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Abstract. We present new analytical results cons:erning the spectral distributions 
for (2 x 2) random real symmetric matrices which generalise the Wigner surmise. 

1. Introduction 

More than forty years ago Wigner initiated the use of Random Matrix Theory [1] 
to investigate the statistical properties of eigenvalues and eigenvectors of many-body 
quantum systems. Particular attention was always paid to Gaussian ensembles. In 
fact, assuming that (i) the elements of the Hamiltonian matrix are independent real 

variables and (ii) the matrix distribution is invariant under an orthogonal transformation 
of the basis states, it is possible to show [2] (see also [3J) that the matrix elements 
are independent Gaussian variables with zero mean and with variance satisfying the 
conditions olj = (1 + 8ij )(72. Since then, many analytical results have been derived 
for such matrices (see e.g. [4]), and the Gaussian Orthogonal, Unitary or Symplectic 
Ensembles (GOE, GUE or GSE, respectively) have been widely and successfully applied 
in many fields of physics (see e.g. reviews [5, 6]). 

Realistic interactions used in many-body nuclear, molecular or atomic problems 
however are predominantly of one- and two-body nature, implying that the elements of 
the Hamiltonian matrix are not independent and that the distribution of the matrix is 
not invariant under an orthogonal (unitary) transformation of the basis. In this context, 
French and Wong [7] and Bohigas and Flores [8] independently introduced the Two-Body 
Random Ensemble (TBRE) which is more relevant for many-body physics. Indeed, 
the level distributions of experimental nuclear spectra resemble much more a Gaussian 
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distribution, given by a TBRE, rather than a semi-circle provided by a GOE [7]. The 

TBRE has been intensively studied numerically [7, 8, 9], but to our knowledge the only 
analytical result has been obtained up to now by Gervois who proved [10] that the 
cumulative energy distribution for the TBRE was Gaussian. 

A random matrix ensemble different from the GOE can arise in a many-body 
problem provided that only interactions up to a certain rank are used. Given the 
importance of the TBRE in realistic calculations and, in particular, the interest initiated 
by recent studies in the context of the shell model [11] and the interacting boson 
model [12], we present in this letter some analytical results concerning the properties of 
(2x2) random symmetric matrices for which the assumption (ii) mentioned above is not 
satisfied. We justify our choice of ensemble taking as an example a two-particle system 
interacting via one- and two-body forces (a typical situation found in nuclear, atomic 
and molecular physics). First, we derive the Hamiltonian distribution as a function 
of its eigenvalues and we calculate the nearest-neighbour spacing distribution which 
generalises the well-known "Wigner surmise" [1]. Then, for a particular case, we give 
the analytical expressions for the first moments of this distribution. Finally, we propose 
a method to derive the moments of the eigenvalues distribution without knowledge of 
an explicit expression for the distribution. 

2. One- and two-body random interactions for a two-particle system 

We first illustrate how the problem solved in the next section can arise. We consider 
two simple examples provided by typical nuclear structure models, namely, the nuclear 
shell model (see e.g. [13]) and the interacting boson model [14]. 

In both cases, the most general one- and two-body (hermitian, rotational invariant, 
particle-number and parity conserving) Hamiltonian reads 

II = LCj'j2j + 1 [a}®ajrO) (1) 
i 

J 2J+l [[ t t ](J) _ _ (J)] (0)
± L: vid2i3i4 (1+8 .. )(1+8 .. ) ail ®ai2 ® [ai3®aj4] .,

il ~j2 J122 J3J4 
j3~j4 

J 

where a}m and ajm are boson (fermion) creation and annihilation operators, ajm = 
(-l)j-m ai_m, j and m are the particle angular momentum and its projection (integer 
for bosons or half-integer for fermions) and J is the total angular momentum. The 
sign "+" in front of the second term in the r.h.s. of (1) applies to bosons, while "-" 
stands for fermions and ® denotes a tensor product. The parameters Ci are the single
particle energies, while v1i2i3i4 are the interaction matrix elements between normalised 
two-particle states (properly symmetrised for hosons or antisymmetrised for fermions) , 

v1hi3i4 = (jlj2; J III I j3j4; J) .. 

Let us consider a system of two identical fermions in two different j-orbitals. This 
160can be 180 represented as plus two neutrons in the OdS/ 2 and lS1/ 2 orbitals, or 



3 Letter to the Editor 

30Si modeled as a 28Si core with two neutrons in the lS1/ 2 and Od3/ 2 orbitals. In 180 
the configuration space contains six states: two states with J7r = 0+, two states with 
J7r = 2+, a J7r = 3+ and a J7r = 4+ state. The eigenvalues for J7r = 0+,2+ are 

determined from the diagonalisation of the following (2x2) real symmetric matrices 

2€ 1. + v? 1 1 1 V?155 )2 2222 2222 (2)( v? 1 5 5 2€ §. + v~ 5 55 ' 
2222 2 2222 

and 

€ 1. + € §. + v? 1 5 5 v? 5 5 5 
2 2 2222 2222 (3)).v? 555 2€ §. + v~ 555 

2222 2 2222 

A similar situation can arise in a system of identical bosons. For example, the 
spectrum of two bosons with j = 0,2 contains five states: two J7r = 0+ states, two 
J7r = 2+ states and a J7r = 4+ state. The corresponding (2 x 2) matrices are 

H (0+) = (2€O + v8000 V8022 ) ( 4) 
V8022 2€2 + V~222 ' 

and 

H (2+) = (€O + €~ + V5202 V52222 ). (5) 
V 0222 2€2 + V 2222 

The explicit form of these matrices is identical to those obtained in two-fermion system 

above. If we assume that the parameters of the Hamiltonian (1) are independent 
Gaussian random variables, it is clear that the random matrices (2)-(5) in general do 
not belong to the conventional GOE, although the matrix elements are still independent. 
The latter statement is obvious in case of H (0+), (2) or (4). For the matrices H (2+), 
(3) or (5), we note that they can be represented as a sum of the unity matrix multiplied 
by €§. or €2, respectively, and a (2 x 2)-matrix with completely independent matrix 

2 

. elements. 

Similar matrices may appear for specific cases of an n-particle system provided low 
rank interactions are used. Therefore, in order to study the statistical features of the 

many-body spectra, one is required to generalise the Wigner surmise. 

3. Generalised Wigner surmise 

Let us consider a (2x2) real symmetric matrix whose elements are independent Gaussian 
variables with zero mean and variance alj. The probability density of the matrix H is 
then given by 

2 2 2 

1 [ ( H H H )]p(H) = exp - -¥- + --¥- + --¥- . (6)
(21r)3/2J(J'i1(J'i2(J'~2 2a11 2(J'12 2(J'22 

Each matrix H can be diagonalised in an orthogonal basis and therefore H = atDO, 
with 

a = (COSO - sin 0 ) 
sinO cosO ' 
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and 

D = ( ~a;~ ). 
Similar to the case of GOE [3], we find that in the general case 

H11 = Eo: cos2 0 +E{3 sin2 0 
Hl2 = (Eo: - E(3) cos 0 sin 0 
H22 Eo: sin2 0 + E{3 cos2 0 

We deduce that the probability density expressed in terms of the eigenvalues and the 
angle () is 

_ Eo: - E{3 {_ [Eo:~2 - (Eo: - E(3) (O"il cos2() + a~2 sin20)] 2} 
p (Eo:, E{3, 0) - exp 2 2 2 

(27r )3/2)arl 0"~20"r2 2a110"22~ 

-~(E _ E )2 (COS2
(20) sin

2(2()))]
exp [ 2 0: (3 ~2 + 4ar2 (7) 

where ~2 = atl + 0"~2 and Eo: - E{3 ~ o. 
The nearest-neighbour spacing distribution for the variable £ = Eo: - E{3 is given 

by the following integral 

p(c:) = t:/2

2dO f: dEa f~ dE~ p(Ea , E~, 0) 8 (e - Ea + E~), (8) 

from which we obtain 

_( ) = £ [_ £2 (~2 +4ai2)] T (£2 (~2 - 40"i2))
P £ ~ exp "'2 2.LO 2 2 (9)

2y ~20"r2 16L.i a12 16~ 0"12 

where lois a modified Bessel function of the first kind. 
The expression (9) looks like a Rayleigh-Rice distribution, well known in signal 

theory [15], except for the argument of 10 , which is not linear as in the usual Rayleigh
Rice distribution but quadratic. This is why we will refer to p(£) as to a quadratic 
Rayleigh-Rice distribution. 

Let us consider a particular case when the diagonal matrix elements have the same 
variance atl = 0"~2' which is X times larger than the variance, at2 = 0"2, of the non
diagonal matrix elements, i.e. X = ail!O"i2' Then the eigenvalue distribution (7) reduces 
to 

2
(E E 0) = Eo: - E{3 [_ E; + E~ + ~(Eo:-E{3)2(X-2) Sin (2B)] ( ) 

Px 0:, {3, (27ra2)3/2 exp 2X0"2 ' 10 x 

while for the nearest-neighbour spacing we get 

_ ( ) _ c ( (X + 2) c
2

) T ((X - 2)£2)Px £ - exp - .Lo • (11)
.J2X2a2 16X0"2 16X0"2 

For X = 2, expression (11) reduces to the Wigner surmise. The distributions Px(£) are 
plotted in figure 1 for X = 1, X = 2 and X = 5. For the two-particle systems considered 
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Figure 1. Quadratic Rayleigh-Rice distributions for X = 1 (solid line), X = 2 (dashed 
line) and X = 5 (dotted line) with u 2 = 1. 

above, X = 5 corresponds to the matrix H (0+) and X = 2 corresponds to the matrix 
H (2+), assuming that all parameters in Hamiltonian (1) have the same variance. 

To calculate various statistical characteristics, it is often required to know certain 
moments of the distribution. Thus, we have derived analytical expressions for some 
moments of the distribution (11), and the lowest are given in table 1. 

Table 1. The moments up to n=5 of the quadratic Rayleigh-Rice distribution (11) 
for u 2 = 1. F is the hypergeometric function [16]. 

Iooo
M n = cnpx(c)dc values for X = 2 for X = 5 

n=O 1 1 1 

n=l 4XJ2;T(X +2)-3/2F [~, ~, 1, (~+~)'] ..j2; 1.3 V2i 

n=2 2 (2 + X) 8 14 

n=3 96x2 ,/27i'(X + 2)-5/2F [~, *' 1, (~:;:~ /] 12-J27r 28.7V2i 

n=4 4 (12 + 4X + 3X2
) 128 428 

n=5 3840x3v'2lr(X + 2)-7/2F [H, 1, (~+~)'] 240V2i 1139.2y'2;' 
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Integrating Px in (10) over E{3 from -00 to Ea and over Ea from -00 to +00, we 
obtain the angular distribution 

r (0) - ~ rg 1 (12) 
x - 7r V"2 [1 + ~ (X - 2) sin2 (20)r 

This distribution is represented in figure 2 for different values of X. :For X = 2 it is 
an exactly uniform distribution, which means that there is no privileged ba.sis (the 
orthogonal invariance holds). For high values of X, the initial basis is nearly the 

eigenbasis (the diagonal elements are much larger than the non-diagonal ones), thus 
rx takes its maximum absolute values for 0 = 0 and 0 = 7r /2, whereas for small values 
of X, the eigenstates are more likely obtained after a rotation of 7r /4 of the initial basis 
and r x is maximum for 0 = 7r / 4. 
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Figure 2. Angular distributions for X = 1 (dotted line), X = 2 (dashed line) and 
X =5 (solid line). 

We can re-express Px(Ea , E(3) as a function of c and S = Ea + Ef3. Then Px can be 
factorised into a function depending on c times a function depending on S, i.e. these 
variables are independent. Moreover since S is the trace of the matrix it is a Gaussian 
variable with zero mean and all its odd moments are zero. From the independence of c 
and S we deduce that the moments of the eigenvalues fulfill 

(E~) = (-1)n(E3) (13) 
1 n/2 p 2p )(E~) = 2 n L (~p) (S2 )(cn

- (14) 
p=O 
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From (13) and (14), we can quite easily derive the moments of the eigenvalues whose 
distributions are difficult to compute. Note that from (13), we deduce that the highest 
eigenvalue and the lowest one have opposite mean values and the same variance. 

4. Conclusion 

The study of the statistical properties of spectra of realistic many-body Hamiltonians 
requires consideration of a random matrix ensemble whose elements are not independent 
or whose distribution is not invariant under orthogonal transformation of a chosen basis.' 
In this letter we have concentrated on the properties of (2x2) real symmetric matrices 
whose elements are independent Gaussian variables with zero means but do not belong 
to the GOE. We have derived the distribution of eigenvalues for such a matrix, the 
nearest-neighbour spacing distribution which generalises the Wigner surmise and we 
have calculated some important moments. We believe that these expressions hold for 
certain matrices of high dimensions which would justify the use of (11) instead of the 
Brody distribution [17] to fit the data. We also think that these results can be extended 
to hermitian matrices. 
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