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Abstract. Fusion probability of colliding heavy ions is evaluated by exactly solving a Langevin equation 

with a parabolic potential barrier. The model, which accomodates dissipation in the approaching phase, 

leads to an inverse Kramers's formula and an expression of the extra-push energy. In the very specific case 

of an overdamped regime, an Arrhenius type formula is obtained. 

PACS. 02.50.Ey Stochastic processes - 05.40.Jc Brownian motion - 25.70.Jj Fusion and fusion-fission 

reactions 

Superheavy elements are predicted to exist due to shell 

closures of nucleons giving an extra stability. Heavy-ion 

reactions are used for their synthesis and it is both an 

experimental and theoretical challenge due to very low 

production probabilities. For recent reviews, see Refs. [1, 

2]. In order to predict residue cross sections of the super-

heavy elements, we firstly need to understand mechanisms 

of fusion reactions. However, fusion mechanisms of mas

sive nuclear systems are not yet well understood, though 

it is known that fusion is hindered in systems with Zp *Zt 

larger than 1,600, where Zp and Zt are atomic numbers of 

projectile and target nuclei: systems do not fuse even with 

incident energies being well above the expected Coulomb 

harrier. So-called extra-push energy is necessary in addi

tion to the barrier height. This could be interpreted by 

a friction force acting between two colliding nuclei in the 

approaching phase as well as by dissipation of energy of 

a collective motion which leads the amalgamated system 

to a spherical compound nucleus. It is most likely that 

both mechanisms exist, though which one is dominating 

in which situation is not yet known. Thus, fusion could 

be divided into two steps, and then fusion probability is 

given by the product of two factors, i.e., the sticking prob

ability for the colliding system to stick each other into an 
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amalgamated system and the formation probability of the proximation, which is generally used, might appear as a 

spherical compound nucleus, starting from the pear-shape strong assumption for such finite size systems. Studies of 

configuration made of the colliding nuclei [3,4]. These two the importance of the memory kernel will be published 

processes are not independent of each other. In the present elsewhere [14]. Other approximations like an overdamped 

note we focus our study on the latter one. regime were used in Refs [8,9] without justification. The 

As is well known, there is a conditional saddle point or analytical solution proposed in Ref. [15] should help to 

a ridge line between the pear-shaped configuration and the clarify the dynamical process and compare the various ap

spherical shape on the energy surface of the Liquid Drop proaches and approximations. 

Model, which is to be overcome for the system to form a The analytical solution of the formation probability 

compound nucleus. For hot fusion systems, a fluctuation- obtained in the multi-dimensional model [15] suggests the 

dissipation dynamics has been used by various authors existence of an effective one-dimensional description. We, 

to study the process [4-9]. The underlying assumption in thus, investigate here a simplified one-dimensional model 

applying a thermal transport equation to such a process with a parabolic barrier and dissipation-fluctuation dy

relies on the fact that internal degrees of freedom are fastly namies along the reaction coordinate. As will be seen later, 

thermalized compared to the time scale of the collective even with this simplification, we can learn characteristic 

degrees of freedom. If in addition, dissipation already oc features of the inverse process, i.e., fusion mechanisms of 

curs in the approaching phase as in the present model, massive systems. We believe that it has some interests in 

the heating-up process is mostly completed and the use of other fields of physics such as collision of molecular sys

a Langevin type equation is meaningful. The fluctuations terns, atomic clusters, etc... 

due to the random force playa crucial role here, where A Langevin equation is used for the collective degree 

the probabilities are very small. In nuclear physics, such a of freedom passing into a potential well. The barrier is 

formalism has been successful to study fission [10,11], fol supposed to be an inverted parabola around the saddle 

lowing Kramers's pioneering work [12]. Here, we are deal- point, V(q) = _mw 2q2/2 and the coefficients are supposed 

ing with an 'inverse process' to fission of the compound to be constant around the saddle. The Langevin equation 

nucleus. reads, 

Various assumption were done to solve the problem. (1) 

First, as this model is limited to the so-called hot fu-
where r(t) comes from a Gaussian random force and sat

sion mechanisms, a classical formalism would be sufficient. 
isfies the fluctuation-dissipation theorem, 

Quantum fluctuations were shown to have a small effects 

on fusion probability of hot nuclei [13]. Markovian ap (r(t) =0 and (r(t)r(t') = 2Tj3 o(t  1'). 
m 

(2) 
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In these equations, T, m and /3 denote the temperature, 

the mass and the reduced friction, respectively. Given a 

set of initial conditions, qo < 0 and Po = mqo > 0, the 

Langevin equation can be exactly solved, see Refs. [15-17], 

and leads necessarily to a Gaussian distribution. Then, the 

probability at a given time that the particle has passed 

over the barrier at q = 0 is simply, 

r+ OO dq 1 (. (q_(q(t))2) 
P(tj qo, po) = 10 ~ O"q(t) exp - 20"~(t) 

= !erfc (_ (q(t) ), (3) 
2 y2O"q(t) 

where the average trajectory reads, 

(q(t)� = qoR(t) + PoS(t) , (4) 

with 

R(t) = e-rwt [COSh (~wt) 

+ ~ sinh ( vi1 + x2wt) ] (5) 

S(t) = ~e-rwt sinh ( VI + x 2wt) , (6) 
mw 1 + x 2 

and the variance, 

0"2(t) =� ~ [e- 2rwt (2~ sinh2 (~wt) 
q� mw 2 1 + x 2 

+~sinh (2Vl + x 2wt) + 1) - 1] . (7) 

In the above equations, x = /3/2w. 

In the case of Kramers's problem [12), particles are 

thermally equilibrated in a potential well that has a small 

leak and indeed, Kramers's solution cannot be applied to 

the fusion problem as in Ref. [7]. In the inverse mechanism) 

the system is not equilibrated, at least with respect to a 

collective degree offreedom such as reaction coordinate. In 

the approaching phase, generating a dispersion of the ini

tial conditions, qo and Po [3]. Subsequently, once the nuclei 

are in contact, a very strong dissipation is known to start 

up. Internal degrees of freedom accommodate the dissi

pated energy and are supposed to be quickly equilibrated 

at temperature T. Not the collective ones, of course. They 

are coupled to the intrinsic ones through the dissipation-

fluctuation terms. As a consequence, in such a situation, 

a dispersion of the initial conditions should be considered 

with a different width, assuming a Gaussian distribution 

[3], 

_� _ 1 [(qO-i/O)2]
Wo(qo, 0"qo , Po, To) = 2 ...,;mr;;- exp 2 2

'1rO"qo� m 0 O"qO 

(Po - PO)2]
. exp� - To . (8)[ 2m 0 

The new fusion probability can be easily calculated and 

becomes 

oo oo 

P(t; i/o, O"qO'PO, To) = i: dqo i: dpo P. Wo 

= !erfc ( (i/(t)) (9)
2 y2O"~(t)' 

where (q(t) is the same as in Eq. (4) provided that qo and 

Po are replaced by i/o and Po, respectively. The variance is 

larger, 

(10) 

In these equations, To is a parameter for the initial distri

bution that could be interpretated as a temperature of the 

nuclei at contact while T would correspond to the temper

ature ofthe amalgamated systems when the kinetic energy 

is dissipated. To could be equal to the temperature T of 

the Langevin force in the case of a complete damping of 

the case of heavy ions fusion, dissipation already occurs in the initial kinetic energy, i.e. Po = o. 
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For large times, (VI + x 2 - x)wt » 1, the probability 

to pass over the barrier converges to a finite value, 

F(t ~+oo;ijo,(Tqo,po,To) 

(11)~ ~erfc ( f:, - (x +k) If) , 
where K = P6l2m denotes the average initial kinetic en

ergy, iJ = mw2q6l2 the average barrier height and 

(12) 

a "dynamical temperature" . This result is coherent with 

the one of Ref. [18] derived in a different context. In the 

case of Kramers's problem, temperature is solely respon

sible for the diffusion because of the initial equilibrated 

distribution inside the pocket. Here, there is an interplay 

between dynamics and diffusion: the initial kinetic energy 

should also be taken into account and the "temperature" 

T' depends on initial conditions. For a sharp initial condi

tion, To =0 and (TqO =0, this result is similar to the one 

of Refs. [15,19]. 

To have half of the particles to pass over the barrier, 

the initial kinetic energy should be 

(13) 

This means that the average trajectory has to overcome 

an effective barrier, BelI = (x + VI + x2)2B that takes 

viscosity into account. In the very weak friction limit, the 

above condition becomes BelI ~ B, which is a trivial re

suIt. Taking usual values in nuclear physics, 1iw = 1MeV 

and f3 = 5.1021 8- 1 , Bef! ~ lOB. This shows the impor

tant role played by dissipation which is expected to be 

responsible for the fusion hindrance. 

The average trajectory, the overpassing probability and 

the current at the top of the barrier are plotted in Fig. 1 as 

a function of time for four regimes, K = 0, 0 < K < Be!I, 

K = Bef! and K > Bel I' Note that the time scales 

are different. The current is simply j(t) = d~;t). The 

first case corresponds to the solution of the Smoluchowski 

equation where inertia is neglected. The average trajec

tory immediately goes away from the top and the small 

fusion probability is only due to the diffusion. The time 

needed for the probability to converge is very long, about 

2(x + VI + x 2)/w when x > 1 and about 4/w else. In the 

second case, when 0 < K < Bef!, the average trajectory 

first goes in direction of the barrier top, without reach

ing it. The overpassing probability is still due to thermal 

diffusion which is very slow, but enlarged by the average 

motion. When the average trajectory reaches its highest 

point, at tm , given by, 

2coth ( VI + x wtm ) = ~+ (1 - ~) JB~ I I 

(14) 

the probability starts to grow. In the last case, when K > 

BelI, after the average trajectory quickly passed over the 

barrier top, the variance is still growing and the probabil

ity is slightly decreasing. The time needed for the average 

trajectory to reach the top of the barrier, ttop, is given by, 

coth (VI + x2wttop) = (1 + ~) IBK 
- ~.

1 + x 2 e!! 1 + x 2 

(15) 

Most of the particles are in the same side of the barrier 

as the average trajectory. When the variance is enlarged 

by the spreading of the initial conditions, there are more 

particles on the other side of the barrier. Then the asymp
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totic overpassing probability is larger when K < Be!! and 

smaller when K > Be!!. 

It is worth to mention that Fig. 1 shows that the fluxes 

are appreciable during a certain period of time and then 

vanish, which is in contrast with Kramers's process where 

the flux rate reaches a stationary limit. This again shows 

that the inverse process is a collision process with an inter

play between dynamics and diffusion. It appears that the 

initial kinetic energy plays a major role. In Fig. 2 the fi

nal overpassing probability is plotted as a function of the 

initial kinetic energy, according to Eq. (11). The higher 

the temperature is, the smoother is the transition. When 

the initial kinetic energy is null or very small, temperature 

turns out to play the major role. This corresponds to the 

fusion probability calculated with a Smoluchowski type 

equation where fusion is solely due to diffusion. It could 

be seen that fusion probability increase fastly with K and 

the validity of the overdamped approximation is rather 

limited. This situation differs from the Kramers's prob

lem where the overdamped approximation is valid as soon 

as f3 » 2w. Here, the initial kinetic energy gives another 

strong constraint on the validity of the approximation. 

Figure 2 also shows the final overpassing probability 

as a function of temperature when K = O. Applied to 

the fusion of heavy nuclei, this simple model shows that 

naturally, the fusion probability is increasing with temper

ature. The authors of Ref. [4] found an opposite behavior 

for this formation probability, solving numerically a multi

dimensional Langevin equation. Such a peculiar tendency 

would be due to the fact that the contact configuration is 

just on the ridge line or even slightly inside. 

When K « Be!!, and, if, in addition, T' < B /10, 

conditions corresponding to Kramers's problem, the over

passing probability is extremely low and it can be ex

panded 

The result has an Arrhenius type factor and could be 

called an "inverse Kramers's formula", considering the 

physical situation. However, it should be noticed that the 

"temperature" T' is not the one from the Langevin force, 

but the dynamical temperature, Eq. (12). In the specific 

case where uqo = 0 and To = T, one exactly gets T' = T, 

which is more common. It should also be stressed that 

Kramers's formula is for the overpassing rate while the 

present one is for the probability. 

Investigating the fusion of heavy nearly symmetric nu

clei, the authors of Ref. [20] have introduced the concept of 

a fluctuating potential barrier in order to fit experimental 

data. The present results, i.e., the probability given by the 

error function Eq. (11) appears to be similar to the Gaus

sian distribution ofthe barrier, and tends to give a theoret

ical background to such an approach. The so-called fusion 

hindrance which corresponds to the average value of the 

additional fluctuating barrier could be directly evaluated 

with our model. Equation (13) indicates a necessity of an 

extra-push energy for the fusion probability to reach 1/2. 

This additional energy, Eadd = Ecm - VB with Eem being 

the center of mass available energy and VB the height of 
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the usual barrier, is given by energy conservation: 

Eadd = BefJ + f* + To/2 + Vcontact - Q - VB, (17) 

where f* denotes the intrinsic excitation energy at the 

contact point, say aT~. It should be emphasized that the 

friction at the saddle dramatically enhances the extra

push energy through Be!!. The fluctuation of the bar

rier should be interpreted rather as a consequence of the 

dissipative dynamics through the dissipation-fluctuation 

theorem. Here, we derived an analytical formula for the 

extra-push energy which could be directly applied, pro

vided that the physical ingredients such as barrier height, 

nuclear viscosity... are known. A direct comparison with 

experimental data of the extra-push energy and the fu

sion probability calculated with this model, using realistic 

parameters, will be published in another paper [21]. 

Generally, for the synthesis of the superheavy elements, 

the incident energy should be as low as possible. In such 

cases, the average trajectory never reaches the saddle and 

fluctuations are to be taken into account to evaluate the 

small formation probability. We propose in this note an 

analytical formula for this probability as a function of 

the energy, Eq. (11). The connection to the dissipation in 

the approaching phase is done through the dispersion of 

the initial conditions. Nevertheless, for some cases, con

sidering the very low fusion probability, Eq. (16) would 

be enough. Thus, the incident energy is largely dissipated 

during the approaching phase. This dissipation reduces 

the probability of passing over the Coulomb barrier and 

has to be carefully taken into consideration [3,4]. For some 

systems, when the initial kinetic energy is not completely 

damped out in the approaching phase, the use of a Smolu

chowski type equation would appear doubtful. 

The escape rate from a metastable well has been widely 

studied since Kramers's original paper, see Ref. [22] for a 

review, but not the entrance phenomena. We have then 

studied the inverse problem by exactly solving the Langevin 

equation for a simple parabolic potential barrier with dis

sipation and its associated fluctuations. A general solution 

for the overpassing probability is obtained at any time 

generalizing what was done in Ref. [19] and analyzed, as 

shown in Figs. 1 and 2. When the initial kinetic energy is 

completely damped out during the approaching phase, we 

show that the solution turns out to be a simple formula 

with an Arrhenius type factor that could be called "in

verse Kramers's formula" . It should be stressed again that 

even in such a case, the process is a collision one, i.e. the 

flux over the barrier vanishes after some times. Our results 

might then interest other fields of physics, especially when 

dissipative collisions occur. Of course, a complete theory 

should combine both entrance probability and escape rate. 

The problem depends then on the physical situation and 

goes far beyond the scope of this note. 

We are indebted to B. Bouriquet, B.G. Giraud, G. Kosenko, 

C. Shen and T. Wada for interesting discussions. Two of us 
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support. One of us (D.B.) thanks JSPS for its support and the 

Yukawa Institute for its warm hospitality. This work is partially 

supported by the Grant-in-Aids nO 13640278 from JSPS. 
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Fig. 1. Average trajectory, overpassing probability and current 

at the top of the barrier as a function of time for the four 

regimes, K =0, (first column) K = Be" /2 (second column), 

K = Bet! (third column) and K = 2Bet! (last column). For 

each case, two temperatures were chosen, T = B/5 (solid line) 

and T = B/2 (dashed line). These are non-dimensional plots. 

Here, x = !w =3, To =0 and IrqO =o. Note that each column 

has a different time scale. 

Fig. 2. Left: Final overpassing probability as a function of the 

initial kinetic energy for two temperatures, T = B /10 (solid 

line) and T = B/2 (dashed line). Right: Final overpassing 

probability as a function of the temperature when the initial 

kinetic energy K =o. Here, x = !w =3, To =0 and Irqo =o. 
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