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Abstract 

We define a first order phase transition as a bimodality of the event distribution in 
the space of observations and we show that this is equivalent to a curvature anomaly 
of the thermodynamical potential and that it implies the Yang Lee behavior of the 
zeroes of the partition sum. Moreover, it allows to study phase transitions out of 
equilibrium. 

1 Introduction 

From the theoretical point of view phase transitions are defined at the ther
modynamical limit through a non-analyticity of the thermodynamical po
tential. However, in finite systems, since the partition sum is analytical, this 
definition cannot be applied. Then, it has been proposed[1] to define and 
classify phase transitions according to the zeroes of the canonical partition 
sum in the complex temperature plane[2] . Alternatively it has been claimed 
that phase transitions can be related to a negative microcanonical heat ca
pacity [3-5]. Then, we have generalized this idea to any inverted curvature 
of any thermodynamical potential as a function of an observable which can 
then be seen as an order parameter[5]. We have shown that this implies a 
bimodality of the probability distribution of this observable in a statistical 
ensemble in which this observable is only known in average. Finally we have 
shown the link between all these different definitions [6] . 

2 Back-bending of the chemical potential 

Let us first consider the possible general definition of a first order phase 
transition as the occurrence of a curvature anomaly of the thermodynam
ical potential as a function of one order parameter. This means that we 
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Fig. 1. Lattice gas results. Left: Canonical equation of states (top) from the loga
rithmic derivative of the grancanonical probability distribution (Bottom) calculated 
for f..L = -3E and T < Tc (grey area), T > Tc (symbols). Right: Canonical calculation 
of the free energy (bottom) and of its derivatives: the chemical potential (above) 
and the pressure (right). 

should study a statistical ensemble for which the order parameter is either 
a conserved quantity or simply a sorting variable. For the liquid gas phase 
transition, the density can be taken as an order parameter. Since the density 
is related to both the number of particles and the volume, one should con
sider an ensemble in which these two extensive variables are state variables. 
This is the case for the canonical lattice gas calculations in a constant vol
ume container. Then the partition sum Z ({3 = T-I , V, N) give access to the 
free energy F = - T log Z = E - T S. Therefore, a concavity anomaly of F 
as a function of N or V should be the signal of the phase transition. This is 
exactly the results reported in the right part of figure 1 [5]. Using J-L = -oNF, 
this induces a back bending of the chemical potential as a function of the 
number of particle. This back bending means that the" susceptibility" X-I = 

ONJ-L diverges before becoming negative. In the same article [5], it is shown 
that the pressure (P = ovF) is presenting the same back-bending behav
ior as a function of the density (right part of figurel) leading to a negative 
compressibility. These anomalies in the chemical (il, N) or in the mechanical .'
(P, V) equations of state are analogous to the back bending of the caloric 
curve (T, E) leading to the negative heat capacities. 

Let us now study what happens when we do not control the order parameter 
but the conjugated variable. For the lattice gas model we can thus consider 
the grand canonical distribution of particles associated with a chemical po
tential p. Above the critical temperature the distribution of particle number, 
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Fig. 2. Volume and energy distribution of a confined canonical lattice-gas model in 
the first order phase transition region with three associated projections. 

P{3p' (N) is almost Gaussian. At the critical temperature the flatness of P{3p' 
signals the second order transition point. Below the critical temperature 
P{3p' becomes bimodal and defines the coexistence zone (see Fig. 1). Indeed 
log P{3p' (N) = (3F{3 (N) + (3jjN - Z{3p' where Z{3p' is the grand canonical par
tition sum. Therefore the curvature anomaly of free energy directly appear 
as a curvature anomaly of log P{3p' (N). The canonical chemical potential is 
given by 

and is shown in the upper part of Fig. 1 (left). It should be noticed that 
a unique grand canonical chemical potential jj gives access to the whole 
distribution of canonical chemical potentials J.1{3 (N) . In the phase transition 
region J.1{3 presents a strong back bending which reflects the bimodal structure 
of the probability distribution related to the curvature anomaly of the free 
energy. The canonical chemical potential and the information extracted from 
the grand canonical calculation through the sorting of events are in parfait 
agreement. 

Bimodal size distribution and negative compressibility 

Let us now take the example of the liquid-gas phase transition in a system 
of N particles for which only the ayerage volume is known. In such a case 
we can define a volume observable V as a measure of the size of the system; 
for example if = i~ Li rr where the sum runs over all the particles. Then a 
Lagrange multiplier AV has to be introduced in the definition of the statis
tical ensemble. In a canonical ensemble we can define different distributions 
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which are illustrated in Fig. 2. A complete information is contained in the 
distribution P{3Av (E, V) = W (E, V) zjilv exp -(fJE + Av V) since events are 
sorted according to the two thermodynamical variables, E and V. This leads 
to the density of states W (E, V) with a volume V and an energy E. One can 
see that in the first order phase transition region the probability distribution 
is bimodal. We can look for an order parameter Cd = xiI+yV which provides 
the best separation of the two phases. A projection of the event on this order 
parameter axis is also shown in Fig. 2. One can see a clear separation of the 
two phases. On the other hand if we cannot measure both the volume V and 
the energy E we are left either with i) P{3Av (E) ~ WAv (E) ZiA~ exp( -fJE) 
giving access to the microcanonical partition sum WAv (E) at constant Av ii) 
or P{3Av (V) _ Z{3 (V) zjilv exp(-Av V) leading to the isochore canonical par
tition sum Z{3 (V) . Since both probability distribution P{3Av (E) and P{3Av (V) 
are bimodal the associated partition sum do have anomalous concavity in
truders ,i.e. negative heat capacity as well as negative compressibility. 

Link with the zeros of the partition sum 

An important issue is to show how the presented definition can be related to 
the usual one at the thermodynamical limit. A way to address this problem is 
to look at the zeros of the partition sum in the complex Lagrange parameter 
plane and to use the Lee-Yang theory. For sake of simplicity let us consider 
only one couple of thermodynamical variables (a, b) . The partition sum for 
a complex parameter 1 = a + irJ is nothing but the Laplace transform of the 
probability distribution Pao (b) = f db Wao (b) e-iaob for a parameter ao [7,8] 

If Pa (b) is monomodal while the size is increased toward the thermodynam
icallimit (when it exists), we can use a saddle point approximation around 

the maximum ba giving Z = etP (hex) , with 

where C-1 = allogpao (b). However, if the density of states Wao (b) has 
a curvature anomaly, then it exists a range of a for which the equation 
8b log(Wao (b)) - (a - ao) = a has three solutions b1 , b2 and b3 . Two of 
these extrema are maxima so that we can use a double saddle point ap
proximation which will be valid close to thermodynamical limit [7] Z = 

e<P (bI) + e<P (b3)= 2e<P+ cosh (¢-) where 2¢+ = ¢ (b1) + ¢ (b3 ) and 2¢- = 
¢ (b 1 ) - ¢ (b3 ). The zeros of Z then correspond to ¢- = i (2n + 1) 7I-j2. 



The imaginary part is given by 'rJ = (2n + 1) 7f/ (b3 - bd while for the real 
part we should solve the equation Re ¢- = O. In particular, close to the real 
axis this equation defines an a which can be taken as ao. If the bimodal 
structure persists when the nurnber of particles goes to infinity, the loci of 
zeros corresponds to a line perpendicular to the real axis with a uniform 
distribution as expected for a first order phase transition. 

5 Phase transitions out of Gibbs equilibria 

The presented definition of a phase transition based on the probability 
distribution can be extended to other ensembles of events which do not 
correspond to a Gibbs statistics such as non equilibrium, fully dynamical 
preparations or non ergodic or non mixing systems. As an example, we an
alyze the consequence of going from Gibbs to Tsallis[9] ensemble on the 
existence of a phase transition, for a system controlled by an external pa
rameter A (e.g. a pressure). For a given A the system is characterized by 
a density of states HlA (E). For a critical value of A = Ac the associated 
entropy SA (E) :....- log WA (E) presents a ze~o curvature and below a con
vex intruder. The Tsallis probability distribution reads ( ql = q - 1) [9] 
P! (E) = WA(E) (1 + qlf3E)-qjql /Z1. Computing first and second deriva
tives of log P! one can see that the maximum of log P! occurs for the energy 
which fulfills the relation fA = (13- 1 + q1E) / q where t is the microcanonical 
temperature while this point has a null curvature if CA = q/ql where CA is 
the microcanonical heat capacity. Then, if q > 1 the Tsallis critical point 
occurs above the microcanonical critical point and one expects a broader 
coexistence zone in the Tsallis ensemble while for q < 1 it is the opposite. 
The curvature at the maximum of P! is t 28; log P! = -I/C),. + ql/q. Far 
from the C divergence line, this curvature is not very different from the 
microcanonical heat capacity if ql/q is small. 

6 Conclusions 

In conclusion, we have discussed a definition of phase transitions in finite 
systems based on topology anomalies of the event distribution in the space of 
observations. We have shown that for statistical equilibria of Gibbs type this 
generalizes the definitions based on the curvature anomalies of entropies or 
other potentials. It gives an understanding of coexistence as a bimodality of 
the event distribution, each component being a phase. It provides a definition 
of order parameters as the best variable to separate the two maxima of the 
distribution. Some first applications based on the properties of probability 



distributions have already been reported [10-13]. The nature of the order 
parameter provides also a bridge toward a possible thermodynamical limit. If 
it is sufficiently collective it may survive until the infinite volume and infinite 
particle number limit. If the bimodality also survives, then using the zeroes 
of the partition sum we have shown that the finite size phase transition 
becomes the one known in the bulk. Finally the proposed definition can 
be extended to different statistical ensembles such as Tsallis ensemble. We 
have shown that phase transitions can be identified also in situations out 
of Gibbs equilibria as a bimodality of the probability distribution but that 
the associated properties such as the position of the critical point do change 
with the ensemble. However, it should be noticed that if one applies an 
energy sorting to a Tsallis ensemble one recovers the usual microcanonical 
ensemble so that the identification of phase transitions through abnormal 
kinetic energy fluctuations can be seen as a very robust method (see the 
contribution by Gulminelli et al.) 
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