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Partial dynamical symmetries are associated with hamiltonians that are partially 
solvable. A brief review is given of some recent developments. 

The determination of the properties of a quantal system of N interacting 
particles moving in an external potential requires the solution of the eigenvalue 
equation associated with the second-quantised hamiltonian 

iI =L fiat ai + L Vijklat aJakal + .... (1) 
ijkl 

The operators at and ai are creation and annihilation operators for the par­
ticles, characterised by an index i which labels a set of single-particle states 
in the confining potential and which also includes possible intrinsic quantum 
numbers such as spin, isospin, colour... The coefficients fi are single-particle 
energies and the Vijkl are two-body interactions; higher-order interactions can 
be included in the expansion, if needed. The (unitary) Lie algebra generated 
by the operators alaj over an appropriate set of single-particle states is called 
the spectrum generating (or also dynamical) algebra GSGA of the system. 

The solution of the eigenvalue problem for N particles associated with (1) 
requires the diagonalisation of iI in the symmetric representation [N] of GSGA 

in case of bosons or in the anti-symmetric representation [1N] of GSGA in case 
of fermions. In many situations of interest, the hamiltonian will have a lower 
symmetry GSYM C GSGA, that is, iI will commute with transformations that 
constitute a symmetry algebra GSYM. The enumeration of all hamiltonians 
of the type (1) that are analytically solvable and that conserve the symmetry 
GSYM requires the knowledge of all nested algebraic chains of the type 

GSGA :) G:) G' :) ... :) GSYM· (2) 

To appreciate the relevance of this classification, one notes that associated with 
each chain (2) is a hamiltonian 

iI =I: KnCn[G] +L K~Cn[G'] +.'., (3) 
n n 
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where "'n are coefficients and Cn[G] denotes a Casimir invariant of the algebra 
G of order n in its generators. Since Cn[G] commutes with all elements of 
G (by definition), one can easily convince oneself that if in (3) is written 
as a sum of commuting operators; as a result its eigenstates are labelled by 
the quantum numbers associated with these commuting operators. Note that 
the condition of the nesting of the algebras is crucial for constructing a set 
of commuting operators and hence for obtaining an analytical solution. Also, 
although (3) is written in an abstract form in terms of Casimir invariants, it 
should be emphasised that it corresponds to a particular choice of the general 
hamiltonian (1) with the order of the interactions determined by the maximal 
order n of the invariants. Thus a generic scheme is established for finding all 
analytically solvable hamiltonians (1). 

This approach to find analytical eigensolutions for a system of interact­
ing bosons and/or fermions has received prominence with the work of Arima 
and Iachello 1 who proposed a U(6) dynamical algebra for the description of 
collective nuclear excitations and showed that the subalgebraic structure of 
U(6) allows three types of analytical solutions, corresponding to vibrational, 
rotational and "Y-soft nuclei. Similar ideas were later explored in molecular 2 

and hadronic 3 physics. It should not be forgotten, however, that, although 
these symmetry methods certainly crystalised with the work of Arima and 
Iachello, they had been used before in different contexts and different models 
of physics in general. A few of these early examples are given in Table 1, where 
they are ordered according to increasing size of the dynami~al algebra. The 
well-known Isobaric Multiplet Mass Equation (IMME) and the equally known 
Gell-Mann-Okubo mass formula can be viewed as immediate examples of dy­
namical symmetry breaking of the type (3). A beautiful example in nuclear 
physics is Elliott's rotational SU(3) model in which Wigner's supermultiplet 13 

degeneracy associated with SU(4) is lifted dynamically by the quadrupole in­
teraction. Note also the existence of F-spin multiplets in the context of the 
neutron-proton interacting boson model (IBM-2) as proposed by von Brentano 
et al. 8 which allows, in analogy with isospin, to define an F -spin Multiplet Mass 
Equation (FMME). All nuclear physics examples of Table 1 are discussed in 
detail in a recent review 14. 

Since· the work of Arima and Iachello, the theory of dynamical symme­
tries has witnessed a further development due to Alhassid and Leviatan 15 

who showed that, although classifications (2) enumerate all completely solvable 
hamiltonians, it is possible to construct additional interactions that preserve 
solvability for part of the eigenstates. Alhassid and Leviatan developed their 
idea using' an intrinsic-state formalism but the same results can also be ob­
tained by a tensor decomposition of the interaction as the following example 
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Table 1: Some examples of spectrum generating algebras 

Spectrum Origin of Application Reference 
generating symmetry 
algebra breaking 
Isopin SU(2) Coulomb Isobaric multiplets, Heisenberg 4 

interaction IMME Wigner 5 

Quasi-spin SU(2) Pairing Seniority spectra Racah 6 

interaction Kerman 7 

F-spin SU(2) Vvv =I VlI'lI' F -spin multiplets, Brentan0 8 

FMME 
Flavour SU(3) Strong Gell-Mann-Okubo Gell-Mann 9 

interaction mass formula Okubo 10 

Supermultiplet SUe4) Quadrupole Rotational bands Elliott 11 

interaction 
sd-boson U(6) Collective Collective spectra Arima and 

interactions Iachello 12 

illustrates. The starting point in this example is the SU(3) hamiltonian of the 
IBM with eigenstates I[N](Ap)KLML)' The structure of the spectrum with 
SU(3) dynamical symmetry is illustrated in the left-hand panel of Figure 1 
where the lowest (ground, (3 and ,) bands are shown. This spectrum is ob­
tained with two Casimir operators, 62 [SU(3)] and 62 [SO(3)]; any additional 
one- or two-body term leads to a non-solvable hamiltonian. It is, however, pos­
sible to find an interaction that preserves the analyticity of some of the states. 
To construct this interaction, it is necessary to perform an SU(3) tensor de­
composition of the two-body interaction. The two-boson operators blmbl'm' 
can be coupled to definite SU(3) quantum numbers, 

Bl>'JA)LML ex 2:(20)1 (20)/'I(Ap)L)(bt x bt, )~~, (4) 
II' 

where (.... I· .) is a generalised coupling coefficient associated with SU(3) ~ 

SO(3). Any interaction between two-boson states can now be written as an 
interaction between the B[>'JA)LML' In addition, it is a simple matter of SU(3) 
coupling to show that 

t - t ­B(02)0 . B(02)ol[N](2N, O)LML) =B(02)2 . B(02)2I[N](2N, O)LML) =0, (5) 

that is,· these· interactions have the property of giving zero acting on specific 
SU(3) eigenstates such as the ground-band states I[N](2N,0)LML). From this 

3 



SU(3) DS SU(3) PDS 

(2N, 0) (2N - 4,2) (2N, 0) (2N - 4, 2) 
/(=0 I<=2 I< =2 

-6+-7+ -7+ 
-6+ -6+ -4+ -6+ 

-10+ -5+ -10+-2+ -5+ 
1 -4+ -4+ -0+ -4+ 

-3+ f3 -3+-2+ -2+ -2+-0+ i-8+ f3 i -8+ 

-6+ -6+ 

-4+ -4+ 
-2+ -2+ 

° -0+ -0+ 
g g 

Figure 1: Partial eigenspectrum of a hamiltonian with SU(3) dynamical symmetry (left) and 
with partial SU(3) dynamical symmetry (right). 

property and from the identity 

Blo2 )o • B(02)O + Blo2 )2 . B(02)2 = ls (2N(2N + 3) - 62[SU(3)]) , (6) 

one concludes that the hamiltonian 

,,62 [SU(3)] + ,,'62[SO(3)] + ,," (Blo2 )o • B(02)O - B[02)2 . B(02)2) (7) 

has I[N](2N,0)LML} as eigenstates. In fact, it can be shown 15 that all states 
of the type I[N](2N - 2k,k)I< =k LML),k =0,2,4, ... are eigenstates of (7); 
other SU(3) states, however, are not. For the lowest bands of an SU(3) spec­
trum it means that the ground and the i bands are analytically solvable but 
that the f3 band is not (see the right-hand panel of Figure 1). 

It should be emphasised that' the above procedure is generic: given a 
certain classification (2) any interaction can be decomposed into tensors asso­
ciated with it, and conditions of the type (5) can be verified as a matter of 
routine. 

The property of this -type of partial dynamical symmetry (PDS) can be 
summarised by stating that all labels associated with (2) remain good quantum 
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4-8+ -4+ 
4- 6+ -2+ -4+ 

-0+-5+4-4+
4-2+ 5+ K =0 K =4

3-6+ :=4+
3-4+ -3+-8+-3+ 3-0+ -2+� 

2-4+ 2 - 2+ -6+ K=2� 

1-2+ -4+ 
0-0+ (Q x Q)(O) -2+ (Q X Qx 0)(0)-0+ 

K =0 

Figure 2: Partial spectra generated by the quadratic and cubic SO(6)-conserving interactions 
(Q x Q)(O) and (Q x Q x Q)(O). All levels have 50(6) dynamical symmetry and those shown 
have q =N. Boson numbers are N =6 and N = 15, respectively, and an £2 tenn is added 

to lift the degeneracy in L. 

numbers for part of the eigenstates. Recently, another possibility was pointed 
out 16 in which part of the labels remain good quantum numbers for all of 
eigenstates. The idea can be explained with reference to the general classifi~ 

cation (2). Let G1 ::> G2 ::> Ga be a set of nested algebras which may occur 
anywhere in the reduction (2). The observation is now simply that any hamil­
tonian which has Gl and Ga as dynamical symmetries does not necessarily 
also have G2 as a dynamical symmetry. It suffices to construct combinations 
of generators gi that belong to G1 but not to G2 and which are scalar in Ga 
(and hence conserve the associated labels fa) but admix representations r 2 of 
G2. Note that the resulting hamiltonian is in general not analytically solvable. 
Nevertheless, the occurrence of the quantum numbers r 1 and fa carries with 
it the existence of selection rules, hallmark of dynamical symmetries. 

Consider as an example the sequence SO(6) ::> SO(5) ::> SO(3) which 
occurs in the SO(6) limit of the IBM with eigenstates I[N]O'rLML}. The 
above analysis provides a procedure for generating u-conserving, r-violating 
interactions. The generators gi contained in SO(6) but not in SO(5) are the 
five components of the quadrupole operator QJ.' == (st x J + dt X s)~2). On 
the basis of SO(5) multiplication rules it can be shown 16 that the quadratic 
SO(3)-scalar (Q x Q)(O) conserves SO(6) and SO(5). However, the cubic SO(3)­
scalar (Q x Q x Q)(O) is an exaIIJ.ple ?f a O'-cons~rvin~, r-yiolating interaction. 
The spectra generated by the (Q x Q)(O) and (Q x Q x Q)(O) interactions are 
different as is illustrated in Figure "2. Nevertheless,all states shown in the figure 
have good SOC6) symmetry. Another example of this type of PDS concerns the 
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reduction U(6) :::) G :::) SO(5). It is possible to construct an IBM-l hamiltonian 
that conserves neither U(5) nor SO(6) but still keeps the SO(5) label as was 
pointed out some time ago 17. Other examples have been found in IBM_2 18•19 . 

As a final remark it should be noted that PDS may occur anywhere in 
physics. The concept transcends the IBM and examples in other branches of 
physics should be investigated. 
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