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Scaling properties of the fragment size distributions are 
studied in a microcanonical multifragmentation model. A 
new method based on the global quality of the scaling func­
tion is presented. Scaling is not washed out by the long range 
Coulomb interaction nor by secondary decays for a wide range 
of source masses, densities and deposited energies. However I 

the influence of these factors on precise value of the critical 
exponents as well as the finite size corrections to scaling are 
shown to be important and to affect the possible determina­
tion of a specific universality class. 

PACS number(s): 24.1O.Pa; 25.70.Pq; 64.60.Fr 

In t~e past decade, the simultaneous breaking of a ex­
cited system in many pieces, has been recognized as a new 
decay mode of atomic nuclei. This multifragmentation 
has been tentatively associated with a liquid-gas phase 
transition which is expected to occur in nuclear matter 
because of the resemblance of the nucleon-nucleon inter­
action with the van der Waals force. In particular, scaling 
properties which are expected in the vicinity of a critical 
point in the thermodynamical limit, have been observed 
on the sizes of fragments as a function of multiplicity [1] 
and of excitation energy [2] and critical exponents have 
been extracted in reasonable good agreement with the 
liquid-gas universality class. These observations would 
plead in favor of the classification of nuclear multifrag­
mentation as a second order phase transition. 

It has been recently discussed in the framework of the 
grand canonical Lattice Gas Model that a scaling behav­
ior can be observed at supercritical densities along the so 
called Kersetz line [3J and for canonical finite size systems 
in the liquid-gas coexistence region as well [4J. However, 
the lattice-gas model does not contain the specific fea­
tures of nuclear physics concerning a quantum system 
of interacting fermions with a short range nuclear inter­
action but also a long range Coulomb force. Moreover, 
very little is known in general on scaling properties in first 
and second order phase transitions in the microcanonical 
ensemble and for systems subject to long range non satu­
rating forces as the Coulomb interaction (5]. The present 
paper aims to investigate these issues about criticality 
within a realistic microcanonical nuclear multifragmen­
tation model (6]. 

The model describes the disassembly of a statistically 
, equilibrated nuclear source (A, Z, E, V) (the mass num­

ber, the atomic number, the excitation energy and the 

freeze-out volume respectively). The basic assumption 
of the model is the equal probability between all con­
figurations C : {Ai, Zi, €i, ri, Pi, i = 1, ... , N} 
(the mass number, the atomic number, the excitation 
energy, the position and the momentum of each frag­
ment i of the configuration C, composed of N frag­
ments) which are subject to standard microcanonical 
constraints: 2:i Ai = A, L:i Zi = Z, 2:i Pi = 0, Et - con­
stant. Fragments are assumed to be spherical, are not al­
lowed to overlap and are placed in a spherical container of 
volume V. The integration of the total number of states 
of the system over fragment momenta can be analytically 
performed leading to a specific statistical weight for each 
partition in a smaller configuration space from which the 
momentum observables have been projected out [6]. Us­
ing these weights, a Metropolis-type simulation is em­
ployed in order to generate a microcanonical ensemble 
of events. Since fragments resulting from the primary 
break-up are excited the model is completed with a sec­
ond stage treating secondary particle emission leading to 
the asymptotic fragments measured in the detectors [6]. 

Let us now discuss the scaling properties of the nuclear 
disassembly. Standard renormalization group arguments 
(7J lead to the following scaling relation [8] which is ex­
pected to hold in the proximity of the critical point of an 
infinite systems: 

(1) 

where N (A,p) is the multiplicity of a cluster of size A 
when the control parameter of the considered system is p. 
(j and T are the critical exponents while I is a universal 
scaling function. 

For finite size systems, little is known about the sur­
vival of this scaling property in the different statistical 
ensembles. In the lattice-gas model for constant volume 
transformations scaling has been shown to hold in the 
canonical ensemble for which the control parameter is 
the temperature (p = T) (3,4]. One of the aims of this 
paper is to verify whether such a scaling exists in micro­
canonical finite systems for which the control parameter 
is the energy (p = E). 

In order to study the critical behavior, two control pa­
rameters are of special interest in eq. (1): i) the critical 
point, from which one can deduce N (A, Pc) = A 1"1(0), 
ii) the maximum of the scaling function, for which one has 
N (A, Pmax (A)) = A 7" Imax and Pmax (A) = xmaxA +(1' 

Pc , where X max is the value of x (= A(1'(p-pc)) for which 
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f is maximized. These relations can be used to extract 
the exponents T and (j [4]. 

FIG. 1. Upper part: exponent of a power law fit of the size 
distribution as a function of the excitation energy (symbols) 
and x2 of the fit (dotted line); horizontal line: exponent of a 
power law fit of the maximum fragment production yield of 
a given size. Lower part: global quality of the scaling surface 
€r. The calculations on the left (right) panels correspond to 
the model with (without) the Coulomb interaction. 

Relation (i) has been widely used for defining a critical 
point and extracting the critical exponent T from both 
experimental data [1] and model predictions [9]. A stan­
dard technique is to calculate Tell(P) from a power law 
fit of the fragment size distribution at a given value of 
the control parameter p. In the first studies, it has often 
been claimed on heuristic grounds that the minimum of 
TelI as a function of p should correspond to the criti­
cal point [10,9]. It is well known now [11] and easy to 
demonstrate from equation (1) that this statement is not 
correct and it has been proposed to rather look at the 
minimum value of the X2 of the power law fit [12]. How­
ever, due to finite size effects, only a small mass window 
is expected to scale because the mass should be much 
larger then the elementary building block of the clusters 
to not be affected by the details of the interaction and 
small enough compared to the total mass to not feel the 
finite size restrictions. To assure that Tel I is meaningful 
near the critical point, we choose to fix the mass interval 
for the fit at the energy where the power law region is 
the widest. 

In Fig. 1 Tell(E) is represented for a system with 
A = 200 , Z = 82 and a freeze-out recipient of volume 
V = 3 YO (where va is the volume of the system at normal 

,� nuclear matter density) in which the centers of the spher­
ical fragments are positioned. The fit is performed at the 
asymptotic stage (Le. after secondary particle emission) 

in both the standard version of the model and in the case 
in which the Coulomb interaction has been switched off. 
It can be noticed that the X2 of the power law fit has a 
rather fiat minimum spread over a wide range of excita­
tion energies. Both one and two parameter fits, for which 
the power law normalization is related to T or is free to 
vary, have been tested leading to similar results. One 
can conclude that the minimum X2 method gives rather 
uncertain results concerning both T and the critical ex­
citation energy Ee. 

In order to identify in a less ambiguous way the critical 
region, we can test the quality of the whole scaling (1). 
For this evaluation Ee and a have been varied indepen­
dently while T is taken as the Tell estimated from the 
power law fit at an energy E = Ee (upper part of fig­
ure 1). The estimator of the quality of scaling is defined 
as the average (subject to x) relative dispersion (subject 
to A) of the scaling functions fA (x), corresponding to 
the same mass interval Amin, ... ,Amax as that used for 
determining 'TelI, over the interval 0 < x < A~in l:::,.E 
with l:::,.E=8 MeVlu (here x = AO"(E - Ee) and f(x) = 
N(A,E)AT). 

The result is presented in the bottom part of figure l. 
We observe a deep minimum of Er which clearly indicates 
the location of the critical (Ee , a) region. This minimum 
is sharper in the energy direction defining in a rather 
precise way the domain of acceptable Ee which in turn 
defines the possible 'T using the relation T = Tell(Ee ). A 
comparable quality of the scaling is obtained with and 
without the inclusion of the Coulomb interaction. This 
indicates that in the nuclear case, the presence of a long 
range non saturating force does not cause important de­
viations from the expected critical behavior. This might 
be due to the fact that the Coulomb force represents only 
a relatively small correction to the energy and thus to the 
relative weight of the various partitions. 

Another method to evaluate the critical control para­
meter and the critical exponents based on the relation (ii) 
has recently been used. If scaling is fulfilled, the maxi­
mum fragment production yields N (A, E max (A)) should 
behave as a power law of the fragment mass with the ex­
ponent T. As shown in the upper part of figure 2, this 
turns out to be the case in a large mass region leading 
to T = 1.95 when the Coulomb force is included and 
T = 2.33 when it is not. The maximum mass for which 
the power law is still valid, can be understood as a fi­
nite size cutoff while the minimum mass defines a max­
imum energy above the critical point up to which the 
scaling holds. a and E e can be defined using the quality 
test of scaling Er • The lower part of figure 2 shows the 
minimum of Er as a function of E. We observe a sharp 
minimum in both considered cases, with and without the 
Coulomb interaction. In the case in which the Coulomb 
interaction has been considered, a second minimum at 
high energy appears as well. However, this second min­
imum can be eliminated by considering the X2 of the fit 
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FIG. 2. Microcanonical multifragmentation model calcula­
tions with (left) and without (right) Coulomb. Upper panels: 
power law fit of the 7" exponent from the maximum produc­
tion yield as a function of the size. Lower panels: X2 of the 
power law fit of the a exponent from the energy of the max­
imum production yield as a function of the possible critical 
energy (dotted line) and global quality of the scaling. Middle 
panels: power law fit of the a exponent from the energy of 
the maximum production yield if the critical energy is taken 
at the minimum of €r in the lower panel. 

of (Emax (A) - E e) with a power law of exponent AU. 
The middle part of figure 2 shows the quality of the (j fit 
when Ee and (j are taken as the (first) minimum of €r. It 
is clear that the fit is excellent in the very same energy 
interval defined by the determination of the exponent T. 

If we compare the results of Fig. 1 with those of Fig. 2 
we note a remarkable agreement between the two meth­
ods ((i) and (ii» both for the critical exponents and the 
critical energy, making us confident on the precision of 
the present evaluation. Moreover, it appears that the in­
tersection between the Tef f curve (using (i» and the T 

deduced from the maximum production (ii) provides a 
good estimation for the critical energy Ee . This method 
has been already used for extracting critical information 
in the canonical liquid gas model framework [4]. 

The analysis described above has been repeated for nu­
clei of various sizes and for different volumes (see figure 
3). We have obtained a comparable quality scaling for 
the various mass studied. The more surprising result is 
that scaling is also observed in a wide range of volumes, 
with a monotonic increase of the critical excitation en­
ergy with increasing density. The critical parameters as­

sociated with the asymptotic fragment mass distributions 
obtained with the inclusion of the Coulomb interaction 
are summarized in Table I. 

TABLE 1. Critical parameters for the asymptotic distribu­
tions of the statistical multifragmentation model 

A=50 A = 200 A = 200 A = 200\ 
V=3lfo V=3lfo V= 2Vo V=4VO 

Ee 3.10(1) 2.05(6) 3.0(1) 1.7(2) 
7" 1.60(1) 1.95(3) 1.87(1) 1.98(3) 
(T 0.83(3) 0.56(1) 0.71(2) 0.55(2) 

The mass of the source has a non negligible influence 
on the critical quantities while the density only induces 
a small variation of the critical exponents. Important 
fluctuations are seen in the (j exponent, which' however 
are due to the intrinsic imprecision in the determination 
of (j as can be seen from the flatness of the quality test 
in the (j direction (see lower panels of figure 1). These 
results are in qualitative agreement with the lattice gas 
results of ref. [4], where finite size effects were shown 
to induce criticality in the cluster observables along a 
line in the temperatureIdensity plane passing close to 
the thermodynamical critical point and extending inside 
the coexistence region of the first order phase transition. 

A final test for the accuracy of the critical analysis is 
to consider the behavior of the scaling function f. The 
scaled mass distributions are shown for a A=200 system 
in figure 3 at two different volumes. Coulomb interac­
tion is included. An almost perfect scaling is observed 
in the considered energy range 2 < E < 22 MeVIu for 
the primary mass partitions in a volume V = 2Vo. To 
our knowledge this is the first evidence of criticality in 
the cluster size distributions for a microcanonical finite 
system. This demonstrates that energy can be used as 
a control parameter and that the long range Coulomb 
interaction can be viewed as a minor correction as far 
as the critical behavior is concerned. It is also apparent 
from figure 3 that calculations at large volumes lead to 
a violation of the scaling which can be appreciated only 
for excitation energies higher than 12 MeVlu (grey sym­
bols in figure 3). This tends to demonstrate that the 
apparent scaling observed at lower densities is not an ef­
fective critical line [4], but rather a spreading effect of the 
thermodynamical critical point into an effective critical 
region due to finite size; in particular the thermodynam­
ical critical point should be located at smaller freeze-out 
volumes than those considered in this paper. However, 
if one restricts the analysis to the 2 < E < 12 MeVI u 
energy interval (black symbols), all densities lead to a 
comparable scaling. 

It is also interesting to look at the distortion induced by 
secondary decay by comparing the scaling of the primary 
(left part of figure 3) and asymptotic fragments. One 
can see that the influence of the decay stage is small and 

3� 



does not modify the expected properties. This means 
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FIG. 3. Scaling function f from eq.(l) from primary (left 
side) and asymptotic (right side) size distributions at two dif­
ferent volumes with the inclusion of the Coulomb interaction. 
Black symbols: energies ranging from 2 to 12 MeVlu. Grey 
symbols: energies ranging from 12 to 22 MeVlu. 

that the experimental observation of finite size scaling in 
nuclear multifragmentation data [1,2] is compatible with 
low freeze out densities specific to the coexistence region 
of the first order phase transition and does not imply a 
second order phase transition. 

It is important however to stress that the measured 
values of the critical exponents which refer to the as-' 
ymptotic fragment distributions, suffer of finite size ef­
fects and Coulomb distortions, and depend on the vol­
ume which needs not to be the thermodynamical criti­
cal volume. Therefore, it may be very difficult to relate 
the observed critical behavior to any specific universal­
ity class. As an example in our calculation for a mass 
A=200, the r exponent calculated at V = 2Vo from pri­
mary fragments is 2.26(2) but it becomes r = 1.98(3) 
if asymptotic fragments are considered in a larger vol­
ume V = 4Vo. Similarly the (j exponent changes from 
(j = 0.91(4) to (j = 0.55(2). In the same way, even if the 
quality of scaling itself is not distorted by the Coulomb 
interaction, the critical quantities change considerably. If 
we consider for example primary fragments at V = 2Vo, 
not only the critical energy decreases from E e = 7.28(2) 
MeV/u to Ee = 2.7(3) MeV/u taking into account the 
Coulomb interaction, but also the T exponent changes 
from r = 2.62(2) to T = 2.26(2). 

In conclusion, a clear scaling behavior has been identi­
fied for the first time in the fragment size distributions of 
a microcanonical multifragmentation model. This scaling 
can be observed even for source sizes as small as A = 50 
and in a wide range of freeze-out volumes. A new method 

for identifying the critical region based on the evaluation 
of the relative dispersion of the scaling function has been 
proposed. Using this method the very same critical re­
gion has been identified if the r exponent is obtained 
by fitting either the fragment size distribution at a given 
excitation energy (Teff(E», or the maximum production 
yield of fragments with size A. As a side result we show 
that the energy at which the Tejj(E) extracted from the 
power law fit is equal to the one obtained from the maxi­
mum fragment production can provide a good estimation 
of the critical parameters E e . This method is precise 
and easy to implement both in experimental and simu­
lated data. Two important fundamental results should be 
stressed: scaling is not washed out by secondary decay 
of the primary excited fragments nor seriously affected 
by the long range non saturating Coulomb interaction. 
However, the critical parameters change with the size 
of the system, the freeze-out volume and the inclusion 
of the Coulomb interaction. An analysis of the quality 
of scaling when volume is varied shows that scaling im­
proves notably when the volume is diminished towards 
the expected thermodynamical critical point. This im­
provement is not visible if one restricts to the analysis 
of experimentally accessible energies (E < 12 MeV/u). 
This means that the experimental observation even of 
a very high quality scaling does not allow to determine 
the thermodynamical critical point of nuclear matter and 
gives only an approximate estimation of the critical ex­
ponents. 
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