N, 0, 0] and [N - 1,1,0]' where N denotes the total number of bosons. Hence the first 
non-symmetric representation of U7rvclls(6) describes the symmetric coupling of the core 
nucleons and non-symmetric coupling of the skin neutrons. However, the non-symmetric 
representation [N -1,1,0] of U1l"IIc Vs (6) may also arise from the product [Nc -1,1] X [Nvs ]. 
In this case, the core nucleons are coupled non-symmetrically. The result is that there 
are now two scissors modes, one representing out-of-phase motion of the protons and 
neutrons in the core and the other denoting an oscillation of the core against the skin 
neutrons, a 'soft scissors' mode where the core protons carry the core neutrons with 
them. 

The magnetic dipole strength to the soft scissors state can be obtained by considering 
the separate contributions to the Ml operator from the core and the skin neutrons. This 
gIves 

+ + 3 ( )2 ( ) N;Nvs (4 34)B(Ml; 01 ~ Iss) = 41r 911" - 9v f N N1I" +N ' . 
vc 

where feN) is the function (4.31). From (4.30) and (4.34) one finds the following simple 
result for the ratio of B(M1) values to the soft and normal scissors modes: 

B(Ml; ot ~ 1;) _ N1!"NlIs (4.35) 
B(M1;Ot ~ It) - (N1I" + Nllc)NII ' 

By way of qualitative arguments it can be shown [123] that the soft scissors state is 
expected to occur at about half the excitation energy of the normal scissors stat.e. The 
resulting prediction is thus as illustrated schematically in figure 19. 

This algebraic analysis can be applied to any three-component system of which the 
internal degrees of freedom of each component can be described by a unitary algebra 
U(n). Many of the features obtained for U(6), such as the appearance of two classes 
of non-symmetric [N - 1,1,0] states and the associated fragmentation of transition 
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Figure 19. Schematic representation of calculated normal and soft scissors Ml 
strength in a very neutron-rich deformed nucleus. There is at present no experimental 

confirmation of this conjectured mode. 

strength, remain valid generally. Also, the generalisation towards non-compact algebras 
can be considered with the purpose of describing 'borromean' systems, that is, systems 
that consist of pairwise unbound components but which themselves are bound. 

4.3. Isospin invariant forms of the interacting boson model 

The IBM-2 is applicable to medium-mass and heavy nuclei, more specifically, to nuclei 
where protons and neutrons occupy different valence shells. In such nuclei it suffices to 
assume correlated proton-proton and neutron-neutron pairs, and to include the effect 
of the proton-neutron interaction by means of a quadrupole term in the hamiltonian. 
When protons and neutrons occupy the same valence shell, this approach is no longer 
valid since there is no reason not to include the proton-neutron pair with isospin T = l. 
If such pairs are included, an extended version of the model is obtained which is referred 

to as IBM-3 [124]. 
The IBM-3 has three kinds of bosons as 'elementary' building blocks: the usual 

proton (1r) and neutron (v) bosons, which correspond to fermion pairs with isospin t = 1 
and projection mt = ±l, and the proton-neutron (8) boson with t = 1 and mt = o. Just 
as 1r and v bosons, the 8 boson is assumed to occupy two angular momentum states, 
1 = 0 and 1 = 2. There are thus three kinds of bosons each with six components and, 
as a result, an N-boson state belongs to the symmetric representation [N] of U(18). It 
is possible to construct IBM-3 states that have good total angular momentum (denoted 



55 

by L, as in IBM-l and IBM-2) and good total isospin T via the classification 

U(18):) (U(6) ::) ... :J 0(3)) 
~ 

[N] 
~ 

[N1N2N3 ] 
! 
L 

(U(3) 

1 
[N1 N2N3 ] 

:J SU(3) 

1 
(Ap) 

:J 0(3)) 
(4.36) 

1 
T 

where the dots refer to one of the possible reductions of U(6). Overall symmetry of the 
N-boson wavefunction requires the representations of U(6) and U(3) to be identical. 
Consequently, the allowed U(6) representations can have up to three rows, in contrast 
to IBM-l where the representations necessarily are symmetric, and IBM-2 where only 
up to two-rowed representations are allowed. The SU(3) representations are denoted 
in Elliott's notation, A = N 1 - N 2 , J.l = N 2 - N 3 , and determine the allowed values of 
the isospin T of the bosons. Thus the choice of a particular spatial boson symmetry 
[N1N2 N3 ] determines the allowed isospin values T. 

The elementary bosons of IBM-3 are summarised in table 8, together with those of 
IBM-4 discussed below. The essential property is that complete multiplets are present 

Table 8. Enumeration of bosons in IBM-3 and IBM-4. 

angular momentum isospin 
'orbital' 'spin' total isospin projection operator 

s j t mt 

0,2 0,2 1 +1 s~,dt 
0,2 ° 0,2 1 0 s6't dt6°
 0,2 0,2 1 -1 st, dt 

0 °1 1 0 0 o~t CSSl) 
2 1 1 0 01 (3dd°
 2 1 2 0 0 o~ (3d2 ) 

2 1 3 0 ° 6~ (3d3) 

both in angular momentum and isospin space, allowing the construction of operators 
with good tensor character in the associated quantum numbers. 

The restoration of the isospin quantum number in the boson space has the advantage 
that the boson hamiltonian acquires a simpler form. Without isospin (dynamical) 
symmetry the introduction of the {) boson would dramatically increase the number 
of interactions, just as this number increases from IBM-l to IBM-2. The condition 
of isospin symmetry reduces the number of independent matrix elements and, as a 
consequence, IBM-2 and IBM-3 have comparable numbers of interactions. 
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A second, more important consequence of isospin symmetry in IBM-3 concerns its 
mapping onto the shell model. In the mapping procedure which is most commonly 
used, known as OAI mapping [125], the central idea is to identify the various quantum 
numbers in the two models and to connect, on this basis, states in both models. The 
great advantage of IBM-3 (as compared to IBM-lor IBM-2) is that, besides angular 
momentum and seniority, also isospin can be used in establishing a mapping. For 
small numbers of particles these three quantum numbers uniquely characterise all states 
of interest and hence define a one-to-one correspondence between shell model and 
IBM-3.. Given an input shell-model hamiltonian, its matrix elements between states 
with good angular momentum, seniority and isospin can be calculated and equated to 
corresponding matrix elements in the boson space. In this way a boson hamiltonian is 
deduced from a shell-model interaction. Several studies of this type (mostly carried out 

by Elliott and coworkers) are reviewed in [126]. They can be regarded as tests of the 
boson approximation in terms of the shell model with applications to nuclei in the 1f7/2 

shell [127) as well as isotopes just beyond ~~Ni28 [128]. 
The classification of dynamical symmetries of IBM-3, of which (4.36) is only an 

example, is rather complex and as yet their analysis is incomplete. The cases with 
dynamical SU(3) charge symmetry [corresponding to (4.36)] are studied in detail in [129]. 
Other classifications that conserve Land T [but not charge SU(3)] are proposed and 
analysed in [130, 131]. 

In IBM-3 all bosons have t = 1 and no t = 0 bosons are considered in the 
construction of the basis. Comparisons with shell-model calculations show this to be 
adequate for even-even but insufficient for odd-odd nuclei. In the latter case one needs 
to include some of the t = 0 bosons. A possible way to do so is to assume that t = 0 
bosons can be in an (orbital) s or d state but in addition assign to them an intrinsic spin 
s = 1 [132]. The total set of bosons in IBM-4 consisting of these t = 0 bosons together 
with the usual ones with t = 1 which are now assigned an intrinsic spin of s = 0, is 
shown in table 8. The conventional spectroscopic notation 2s+11j is also indicated. 

There are several reasons for choosing the t = 0 bosons in this particular fashion. 
One justification is found in the LS coupling limit for fermions where the two-particle 
states of lowest energy have orbital angular momenta L = 0 and L = 2 with T = 1, 
S = 0 or T = 0, S = 1 (see table 1). In addition, the choice of bosons in IBM-4 
allows a boson classification containing Wigner's supermultiplet algebra SU(4). These 
qualitative arguments in favour of IBM-4 have been corroborated quantitatively by the 
studies of Halse et aI., who have shown IBM-4 to be a good approximation both in 
even-even [133] and odd-odd [134] sd-shell nuclei. 

The IBM-4 classification that conserves 'orbital' angular momentum L, 'intrinsic' 
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spin Sand isospin T, reads 

U(36) :J ~ .•• ::J 0(3)) 
1 .1 

[N] L 

(4.37) 
(U(6) :J SU(4) ::J 0(3) ® 0(3)) 

1 1 1 1 
[Nt .. . N6 ] ()./-lv) S T 

To analyse this coupling scheme, it is helpful to compare it to the fermion supermultiplet 
classification, which is given in table 1 for one and two particles in the sd shell. The 
corresponding problem for bosons is worked out in table 9. The essential point to 

Table 9. Classification of one and two boson(s) in IBM-4. 

boson spatial L spin-isospin (ApV) (S,T) 
number symmetry symmetry 

1 0 0,2 0 (010) (0,1) (1,0) 

2 00 (5) 02,22,4 00 (5) (020) (0,0) (0,2) (1,1) (2,0) 
(000) (0,0)

§ (A) 1,2,3 § (A) (101) (0,1) (1,0) (1,1) 

Note: 5 stands for symmetric, A for antisymmetric. 

note here is that, of the two SU(4) representations (010) and (200) that occur for two 
fermions, the first one is also the fundamental (or one-boson) representation of SU(4). 
The starting point of the IBM-4 is thus a truncation of the shell model which preserves 
the labels (>~.ftv), S, L, J and T of a fermion L8 coupling scheme. These quantum 
numbers can be used to establish a mapping between the shell model and IBM-4. 

A crucial aspect of the IBM-4 is that it does not require the exact validity of such 
quantum numbers in the shell model for carrying out the mapping to the boson space. 
An illustrative example of this flexibility is provided by the pseudo L8 coupling scheme 
developed in subsection 3.4. Neither the orbital angular momentum L nor the spin 8 are 
good quantum numbers in this coupling scheme; nevertheless, the pseudo orbital angular 
momentum L and the pseudo spin S are conserved and they can be mapped onto the 
corresponding boson classification (4.37). This provides an explicit example in which the 
labels Land S in (4.37) do not correspond to the physical orbital angular momentum 
and intrinsic spin. In particular, the 1 and s associated with a single boson should not 

be thought of as the orbital angular momentum and the spin of a pair of fermions but 
rather as effective labels in fermion space which acquire an exact significance in terms 
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of bosons. A similar argument holds for the Wigner supermultiplet labels (>.tp,v). In 
contrast, the label T in (4.36) and (4.37) does correspond to the total isospin, and this is 
so as long as isospin is an exact dynamical symmetry in the fermion space. The feature of 
carrying over broken symmetries of a fermion model into exact (dynamical) symmetries 
of a boson model-of which the IBM-4 application is an example-arguably is one of 
the most important arguments in favour of boson models. A general understanding of 
this process of symmetry restoration after mapping is, however, still lacking at present. 

5. Symmetries of interacting boson-fermion models 

One particularly important extension of the IBM concerns odd-mass nuclei, achieved 
by considering, in addition to the bosons, a fermion coupled to the core through 
an appropriate boson-fermion interaction [69, 135]. The resulting interacting boson­
fermion model (IBFM) lends itself very well to a study based on symmetry considerations 
whereby certain classes of model hamiltonians can be solved analytically. Many of 
these cases-comprehensively reviewed in [136]-have been analysed in detail during 
the eighties but lately the activity in this field has subsided somewhat. This is partly 
due to a lack of understanding of the boson-fermion interaction that simulates exchange 
effects between the odd particle and the core. This problem notwithstanding the IBFM 
has proven to be a useful approach for the treatment of odd-mass nuclei. A particularly 
attractive feature is the similarity in the description of even-even and odd-mass nuclei 
which has given rise to the development of a supersymmetric model, discussed in 
subsection 5.2. In view of the dearth of recent advances in the IBFM the subject is 
only summarily treated here. 

5.1. The interacting boson-fermion model for odd-mass nuclei 

If one omits technical details, the algebraic treatment of odd-mass nuclei in the context 
of the IBFM proceeds along the same lines as the one of even-even nuclei with the 
IBM. First, the algebra of the model must be identified. For the bosons this algebra 
remains UB(6), where the superscript B is added to indicate its boson character. The 
fermion algebra is UF(O) where 0 is the degeneracy of the orbits available to the 
fermion (e.g., 0 = 4 for a j = ~ orbit, n = 12 for j = ~,~,~, etc.). Since the 
bosons and fermions are assumed to commute, the total algebra of an odd-mass nucleus 
is UB (6) ® UF(O). (The error resulting from the assumption of commuting bosons 
and fermions is corrected approximately by a boson-fermion exchange interaction.) 
Next, degeneracy breaking terms are introduced by considering Casimir operators of 
subalgebras of the· total algebra, just as this is done for even-even nuclei. 

Details of this approach as applied to odd-mass nuclei are not given here but rather 
illustrated with the example of the nucleus 1~~Pt1l7' 
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Example: Excitation energies of and electromagnetic transitions in 195Pt 

The nucleus 195pt is situated in a spherical-to-deformed transitional region. Its core, 
196Pt, can be reasonably well described as an 0(6) nucleus. The dominant natural-parity 

orbits for the neutrons are 3P1/2' 3P3/2 and 2/5/2, which can be decomposed into pseudo 
orbital angular momenta l = 0 and I = 2, and pseudo spin s= ~. 

Because of the similarity in the angular momentum structure of the bosons and that 
of the pseudo-orbital part of the fermion, an analytical decomposition is possible [137]. 
The corresponding hamiltonian contains five parameters which must be adjusted to 
reproduce the experimental energies [138, 139]. The resulting fi't is shown in figure 20. 
Levels are labelled by their angular momentum and parity J7r, and also by a quantum 

195 195Pt Expt ThPt7S l17 7S 117 

S NS - S NS 
'" -9/2­- (9/2-) 44 -7/2­-7/2- -9/2­

-5/2- -9/2- 4 -7/2­
2 -3/2- 4 -7/2- 2 -5/2­

0.5 ~ -~ -3/2- ­
E -5/2- - (7/2-) 2 - 5/2­

2 -3/2- 3 -3/2­
(MeV) -5/2­

-7/2­
3 -5/2­

-5/2­-5/2- 2 _3/2­2 _1/2- -3/2- 1-3/2- 1 -3/2- -5/2-
-1/2­

2 -3/2­
2 -5/2­

-3/2­

I- -I­0 o -1/2- o -1/2- ­

Figure 20. The experimental and calculated energy spectrum of negative-parity states 
in 195Pt obtained by coupling one fermion to N = 6 bosons. Levels are labelled by 
their angular momentum and parity J7r (right), by the quantum number L (left) and 
by S (symmetric) and NS (non-symmetric), as explained in the text. 

number L which results from the coupling of the angular momentum of the bosons to 
the pseudo orbital angular momentum of the fermion. Futhermore, in complete analogy 
with the IBM-2 (see subsection 4.2), the pseudo orbital part of the fermion can be 
coupled either symmetrically or non-symmetrically to the boson core; this is indicated 
in figure 20 by Sand NS, respectively. 
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One should not underestimate the difficulty of obtaining such level of agreement, 

even with five parameters: all states are calculated at about the correct energy and 
for each J7r the correct number of levels is found. The question of assigning quantum 
numbers to observed levels is closely related to the goodness of these quantum numbers, 
which can be probed by means of selection rules in electromagnetic transitions and 
transfer reactions. An example is given in table 10, where 25 measured B(E2) values 
in 195Pt [138] are compared with the predictions of the symmetry classification for this 

nucleus obtained with the E2 operator 

(5.1) 

where Qb,J1. and Qf,J1. are the boson and fermion quadrupole operators, and eb and ef 
the effective boson and fermion charges. From microscopic considerations one expects 

Table 10. Observed and calculated E2 transition rates in 195Pt. 

Eia Ji Era Jr B(E2; Ji ~ Jr)b Ji Era Jr B(E2; Ji ~ Jr)b 

Expt 
IE;"

Th Expt Th 

3 1 9 5211 0 190(10) 179 667 239 200(40) 2392 2 2 2
9 5239 2

5 0 2
1 170(10) 179 563 2 239 2 91(22) 22 

3 1 5 3525 0 17(1) 0 239 99 60(20) 02 2 2 2 
5 1 3 3544 0 8(4) 0 525 99 ::; 33 72 2 2 2 
3 1 7 399 0 38(6) 35 613 99 5(3) 9"2 "2 "2 "2
5 1 3 3130 0 66(4) 35 420 99 5(4) 177"2 "2 2 "2 
3 1 7 3420 0 15(1) 0 508 99 240(50) 228"2 2 2 2
5 1 5 3455 0 ::; 0.04 0 389 99 200(70) 2192 2 2 2 
3 1 3 5199 0 25(2) 0 525 130 9(5) 32 2 2 2 
5 1 9 5389 0 7(1) 0 667 130 12(3) 102 2 2 2 
7 3 9 5613 211 170(70) 215 563 130 240(40) 2532 2 2 2 
7 3 5 5508 211 55(17) 20 389 130 ::; 14 552 2 2 2 

525 3 239 5 
~ 19 72"2 2 

aIn units of keY.
 

bIn units of 10-1 e2fm2
•
 

eb ~ -ef, which is taken here. The level assignment is identical to the one in figure 20. 
The results shown in table 10 do not depend on the parameters entering the hamiltonian. 
This is so because, whatever the values of these parameters, the wavefunction of ~ given 
state invariably is characterised by the same set of quantum numbers. As a result, 
the calculated transition rates only depend on the effective charges in the transition 
operator and, in the case of table 10, on the single value eb = -ef = 151 efm in the E2 
operator. The selection rules in the E2 transitions are clear from the table: several of 
the transitions are predicted zero. One generally finds that the corresponding measured 
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values are small indeed (typically, a factor 10 smaller than the large allowed ones) 
confirming the approximate validity of the quantum numbers in this symmetry scheme. 

The structure of the levels of 195pt can also be probed by magnetic dipole properties 
and, specifically, by magrieti~ dipole moments p which are particularly sensitive to the 
single-particle structure. The magnetic moment operator is proportional to the M1 
operator and consists of a collective (boson) and a single-particle (fermion) part, 

A (3(,,- ,,)
T,,(Ml) = V4; !JbLb,,, + 'f9jLf,,,U) , (5.2) 

where Lb,J,£ and Lf ,J1.(j) are the boson and fermion angular momentum operators, 
respectively. The effective boson gyromagnetic ratio is determined from the magnetic 
dipole moment p(2t) of the neighbouring even-even Pt isotopes,9b = 0.3 liN, while 
for the 9j factors Schmidt values are taken with an appropriate quenching (0.6) of 
the spin part. Magnetic dipole moments of states in the odd-mass nucleus 195Pt are 
then entirely determined and, in fact, closed expressions can be derived for them [140]. 
Results for the moments of yrast symmetric and non-symmetric states are shown in 
figure 21. Considering that no free parameters are involved in this calculation, the level 

• symmetric 
1 

o 

0 

9J 195 • 
(PN) Pt non-symmetric

78 l17 

-1 
1/2 3/2 5/2 7/2 9/2 

J 

Figure 21. Observed magnetic dipole moments (dots) of the yrast symmetric and non­
symmetric levels in 195pt compared with the prediction of the symmetry calculation 

(line). 
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of agreement can be regarded as remarkable. 
Results of similar quality are obtained [141] for intensities of one-neutron transfer 

reactions starting from and leading to 195Pt and confirm the proposed assignment of 

quantum numbers. 

5.2. Supersymmetry 

According to the preceding sections, even-even and odd-mass nuclei can be treated 
in a unified framework using symmetry ideas of the IBM and IBFM, respectively. 

Schematically, states in such nuclei are connected by the generators 

(5.3) 

where a (b) refers to fermions (bosons) and indices are omitted for simplicity. Even­
even nuclei involve operators in the upper left-hand corner of (5.3) while odd-mass nuclei 
require both sets of generators. The operators (5.3) provide a separate description of 
even-even and odd-mass nuclei; although the treatment is similar in both cases, no 
operator exists that connects even-even and odd-mass states. 

An extension of the algebraic structure (5.3), proposed by Iachello [142], considers 
in addition operators that transform a boson into a fermion or vice versa: 

(5.4) 

This set does not any longer form a classical Lie algebra which is defined in terms 
of commutation relations. Instead, to define a closed algebraic structure, one needs 
to introduce an internal operation that corresponds to a mixture of commutation and 
anticommutation and the resulting algebra is called a graded or superalgebra, denoted 
by U(n/m) where nand m are the dimensions of the boson and fermion algebras. 

To understand the purpose of the introduction of the supersymmetric generators 
atb or bta, it is best to inspect their action on an even-even nucleus, say 1~~Ptu6' in the 
context of the UB (6) ® UF (12) model discussed in subsection 5.1, 

tb 194pt t lOOp 195pta 78 116 ~ a 78 t U8 ~ 78 117' (5.5) 

where bosons and fermions are assumed to have a neutron-hole character. The super­
symmetric generators thus induce a connection between even-even and odd-mass nuclei; 
a description with the superalgebra U(6/12) leads to a simultaneous treatment of such 
pairs of nuclei. This idea is illustrated schematically in figure 22 for the case of a 
particular U(6/12) supermultiplet. The supermultiplet containing 194pt also contains 
195Pt, since the two nuclei are connected by the supersymmetric generator (5.5). Further 
action of atb on 195Pt leads to configurations whereby two neutron-holes are coupled 
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U(6/12) nucleus 

197pt*78 119 

[5] ® [1 2
] 

196Pt*78 118 

[6]®[11] 
195pt78 117 

[7} [7] ® [1°] 
194Pt78 116[N} [NB ] ® [lNF] 

Figure 22. Schematic illustration of part of a U(6/12) supermultiplet in the Pt 
region. The supermultiplet is characterised by the supersymmetric representation [N} 
with N =NB + NF =7. A breaking of the U(6/12) symmetry in a dynamical manner 
leads to a splitting in the binding energies of the different nuclei. 

to a 198pt core, that is, to two-quasiparticle excitations in 196Pt. This action of atb 

may continue indefinitely until no more neutrons are available. A U(6/12) symmetry 
predicts all states of all nuclei belonging to the supermultiplet degenerate in energy; 
this degeneracy is first lifted by including UB (6) ® UF (12) invariants which correspond 
to nuclear binding energy terms. The analysis then proceeds as in subsection 5.1 with 
the inclusion of Casimir operators of the lower algebras, as schematically indicated in 
figure 22. 

Example: Supermultiplets of nuclei in the Pt-Au region 

Supersymmetry predicts a connection between the energy splittings in the spectra of 
the members of the supermultiplet because their spectra are calculated with the same 

hamiltonian. This is illustrated in figure 23 with the example of the supermultiplet 
containing 1~:Pt1l6 and 1~~Pt117. The figure shows the spectra of the first two meInber~ of 
the U(6/12) supermultiplet of figure 22 which are seen to satisfy the structural relations 
implied by supersymmetry. The multi-quasiparticle excitations in the other members 
of the supermultiplet are not shown since there is at present not sufficient evidence to 
link their properties to those of the levels shown. 

This process of enlargement of the dynamical algebra can be continued~nd~rom _ 
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194 Expt 
195

Pt	 ExptPt 7S 1177S l16 

1.5 
-6+ 

- (9/2-) 
-0+ 4 -7/2­-4+ 

-9/2­_5/2­
2 - 3/2- 4 

-7/2­--	 - 0.51.0 f­

-3+	 -5/2- - (7/2-)E 2 _ 3/2­
(MeV) -4+ 3 

-5/2­
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0.5	 _5/2­
-1/2­2 -3/2- 1 -3/2­

-2+ 
2 -5/2-

-3/2­

0 f- -0+ -t- O -1/2-	 - 0 

194	 195
Pt Th Pt	 Th 

7S l16	 7S 117 

1.5 -9/2­
4 

-7/2­-6+ 
-5/2- -9/2­

2 -3/2- 4-4+ 
-7/2­-3+ 

1.0	 f- -0+ -f- 2 -5/2- - 0.5 
-3/2­

E 
(MeV)
 

-4+
 
-7/2­

-2+	 3 
2 -5/2-	 -5/2­

0.5	 - -3/2- 1 -3/2­
-1/2­

2 -5/2­
-2+	 -3/2­

o f- -0+ -f- a -1/2-	 - 0 

Figure 23. The experimental and calculated energy spectra of the nuclei 194Pt and 
195pt, two of the nuclei belonging to the N = 7 supermultiplet of U(6j12). Levels 
are labelled by their angular momentum and parity J1r (right) and by the quantum 
number L (left). The left (right) scale applies to 194Pt (l95Pt). 
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it results a unified description of ever higher numbers of nuclei. A further example of 
this mechanism is obtained if a distinction is made between protons and neutrons, both 
for fermions and for bosons. The action of such operators is illustrated in figure 24. 
It shows that now a quartet of nuclei (even-even, even-odd, odd-even and odd-odd) 

atbll i lbtav atbv Tlbta ll 

a!b1r a!b1r 

~ ------++- 11~~Au1171 +- ••• 
bta1r b!a1r 

atbv i lbta ll atbv i lbta ll 

atb1r aib1r 

~ ------+ 
+- 1~~Au1l61 +- ••• 
bta1r bia1r 

Figure 24. An example ofU1l'(6/4)® UII (6/12) multiplet of nuclei: 194pt, 195Pt, 195Au 
and 196Au. 

IS connected by operators of the type b:ap or a~bp (p = 1l", v) which belong to the 
product of algebras U1r (6/4) ® Uv(6/12), the first referring to protons and the second 
to neutrons. Consequently, this quartet can be described simultaneously with a single 
hamiltonian [143]. The interest of this particular example is that one essentially predicts 
the spectrum of the odd-odd nucleus, on the basis of a fit to the spectra of the three 
other members of the multiplet. This may yield an insight into the structure of such 
nuclei which are difficult to interpret otherwise. 

6. Epilogue 

Symmetry is where the old and the new meet. This, in one sentence, has been the 
main theme of this review. Ideas of symmetry have been employed in nuclear physics 
as soon as the subject itself had seen the light, as the example of isospin symmetry 
illustrates. What is perhaps less well known but equally true is that the idea of dynamical 
symmetry also has a venerable history in nuclear physics. Wigner's supermultiplet 
model, Racah's pairing model and Elliott's rotation model can all be understood from 
a common framework in terms of spectrum generating algebras. One of the purposes of 
this review has been to present those early nuclear structure models from that common 
perspective and at the same time to demonstrate that they naturally lead into more 
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recent developments such as the interacting boson model of Arima and Iachello. The 
second raison d'etre of this review has been to show convincing evidence that, even if 
these ideas of symmetry date back to the very beginnings of the subject, they continue 
to inspire experiments at the forefront of today's research in nuclear physics. 
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