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Everybody knows that when a liquid is heated, its temperature increases until the 
moment when it starts to boil. The increase in temperature then stops, all heat being 
used to transform the liquid into vapor. What is the microscopic origin of such a strange 
behavior? Does a liquid drop containing only few molecules behave the same? Recent 
experimental and theoretical developments seem to indicate that at the elementary level 
of very small systems, this anomaly appears in an even more astonishing way: during the 
change of state - for example from liquid to gas - the system cools whereas it is heated, 
i.e. its temperature decreases while its energy increases. This paper presents a review of 
our understanding of the negative specific heat phenomenon. 

1. Introduction 

Phase transitions are universal phenomena which have been theoretically understood 
at the thermodynamic limit of infinite systems as anomalies in the associated equation of 
state (EoS). They have been classified according to the degree of non-analyticity of the 
thermodynamic potential at the transition point. As an example figure 1 shows a first 
order phase transition i.e. a jump in the average energy < E >= -8{3 log Z{3, Z{3 being 
the canonical partition sum, as a function of the conjugate intensive variable {3. 

However, most of the systems studied in physics do not correspond to this mathematical 
limit of infinite systems[?] and, in fact, finite systems are now, per se, a subject of a very 
intense research activity, from metallic clusters[?,?] to Bose condensates[?, ?], from 
nanoscopic systems[?] to atomic nuclei [?] and elementary particles[?]. 

2. Finite systems 

The thermodynamic potentials of a finite system in a finite volume are analytic func
tions. As a consequence, the average energy varies continuously with the temperature 
and cannot present a jump. The transition looks like a crossover (see fig. 1). Thus, it 
is often concluded that phase transitions can only be defined for infinite systems. This 
situation can be thought as unsatisfactory, since on one hand the thermodynamic limit 
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Figure 1. Canonical caloric curve < E >= -8{3log Z,iJ presenting a discontinuity charac
teristic of a first order phase transition for an infinite system (thin line) while it remains 
continuous in a finite system (thick line). 

does not exist in nature, and on the other hand the understanding of mesoscopic systems 
is becoming one of the most challenging field in physics [?]. 

In the recent years, many efforts have been devoted to give the theoretical foundations 
for the definition of phase transitions in small systems and explicitly make the bridge 
between possible anomalies in finite systems and the usual definition of phase transitions 
at the thermodynamical limit [?]. 

2.1.� Phase transition in the intensive ensembles: 

Zeroes of log Z and bimodality of the event distribution. 
Following Yang and Lee[?] ideas, a classification scheme valid for finite systems has 

been proposed by Grossmann [?] using the distribution of zeroes of the canonical partition 
sum in the complex temperature plane (see top of fig. 2). Alternatively, we have recently 
proposed the possible bimodality of the probability distribution of observable quantities 
as a direct definition of a phase transition [?] (see fig. 2), the direction separating the 
two phases being an order parameter. 

A typical example, the distribution of the magnetization of the 3D Ising model, is 
shown in figure 3. The observed bifurcation is characteristic of a second order phase tran
sition. Below the critical point the bimodality in the magnetization transition indicates 
a first order transition at finite magnetic field (the intensive variable conjugated to the 
magnetization) . 

In a recent work[?] we have demonstrated that this definition of phase transitions in 
finite systems based on bimodality is consistent with the Yang Lee theorem [?], i.e. with 
the standard definition of first order phase transitions in the thermodynamic limit. The 
first step is to make the link between the partition sum and the event distribution. Taking 
the example of a canonical ensemble both quantities are directly related to the density of 
states W(E) : P{3(E) = W(E)e-,iJE jZ,iJ and Z,iJ = JW(E)e-,iJEdE. Therefore, introducing 
a reference temperature f30 we get 

(1)� 
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Figure 2. Various equivalent definitions of a first order phase transition in a finite system: 
an alignment of the zeroes of the partition sum in the complex temperature plane (top); 
a bimodality of the event distribution (below); a negative heat capacity (below) and an 
abnormal kinetic energy fluctuation (bottom). 
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Ising model 

Figure 3. Evolution of the magnetization distribution as a function of the temperature in 
the Ising model (c/2 is the strength of the spin spm interaction) 
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i.e. the partition sum is the Laplace transform of the event distribution. A single distri
bution P{3o(E) at a given temperature (30) is in principle enough to reconstruct the whole 
partition sum for all temperatures (3. This is only true for finite systems since at the ther
modynamic limit the distribution P becomes a delta function which contains information 
only about the temperature (30 (as required by the theorem of ensembles equivalence). 

Using (??) one can show that a set of zeroes converging and aligning perpendicularly 
to the reel temperature axis, as required by the Yang-Lee theorem, is equivalent to a 
probability distribution split at least in 2 equivalent components (bimodal), separated by 
an energy inversely proportional to the density of zeroes close to the real axis, i.e. directly 
proportional to the number of particles A. The resulting finite energy jump per particle 
is the latent heat. 

2.2.� Link between intensive and extensive ensembles: 

Bimodality of the event distribution and negative heat capacity. 
Alternative definitions of phase transitions in finite systems have been proposed. It 

has been claimed that first order phase transitions in finite systems can be related to a 
negative microcanonical heat capacity [?, ?1 or more generally to an inverted curvature 
of the thermodynamic potential as a function of an observable which can then be seen as 
an order parameter [?]. These anomalies can also be connected to the general topology 
of the potential energy surface [?]. 

It should be noticed that this definition of phase transitions can be used only in an 
ensemble in which an extensive variable[?] playing the role of an order parameter is con
trolled (extensive ensemble) since it is based on the curvature anomalies of the associated 
thermodynamical potential as a function of the controlled extensive variable. Conversely, 
both the Yang-Lee and the bimodality pictures require that the extensive variables are 
not directly controlled but are free to fluctuate being constrained only by a Lagrange mul
tiplier . This corresponds to the associated intensive ensemble. In this sense definitions 
based on negative curvatures or on bimodalities (or on the zeroes of the partition sum) 
are complementary, since they cannot be applied to the same ensemble. 

We have demonstrated that these two pictures are equivalent and are the manifestation 
of the same phenomenon in two different ensembles[?J. This can be easily demonstrated. 
Let us take the energy as a typical extensive variable. The inverted curvature definition of 
a first order phase transition is nothing but the occurrence of a negative heat capacity in 
the microcanonical ensemble, while the bimodality should be looked for in the canonical 
energy distribution. However, using the definition of the microcanonical entropy S(E) = 

log W(E) and of the canonical energy distribution P/3(E) one can directly show that they 
are intimately related by the equality 

log P/3(E) = S(E) - (3E - log Z,e� (2) 

The above relation is valid for every temperature (3-1 and every energy E, meaning that in 
a finite system the energy probability a single temperature is in principle enough to access 
the whole entropy functional. However, from a practical point of view enough statistics 
should be accumulated in a given energy bin in order to infer the associated entropy so 
that Eq. (??) can be used in practice only in the strongly populated region. 
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From Eq. (??) it is clear that the curvature of log P(3(E) is directly the curvature 
of S. Then, a bimodal probability distribution implies a negative heat capacity and, vice 
versa, a negative entropy curvature leads to a bimodal energy distribution for an canonical 
temperature fJ equal to the microcanonical one at the maximum of the curvature inversion. 

An illustration of the relation between the signal of phase transition in various ensem
bles in the case of an isobar Lattice-gas model[?] is presented in figure ?? In the top 
figure obtained in the canonical ensemble, the log of the energy distributions is presented. 
The calculation is performed close to the transition temperature, and the distribution 
is bimodal as expected. Because of eq. (??) this figure also represents the entropy 
(with a linear behavior fJE + log Z(3 subtracted); its derivative is the microcanonical 
temperature T-1 = 8E S = fJ+ 8E P(3 and its curvature the inverse of a heat capacity 
C-1 = 1/8E T = -T28EES = -T28EEP(3. The bimodality is nothing but a convex in
truder in the entropy curve, which produces a back bending in the microcanonical caloric 
curve and a negative branch in the heat capacity (see figure ??). 

For comparison on the microcanonical caloric curve of fig. (??) we also present the 
canonical average and most probable energies. In the back-bending the canonical distri
bution is bimodal so that the most probable energy is discontinuous (big dots) and so is 
presenting the energy jump characteristic of a first order phase transition. Conversely the 
usual canonical caloric curve which relates the average energy to the temperature takes 
the whole back bending region (i.e. the whole range of temperatures exhibiting a bimodal 
energy distribution) to go smoothly from the gas to the liquid (dotted line). 

2.3.� Partitioning of energy and microcanonical entropy 

Negative heat capacity and abnormal kinetic energy fluctuations. 
In ref. [71 we have proposed to use the fluctuations of the kinetic energy to deduce the 

microcanonical heat capacity and we have shown that a negative heat capacity results 
in an abnormally large energy fluctuation. This can be easily explained for a classical 
fluid and tested in the framework of the lattice-gas model. The total energy E of the 
considered system can be decomposed into two independent components, its kinetic and 
potential energy: E = K +V. In a microcanonical ensemble with a total energy E the total 
degeneracy factor W (E) = exp (S (E)) is thus simply given by the folding product of the 
individual degeneracy factors Wk(K) = exp (Sk (K)) and ltVv (V) = exp (Sv (V)). One 
can then define for the total system as well as for the two subsystems the microcanonical 
temperatures T i and the associated heat capacities Ci (with i = k or v). If we now look 
at the kinetic energy distribution when the total energy is E we get 

PE (K) = exp (Sk (K) + S11 (E - K) - S (E))� (3) 

Then the most probable kinetic energy K E for the total energy E is defined by the 
equality of the partial microcanonical temperatures Tk (KE ) = Tv (E - K E ). The most 
probable kinetic energy K E can be used as a microcanonical thermometer. Using a Gaus
sian approximation for PE (K) the kinetic energy variance can be calculated as [?] 

(4)� 
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Figure 4. Top: log of the energy distribution (a little above the transition temperature) 
which is nothing but the entropy except for a subtracted linear behavior. Middle: the 
deduced microcanonical temperature. For comparison the canonical caloric curve < E > 
as a funtion of /3-1 as well as the most probable energy are also plotted (dotted line and 
big dots respectively). Bottom: the associated microcanonical heat capacity. 



8 

where Ck and Cv are the microcanonical heat capacities calculated for the most probable 
energy partition. Equation (??) can be inverted to extract from the observed fluctuations 
the heat capacity 

(5) 

where we have introduced the canonical kinetic energy fluctuation Cfk = j'2 C k . This ex
pression shows that when Cv diverges and then becomes negative, C7k remains positive but 
overcomes the canonical expectation CJk = j'2Ck . This anomalously large kinetic energy 
fluctuation is a signature of the first order phase transition. 

The normalized fluctuations C7k IT>.. 2 obtained in the microcanonical ensemble for a 
lattice-gas with an average volume constrained by a Lagrange multiplier A are shown in 
the energy-A plane in figure ?? together with the isotherms. One can clearly see that the 
fluctuations are abnormally large in the coexistence region up to the critical temperature. 
From fig. ?? it is apparent that the phase transition signal is visible in the temperature 
(back-bending) as well as in the fluctuation observable (normalized fluctuations larger 
than Ck ). 

The right part of the figure presents examples of expected behavior of the temperature as 
a function of energy at a constant pressure or a constant average volume in the subcritical 
region. At constant pressure a back-bending is clearly seen. On the other hand at constant 
average volume a smooth behavior is observed with a slope change entering the gas phase. 
This is due to the fact that the A parameter varies rapidly in the coexistence region. From 
these examples one clearly sees that the various transformations lead to very different 
caloric curves. More generally, it is clear that the back-bending of the temperature surface 
can be avoided depending on the path of the considered transformation and the phase 
transition signal can be hidden in the observation of the caloric curve. 

On the other side partial energy fluctuations are a state variable which does not depend 
on the transformation from one state to another and can directly give access to the 
equation of state: the anomalously large fluctuation signal will be always seen if the system 
undergoes a first order phase transition, independent of the path. As an example the lower 
part of figure 5 shows a constant P>.. or < V > >.. cut of the bidimensional fluctuation surface. 
The quantitative behavior of the heat capacity as a function of energy depends on the 
specific transformation, but at each point the heat capacity extracted from fluctuations is 
a direct measure of the underlying equation of state. This is clearly demonstrated in the 
medium part of figure ?? which compares the exact heat capacity C>.. with the fluctuation 
approximation. The agreement between the two results illustrates the accuracy of the 
estimation (14). .. 
3. Conclusions 

T 

Phase transitions are universal properties of matter in interaction. They have been 
widely studied in the thermodynamical limit of infinite systems. However, in many physi
cal situations this limit cannot be accessed and so phase transitions should be reconsidered 
from a more general point of view. This is for example the case of matter under long range 
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Figure 5. Isobar lattice gas model: Left part: Isotherms and contour plot of the normal
ized kinetic energy fluctuations in the Lagrange parameter versus energy plane. The level 
corresponding to the canonical expectation ai!T2 = 1.5 is shown. Thick line: critical 
isotherm. Right panel : Thermodynamic quantities in the microcanonical ensemble for 
a transformation at constant pressure and at constant volume (right part). Upper pan
els: caloric curve. Lower panels: normalized kinetic energy fluctuations compared to the 
canonical expectation (lines). Medium panels: heat capacity (symbols) compared to the 
estimation through eq.(5) (lines) at constant pressure (left part) and at constant volume 
(right part). 
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forces like gravitation. Even if these self gravitating systems are very large they cannot 
be considered as infinite because of the non saturating nature of the force. Other cases 
are provided by microscopic or mesoscopic systems built out of matter which is known to 
present phase transitions. Metallic clusters can melt before being vaporized. Quantum 
fluid may undergo Bose condensation or super-fluid phase transition. Dense hadronic 
matter should merge in a quark and gluon plasma phase while nuclei are expected to ex
hibit a liquid -gas phase transition. For all these systems the theoretical and experimental 
issue is how to sign a possible phase transition in a finite system. 

In this paper we have shown that phase transitions can be uniquely defined for finite 
systems. Depending upon the statistical ensemble one should look for different signals. 
In the ensemble where the order parameter is free to fluctuate (intensive ensemble) the 
topology of the event distribution should be studied. A bimodal distribution signals a 
first order phase transition. This occurrence of a bimodal distribution is equivalent to the 
alignment of the partition sum zeroes as described by the Yang and Lee theorem. In the 
associated extensive ensemble, the bimodality condition is equivalent to the requirement 
of a convexity anomaly in the thermodynamic potential. 

The first experimental evidences of such a phenomenon have been reported recently 
different fields: the melting of sodium clusters[?]' the fragmentation of hydrogen clus
ters[?]' the pairing in nuclei[?] and nuclear multifragmentation[?]. However, much more 
experimental and theoretical studies are now expected to progress in this new field of 
phase transitions in finite systems. 
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