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We propose a definition of phase transitions in finite systems based on topology anomalies of 
the event distribution in the space of observations. This generalizes all the definitions based on 
the curvature anomalies of thermodynamical potentials and provides a natural definition of order 
parameters. It is directly operational from the experimental point of view. It allows to study phase 
transitions in Gibbs equilibria as well as in other ensembles such as the Tsallis ensemble. 

Phase transitions are amazing examples of self orga­
nization of nature. Their universal character is patent. 
They are observed at all scales. Elementary particles de­
confine in particle accelerators. Water boils in kettles. 
Self gravitating systems collapse in the cosmos. 

From the theoretical point of view phase transitions are 
defined on very robust foundations in the thermodynam­
ical limit. However, many (and maybe most) physical 
situations fall out of this theoretical framework because 
the thermodynamical limit conditions cannot be fulfilled. 
The forces might not be saturating such as the gravita­
tionalor the Coulomb forces. The system might be too 
small such as any mesoscopic system. The statistical en­
semble might not be of Boltzmann-Gibbs type such as 
in Tsallis ensembles, or in non ergodi<; (or non mixing) 
systems or even in collections of events prepared in a dy­
namical way. In all these cases, a proper definition and 
study of phase transitions far from the thermodynamical 
limit should be achieved. 

The astrophysics community discussed the existence 
of a microcanonical negative specific heat for collapsing 
self-gravitating systems [1]. This idea was then extended 
to the melting and the boiling of clusters [2]. In the 
nuclear multifragmentation context [3,4] the phase tran­
sition has first been related to anomalies in the caloric 
curve. The first experimental evidences for such a nega­
tive heat capacity have been reported in the last months 
[5-7]. This idea has been generalized to any statistical 
ensemble with at least one extensive variable allowing to 
sample the coexistence region [8]. 

In this paper, we propose a general definition of phase 
transitions based on anomalies of the probability distri­
bution of observable quantities. From the theory side, 
this allows to extend the already given definition [8] to 
any situations even out of Boltzmann-Gibbs equilibria. 
It clarifies the respective role of order and control pa­
rameters. From the experimental point of view, this new 
definition gives a way to identify the order parameter 
and to extract the meaningful thermodynamical poten­
tial and equation of states. 

The order parameter is a quantity which can be known 
for every single event (n) of the considered statistical 

ensemble, ~ = {n}. It is an observable which clearly 
separates the two phases. It is not necessarily unique. 
Let us consider a set of I{ independent observables, ih, 
which form a space containing one possible order param­
eter. We can sort events according to the results of the 

measurement b(n)== (b~n») and thus define a probability 

distribution of the observables p{ (b) . 
Within the quantum mechanics framework, the sta­

tistical ensemble e is described by the density matrix 

iJ{ == L:n 1'11~n») p~n) ('11~n)l. The statesl'11~n») are el­
ements of the Fock subspace, F, of the system.The ob­
servables ih are operators defined on F. For simplic­
ity we will assume that all the observed operators com­
mute. The result of a measurement on the n - th event 
is bi;) = (w(n)1 ih Iw(n»), and so the probability distri­
bution of the results of the observation breads 

Typical examples of order parameters are one body op­
erators such as the density (or the mean radius) for 
the liquid gas phase transition or the magnetization in 
the ferromagnetic transition. One may also use the dy­
namical response of the system to an external excitation 
Pexp(-iwt) + h.c. which corresponds to the observable 

iJ (w) =Pb (II - w) P. The response of the system can 

also be characterized by its moments associated with the 

average value of Bk = [p [h k , p]] . 
We propose to define phase transitions through the 

topology of the probability distribution Pe(b). In the 
absence of a phase transition p{ (b) is expected to be 
normal and log Pe(b) concave. Any abnormal (e.g. bi­
modal) behavior of p{ (b) or any convexity anomaly of 
log Pe (b) signals a phase transition. More specifically, 
the larger eigenvalue of the tensor 

Tk,k' = i]2log Pe(b) (2){ - ObkObk' 
becomes positive in presence of a first order phase tran­
sition. The associated eigenvector defines the local order 
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parameter since it allows the best separation of the prob­
ability Pe (b) into two components which can be recog­
nized as the precursors of phases which will appear in 
the thermodynamical limit. If the largest eigenvalue is 
zero, the number of higher derivatives which are also zero 
defines the order of the phase transition. 

For a unique observable B, the above definition tells us 
that when the probability is bimodal we are in presence of 
a phase coexistence. The observable B is then the order 
parameter. In a multidimensional space if the ensemble 
of events splits into two components then we are also in 
presence of a (first order) phase coexistence. The axis 
allowing to make a best separation of the event cloud 
into two components is an order parameter. Many tools 
such as the principal component analysis already exist to 
perform this topological analysis of the event distribution 
[9]. 

The definition of phase transition from the topology of 
Pe (b) contains and generalizes all the definitions based 
on convexity anomalies of thermodynamical potentials. 
Any Boltzmann-Gibbs equilibrium is obtained by maxi­
mizing the Shannon information entropy S == TrD log D 
in the given Fock space :F under the constraints of the 
various observables ih known in average. A Lagrange 
multiplier Qk is associated with every constraint. We as­
sume that the observables are either known in average 
< ih >= bk or not constrained (Qk = 0). Other con­
straints can be applied to the system through conserva­
tion laws on the accessible space :F or through additional 
Lagrange multipliers Ai if some other observable Ai (not 
related to the order parameter) has an expectation value 
known in average or imposed by a reservoir. The sta­
tistical ensemble is thus defined as e== (:F,'x, a) and its 
density matrix reads 

This ensemble is consistent with the fact that the order 
parameter is in general not controlled on an event by 
event basis but measured. It spontaneously takes a non 
zero average value in one (or both) of the two phases. 

It is easy to demonstrate that Pe(b) can be written as 

K 

logP:F>.a (b) = logW:F>. (b) - LQkbk -logZ:F>.o: (4) 
k=l 

where W:F>. (b) = Z:F>.oP:F>.o (b) is nothing but the parti­
tion sum of the statistical ensemble associated with fixed 
values, b, of all the observables. Indeed, the two partition 
sums are related through the usual Laplace transform 

Z:F>.a = Jdb W:F>. (b) exp(-ab). (5) 

Eq. (4) clearly demonstrates that the study of convexity 
anomalies of log P.1'AO: (b) for any value of the variables 

Q is equivalent to the study of the curvature anomalies 
of the thermodynamical potential log WFA (b) for which 
the b are the control parameters. The equations of state 
related to the partition sum W:F>. can be obtained from 
the probability distribution using Eq. (4) through 

_ (b) = alog ltV:F>. (b) _ alog P:FAO: (b) (6)ak - obk - 8h + ak· 

It presents a back-bending in the abnormal curvature re­
gion. There, one ak is associated to three values of bk . 

This is not the case for the equation of state of the en­
semble (3) < h >.1'>'0:= -8Z:F>.0:/oak for which only 
one < bk > can be associated to one Qk. Conversely, in 
the regions where the probability distribution is normal 
the average < b > is expected to be close to the most 
probable b max characterized by ak (bmax ) = Qk. 

0:4 .....- .,,",,,~.,........"T"""...,.....~.....,....~
.. 
:;; ..
cU 0.3 

~ 
is 0.2 
CIS 
.0 

2 0.1 • a. 

~ ". .
'::s.� 

-3.0 
: " .../.. .... ../i� . 

-3.5 • 

FIG. 1. Grancanonical lattice gas results at p. = -3f: and 
T < Tc (blue), T > Tc (pink). Top: total mass distribution. 
Bottom: canonical equation of states (see text). . 

Let us take first the example of the energy as a pos­
sible order parameter with no other constraints, B1=H 
and bi = e . Then the considered ensemble is nothing 
but the canonical one with al = {3, the inverse of the 
temperature. The canonical probability reads 

Prj (e) = exp (S(e) - {3e -log Z ({3)) (7) 

where the entropy, See), is related to the level density 
by B(e) = log W (e). A convex intruder in S (e) directly 
induces a convexity anomaly in log Prj (e) which becomes 
bimodal in the phase transition region. Therefore the def­
inition of phase transition through the curvature anoma­
lies or a bimodality in the canonical probability distri­
bution contains the former definitions based on the oc­
currence of negative heat capacities [2,4,7,10], the only 
condition being that the canonical ensemble exists. 

As a second example we consider the grand canoni­
cal distribution of particles. We introduce Al = Hand 
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fir N. Taking.AI = {3 and UI = -{3J-l we recover 
the usual definitions of the temperature and chemical 
potential. We present results from the grand canonical 
lattice-gas model with fixed volume and periodic bound­
ary conditions [11] (see ref. [8] for details) with a closest 
neighbour interaction -t:. In the following the chemical 
potential will be kept fixed at its critical value J-lc = -3t:. 
Above the critical temperature the distribution of parti­
cle number, P/3iJ (n) is normal. Below the critical temper­
ature the probability distribution becomes bimodal and 
signals the phase transition (see Fig. 1). Indeed 

log P/3iJ (n) = 10g.2/3 (n) + (3J-ln - Z/3iJ (8) 

where .2/3 (n) is the canonical partition sum for n particles 
while Z/3iJ is the grand canonical one. The canonical 
chemical potential is given by 

- ()_ (3-lalog .2/3(n) _ (3-lalog P/3iJ(n)
J-l/3 n = - - - + J-l an an 

(9) 

and is shown in the lower part of Fig. 1. It should be no­
ticed that a unique grand canonical chemical potential J-l 
gives access to the whole distribution of canonical chem­
ical potentials f-t/3 (n). In the phase transition region f-t/3 
presents a strong back bending (see fig 1) which comes 
from the bimodal structure of the probability distribu­
tion and which signals the phase transition. 

Probability (a.u.) 

-80 0 80 -20 0 20 40� 
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FIG. 2. Volume and energy distribution of a confined 
canonical lattice-gas model in the first order phase transition 
region with three associated projections. 

In the previous examples both the energy and the par­
ticle number are conserved quantities. However there is 
no reason that the order parameter is associated with 
any conservation rule. Let us take the example of the 
liquid-gas phase transition in an open system of N par­
ticles for which only the average volume is known. In 

such a case we can define an observable fir as a mea­
sure of the size of the system; for example the cubic 
radius fir = i~ L:i rr == V where the sum runs over 
all the particles . Then a Lagrange multiplier AV has 
to be introduced which has the dimension of a pres­
sure divided by a temperature. In a canonical ensem­
ble with an inverse temperature {3 we can define dif­
ferent distributions which are illustrated in Fig. 2. A 
complete information is contained in the distribution 
P/3A. (e, v) = W (e, v) Zii. exp -({3e + AvV) since events 
are sorted according to the two thermodynamical vari­
ables, e and v. This leads to the density of states W (e, v) 
with a volume v and an energy e. One can see that in the 
first order phase transition region the probability distri­
bution is bimodal. In principle one could use the tensor 
(2) to define the topology so that the order parameter 
axis corresponds to the ridge passing through the sad­
dle point between the liquid and the gas peaks. In the 
spirit of the principal component analysis we can look 
for an order parameter Q = xiI + yV which provides 
the best separation of the two phases. A projection of 
the event on this order parameter axis is also shown 
in Fig. 2. One can see a clear separation of the two 
phases. On the other hand if we cannot measure both 
the volume v and the energy e we are left either with 
P/3A. (e) = WA• (e) Zii. exp( - (3e) giving access to the 
energy partition sum, WA• (e), at constant Av or with 
the probability P/3A. (v) = .2/3 (v) Zi1. exp(-AvV) lead­
ing to the isochore canonical partition sum.2/3 (v). Since 
both probability distribution P/3A. (e) and P/3A. (v) are 
bimodal the associated partition sum do have anomalous 
concavity intruders. Both energy in the constant A" en­
semble or volume in the canonical ensemble can be used 
as succedanea of the order parameter. 

Let us now take another example from the Ising model. 
In the absence of a magnetic field the Ising system 
presents a second order phase transition. We can now 
study the canonical distribution of energy BI = iI and 
magnetization B2 = if . The pertinent statistical en­
semble has two Lagrange multipliers, the canonical tem­
perature al = {3 and a magnetization constraint a2 = 
{3h which has the dimension of a magnetic field divided 
by a temperature. The canonical distribution of energy 
and magnetization P/3 (e, m) is shown in Fig. 3 for three 
temperatures. Above Tc the distribution is normal, only 
the paramagnetic phase is present. At Tc the distribu­
tion presents a curvature anomaly on the low energy side. 
Below Tc we observe a first order phase transition, the 
order parameter being the magnetization. The bimodal 
structure in the m direction corresponds to a negative 
suceptibility in a constant magnetization ensemble. It 
should be noticed that the projection on the energy axis 
does not show anomalies. The heat capacity remains 
positive and the energy cannot not be a substitute of the 
order parameter. 
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FIG. 3. Magnetization and energy distribution of an Ising 
model above, at and below the critical temperature. 

Finally we stress that the presented definition of phase 
transition based on the probability distribution can be 
extended to other ensembles of events which do not cor­
respond to a Gibbs statistics. As an example, we analyze 
the consequence of going from Gibbs to Tsallis [12] en­
semble on the existence of a phase transition, for a system 
controlled by an external parameter A (e.g. a pressure). 
For a given A the system is characterized by a density of 
states W>. (e). For a critical value of A = Ac the af';oci­
ated entropy S>. (e) = log W>. (e) presents a zero ("rva­
ture and below a convex intruder. The T!',,1Ji o p6bability 
distribution reads ( ql = q - 1) [12] 

P1 (e) = W>. ~e) (1 + ql!3e)-Q/q, (10)
Z>. 

Computing first and second derivatives of log P1 (e) one 
can see that the maximum of log P1 (e) occurs for the 
energy which fulfills the relation f.>. (e) = ({3-1 + qle)/q 
where f is the microcanonical temperature while this 
point has a null curvature if C>. (e) = q/ql where C>. is 
the microcanonical heat capacity. Then the Tsallis crit­
ical point occurs when C>. (e) reaches q/ql, i.e. above 
the microcanonical critical point. Therefore, one ex­
pects a broader coexistence zone in the Tsallis ensemble 
extending toward higher pressures. Far from the crit­
ical point, the curvature at the maximum of P1 (e) is 
f2(e)o2logP1 (e) /oe 2 = -1/C>.(e) + qdq Far from the 
C divergence line, this curvature is not very different from 
the microcanonical heat capacity since qdq is small. 

In conclusion, we have proposed a definition of phase 
transitions in finite systems based on topology anomalies 
of the event distribution in the space of observations. We 
have shown that for statistical equilibria of Gibbs type 
this generalizes all the definitions based on the curvature 
anomalies of entropies or other potentials. It gives an 
understanding of coexistence as a simple bimodality of 
the event distribution, each component being a phase. 

tribution or as the ridge passing through the saddle point 
between the peaks associated with the two phases. This 
provides an experimental tool to define the order param­
eter and the existence of two phases. The nature of the 
order parameter provides also a bridge toward a possi­
ble thermodynamical limit. If it is sufficiently collective 
(such as one (or few) body operator) it may survive un­
til the infinite volume and infinite number limit. If the 
anomaly also survives then the finite size phase transition 
may become the one known in the bulk. Finally the pro­
posed definition can be extended to different statistical 
ensembles such as Tsallis ensemble. We have shown that 
phase transitions can be identified but that the associ­
ated properties such as the position of the critical point 
do change with the ensemble. 
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