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In this paper we study a microcanonical lattice gas model with a constrained volume. We show 
that the caloric curve explicitely depends on the considered transformation and does not bear direct 
informations on, the characteristics of the phase transition. Conversely, partial energy fluctuations 
are demonstrated to be a direct measure of the equation of state. Since the heat capacity has 
a negative branch in the phase transition region, the presence of abnormally large kinetic energy 
fluctuations is a robust signature of the liquid gas phase transition. 

One of the most important challenges of heavy ion 
physics is the identification and characterization of the 
nuclear liquid-gas phase transition. Since nuclei contain 
only a few hundreds of particles at most we are forced to 
address the general problem of the definition and iden­
tification of phase transitions in finite systems. This is 
the case of many other microscopic or mesoscopic sys­
tems : well known examples are melting and vaporiz­
ation of metallic clusters, Bose condensation or super­
fluid phase transition ofquantum fluids, deconfinement of 
dense hadronic matter towards quark and gIuon plasma. 
It has been proposed that the phase transition in finite 
systems within the microcanonical ensemble [1] may be 
signed through an anomalous back-bending behavior in 
the functional relationship between the temperature and 
the excitation energy deposited in the system, the so 
caned caloric curve. The derivative of the caloric curve 
being by definition the heat capacity of the system, a 
first order phase transition should correspond to a neg­
ative branch for the heat capacity. 

Many different measurements of the caloric curve have 
been performed [2], showing however quite different and 
genera.lly smooth behaviors. Recently it has been shown 
that negative heat capacities can be signed also through 
the occurrence of abnormally large kinetic energy fluctu­
ations [3,4]. This new signal of a first order phase trans­
ition has been applied to multifragmentation data and a 
liquid-gas phase transition has been tentatively identified 
[5]. The link between the observation of monotonic and 
smooth caloric curves and the measure of negative heat 
capacities is therefore still a puzzle. 

In the liquid gas phase transition the volume is dir­
ectly related to the order parameter, which means that 
a second state variable has to be introduced in order to 
specify the volume. The phase transition will then be 
univocally signed by the abnormal convexity of the ther­
modynamical potential [1,6] in the state variables plane 
which reflects on the cillferent equations of state. In this 
paper we show within an exactly solvable model that if 
the system passes through coexistence the anomaly can 
be traced back from the study of kinetic energy fiuctu­

ations since this signal is directly related to the equation 
of state. On the other hand, we show that the caloric 
curve is a more indirect way to look for the phase trans­
ition because it depends not only on the equation of state 
but also on the considered transformation in the state 
variables plane. 

In OUI implementation of the Lattice Gas Model of Lee 
and Yang [7] the N sites of a cubic lattice are character­
ized by an occupation number r which is defined as r =0 
for a vacancy, and r =1 for a nucleon. Particles occupy­
ing nearest neighboring sites interact with an energy Co 

The Hamiltonian is given by 

N 2 1 
H ="" L.J2!!LT. + - "" "" f.r.'~Jr: (1)

l 2 LJLJ 
i=l m i ieNi 

where the second sum runs only over the closest neighbors 
M of i. The coupling constant f. = -5.5 MeV is fixed so 
to reproduce the saturation energy. 

In finite systems, the various statistical ensembles are 
not equivalent. The elementary ensemble is the microca­
nonica! ensemble because its entropy is directly related 
to the density of states. Moreover in practical applica­
tions the microcanonical ensemble is most adapted since 
the total energy can almost always be defined and/or 
measured. For systems undergoing a liquid-gas phase 
transition the volume is also an essential degree of free­
dom. Grancanonical [8], canonical [9,6,10] and microca­
nonical [11,4] ensembles with a volume fixed through 
sharp or periodic boundary conditions have already been 
considered in the lattice gas model context. In actual ex­
periments however the volume cannot be defined through 
boundary conditions but is an experimental observable 
known at best in average. From the theoretical point of 
view one is therefore forced to consider a statistical en­
semble for which the volume can fluctuate from event to 
event. The one-body volume observable can be defined 
as 

N 
... 41T "" 3V = - LJriTi (2)
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where rj is the distance to the center of the lattice. In­
troducing the associated Lagrange multiplier A in order 
to constrain a specific value for the average volume [12] 
when maximizing the entropy, we come to the microca­
nonical ensemble defined through the partition function 

Z),(E) =I:Wv(E) exp(-AV) (3) 
v 

with the density of states Wv (E). 

FIG. 1. Correlation between pressure and volume for a sys­
tem of 216 particles in the microcanonical ensamble with fluc­
tuating volume. The microcanonical temperature is indicated 
on each isotherm. The thick line gives the critical isotherm. 

In the statistical ensemble (3) the energy E and the 
Lagrange conjugate of the volume A represent the two 
state variables of the system. They are associated to two 
equations of states, giving the microcanonical temperat­
ure T;l == 8E log Z), and the average volume < V > as 
a function of E and A. It should be noticed that A can 
be formally related to a pressure via P = T),A. 

In the calculations shown below a number A =216 of 
particles is fixed. The numerical realization of the model 
is a three dimensional cubic lattice characterised by a size 
large enough so that the boundary conditions do not af­
fect the calculations with a constraining A. The microca­
nonical results are obtained through a simple sorting of 
canonical events. Canonical events are generated with a 
standard Metropolis sampling. IT N states are sampled 
with a given constraining fJandA, the canonical energy 
distribution of events reads 

N
N{3,),(E) = -Z>.(E) exp (-fJE) (4)

zp,>. 

where Z{3,), is the canonical partition sum. The logarithm 

ofthe energy distribution N{3,),(E) directly leads to the 
microcanonical equation of state at constant >. 

T- 1 (E) = 8S),(E) = a 8IogN{3,),(E) (5)), - 8E p+ 8E 

Since this equation is valid for every fJ, we can use many 
canonical samplings at different fJ to derive the same mi­
crocanonical caloric curve. The agreement between the 
different curves provides a strong test of the numerical 
sampling [4]. 
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FIG. 2. Temperature as a function of the energy per 
particle and the Lagrange parameter for a system of 216 
particles in the microcanonical ensemble with fluctuating 
volume. 

The various isotherms in the (P, < V » plane are 
displayed in Figure 1. Far from coexistence the curves 
P(< V » at constant temperature are monotonous. 
However, when we get close to the coexistence region 
we observe an anomalous backbending. This induces a 
negative branch in the compressibility which has already 
been observed in canonical lattice gas calculations at con­
stant volume [6,13]. The physical origin of this anomaly 
is completely different from the backbendings systematic­
ally found in the mean field approximation which simply 
reflect the instability of the homogenous system respect 
to phase separation. In our exact calculation which nat­
urally includes inhomogeneous partitions conversely this 
feature corresponds to equilibrium under specific conser­
vation laws (here mass number and energy) [6,13]. In 
the microcanonical case the same anomaly is apparent 
in the equation of state providing the temperature T as 
a function of the state variables (A,E) as shown in the 
two-dimensional caloric curves displayed in figure 2. The 
backbending of the temperature surface induces a neg­
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ative branch in the microcanonical heat capacity at con­
stant ,\ : C~l = aT).. (E) loE. 

FIG. 3. Isotherms and contour plot of the normalized kin­
etic energy :fluctuations in the Lagrange parameter versus en­
ergy plane. The level corresponding to the canonical expect­
ation u? /T2 = 1.5 is shown. Thick line: critical isotherm. 

It has been recently proposed that the microcanonical 
heat capacity can be measured using partial energy fluc­
tuations [3]. The total energy E of the considered system 
can be decomposed into two independent components, its 
kinetic (EK) and interaction energy (E1) : E = EK +E1· 
Since the energy partition directly depends on the partial 
entropies SK and SI the kinetic energy variance can be 
calculated from the partial heat capacities 

u2 =T 2 CKC] (6)
K CK+CI 

where CK and Cl are the kinetic and interaction microca­
nonical heat capacities calculated for the most probable 
energy partition characterized by a microcanonical tem­
perature T. Equation (6) can be inverted to extract from 
the observed fluctuations the heat capacity 

(7) 

From eq.(7) we can see that when the heat capacity be­
comes negative UK overcomes the canonical expectation 
uklT2 =CK . In our classical model Maxwell statistics 
implies a constant value for CK = 312 . A. It is amaz­
ing to observe that the constraint of energy conservation 
leads in the phase transition region to larger fluctuations 
than in the canonical case where the total energy is free 
to fluctuate. This is because the kinetic en~rgy part is 

forced to share the total available energy with the inter­
action part. When the interaction part presents a neg­
ative heat capacity the jumps from liquid to gas induce 
strong fluctuations in the energy partitioning. These an­
omalously large kinetic energy fluctuations are a signa­
ture of the convex intruder in the entropy surface and 
therefore of the first order phase transition. The normal­
ized fluctuations uk/T2 obtained in the microcanonical 
ensemble with a constrained volume are shown in the 
energy-A plane in figure 3 together with the isotherms. 
One can clearly see that up to the critical temperature 
the fluctuations are abnormally large in the coexistence 
region. From figures 2 and 3 it is apparent that the phase 
transition signal is visible in the temperature as well as 
in the fluctuation observable. 
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FIG. 4. Thermodynamical quantities in the microcanon­
ical ensemble {or a transformation at constant pressure (left 
part) and at constant volume (right part). Upper panels: cal­
oric curve. Lower panels: normalized kinetic energy fluctu­
ations compared to the canonical expectation (lines). Medium 
panels: heat capacity (symbols) compared to the estimation 
through eq.(7) (lines). 

However the experimentally measured caloric curves 
are not bidimensional. Indeed, even if different sources 
with different excitation energies can be prepared, the 
other thermodynamical parameters are not controlled 
even if they can be measured. In particular an average 
value for the freeze-out volume of a selected ensemble of 
events can be deduced from interferometry and correl­
ation measurements or through comparisons with stat­
istical models but it cannot be varied independently of 
the deposited energy. This means that experiments are 
sampling a monodimensional curve on the equation of 
state surface. The resulting caloric curve therefore de­
pends on the actual transformation in the thermodynam­
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ical parameters plane. As an example the behavior of 
the temperature as a function of energy at a constant 
pressure or a constant average volume in the subcritical 
region are displayed in the upper part of figure 4. At 
constant pressure the caloric curves are steeper than the 
ones at constant Apresented in figure 2 when the system 
is in the liquid or in the vapor phase; in the coexistence 
region the isobars are almost identical to the iso-A's since 
P and A differ only by the temperature which is almost 
constant in the phase transition region, and a backbend­
ing is clearly seen. On the other hand at constant volume 
a smooth behavior is observed with a slope change en­
tering the gas phase, as expected from general thermo­
dynamics (see also [8,11]) . This is due to the fact that 
the A parameter varies rapidly in the coexistence region 
(see fig.I). From these examples one clearly sees that 
the various transformations leads to very different caloric 
curves. More generally, it is clear that the backbending 
of the temperature surface can be avoided depending on 
the path of the considered transformation and the phase 
transition signal can be hidden in the observation of the 
caloric curve. 

On the other side partial energy :O.uctuations are a state 
variable which does not depend on the transformation 
from one state to another and can directly give access 
to the equation of state. From figure 3 we can see that 
in the whole phase transition region the microcanonical 
fluctuations present a strong maximum which exceeds the 
canonical value: an anomalously large :O.uctuation signal 
will be always seen if the system undergoes a first order 
phase transition, independent of the path. As an example 
the lower part of figure 4 shows a constant P or < V > 
cut of the bidimensional fluctuation surface shown in fig­
ure 3. The quantitative behavior of the heat capacity as 
a function of energy depends on the specific transforma­
tion, but at each point the heat capacity extracted from 
fluctuations is a direct measure of the underlying equa­
tion of state. This is clearly demonstrated in the medium 
part of figure 4 where the symbols, which represent the 
heat capacity C>.. extracted from the equation of state 
eq.(5), are in very good agreement with the lines which 
correspond to the fluctuation estimation eq.(7). 

To summarize, in finite systems the equation of state 
depends explicitly on the considered statistical ensemble 
of events . In particular, a negative heat capacity is a 
well defined signal of a first order phase transition only if 
events are sorted in constant excitation energy bins. In 
the case of the liquid gas phase transition one is forced 
to introduce a second thermodynamical variable in or­
der to specify the volume of the system. Then a mon­
odimensional curve such as the measured caloric curves 
can be misleading. Indeed, many different caloric curves 
can be generated depending on the path followed in the 
state variable plane. In an experimental situation this 
transformation cannot be controlled and is even hardly 
defined. Conversely, we have shown that partial energy 

fiuctuations are a direct measure of the heat capacities. 
This observable depends on the considered state and is a 
direct measure of the EOS. Considering a statistical en­
semble of states characterized by total energy and an av­
erage volume we have shown that abnormal :8.uctuations 
are a robust signal of a first order phase transition. In 
this case kinetic energy :O.uctuations in the phase trans­
ition region are indeed related to the isobar heat capacity 
Cp which is known to diverge [14]. 

The connection to experimental fragmentation data 
is straightforward. The microcanonical ensemble is rel­
evant for the analysis of experimental data because of 
the absence of a heat bath and since using calorimetry 
techniques the excitation energy can be measured on an 
event-by-event basis; the events can thus be sorted in 
constant energy bins i.e. in microcanonical ensembles. 
As far as the freeze-out volume is concerned, the absence 
of a constraining box implies that this variable can be 
known at best in average. Therefore, we expect that the 
partial energy fluctuations will present a strong anomaly 
if the multifragmenting nuclear system is undergoing a 
liquid gas phase transition. 
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