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Abstract 

We report on recent progress with regard to the numerical simulation of fluc­�
tuations in nuclear dynamics. Indeed, we study cluster formation in unstable� 
nuclear matter within the framework of a Boltzmann-Langevin equation devel­�
oped to describe large amplitude fluctuations. Through the Fourier analysis of� 
the fluctuating nuclear density in coordinate space, we relate the onset of the� 
clusterization to the dispersion relation of harmonic density oscillations. This� 
detailed study on the simple two-dimensional case demonstrates the validity of� 
the general approach. We also show how the inclusion of fluctuations implies a� 
description in terms of ensemble of trajectories and we discuss why the presence� 
of a a stochastic term may cure the intrinsic unpredictability of deterministic� 
theories (such as mean-field approximation) in presence of instabilities and/or� 
chaos.� 
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1 Introduction 

The mean-field approximation provides a useful starting point for describing 
many-body systems, especially when the properties of interest can be extracted 
from the one-body density matrix alone. In particular, in nuclear physics mean­
field theories have become valuable tools for the treatment of static (and stable) 
situations. The utility of the mean-field approximation is less obvious for the 
time evolution of complex systems displaying dynamical bifurcations, which oc­
cur when a system passes through a region of instability. The complete treatment 
of such problems requires the consideration of the correlated evolution of a large 
number of degrees of freedom and is impractical. However, in many situations 
there exists a tractable approximate approach, in which the full (and determin­
istic) many-body evolution is replaced by a stochastic equation of motion for 
the one-body density alone, thus keeping the instantaneous information within 
the boundaries of the mean-field approxima~ion, while simulating the effect of 
the many-body correlations by a stochastic term in the mean-field equation of 
motion. 

This alternative avenue retains only a small part of the dynamical information 
[1] whose reduction naturally invites the concepts of from non-equilibrium statis­
tical mechanics, such as irreversibility and entropy. In general, the equation of 
evolution for the retained variables will be non-linear and therefore the dynamics 
may exhibit chaotic features such as instabilities and bifurcations. 

One way to restore the predictive power of the theory is to realize that the 
lack of full information about the state of the system, both initially and in the 
course of time, will act as a stochastic term in the effective equation of motion 
for the retained variables, because they characterize an entire ensemble of micro­
scopically different states of the system. In effect, this ensemble acts as the heat 
bath in Brownian motion and the equation of motion will be of the Langevin 
type. In this case one is forced to consider not only one single trajectory, but an 
ensemble of trajectories which differ because samll fluctuations in the evolution 
may be propagated very differently by the deterministic but non-linear part of 
the effective equation of motion. 

In this paper we present a first illustration of this approach for a catastrophic 
evolution within the framework of nuclear physics, namely the clusterization of 
matter at subsaturation density. The employed Boltzmann-Langevin equation 
has been recently proposed and investigated in order to extend the mean-field 
description to such phenomena as heavy-ion induced nuclear multifragmentation 
processes. [2, 3, 4, 5, 6, 7] 

Our starting point is the socalled Boltzmann-Uehling-Uhlenbeck equation, 
which provides a self-consistent semi-classical evolution of the one-nucleon phase­
space density f( r, p, t) taking into account the average effect of Pauli-blocked 
two-body collisions between individual nucleons in the system. (This approach 
was first developped by Nordheim for the description of electrons in a solid.[8]) 
The BUUtheory has been extensively applied to nuclear collisions and has proven 
fairly successful for describing one-body observables.[7] However, the model can­
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not provide a description for large fluctuation phenomena, such as multifragmen­
tation, because it determines only a single ("average") dynamical history. By 
contrast, a Langevin-type evolution is very well suited for such phenomena. 

In ref. [2] a formalism was developped for treating stochastic one-body dy­
namics within the framework of transport theory, starting from the Fokker-Planck 
equation for the distribution of one-body densities in phase-space, 4>[J]. In sub­
sequent works [4], we have developed a specific implementation of the Langevin 
equation associated with the BUU approach; it has a well-defined prescription 
for calculating the fluctuating part of the collision integral and applies to arbi­
trary fluctuations in the one-body dynamics. In those studies, we neglected the 
effective one-body field in order to facilitate the analysis. However, its presence 
is of course essential. In fact, at low densities nuclear matter is unstable against 
oscillations, so the attractive part of the effective field will amplify any stochas­
tic density enhancements and thus drive the system towards fragmentation. We 
have now included the effective field and show our first results regarding cluster 
formation in nuclear dynamics. [5] . 

Summary of the model 

In refs. [4] we developed a new method for incorporating fluctuations within 
the BUU description. This extended Boltzmann-Langevin equation governs the 
time evolution of the one-particle phase-space density due to the effects of the 
effective one-body field (Vlasov dynamics) and the two-body collisions, the latter 
processes being described in terms of the collision integral which is stochastical 
in nature. Therefore, the evolution of the one-particle density can be considered 
as a "generalized Langevin process", analogous to to the motion of a Brownian 
particle in a heat bath (except that the Brownian coordinate is not merely the 
momentum of a particle but the whole single-particle density itself J(r,p)). 

The effects ofthe two-body collisions are twofold: (i) to produce dissipation by 
degrading macroscopic motion into statistical motion of the individual particles, 
and (ii) to induce correlated fluctuations that can subsequently be propagated 
by the evolution in the non-linear effective field. Therefore it is reasonable to 
split the collision term 1[J] into two parts, one which takes into account the 
average effect of the two-body collisions, i[f], and the other one which includes 
the fluctuating part, 61[f]. The stochastic BUU equation then reads 

~~ + {H[f], f} = I[f] = i[f] + 6I[f] , (1) 

where H[f] is the self-consistent effective one-body Hamiltonian. The collision 
term acts as a random "kick" on the one-body distribution function and its fluc­
tuating part produces sudden branchings of the dynamical histories resulting in a 
bundle of trajectories. By contrast, the effective mean field leads to a very smooth 
evolution. It is therefore convenient to consider the two evolutions separately. 

In order to solve the above equation of motion, we represent f(r,p) on a 
lattice of grid points in phase space. The size of each lattice cell is given by 



ti.s = ti.rti.p/hD, and the value fk at the lattice point 8k = (rk,pk) represents 
the average value of f over the cell k. Since each physical particle represents a 
phase-space volume hD , we first divide the phase space into cells K of the order 
of the unity. 

The Vlasov part of the propagation is made by means of a standard matrix­
inversion technique. The collision integral I[f] expresses all possible two-body 
collisions consistent with locality and energy-momentum conservation. During a 
given small time interval ti.t, the expected number of such elementary transitions 
ii leading from within the phase-space subcells 1 and 2 into the subcells l' and 2' 
is given by 

where W(PhP2; Pl',P2') is the elementary transition rate and the Pauli blocking 
factors j - 1 - f express the availability of the final one-particle states. 

The actual number of elementary transitions v is a stochastic variable, having 
a Poisson distribution characterized by the above mean value ii. The average 
part of the collision integral, 1[1], expresses the average changes corresponding 
to putting v = ii, while the fluctuating part accounts for the stochastic remainder, 
ov = v - ii. This latter quantity has the variance u~ = ii and the fluctuating part 
01[1] is thus fully determined by the mean transition rates ii. In our particular 
numerical implementation, we simulate the fluctuations Ov of each physically 
distinct transition by a normal (i. e. Gaussian) noise term with the variance u;, = 
ii, which has been found to be a numerically accurate procedure. It should also 
be noted that this manner of introducing the fluctuations at the elementary level 
preserves the correlations induced by the fact that a given collision involves four 
phase-space locations. 

However, in order to achieve sufficient accuracy in the propagation of the 
collisionless (Vlasov) part of the evolution, a finer lattice is required and we 
therefore further divide each physical cell into sufficiently small subcells k. 

In order to ensure that the fluctuations associated with the transitions be­
tween subcells are properly correlated over the scale of a physical cell, we proceed 
as follows. From the quantities iiijkl given above in eq. (2) we may compute the 
expected number of transitions between the physical cells I, J, K, L, 

NIJKL =� L iiijkl , (3) 
ijkl 

where, for example, i refers to the subcells of I. The associated fluctuation EN 
has the variance N and so can be simulated by a corresponding normal noise. 
The quantity oN is then shared between the subprocesses in proportion to the 
mean changes, 

OVijkl = (iiijk,foNIJKL)NIlKL .� (4) 

This method introduces the appropriate correlation of the noise over volumes hD , 

thus ensuring that the relation between mean and variance is preserved on the 
physical scale, and it has the numerical advantage that both the collision term 



and the mean field propagation are computed with the same small cells, thus 
avoiding degradation in accuracy. 

3 Application to a Model System 

We have studied a gas of Fermions situated on a two-dimensional torus. For the 
effective one-body field we employ a simplified Skyrme interaction, 

U(x) = AP(x) +B(P(x)?, (5) 
po Po 

with A = -100.3 MeV and B = 48 MeV. Moreover, po is the saturation density 
and p(x) is the average of the density p(x, y) with respect to the transverse 
direction y. Since the effective field U then depends on x only, the same holds 
for those modes that can be excited, and this ,simplifies the analysis considerably. 
In determining the parameters of U, we have sought to mimic standard three­
dimensional matter. Thus we have required a Fermi momentum of PF = 260 
MeVIe, and a binding energy of 16 MeV per nucleon, and that a density doubling 
lead to approximately zero binding (corresponding to a compressibility modulus 
of K :::::: 300 MeV for a calculation in three dimensions). In the present two­
dimensional model system, the saturation density is Po = 0.55 00-2

• 

We have then solved the stochastic BUU equation on a lattice of 21 cells in 
the x direction and 25 X 25 cells in momentum space. The physical cells had a 
spatial resolution of 1 fm so that the torus extends 21 00 in the x direction. The 
value ~x = 1 00 was chosen to correspond approximately to the spatial extension 
of a nucleon. Since there is no dependence of y, the length in the y direction was 
chosen to be large (L y = 5000 00). The momentum resolution was 65 MeV/c, 
so that the p-space was extending up to Px = Py = ±682.5 MeVIe. The subcells 
were identical to the macrocells, except for the x-direction for which the accuracy 
of the gradients requires a minimum of Ox = ~ 00. The Vlasov propagation was 
made with time increments of ot = 0.5 001c, while the collisions were considered 
at time intervals of ~t = 5 fml c. The interaction range in the collision integral 
was taken as 1.2 00. 

We have initialized the system as a uniform gas at half the saturation density, 
with Fermi-Dirac occupancies corresponding to the small temperature 3 MeV; 
this is in the mechanically unstable regime of the phase diagram. We analyze an 
ensemble of 100 trajectories; for each trajectory, the calculation was stopped at 
90OO/c. 

3.1 Fragment formation 

First, let us focus our attention on the evolution of the spatial density of the 
system. In Fig. 1 we show the time evolution of the density vs. the position 
for one trajectory of the ensemble. Initially the system has a uniform density, 
but soon the fluctuations are breaking this initial symmetry. Subsequently, the 



fluctuations are rapidly amplified by the action of the effective one-body field 
thus leading towards fragment formation. We note that the density distributio~ 
of each particular system keeps changing with time, with the clusters exhibiting 
fusion and fission. In this manner, each particular trajectory explores the various 
accessible configurations, while the distribution of trajectories quickly approaches 
the appropriate statistical limit. 
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Fig. 1.� Density profiles: The density profile pC:I:) associated with one particular trajec­

tory picked from among the ensemble of different evolutions, shown as a function 
of the position :I: at eight <lliferent times t. 

3.2� Instabilities 

To get a deeper insight into the mechanism of fragmentation and the role of the 
instabilities, it is important to study the onset of the phenomenon. When the 
fluctuations are still small their evolution is described by linear response theory, 
and it is instructive to study the modes propagated by the Vlasov equation. If the 
system is stable, the dispersion relation yields real values for the energies of the 
normal modes, which can be represented by plane waves propaga.ting in opposite 
directions. If the system is unsta.ble, as the present one, some eigenenergies are 
complex and the imaginary part is inversely related to the time 'j characterizing 
the development of the fluctuations. 



We have therefore derived and solved the dispersion relation associated with 
the Vlasov equation linearized around a uniform distribution at zero temperature. 
The energy is imaginary when folPo + aulap < 0, where fo is the Fermi energy 
at the saturation density po. This condition is exactly the instability condition of 
the Vlasov solution, a2 E Iap2 < 0, where E is the energy density. In this regime 
the imaginary energy reads 

f
O piE =! =±k 

( 
aU) V (6)

T Po + ap m( -fo/2po - aulap) , 

where k is the wave number of the unstable mode of the system. In the above 
relations the partial derivative of the mean field U is calculated at the actual 
density p. The strict proportionality of the energy E to the wave number k 
is due to the absense of a finite range term in the effective potential U. For 
simplicity, in the present exposition, we effectively mimic such a term by the 
finite size of the spatial grid (which is ~ fm) .. 

The above result does not correspond to the actual instabilities in the BUU 
dynamics, because it ignores both the two-body collisions and the finite temper­
ature. Therefore, we have computed the actual dispersion relation by considering 
the BUU evolution (without fluctuations) of a uniform density at 3 MeV of tem­
perature perturbed with a small (1%) harmonic variation in the z direction. For 
each initial perturbation characterized by wave number k, we have performed a 
BUU calculation and analyzed how the perturbation evolves in time, through a 
Fourier transform in the z direction. 

We have found that the linear response expression remains valid up to a time 
of about 20 fml c. After this time frequency doubling appears in the Fourier spec­
trum due to the non-linearity ofthe BUU equation. Around 30 fm/c the dynamics 
begins to appear chaotic and looses the memory of the initial perturbation. This 
happens for all initial wave numbers, except for those that are commensurable 
with the total number of cells. For these the initial state retains some periodicity, 
which is preserved by the BUU equation; the fact that these initial symmetries 
indeed remain throughout the evolution constitutes an important check on the 
numerical stability of the code. 

Within the linear regime, for each k, we have analyzed how the peak of the 
Fourier transform evolves in time and we have observed an exponential evolution 
with a characteristic time T (in fact we observe a mixing between an exponentially 
growing and an exponentially decaying solutions with the same time T). In Fig. 2 
we show the evolution of liT vs. the wave number k (solid curve), while the dashed 
line is the prediction of the dispersion relation (6). The curve is symmetric around 
k = 0.75 fm- 1

, because of our discretization of the gradients where a double step 
is used. Therefore, within the truncation due to the lattice, we observe that the 
actual dispersion relation is very close to the expression (6) derived for the Vlasov 
equation at zero temperature. 
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Fig. 2.� Dispersion relation: The inverse of the characteristic time 1\ associated with 
an unstable harmonic mode of uniform. two-dimensional nuclear matter at half 
the saturation density, as a function of the wave number 1: of the mode. The 
solid curve represents the actual dispersion relation as obtained in our numer· 

ical implementation of the BUU model, while the dashed curve is the analytic 
expression (6) pertaining to the collisionless (Vlasov) limit. 

3.3� The onset of multifragmentation 

This normal mode analysis will allow us to study the interplay between instabil­
ities and fluctuations. Indeed, considering the Fourier transform of the fluctua­
tions of the density, F(le,t) = f dzei2WU5p(z,t), we find 

(1) 

Tiling the expectation value of this quantity of the ensemble, then yields the 
fluctuation of modes with wave number le, 

Within the linear response regime and for a given instability mode le, the random 
two-body collisions act as a continuous source of fluctuation C/c. Therefore the 
variance ~/c evolves according to the equation 

(9) 

where the second term is due to the unstable character of the normal mode le, 
which has a growth time Tk. The solutions of this equation are given by 

(10) 



where O"k(O) is the initial fluctuation, which is zero in the present case. The 
characteristic amplitude of the fluctuations is determined by Ck, and their time 
scale by Tk. We note that for t < Tk/2, eq. (10) reduces to O"k(t) ~ Ckt, i.e. 
the fluctuations are dominating the dynamics, while for t > Tk/2 both fluctua­
tions and instabilities are present, leading asymptotically to a pure exponential 
increase, O"k(t) = ~CkTk exp(2t/Tk)' Eq. (9) governs the evolution of the modulus 
squared of the Fourier transform of the density p(z), and the form of its solution, 
Eq. (10), provides a good understanding of the growth of the fluctuations. This 
quantity is displayed in Fig. 3. At the early stage of the evolution (t < Tk/2) 
one mainly observes the Fourier component of the noise and indeed we observe 
that the spectrum at t = 5 fm/c is characteristic of a system where the fluctu­
ations must be correlated over a domain of at least 1 fm in size. In particular, 
the spectrum does not extend beyond k = 1 fm -1 , and is symmetric around 
k = 0.5 fm- 1

, corresponding to a spectrum on a lattice with a spacing of 1 fm. 
As the time goes on, one observes the inte!J~lay of the stochastic collisions and 
the exponentially increasing propagation due to the unstable effective field. 

The continual action of both agents shifts the peak to slightly higher fre­
quencies (from 0.5 to 0.6 fm- 1 

). However, it should be noted that the response 
above 1 fm- 1 remains nearly zero throughout this initial stage and that the sys­
tem is never fully dominated by the instabilities. This demonstrates that the 
system is keeping some memory of the physical processes that have induced the 
fluctuations. 

After 30 fm/c the system enters into a non-linear regime, with frequency 
doubling leading soon to a chaotic transition stage, before reaching an equilibrium 
characterized by a statistical population of fragment configurations. 

3.4 Fragment mass distribution 

We finally discuss briefly the distributions of cluster configurations. In our model 
we can readily define a pseudofragment by adding the matter in contiguous cells 
having a density above a specified value ps. The resulting mass distribution 
changes continually, because the density distribution keeps fluctuating as it ex­
plores the entire ensemble of possible configurations. This equilibrium behavior 
is independent of the specific early evolution, as we have explicitely verified by 
making an alternate calculation starting with an uncorrelated random noise on 
the one-body density. In an actual nuclear collision, the expansion of the sys­
tem will effectively truncate the evolution after a finite time, and the resulting 
fragment mass distribution will in general depend on the specific character of the 
fluctuations employed. 
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4 Conclusions 

Using a recently developed c.uclear Boltzma.n.n.-Langevin model, we have made 
a first dyuamical simulation of a chatastrophic evolution leading to the multi­
fragmentation of an initially uniform system. The essential new feature of the 
model is that it permits the spontaneous breaking of symmetries, which is es­

sential to produce catastrophic phenomena, such as clusterization. The presence 
of a stochastic term. solves the problem of the la.ck of predictability of the deter­
ministic theory in presence of instabilities and forces us to adopt a description in 
terms of ensembles. Such a description is closely related to statistical mechanics 
and is therefore able to a.ccomodate a high degree of dyuamical branching. 

In the presented results, we have been able to discern two dyuamical regimes: 
an early linear regime characterized by a. competition between the stochastic cre­
a.tion of fluctuations and their exponential evolution due to the instability of the 
effective field, and a later complex one where the system behaves chaotically and 
seeks to condense into fragments. Since the detailed evolution towards equilib­
rium has been found to be sensitive to the speciiic treatment of the fluctuations, 
it appears that the inclusion of fluctuations is important for the quantitative 
description of fragment production in nuclear collisions, and one may hope that 
multi-fragment observables may provide an informative basis for direct confronta.­
tion between theory and experiment. 
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