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1 INTRODUCTION

Everyday experience seems to show evidently that we are living in a four dimensional space-
time. Why should we speak about a multidimensional universe? There are good reasons

to do so. First of all, we know that consistent theories unifying fundamental interactions

" take place in multidimensional spaces only, and may be this is not purely a question of

mathematical methods and extra dimensions are a physical reality. Second, extra dimen-
sions are actually not observable, because they are extremely small at present time. If
they are of the séa}e of Planck’s length (Lpr, ~ 10~*3cm) their observation is impossible
due to the super high frequency (energy) necessary to observe internal dimensions, and
behind Planck’s lenght quantum uncertainties forbid the observation. Nevertheless, during
the evolution of the universe all dimensions including ours and internal ones might have
been of the same scale at early stag;es of the universe. Moreover, extra dimensions could
be much larger then ours at that time. Thus, there is a reason to investiéa.t.e multidimen-
sional cosmological models and the observable consequences of the possible existence of
extra dimensions.

In all multidimensional cosmological models {MCM) a mechanism of dimensional re-
duction or, in other words, compactification of the extra dimensions should be present.
There are two approaches to realize compactification. In the first caée the internal dimen- -
sions become much smaller than our ektema.l ones during the evolution of the universe.

These are the MCM with dynamical compactification. Observable consequences of extra

_ dimensions are in this case possible variations of effective constants of nature (like‘ the

gravitation constant)[1] - [4], imprints in cosmic rays of ultrahigh energy (5] or in the spec-
trum of gravitational waves [6]. Another possibility consists in the proposal that all extra
dimensions are static and small ﬁom the very beginning. Such MCM are cé.lled models
with spontaneous compactification. The presence of extra dimensions leads in thi; case to
the generation of particle masses [7] - [9]. In both of these approaches the presence of
extra dimensions has very strong influence on the evolution of our external space-time.
Compactification takes place for pure gravity as well as for gravity coupled to different
matter\ﬁeldsk. ‘There is a large amount of papers devoted to these questions (see e.g. the
references in [10).

In our paper we shall consider MCM which consist of n (n > 1) spaces of constant

curvature. This model was investigated from the classical as well as from quantum points
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of view in papers [11] - [20]. The model can be generalized to the cése of all spaces being
Einstein spaces. The multidimensional Einstein equations as well as the quantum Wheeler-
DeWitt equation (WDW) can be integrated for this model if at most one of the spacés of
:yn) is not Ricci flat [11], [14], [17]. This property is not

‘changed if the model contains-in addition a massless minimally coupled scalar field. From

constant curvature M; (i = L,..

_the point of view of dynamica.l and spontaneous compactification this integrable model

was considered in [10] in the case when the non Ricci flat space is of positive constant

curvature. This space, let it be M;, was considered there as our external space and all

other factor spaces are internal ones. Both typt:s of compactification were found. In the -

case of a real scalar field as matter source in the Lorentzian region the solution with
spontaneous compactification permits an intersting continuation to the Euclidean region
describing Euclidean wormbholes.

In the present paper we shall mvestxga.te this integrable models on the classical as well
as on the quantum levels for the case when the non Ricci flat space M, is of constant
negative curvature. ‘The main problem consists in the investigation of the dynamical and
spontaneous compacnﬁcatlon In the case of positive curvature of M; the parameter plav-
ing the role of energy may in the Lorentzian region adopt positive values only [14].
contrast to this case, the model with negative curvature permits positive as well as non
positivé values of this parameter. This feature of the models with negative curvature leads
to a more rich and interesting picture than in the former case.

It will be shown that the MCM investigated here have solutions describing spontaneous
and -dynamical compactification. The paper is organized as follows. In Section 2. we de-
scribe our MCM and represent the classical Einstein equations for this model in appropriate
coordinates. Section 3. is devoted to the investigation of the dyham’ica.l as well as spon-

taneous compacdtification ont the classical level. In Section 4. we consider the quantum

- . properties of the model. The results of the paper are summarized in the Conclusions. A

particular case of the model with dynamical compactification is presented in an Appendix.

References complete the paper.

2 MINISUPERSPACE COSMOLOGICAL MODELS

Let us consider the metric
’ n
ds® = —dr?exp(2(7)) + 3 &7 "ds} ‘ (1)
=1

on a D-dimensional space-time manifold
M=RxMx...x M, . (2).

where the M; are d;-dimensional compact spaces of constant curvature with line elements
ds?. The connection to the scale factors a; is given by a; = ¢”. The scalar curvature of

M; is normalized in such a way that we can write

R[g(.)]—9 —kd( . —1), i=1,...,n (3)

where k; = 0,£1. In the case of non positive curvature the compactness condition for the
internal spaces can be achieved by appropriate periodicity conditions for the coordinates
[21). |

As mentioned in the Infroduction, this model can be generalized to the case of Einstein
spaces M; for which R[g(;)] = A:d; instead of (3) and ); are arbitrary numbers. In formulas
obtained later on this generalization is achieved by the trivial substitution 6; — \d;.

We restrict our consideration to the important case when only one of the spaces M;
is not Ricc flat with negative curvature: 6, < 0, 8; =0, : = 2,...,n. In this case the
cosmological model is a completely integrable system [14 17]. This can be generalized by
taking into account a minimally coupled free scalar field . ’

The action S for the model with the metric (1) and a minimally coupled scalar field
can be written in the form [11] 7 : ;

' S= j Ldt (4)
where the Lagra.ngia.ﬁ has the form
L= —e"’+2--1 {Z d;(8) - i d; ) + .{2',52}
2 =1 j=1

Here «* denotes the gravitational constant and g = [J%, Vi/x* where V] is the volume of

M;: Vi = [, d¥y(det(gm;n,))"/*. The metric (1) can be normalized in such a way that
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g = 1. After normalizing ;4 we may also consider noncompact spaces. We shall also use

natural units wnh k=1,

The analysis of this system will be done mostlv in two time gauges, in the gauge of
harmonic time 7 [11] where v =
v =0.

‘The possibility of the free choice of gauge implies the following constraint equation

— [Zﬂ:d,'(;éi)! —(id‘ﬂi)z +¢2] +e | 0, i e;.—Z[il =0 ' (6)

1=1 =1

", di#, and in the gauge of synchronous time ¢ with

It was shown in [14] that the field equations for this model can be integrated most easily

using the following coordinates:

e = (G-DB T4,

g’ (D~ 2)/(4@2]% fjd,-ﬂ‘, . ‘ ™
=2

@ [<dx—~1>df/<diz-zi;ll S 4 - ), =l

j=t+l

Here we used the notation D = 1 + Y, &i, ¢ = (dy — 1)}/d1, and ¥; = T}e; dj» In the
Lorentzian region and in harmomc time gauge the Lagrangian and the constraint equation

take the form

( @ + Z(v Vet ) 1 o ®)
and - s B : ’ :
— (%2 + S (5) + 2+ | 6y | €2 =0 (9)

i=1

The dot denotes the derivative with respect to the harmonic time r. The consideration of
the system can be generalized to the Euclidean region by analytic continuation.
The equations of motion corresponding to the Langrangian (8) read

P —qlb | = 0

i = 0, i=1,...,n—1 (10)
¢ =0
The last two equations are easy to integrate. We find
Vo= v'r+ ¢, i=1,....,.n~1

¢ = vir+ct (11)

(¥ 1]

C (00,0, .0

where the v' and ¢ are constants of integration: In minisuperspace of vectors
1

n—1

,v" = ) the indices are raised and lowered by the diagonal metric 7

(=1,+1,...,+1) [14). Thus, we have v® = —yg,v' = v.',ku" =y;andd =¢,i=1,...,n

Now the constraint equation may be rewritten
© @ - 1Be = o (12)

with

n

e= Y. () o m

=1

It can be seen from (12) that ¢ can be treated as an energy. This was shown in more detail

-in [14].

3 CASSICAL SOLUTIONS

Equations (10 - 13) are written in the Lorentzian region. The parameters v; (i = 1,...,n)
are the momenta in minisuperspace. Thus, E = e plays the role of energy (14]. Equation
(12) shows that we can consider the case ¢ < 0 as well as € > 0. We have to demand the
metric to be real in the Lorentzian region. In what follows, the momenta v; (i = 1,...,n~1)
should be real there (see eqn. (11). The case ¢ = 0 is treated as ground state: where all
mormenta are putted equal to zero: ;=0 (i = 1,...,n). For e > 0 all v; (i=1,...,n) are
considered to be a.ébitra.ry real numbers. The case € < 0 is a little bit more complicated.
Here the demand of a real metric in the Lorentzian region leads to the condition that all
v; (i =1,...,n—1) are real and the condition ¢ < 0 and eqn. (13) are compatible only for
a purely i 1magmarv vy,. This means that the scalar field has in this case to be imaginary
in the Lorentzian region and we have the following condition
T on-1 .
Y W)= |wmP<0 (14)
i=1 :

Let us consider the three special cases ¢ = 0, ¢ < 0, and ¢ > 0 separately.

3.1 The case e=0

As shown above in this case we have »; = 0 (n = 1,....n). Then it can be seen from equs.
(11) and (7) that all scale factors are frozen (a; = e‘?' = Go(i), ¢ = 2,...,0. p = ) with the

exception of ¢; = ef‘”. Such solutions we call solutions with spontaneous compactification.
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In this case we have only one scale factor with dynamical behaviour (in our case a,) and the
corresponding factor space M will be associated with the external (our real) space. The
fixed scale factors are assumed to be of the order of Planck length a )i ~ Lpr ~ 10~3cm
(i = 2.....n) and the associated factor spaces are looked at as unobservalbe internal
dimensions.

The dynamical behaviour of the remaining developing scale factor can be defined from

the solution of eqn. (12)
e =((d-1) |77 . -0 < T <oe (13)

With the help of transformation (7) we find the expression for the scale factor a, in hamonic

time gauge
o(7) = [1/C(dy = 1) | 7 D (16)
where .
C = Tas, (17)
=2

Then the metric in harmonic time takes the form
n
g =—e""dr @ dr +a}(7)gu) + D afo96) (18)
=2

where

" = Calt(7) (19)

It is worth to rewrite the metric in synchronous time coordinate t. In this case we have
ay(t) =| t | and the metric is given by
g=-dtodt+ tzg“) + 20(20).‘9(:‘) (20)
=2
From this expression we see that the dynamical part of the universe is described the Milne
model. [[22]]. In this way we find for the physically interesting case of Kaluza-Klein theory
with d; = 3 and M) being an open hyperbolic space that the solution with € = 0 describes

the following topology of a spontaneously compactified universe
MExT® x.. . x T (21)

Here M* is the four dimensional Minkowski space-time and the T% are d;- dimensional
Tori (or other compact spaces of constant zero curvature). The Tori are frozen and asumed

to have scales of Planck size.

3.2 The case ¢ >0

As explained above, in this case all parameters v, (: = 1...., n) are considered to be real.
The solution of eqn. (12) takes the form

0 \/f/ [, ]

o = : : —, -0 <T< 400 (22)
| sinh [{dy = 1)\/6/ Loy (7 — 7o) |

where 7o is a constant of integration. Choosing the initial value of the harmonic time
coordinate in an appropriate way we can put 79 = 0.

The eqns. (22) and (11) give a general solution of the system (10) with constraint
(12). But in cosmology usually the synchronous time coordinate ¢ is used and it is quite
difficult to find the dependence of the scale factors a; = ¢* on this time coordinate. But
the explicit dependence on t can be found in some interesting special cases which we now

consider.

3.2.1 The 2-component universe. Dynamical compactification

Let us consider the special case where only two factor spaces are included in the model. We
shall show that in this case solutions with dynamical compactification occur, that means
solutions with both scale factors depending on time but with one. let it be a;, increasing
and the other one (a;) shrinking to Planck scales. In this case M is treated as our external
space and M, describes an unobservable internal space. For two component cosmological
models (i.e. for n = 2 in eqns. (11) and (22)) it is easy to get the explicit expressions for

the scale factors as functions of harmonic time:

dy—~1
a1 = 2a(0)]' (23)
1 do(dy =1) dy—1)(ve +12) (dy=1)vé4ed)
D3 nTt __L_ I3 | —_—1 2" |7
[ [ 4
do(dy =1)
d = nrt
ay? = G(o) b=t (24)

Here (), and a(q), are connected with the constant of integration ¢; in (11) by the ex-

pressions
P doldy —1)
ag)” VERE (25)
©n \d1 d1 -1 o
R daldy =i} -
agy =eV P (26)
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From this we get the connection between a(g), and a),

.
vi +v3

71 "e 27
4 —1) 27

di—1 dy __
o)y Aoy’ =

It can be seen from (23) that a; has a discontinuity at = 0. Therefore, we have different
solutions in the region —co < 7 < 0and 0 < 7 < .

It follows from eqn. (23) that we have three different types of development of the scale
factors a; and a, in dependence from the sign of \/d1d2uf - \/(71 +dy = 1)(v§ +v3). Let

us consider these cases in more detail.

L Vrdav? = \f(dy +dy = 1)1} +3) > 0

Here, in dependence on the sign of v, there two types of solutions exist for the scale
factors (see qualitative pictures fig. 1 and fig. 2). From fig. 1 (v; > 0) we see that for 7 > 0
dynamical compactification occurs when 7 — +oc. For 7 < 0 the dynamical behaviour of
the scale factors is more complicated. Nevertheless, there are also time intervals where one
of the scale factors is much bigger than the other one, for example in the limit 7 — —0.
For the case of fig. 2 (v; < 0) dynamical compactification occurs for 7 < 0 when 7 — =0
or for 7 > 0if 7 — +oc. Moreover, depending on the sign of v, the space M; or the space
M, can play the role of the external space. We have also to mention that the case 1. can
be realized if no scalar fieid is present (v, = 0). It is clear that the condition 1. is not valid
for d; = 1.

2. Viidavg — \[(dy + dp — 1)(v} +3) < 0

The qualitative behaviour of the scale factors is shown in figs. 3, 4. It can be seen that
there are also in this case regions with dynamical compactification. Because of d;,d; > 1

the case 2. can not be realized if ¥, = 0, i.e. without a scalar field being present.

3. \/dldzuf-\/(d1+d2—1)(1/f+1/§)=0
In this case we have a connection between the two constants of integration vy and v;:
dyd,
2 192 2 :
=—2—-1 28
4= (g ) )

From this expression we see that in the case d, = 1 there is no scalar field: v, = 0. Using
(28), eqn. (27) reads

) : d,
dy~1 _d2 = - 1 29
%o %o)2 \/(dl—l)(d‘—j-dr-l) |v | (29)

9

In this case we find for the scale factors the following expressions

2g81~1
el = o (30)

. daldy =1)
| :2\/———-—0_1 jniir 1 ‘

| €
; { /de(d‘—n”}
5 "N

ad = a(3)2 €Xp D3 (31)

where the upper sign in the expression for a; corresponds to vy > 0 and the lower one to

vy < 0. The qualitative behaviour of the scale factors in the case 2!/(41=Vg g > g4, is

given in figs. 5. 6 showing the existence of regions with dynamical compactification, too.
Because of the simple form of eqn. (30) we can find the explicit connection between

the conformal time 7 and the synchronous time t. This connection is given by [11]
dt = 2e"dr = +a¥aPdr (32)

Putting (30) and (31) into (32) we find

t = :1:5/ d—y‘h '7'(.:‘ (33)
ly2—1]a=T
where R
y = VI Il (34)

The upper sign corresponds to v > 0 the lower one to »; < 0. The constant ¢ is defined

by
. 4 ’d -+ dz -1 1 -
= 2d-1 mma%”a%ﬂ (30)

and the initial value of the synchronous time will be taken so that ¢ = 0.

In the case d, = 2,d; > 1 the integration of (34) gives

vt (36)

2 +arcothy, |y |>1
27 tartanhy, [y<1

This case is of special interest because for d, = 1 it describes a 3-dimensional anisotropic
Bianchi III-universe without scalar field [25]. As we could see above there is no isotropiza-
tion in this case.

The integral (33) can be easyly calculated in the mostly important for Kaluza-Klein

theory case d, = 3 (M, can be looked at as our external space). Then we have two tvpes
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of solutions:

ol/f2

o = ——:“’“( —ar (37)
: 2 1=

az = ago)g [;&Tg] (38)

‘ dy — #

o = :3 2ol (39)

where | ¢ |> ¢ and

. o012
a = 2O gy o (40).
. c
2 1% )
Gy = a(o,g ;2_‘__&2 ) ) (41)
. 2 .
o = i /2 lpt ) (42)

2 d 2+&

where —0co' < t < 40c. In figures-7, 8 the behaviour of the scale factors corresponding
to (37), (38) and (40), (41).is ptésented. "In both of these cases there are regions with
dynamical compactification. For the solutions (37), (38) the scale factors are-everytimes in
opposite phases and the role of the exterior space can be played by M; as well as by M;. For
instance, in the region t > & the scale factor a;; shrinks from +c0 to gy, (asymptotically).
For a2 ~ ILPr M; becomes unobservable. At the same time a; ~ t(t >> &) and M,
describes the exterior space of Milne type. In this way the topology of the universe tends
a.symptotically to M4 x T%,

Fig. 8 is drawn for the case ﬁa(o)l > aqoy2. For | t-|>> ¢ wehave a; — a(o)2 a.nd a; ~ |t},
i.e. the factor space M, becomes static and the factor space M, has asymptotlca.lly the
behaviour of a Milne universe. Thus, for |t| > & the topoloéy of the universe tends
asymptotically again to M* x T'%. '

Figures 9, 10 show the behaviour of the scalar field for the upper sign in formulas (39)
and (42) correspondingly. It is interesting to note that |p| — 0 if [t| > .

- Here, we have investigated the two-component model (n = 2) in the case ¢ > 0. There

exists one particular case for n > 2 which may be reduced to the two-component model
considered above (s. 'Appendix). .

11

‘al is.

3.2.2 The n-component universe. Spontaneous compactification

Like in the case € = 0 we have a solution with spontaneous compactification also for € > 0.
Obviously, this special case corresponds to the following choice of contants of integration:
vi=0(@=1,...

a real scalar field. All scale factors are frozen (e =¢ = Qo)irt =.2,...,n) except one

;7 —1), v # 0. Therefore, this case is only realized in the presence of

(e =ay). Then the metric in harmonic time 7 takes the form (18) where the scale factor

airl= (\/f/lox €)™ {smn @~ vyerio 1 )T g

where C is defined by (17). The interval (—o0, ~0] describes the expanding universe and
the interval [+0,+oc) describes the contracting universe. It is not difficult to obtain for
the modulos of ¢ (taking ¢, = 0 in (11)) the formula

[ 1= 1 118 T /e /(ds = 1] arsini (/e Te /Ca"-‘) (44)

It is convenient to rewrite the metric in conformal time n which is connected with

harmonic time 7 by

sinh [(ds ~ 1)/&/ 16 (=) = {siabl(d; ~ 1)a]}” (45)
Then , . o o
g =ai(n) ["d'l @dn+ 9(1)] + a%o)zg(z) +... + a?o)nj(ﬂ) (46)

and the scale factor @, as a function of the conformal time is given by

o) = (VaTTo1S) "

In synchronous time ¢t the metric takes the form

Yfsih (-1 [ YA )

g=-dtQ dt +a3(t)gq) + Z (o) di) 7 (48)

=
where the scale factor a; and the time coordinate t are connected by

d‘ lda]

' t | 49)
‘/\/6/(|91|C’ +a2(d1—1) T COns (49)

1/(d1-1) : L. .
Ifa, [\/e/ | 6 I/C] " the scale factor a; has the asymptotic behaviour ay ~| ¢ [V/%.

It corresponds to the open Friedmann universe filled with radiation for dy = 2 and filled

12
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. . — ' 11/(dy=1)
- with ultrastiff matter for d; = 3. If a; > [,/e/ | 6, l/C} @ the scale factor a, has the
asymptotic behaviour corresponding to a Milne universe a, ~|t | for all d;. Therefore, in .

- the case of spontaneous compactification the topology of the universe asymptotically tends

to M4+ x T9 x ... x T, where M%*! denotes the d; + 1 dimensional observable Milne
universe (for d; = 3 this is the Minkowky space-time) and the T% represent the frozen
(unobservable) internal spaces which are d; dimensional tori or other compact spaces of
constant zero curvature (later on we shall call this topology M x T topology). ‘

For d; = 2 the integral (49) can be expressed by elementary functions

= [VerTosiie] |(oviaTrers i) - 1] N (50)

but for d; > 2 we get elliptic integrals.

3.3 The case e< 0

In this case, as we can see from equation (12}, there are classically allowed and forbidden re-
gions. Classically forbidden regions are usually treated as regions with Euclidean signature
and classically allowed ones as regions with Lorentzian signature. As we shall see in the
next chapter, on the quantum level there are tunneling solutions which describe processes
with metric signature alteration [18], for example, universe nucleation from "nothing” [26].
If € < 0 at least some of the v; should be imaginary. This leads to complex metric and
scalar field. As stressed above it is possible to have real metric and imaginary scalar field
in Lorentzian region if we demand that v; {t = 1,...
and the »; should satisfy the condition (14) .

Let us consider the equations (10), (12) in the classically allowed region exp(2qv ) >

,n — 1) are real and v, is imaginary

€ / 6;. The solutxons of the equations of motion in harmonic time gauge are

N B ,r\/ar
)—1

0 =
exp(qu ) cos[(dl -1 f_e/alT]’ I< 2d; — 1

where the constant. of integration 7, is fixed by a proper choice of the origin.of the time
coordinate 7, and

(51)

v

1
3
3
+
£
-
I
=
e
I
—

G
]
=
4
+
iy
—
n
»
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The solution in the classically forbidden region can be found with the help of an analytic

continuation 7 — —i7 in the expressions (51), (52).

" As in the case € > 0 we consider here two special cases.

- 3.3.1 The 2-component universe. Dynamical compactification

In this case the scale factors as functions of the harmonic time coordinate read

dy-1

at = Yon _
exp [ 41-——“‘;1 ulr] cos [‘/ d;’(} vy 2 —i) 'r]
" dy(dy = 1 :
a = a‘('a)zexp[ 2—(D1:2_) ulr] (53)

where | 7 |< 7 and the constants ag) and a(g),; are defined by eqns. (25), (26) with
the substitution v§ + v — |v,|* — v}. Corresponding to (11) the scalar field is given by

e=t|lnlt+e It can be seen from (53) that there are different types of development

of the scale factors in dependence from the sign of ». The qualitative picture is shown ‘

in fig. 11 and fig. 12. Fig. 11 corresponds to » > 0 where the scale factor a, increases

" monotonically from the minimal value at + = —7; to the maximal value at 7 = 7y, while a,

decreases from +o00 at 7 = —7; down to a;n, and after that tends to +oo at 7 = 7. If the
value ag, does not exceed Lp; too much for 7 — 7, dynamical compactification arises.
Fig. 12 corresponds to 1 <0. Here, a; monotonically decreases from Aomax 3t T = —7
t0 @ymin at 7 = 7 and dl &ace more decreases from +o00 at 7 = —7 'down t0 @ymin and
after that tends to +co at 7 = 7. In this case the region 0 <.7 < 7y gives an exa.mple of
dynamical compactification for 7 — 7. '

In contrast to the case € > 0 for € < 0 we are not.able to give the explicit expression
for the scale factors as functions of the synchronous time coordinate if more than one scale
factors have a dynamical behaviour. '

As it was shown in [18] the quantum solutions with fixed value of ¢ < 0 describe transi-
tions from the classically forbidden Euclidean region to the classically allowed Lorentzian
one (s. mext section). The universe is created by quantum tunneling with the scale
e™ = \/e/—e; what cooresponds to the time 7 = 0 in eqns. (51) - (53). After that
the evolution of the universe is described by the classical equations (51) - (53). Figs. 11,
12 show that we have two possible pictures for the evolution of ‘the universe. Due to the

first possibility (fig. 11) the universe is created by quantum tunnelling with the scale

14
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factors a; = a(o) and a; = a(). After that the space M, shrinks to a; = aipmin and
then increases to +o00. The space M expands monotonically to ap = @2max- The second
poséibility (fig. 12) describes a universe created with a; = a(op and a; = a(e)2. Here M,
eXpa.nds monotonically to +oo while M; contracts to a; = aamin-

In conclusion of this section we would like to mention the existence of the special case
of an (n > 2) component model which may be reduced to the two-component model
considered above (s. the Appendix). .

3.3.2 The n- component universe. Spontaneous compactification

From the considerations above we conclude that spontaheous compactification corresponds
to the case v; = 0 (i = 1,...,n — 1),u, # 0. The condition € < 0 restricts spontaneous
compactification to the presense of a purely imaginary scalar field (v, imaginary). All the
scale factors ¢; = a); (i =2,...,n) are frozen and a; = e has a dvna.rmcal behaviour,
only.k From (51), (52) and the transformation (7) we find in the Lorentzian region the scale

factor a; as a function of the harmonic time coordinate

al) = ( \/6_/71/0)1/(41-1) {cos [(dl—l) \/‘/_”JT]}—WI—” : : (54)

where C is defined by (17). In the interval [ sV oi/e 0} the universe contracts from
infinity to the classical turmng point where a,(7 =0) = \/e/—al / C e and after that
in the interval [ » 3=y \ 01/ €] it expands to infinity again.

It is not difficult to obtain the absolute value of the sca.la.r field in dependence of the

~ scale factor a; (taking c, = 0 in (52) )

“v/b 1€/6,
lel= [11/"';{_7%]““05[\/?] - (59)

This formula shows that | ¢ | has it’s minimum at the turning point and tends asymptoti-
cally to ﬁ:’Lﬂ—)\/OT/—e when a, — oo. The space-time metric takes in harmonic time gauge
the form (18), where a,(7) is defined by (54).

The harmonic time T and the conformal time 7 are connected to each other by the

expression

- [(d1 —1 5/9'17] = {cosh[(di = L)m]}™",  —o0 <7< 400 ()
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and the metric in conformal time takes the form (46) where a, depemde on 7 as

= [Vereure] ™ tcosh [, = iy 740,

In order to investigate the asymptotic behaviour of the scale factor at large times let us

—00 < 1 < +00 (57)

consider synchronous coordinates whith the metric (48). We find for the time dependence

of the scale factor a; ‘
af‘ 'ldal

t=
/ Vai — ¢/(6:C7)

- : di—1
Then asymptotically, when a; > [\/6/01 /C]m ), we have a; ~ |t|. Thus, the universe
behaves asymptotically like a Milne Universe with respect to the scale factor a;. Therefore,

as in the case of spontaneous compactification for € > 0 (para.graph 3.2.2) the topology of

+ const (58)

the universe asymptotically tends to M x T.

In the particular case d; = 2 we have from (38)
a§(t) =1+ e/(GICz), —00 <t < 400 (59)

For d; > 2 this integral can be expressed with the help of elliptic mtegrals For example,

in the case d; = 3 we have

G 08l
V¥ = arccos [(\/5?1-/0)1/2 /al] ‘ (61)

and F and E are the elliptic integrals of first and second kind repectively.
The classical expressions for the Euclidean region e™ < (¢/6;)'/? can be found by

where

~ analytic continuation of the formulas obtained here. Then the point

" is the classical turning point. The nucleation of the universe can be considered as the

quantum tunneling process through the potential barrier [26]. The universe is nucleated
d‘—

with finite size @y = [, f€]6,/C ] -y and zero speed (da,/dt = 0) and its further evolution

is described by classical formulas (54}, (37), and (58).

16
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B 28 FER AL A - (64)
where : ‘
' ()= e i=1,. n= U(p) = e (65)
* and W, satisfies the ‘eq;x:‘ttion N |
('—Zdz_"' t 01 | 627"”) ‘I’o = 6‘1’0 : 3 (66)

The solutxons of equa.tlon (66)

4 SOLUTIONS TO THIE QUANTIZED MODEL

At the quantum 1evel the const,ralnt equax.mn {9) turns over to the Wheeler-De Wltt equa-
tion (WDW) The WDW equation is cova.nant with respect to minisuperspace coordinate

" transformations and can be written in the harmonic tnne gauge m the following form [14]

B R 3
3v°2+6v‘2+ =i

~ It is easy to-obtain solutions of 'tthDW equation (63) by separation of variables

Hete, €and thera.rbxtra.rv numbers v; are related to each other by

.e-_—zu} e {67)

. (m= 3) kind. It was shown in [14] that € can be interpreted as an energy. From this point

of vzew the states with e = 0 are treated as ground states. The general solution can be

wntten in the form

0= Z / vB™()Cm) He"" | " (69)

m=1 J-l

where the B(™) (i) are arbitrary coefﬁcxents dependlng on the quantum numbers v

- The solutions (64) are elgenstates of the quantum mechanical operators

i a . .1 8
Hul—""-a-T, 1,..-,71—1, nw-—"'lvas’
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. ':where C("" denotes the Bessel functxon of the ﬁrst (m = 1), second (m = 2) or third 7

(70)

with the eigenvahieé Va/N, where we have N = | 'fo_r the Lorentzian spaceQLimé and N =i -
for the Euclidean one. The classical equations cokr&sponding to the states (64) are [14]
p=N"1y, Sy

= N7y, i=1,...,n—1,

_where the dot denotes the differentiation with respect to harmonic time .. Evidently, A

equations (71) coinside with (10), (11). Thus, for the classical equa.tioné corresponding to.
(64) the constants of i mtegrauon y; in (11 should comsnde with the qua.ntum numbers Vi
in (65).

Let us consider the wave function (64) in more detail. In the same way as in the class:cal

case we dlst.mgmsh three special cases: € =0,> 0, < 0.

41 Thecasee—Or

This case was considered ea.rlier in {14]. where the sta;t.e with ¢ = 0 was treated as the grot;md
state. For all »; to be real the condition ¢ = 0 leads to the demand »; =0 (i = ,...,n).

‘As shown above, this corresponds in the classical limit to an universe with 'spontaneous -

compactification and the M x T topology. Once more, this describes the produét of an
dy+1 dxmensxonal Milne Universe- and static d; dimensional tori or other compact spaces

. of consta.nt zero curvature, The wave function -

W= [(\/ﬁ/q) ] = [(Viail /‘q) é‘*'*a;‘z,,'. -ath) 3 (72}

is related to the Hartle-Hawkmg boundary conditions {27] a.nd describes t.he superposxtmn )
of expanding and contracting universes [14]. The wave function ' '

@ = g [(\/Tar/q) cwo] | S ' (7;)

describes the expandmg universe and satisfies the Vxlenkm boundary. conditions [14,28).

The wave function ' } ; o
\I’S"-—*H‘” (Vi) 'e""’° ] o my

describes the contwctmg universe. Here J, and H{"? are the Bessel functlons of first and
third kind respectively. ‘

The Hartle-Hawking ground state wave function ( 72) is non-singular. The v: vacuum wave
functions (73) and { 74) go to infinity as Ina; when a; — 0.

18



4.2 Thecas§e>0

Let us assume all v to be rea.l Thts corresponds to real metnc and scala: ﬁeld in the

* Lorentzian region.

The exclted states (64) can be wntten m the form .

o - = » qgto)m"k = J‘xk [(\/71‘/4) eqf:] Hew,(v’-el) S N (75)

)=l

we, =839 (Ja ) e“]l'[e'"’“"*ﬂ () .

, =1
- where the energy ¢ = }:"u' =

- invariance of the WDW equation_ (63) was used for the v* (i =1,. )

_ All these wave functions oscillate an mﬁmte number of times when the spacxal geOmetry

g degenerates (a, -+0). This smgula.r behavmur reflects ‘the initial a.nd ﬁna.l smgula.ntxes of

the classical solutions. :

_As shown above the solut.xons of the classlcal Lorentzian equatxons ha.ve the followmg

. , a.sympt.ot.zc beha.vmut ‘When 7 — 0 we have | t j= o0 and v' — ¢ so that a; — @) :
(=2 ..,n)and a; ~| ¢ |.-This corresponds asymptonca.lly to a freezing of the internal -
L dxmensxons and the htmt of dynamical eompactzﬁcatwn is Spontaneous compactification.

; Thetefore, sponta.neous compactxﬁca.tmn acts as an attractor solution for solutions with

- ‘dyna.m:cal compactlﬁcatxon The correspondmg limit for the wave fnnctxons (75), (76)
- may- beachxevedforv - o6, v* —»c(z.-l

. ). In this case the asymptotic bahaviour
. of the solutmns (75) {76) is given by ‘ ‘

‘ | o W(O)zm{(ﬁlq)“l “(o)z “(o)ﬂ] s (77)

@ = exp [(—‘1)"’l (\/T /q) ""‘a(g,,...aw,,,]. S ()

where j = 1,2 and (77), (78) describe in the classical limit asymptoncally a universe wnth

" the M x T topology.
Ev1dently, the solutions (75, 76) are not the unique solutions of equation (63), other
wave functions can aiso be found. Some of these wave functions may be free of the above
mentxoned smgula.ntxes For the one component model with scalar field this was analysed

in { . In analogy to the papers [15,16], where the case § > 0 was considered, we can nge ; -

~.
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k,—00 < k < +00, g = V", and the txanslation' ,

" here an example of such a ;olution. We write the wave function (76} in the form

I=1

\I'i’ = exp [:k}:q(v ¢ )n] H"’ [( | : - ') “}

whiere the quantum numbers v; are wrm.en in the form o

v f—" kql's

" and then dimemio@ unit vectorf T, is defined by

f cosm ' \
sinyy; cosTy

"siny, siny, cosys

sinyy - ... SiRYp-2 COS Ynm1

\ siiyy ... - S Ypey SIDYa—g
Using the mtegral tra.nsformatlon (30} - ‘

‘::,. g /*"" PN, s

with , S

: "’(A) = 5( 1)”‘ [( 1y ]exp(_m)

where —oo0 < A < 00, we get.

k ‘ \Il,\-,, _,___l—ealtp{( 1)1*1 (l':ij) eMcosh{Zq(u -—c‘)[’ ;\}}

O

i=1

(79)‘;,1 |

S
.(814) k

(82)

@

'Tl:us wave function has the same a.symptotxc behaviour at v* — ¢ (z = 1 ,n), ¥ = +oo,

as (79). It oomponds asymptotically to the contracting (j = 1) and expandls (= 2)

sta.te of ﬁxed energy €.

4.3 The case e<0

In this case the wave functions (64) can be written in the form ‘

e[ () ]

q j=1

0

" (di + 1) dimensional Milne universe. The wave functlon (84) can’ already not dacxbe a

- (85)



W \pﬁ”,ﬁ Z H,?’” [(@) cqim] ﬁei”’("’fe” | i o (86)

=1 . N .
‘ »where' tp ; vy tﬁ‘:l 2,6 = ~¢*k?, =00 < k < o0 and for v/ (j =1,...,n) the translation
invariance of the WDW equatxon (63) was used. ' ‘

‘Asa consequence of the condition ¢ < 0 the quanr.um numbers v; (or pa.n: of them)'
beca.the imaginary. Then, in the classically a.lloWed region we would get a complex metric. -
In order to avoid this we dema.nd in analogy to the classical case all vi(i=1,...,n=1)to

be real and v, to be imaginary and the condition (14) to be valid. Consequently, with these

_ conditions the mer,ncof the classxcally accessible regxon is a real Lorentz metric, while the
' scalar field in thxs region is 1ma.gmar)

It can be seen from equation (66) (the qua.ntum a.m.log of- {(12)) that in the case e < 0

there exist classically accessible as well as forb:dden regions. The solutions (85), (86)

. are solutxons with fixed energy ¢ and descnbes transitions between the classlcaﬂy allowed

and forbidden regxons due to tunneling processes. As a consequence, it becomes pos--

_sible to analyze ptooesses with changm of the metric signature [18} For instance, the

solution ¥@ in (86). describes quantum tunneling through a potential barrier and is usu-
ally xnterpret.ed as: creation of the amversc from not.hmg [14,18.26]. ' In this way for

vi=0(i=1,...,n-1) a. n component umverse thh spontaneous compacuﬁca.txon will be

created whzle for- v1 # 0 v;=0(=2,...,n=1) the creation of a n-component universe -

w1th dynamxcal compactnﬁcatmn is descnbed The solution ‘Il(” ‘describes the opposite
" process, the trmsmon mto nor.hmg as the ﬁnal stage of the evol\mon of the universe.
In a.na.logy to the case ¢ > 0 we have also solut:ons to equation (63), which already do

.~ not descnbe wave functions for fixed energy For mstance. with an mtegral tta.nsforma.txon

of O swe find [30)

S ,q;(u) - = dka(/\)‘I’:,o),,,‘,.,,,, ;

A Pre1

]

»exp{i ( ; l:‘ l) e™ sin [’f g(v' =& )F sichyo— 4+ (87)
’ b=l

+ gi(v* = &) COSh')'n—l +]}

- where Ci(A) = exp(zkz\) A has a cbntmuous spectrum of width 27 and the wave function
(85) o , was refwritten in “the form

i=1 .

) . ne-1 L . B
. \i’i?,),l",__..,n_l' = exp {ik [Z: g(v* = &) sinhypey +-

. v21

. o : - 0] o : o
+9‘(U"—3)C°3h‘;’n-1]}XJk 7 e | (88)

* where we used for the'quantum numbers »; the representation

v

vi=kelisiphye, i=Lo,n=1 (89

Vo = qucosh*/,._ y : ! (90).
Here T; represents a (n— 1) dimensional unit vector given by a formula similar to (81) and
the a.rbxtra:y ‘constants & can be taken best as the classical limits for the v' (i = 1, ,n) ,
in’ equation (52) for [ 712 m,ie ¥= u‘rl +¢ or & = ~vin +¢. In this limit the .
v (i=1,...,n) nepd to their maximal {or minimal) fixed values and the conespending

scale factors a; (i = 2,...,n) are frozen out and a1 ~|t| = oc. Soit can be se’eﬁ't'hat i _
' the limit vé — & (i = 1 .. 1n), 0% = oo, the wave functions \II“"_ and \Il(o) have the sa.me .
“asymptotic behaviour and describe asymptotxcally in the classical limit an umvetse thh o
_the sa.meMthopology hke in thecasee>0 ‘

5 CONCLUSIONS

- We lnvestlgated multidimensional cosmologxcal models (MCM) w1th n.n >'1) Emstqn

spaces for the case these Einstein spaces were of constant curvature. The integrable case.
was consxdered where only one of these spaces was of negatxve constant curvature, whxle~
all others were assumed to-be Rxccx flat. As a matter source we mtroduced a masslm« :

minimally coupled hornogeneons scalar field. The main attention was paad to the: problem; 5 ;
of campa.ctnﬁcahon of extra dxmens;ons The non Ricci flat space M; was consxdered as
our external space while all the other spaces with zero curvature described internal spaces,

But our general solutions do not exclude the posslbhhty that one of the Rxcu flat spaces' ‘
may play the role of our external space:

The problem of compactxﬁcatmn for the-model with positive curvature of the non Ried.
flat space was considered in detail in our prevnous paper {10} where solutions with dynamical
and spontaneous compactxﬁcatxon were found. In the case of positive curvature of the non
Ricci flat space the parameter ¢ defined by formula (13) plays the role of energy [14] and ‘
should be _positive in the Lorentzian region. For the model with negative curvature of the

non Ricci flat space considered in the present paper we have in the Lorentzian region for this -
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: Acompactxﬁcatxon were found It is not dxﬁicult to see that the solution th.h spontaneous )

‘with the topology M"“"1 x T% x

pa.ramétet € > 0 a.s well as € < 0. This feature leads to a more complex pxcture than in the
former case.’ For all values of the parameter ¢ solutions’ w:th dvnarmcal and spom.a.neous

compactlﬁcatxon in the case e = 0 is an attractor solumon for all’ kinds of solutxons with

e>0aswellase< 0. In the limit of luge goemetry all solutions tend to ay ~ |t| =
‘ for the scale factor of the space 1\{; while all other scale factors and the scalar: field become‘ -

freezed (see ﬁgura 7 - 10, 13). Tlms, asympnomcalh all solutxons descnbe the universe
. x T4 where M4*1 is the (d, +1) dlmenswna.l Milne

-+ universe a.nd the T are d,-dmenswnal frozen tori or other compact spaces of constant

zero curvature Solutions to the quantum Wheeler-DeWitt equation were obtained also. -
In the case € < 0 some of them describe the process of t.unnehng from the Euclidean. region
. to the Lorentz:a.n one. often called the birth of the universe from "nothing” [28} For all.

values of ¢ these wave functions asymptotlcally describe in the classical limit an universe
‘with the topology Ma+L x T %, x T,
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6 APPENDIX

It is easy to see th&t there exist a special n-component case (n > ”) which can be reduced to

" the two component universe with dyna.tmcal compactxﬁcatxon considered above for €.> Qas

well as for ¢ < 0. This exceptional case corresponds to the specxa.l choxce of the mtegra.t.xon
constants in equatxon () - o -

- # 0 . 5 :

v, = o= Upy =0 . (A
Than it follows from the coordinate transforration (7) that
‘a; =€ 'ay, t=3,...,0 0 A : (A.2)_,

where" B is an arbitrary constant. Therefore, all faotot spaces M; (i - 3,. )'-ho,ve i

identical dynamical behaviour, the same as M in the two component universe. Further, the
equations (23) (42).and (53) remain the same and deﬁne the dynamxcs of the factor. spaoes , :

. My-and M2 with the only dxﬁetence that we have to make the cha.nge ds — }_‘_2 = Zmz
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F!gure 1 The dyna.zmcal behakur of the scale fa.ctors a; and az in harmomc time for Figure 3 The dynamical behavxour of the scale factors a; and az in ha.rrnomc time. for :
‘ c>0mthecaseleu4>0 , : o e>0xnthecase2xfu1>0 ’ ’ ’
4
0 T - 0 T
- Figure 2 The dynamical behaviour of the scale factors ¢, and a, in hirmonic time for - \ Figure 4 The dynamical behaviour of the scale factors 4, and a; in harmonic time for
€ > 0 in the case 1. if 1; < 0. - . _ : € > (0 in the case 2. if »; < 0.

[
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Flgure 5 The dynamical behaviour of the scale factors ai and a, in ha.rmomc time for
e>0mthecase3xfu1>0 g

Figure 6 The'dyna.m'_ical behaw};our of the scale factors a, a.nd dg in harrriohig time for

" €>0in the case 3. if n <0.
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Figure 7 The dynamical behaviour of the scale fact.ors a, and a; in synchronous time for

~€>0in the case 3. if d; = 3’ (formulas (37), (38). The hne a; = |t|is the attractor for the .

scale factor a;. . . -

Figure 8 The dynamica.l behaviour of the scale factors a; and a;'in synchronous time
for € > 0 in the case 3. if d; = 3 (formulas (40), (41). The line a; = ltl is the attractor for
the scale factor a;.
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Figﬁre 9 The case 3, (8, = 3). The behaviour of the scalar field for equation (39) (with Figure 11 The qua.litative/béhaviour of the'sg'a.l_'ei factors @, and a; in harmonic 'tim_é for - ‘. )
positive sign). , . ' . : ’ ¢'< 0 (equation (53) for »; > 0). V

Figure 10 The case 3. (d; = 3). The behaviour of the scalar field for equation (42) R Figure 12 The qualitative behaviour of the scale factors a; and @ in harmonic time
(with positive sign). » A fore<0 (equatioﬁ (53) for 11 < 0). It can be seen that in the case asmin ~ Lprfor v — 1

dynamical compactification takes place.
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Figure 13 For' solutions ‘with spontanedu compactification of all internal spaces and -
negative curvature of the external space it is shown how the solution a; ”=“|t| fore=0 ‘

acts as an attractor. The curves are drawn for the simple case d; = ‘/2. Here we have
: : 1/2

e = [t2+ é-a‘—i-]l(z for e<0and g; = e [(C(ﬂ@{tl-&-l) - 1] .ffor € > 0. For

- rall dygaﬁﬁcal_sohitions- eiO we have asymptotically a;. ~ ft| = +o0, a5,... ,@n — const,”

¢ — const and, therefore, the §oluiion ay ~#r]tl, e = 0 is an attractor, too (see e.g. figures
7-10). - ‘
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