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Abstract 

....., . ,," .,~ ...... 
..,.,.........··"ft is shown that the striking features of the polarization data for large-angle elastic proton-


proton scattering can be understood in the QeD framework, provided that the effects caused 

by the color-currents in polarized protons' are taken into account. The color effects are treated 

phenomenologically at the hadronic level, where quantitative calculations are performed. The 

results obtained in this and in the previous paper strongly suggest the following: In collision 

processes in which the projectile- and the target-hadron get extremely close to each other (at least 

partial overlap in space) the bindings between ,the constituents - in particular the color magnetic 

forces between the constituents of one hadron and those of the other - are not negligible. 
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1. Introduction 

It has now become more and more evident1 that spin effects in high-energy collisions play 

a significant role in understanding hadronic phenomena. Besides the recent EMC muon-proton 

experiment2 which triggered the "spin crisis" 1, a large number of other beautiful polarization 

experiments1,3-9 have been performed since the beginning of the 1970's among which the following 

observations3- 9 made in high-energy large-momentum-transfer proton-proton elastic scattering 

processes are of particular interest. It is because these experiments are conceptually so simple, 

and the obtained data are so much different from the well-known1o QCD predictions. In fact, the 

results of these experiments have been a standing challenge to the theorists already for manny 

years. 1•3- 10 

The spin analyzing power A has been measured3.4,5.9 up to incident momentum Plab = 28 GeV/ c 

using polarized targets and unpolarized beams. The transverse momenta (P..L) of the scattering 

protons in these experiments are large {up to pi ~ 7 (GeV/c)2). It is observed (Cf. Fig. 1, here, 

only the data at the two highest incident energies are shown.) that A is very much different from 

zero for P1 > 4 (GeV/e)2, it increases dramatically in this region, and reaches more than 20% 

at P1 ~ 7 (GeV/e)2). These "very non-zero values,,3 have attracted much attention, because it 

is known10 that A must be zero wherever perturbative QCD is applicable. We recall that the 

analyzing power A is defined as 

A = _~ N(i) - NU) (1.1)
PT N(j) + N(l) , 

and it is obtained from the measurements of the normalized event rates N(i)(i =i or 1) of the 

transverely polarized target. Here, PT is the magnitude of the target polarization; and the Basel 

convention is used in the definition of A (and thus the minus sign occurs because the forward 

proton in this experiment scattering to the right).4,5 

Furthermore, the large pi behaviour of spin-spin correlations has been studied3 •6 - 9 up to 

incident momentum Plab = 18.5 GeVIe. In these experiments, transversely polarized (i =i or 
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1) beam and transversely polarized (j =i or 1) target have been used and the normalized event 

rates N(ij) have been measured. From these measurements the Pl-dependence of the spin-spin 

correlation parameter, 

1 N(if) - NCi!) - N(t i) + N(!l) 
(1.2)

Ann = PBPT N(ii) + N(i1) + N(! i) + N(ll) 

has been obtained. Here, PB and PT are respectively the beam and target polarization. It is 

observed that Ann depends strongly on the transverse momentum of the scattered proton. See 

Fig. 2. (Also here only the data at the two highest incident energies are shown.). Particularly 

striking is obviously the dramatic increase between Pl = 3 and 5 (GeVle)2 at incident energy 

Plab = 11.75 GeVIe. 

We recall that the above-mentioned pi-dependence in the polarization data are not the only 

striking features of the large angle elastic proton-proton scattering data which have received much 

attention in the past. In fact, it is knownll - already in the 1960's - that the differential 

cross sections duIdt (t is the invariant momentum transfer) at fixed energies has a significant Pl

dependence. It decreases extremely fast with increasing Pl. The duI dt data at Plab = 12 GeV/ e 

and that at Plab = 24 GeVIe, where most of the present polarization data on A and Ann are taken, 

are shown in Fig. 3. 

In an earlier paper,12 we discussed the possible implications of the data on analyzing power ,3,4,5 

and showed that the observed facts can be qualitatively understood in terms of the following 

picture:13 

(i) Hadrons are spatially extended objects, and hadronic interactions are short ranged. Such 

a collision process between two hadrons (P and T say) can take place only when they are so close 

to each other that they partially overlap in space. 

(ii) The constituents of the hadrons are quarks and gluons which carry color charges. 

(iii) The color charges in a polarized proton rotate about the polarization axis. 

The key idea of that paper is extremely simple, and it is based on an electromagnetic analog: 

Color charges rotating about the polarization axis of the target proton T are nothing else but axial 
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symmetric color currents which induce color magnetic fields. The projectile proton P is just another 

system of color charges which, in this scattering process, move with high velocity perpendicular 

to the polarization axis of T. Hence, the direction of the induced (color magnetic) field strength is 

expected to have an influence on the motion of P when the two colliding systems P and T get so 

close to each other that they partially overlap. The obtained result suggests that the influence is 

considerably large; and it shows that the proposed picture is able to give a qualitative description 

of the existing analyzing power data. 

Encouraged by this result, we ask ourselves the following question: Is it possible to quantify 

this physical picture such that, not only the data on analyzing power but also those on other 

characteristic features of such scattering processes can be described in a quantitative way. Such an 

attempt has been made at the hadronic level. We are aware of the fact that a more straight-forward 

way would be a quantitative calculation at the quark-level - in terms of perturbative QCD. We 

did not choose such an approach for the following reasons: First, it is not clear to us whether 

the perturbative QCD is applicable - especially in those kinematical regions in which the above

mentioned experimental observations are made. Second, even if we assume that perturbative QCD 

can be applied in these cases, a calulation of this kind is obviously beyond the scope of non-experts 

in Computational Physics. (It is known14 for example, that a perturbative QCD calculation to the 

4th order in a.s for an exclusive meson-baryon scattering - which is considerably less complicated 

than that for baryon-baryon scattering - requires the evaluation of 33 helicity amplitudes each of 

which has 2195 distinct O(a.~) Feynmann diagrams! ) 

The formulism and the result of our quantitative description are presented in Sections III and 

IV. The relevant kinematics is discussed in Section II. 
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II Kinematical preliminaries 

Nucleon-nucleon elastic scattering at relativistic energies has been extensively studied in the 

past. IS It is well-known that, at least for the discussion of its kinematical aspects, the helicity 

formulism is very useful. We adopt this formalism and describe the elastic proton-proton scattering 

processes in the center-of-mass system by a matrix </> in spin space. The matrix is defined in such 

a way that for unpolarized beam and target the invariant differential cross-section du / dt is given 

(2.1) 

Here, ..\i,..\~ are the helicities of initial and ..\{,..\t are those of the final state. The matrix is a 

function of the c.m.s. momentum p and the c.m.s. scattering angle 0. Recall that t, the invariant 

momentum transfer is related to p and °by t == _4p2 sin2 (O/2). The helicity amplitudes are related 

to the usual17 Feynman amplitudes Tfi for this process in the following way:18 

(2.2) 

where m is the proton mass. (Here, we adopt the definition used by Goldberger et al. 17 where Tfi 

is related to the scattering matrix S as follows: S == 1 + iR; 

similarly for ~,E{, E[;pl,p; and p{,p~ are the 4-momenta of the protons in the initial and the 

final states respectively.) For this scattering process, there are five independent helicity amplitudes: 

</>1 == (+ + !</>(p,O)1 + +), 6...\ == 0, (2.3) 

4>2 == (+ + 14>(p,O)!- -), 6.>" == 2, (2.4) 

</>3 == (+ - I</> (p, 0) I+ -), 6.>" == 0, (2.5) 

</>4 == (+ - I¢ (p, 0) I - +), 6>" == 0, (2.6) 

</>5 == (+ + !¢(p,O)1 + -), 6...\ == l. (2.7) 
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Here, the signs + and - stand for +1/2 and -1/2 respectively. The total change in helicity in a 

given amplitude;.6A, is also indicated. In terms of these five amplitudes, the measured quantities 

dO' / dt (the differential cross-section averaged over all possible initial spin states and summed over 

all final spin states; see Eq. 2.1 ), A (the analyzing power; see in Eq. 1.1 ) and Ann (the spin-spin 

correlation parameter; see in Eq. 1.2) are related to one another through 

2 2 2 2 2 (2.8)~: = i [14>11 + 14>21 + 14>31 + 14>41 + 414>sI ], 

A ~: = - 1m [(<PI + 4>2 + 4>3 - 4>4)4>;] , (2.9) 

Ann ~: = Re [4>14>; - 4>34>: + 214>sI 2] • (2.10) 

For discussions on the dynamical aspects of this scattering process it is more convenient to 

use another set of five independent amplitudes: Is, lv, IT, IA and Ip. (Note that, since we only 

discuss proton-proton elastic scattering in this paper, we omit in 100,a = S,V,T,A,P and in 

4>i,i = 1,2,3,4,5 the isospin-indices.). These amplitudes are functions of the invariant variables 

S = (pi + p;)2, t = (p{ - pi)2, U = (p{ - pi)2, where s + t + u = 4m2. They are associated with 

the standard "Fermi covariants": 

S = u(p{)u(p1)u(p{)u(p;) (2.11) 

V = u(p{)l'l'u(p1)u(p{},l'u(p;) (2.12) 

T = iu(p{)O'I'JI U (pi)u(p{) O'I'JIu(p;) (2.13) 

A = u(p{)I'Sl'l'u(pi)u(p{)I'Sl'l'u(p;) (2.14) 

P = u(p{)l's(p1)u(p{)l'su(p;) (2.15) 

used by Goldberger et al. (GGMW) and othersIS such that the scattering amplitude T'i in Eq. 

(2.2) can be rewritten as: 

T'i = [Is(s, t, u)S + Iv(s, t, u)V + IT(s, t, u)T + IA(s, t, u)A + Ip(s, t, u)p] 
(2.16) 

- [Is(s, u, t)S + Iv (s, u, t)V + IT(s, u, t)T + IA(s, u, t)A + Ip(s, u, t)p]. 
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Here, q~v == i(,~,v-,v"'l~)/2, "'Is == i'O"'l1"'12"'13 == "'15, u(pi) is the Dirac spinor for the incoming point

like proton of mass m, momentum pi and helicity Ai, and u(p{) is that for the outgoing proton 

with momentum p{ and helicity A{, etc. The Fermi covariant S is obtained by interchanging, in 

the expression (2.11) for S, u(p{) and u(p{); V, T, A and P are obtained in a similar way. This 

set of covariants is related to the set S, V, T, A, P by the well-known19 formula: 

( T = - 6 0 (2.17)~) 1 (~ -~ J ~ -~) (~).A 4 4 2 o -2 -4 A 
P 1 -1 1 -1 1 P 

The function la(s, u, t) is obtained by interchanging t and u in la(s, t, u). The requirements 

imposed by Pauli principle for elastic proton-proton scattering are always satisfied by the expression 

for Tli given in Eq. (2.16) - independent of the explicit forms of the functions Is, lv, IT, IA and 

Ip. Note in particular that, in the center-of-mass frame, the interchange of t and u corresponds 

to the interchange of the scattering angle () and the angle 1r - (). The relationship between these 

five amplitudes and the five helicity amplitudes 4>1,4>2,4>3,4>4 and 4>5 can be obtained by comparing 

Eq.(2.2) with Eq. (2.16) The result is: 

4>2 1 Iv 8, t, u Iv 8, u, t4)1) (IS s,t,U!) (Is!s,u,t!)
4>3 = (K IT s,t,u +L IT s,u,t ) (2.18)

( 4>4 4-JiJs(s - 4m2
)3 IA 8, t, u IA s, u, t 

4>5 Ip s, t, u Ip 8, U, t 

Here, K and L are 5 X 5 matrices. They can be written in the following way, where the (t, u) 

symmetry can be explicitly seen: 

-(2s - 4m2 ) 4m2 2s - 4m2 

o -2(28 - 4m2
) -2(4m2 ) 

-(2s - 4m2 ) -4m2 -(28 - 4m2) 

o o o 
o o o 
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-2(8 - 4m2
) 2(4m2

) 28 
4m2 -(28 - 4m2) -4m2 8-~m2) 
o o o o t+ 

-4m2 -4m2 -4m2 8 - 4m2 

o o o o 

(2.19)+ (g ~ ~ ~ ~o) v;ii
-2~VS - 2mVS - 2mVS - 2mVS 

-(28 - 4m2 ) 

o 
o 

28 - 4m2 

o 

-2(8 - 4m2) 2(4m2
)
 

4m2 -(28 - 4m2 )
 

4m2 4m2
 

o o 
o o 

(2.20) 
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III A phenomenological approach at the hadronic level 

After the kinematical preliminary we are now ready to continue our discussion on the problems 

mentioned in Sections I. We present the general formalism of a phenomenological approach to elastic 

pp scattering here, and discuss its application to large-angle processes in Section IV. 

The proposed phenomenological approach is made at the hadronic level in terms of relativistic 

quantum mechanics. In this formalism, each of the two protons taking part in an elastic scattering 

process is described by a single-particle wave functions \l1(xI1) or w(xI2) (of the space-time 4-vector 

x). Since, in the interaction region) each of them can be considered as moving in the field generated 

by the other, these wave functions are assumed to satisfy the following coupled integrodifferential 

equations 

(i/~a~ - m)\l1(xI1) = I(x/2)\l1(xI1), (3.1) 

(i/~a~ - m)w(xI2) = I(xI1)\l1(xI2). (3.2) 

Here, I~ (JL = 0,1,2,3) are the Dirac matrices, a~ = a/axil-, m is the proton mass, and the 

operators 

I(xI2) = L 0", Jd4 x'c",(x'  x) [l{1(x'12)  l{1(x'li)] O",W (x'12), (3.3) 

I(xli) = 

a 

L 0", Jcf'x'c",(x' - x) [l{1(x'li)  l{1(x'12)] O",W(x'li) (3.4) 
a 

describe the interaction between the two colliding protons. The method of describing a system 

of interacting particles in terms of single-particle wave functions which satisfy a set of coupled 

integrodifferential equations is not new. In fact, the spirit of this formalism is the same as that 

of Hartree-Fock method 20 in Atomic Physics, where the motion of each electron in an atom (with 

more than one electrons) is regarded as being in motion in the "self-consistent field" due to the 

nucleus together with other electrons. Furthermore (as can be seen in more detail later on), this 

formalism has also much in common with the propagator theory21 of Quantum Electrodynamics. 

Formally, the basic difference between the afore-mentioned theories and our approach is that, 
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in the latter, there are in general five different types of interactions - namely the scalar, the 

vector, the tensor, the axial vector, and the pseudoscalar type of interactions. This is because, in 

our attempt of describing the color effects at the hadronic level, we take the following facts into 

account: The effects of color-electric and the color-magnetic interactions between the constituents 

of the colliding hadrons depend in general on the structures of the hadrons as well as on the details 

of the reaction mechanisms. Without such detailed information we have to make guesses as to how 

the color effects manifest themselves at the hadronic level. In doing this, it is helpful to classify 

the possible interactions according to the transformation properties of the corresponding bilinear 

forms ~Ocrw (where ~ is the adjoint of w) under Lorentz-transformation. The operator Ocr, where 

a = S,V,T,A,P, stands for 1 (the unit 4 x 4 matrix), ,J.&,uJ.&v /V2"J.&'5 and "15 respectively. All 

the ccr's in Eqs. (3.3) and(3.4) are c-number scalar functions. The function Ccr will hereafter be 

called the "coupling-function of the a-type"; and all the ccr's are taken to be even functions of 

X' - x in order to guarantee invariance under translation and reflection in space-time. 

Approximative solutions of Eqs. (3.1)-(3.4) can be obtained by successive iteration, provided 

that the coupling functions ccr(a = S, V, T, A, P) are known. That is, these equations can be 

rewritten as: 

(i,J.&8J.& - m)wn+l(xI1) = I n(xI2)Wn+l(xI1), (3.5) 

(i"lJ.&8J.& - m)wn +l(xI2) = I n(xI1)Wn+l(xI2), (3.6) 

Here, 'lin is the nth-order-approximation of W, with Wo == 1/;, where (i,J.&8J.& - m)1/; = 0; and q,n is the 

corresponding nth-order approximation of~. The operators I n (xj2) and I n (xI1) are respectively 

the nth-order-approximations of I(xI1) and I(xI2) which can be expressed in terms of U~cr), "the 

effective potentials of order n": 

I n (xI2) = L Ocr [U~cr)(xI2,2) - UAcr)(xI1,2)J, (3.7) 
cr 

I n {xI1) = L Ocr [U~cr)(xI1, 1) - UAcr )(x12, 1)]. (3.8) 
cr 
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In accordance with the Eqs. (3.3) - (3.8), the effective potentials uAa 
)(xlj, k), where J' and k can 

be either 1 or 2, are given by 

(3.9) 

We note: Since all the ca's are scalar functions, the transformation property of UAa) is simply t~at 

f .f. 0 .T. H II U(S) - U(V) - TT - {U'-'} U(T) - - {U'-'V} U(A)TT TTo '!II' n a '!II' n' ence, we ca n = U nS, n = U nV = nV' n = U nT = nT' n = 

UnA == {U:A}, uAP) == UnP, (Il,V = 0,1,2,3), respectively the scalar, the vector, the tensor, the 

axial-vector, and the pseudoscalar effective potentials of the nth order. 

From Eq. (3.9), we see that the components of the zeroth order effective potentials can be 

expressed in terms of t/J and ;j;, the solutions of the free Dirac equations. They are: 

Uos(zlj,k) = Jd·z'cs(z' - z)~(z'lj).p(z'lk), (3.10a) 

utv(zlj,k) = Jd"z'ev(z' - z)~(z'ljhl'.p(z'lk), (3.10b) 

ut;(zlj,k) = Jd"z'CT(Z' - z)~(z'lj)uI'V /v'2.p(z'lk), (3.10c) 

utA(zlj, k) = Jd"z'CA(Z' - z)~(z'ljh5"YI'.p(z'lk), (3.10d) 

Uop(zlj,k) = Jd·z'cp(z' - z)~(z'ljh5.p(z'lk). (3.10e) 

This means, for a given set of coupling functions ca(a = 5, V, T, A, P), the zeroth-order interactions 

Io(xll) and Io(x\2) can be obtained in the following way: Insert the initial and the final state 

wave functions for the free protons [with quantum numbers (pi,..\i), (p~, ..\~) and (pi,..\{), (p~, ..\~) 

respectively] into Eqs. (3.10a)-(3.10e) to determined Uos(x\j, k), ... , Uop(xlj, k)j and then insert 

these results into Eqs. (3.7) and (3.8) to obtain Io(x\l) and Io(x]2). We note in particular: This 

is why - and how - the interaction Io(x\l) and Io(xI2) depend on the polarizations of the initial 

state and those of the final states of the colliding protons. 

The effective potentials of order n defined in Eq. (3.9), in particular the zeroth order approx

imations given in Eqs. (3.10a)-(3.10e) are closely related to the usual potentials in "direct" and 
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"exchange" processes. Let us, without restriction of generality, associate the final state described 

by (p{, A{) with the initial state (pi, Ai) in the sense that they are taken to be the asymptoti 

cal limits of the same wave function which, at the space-time point x', is represented by w(x'11) 

[and similarly (p~,A~) with (p~,A~) represented by W(x'12)]. Then, all the effective potentials 

Uos(xlj,k), ... ,Uop(xlj,k) with j = k describe "direct scatterings" ,while those with j f. k are 

responsible for the "exchange processes". To be more precise, while Uo a (xI2, 2) is the zeroth-order 

a-type effective potential (at the space-time point x) generated by a proton described by all the 

wave functions with initial state (p~, A~) and final state (p~, A~) (at all possible space-time points 

x' over which we integrate), Uoa(xI1, 2) is the corresponding "exchange potential" generated by a 

proton with initial state (p~, A~) and final state (pi, Ai). This is illustrated in Fig. 4. In other 

words, while Uoa (xI2,2) causes the proton in initial state (pi, Ai) to enter the final state (pi, .A{), 

Uoa (xI1,2) is responsible for the effect that the proton in initial state (pi, AD to enter the final 

state (p~, .Ai). Similarly for Uoa (xI1, 1) and Uoa (xI2,1). 

It should also be mentioned that Uoa(xli,j) - in general Una(xli,j) - are operators in Eqs. 

(3.5) and (3.6). In accordance with its definition, it yields its eigenvalue [ which is Uoa(xli,J·), 

in general Uoa(xli,j) ] when this operator is applied to a proton wave function, unless the wave 

function happens to be the one that generates this effective potential. In the latter case, it is zero, 

because we are not dealing with "self-interactions". It is clear that, after having solved Eqs. (3.5) 

and (3.6) for n = a and thus obtained wI(xI1) and wI(xI2), we can construct [1(xI1), It(xI2) in a 

similar way. Furthermore, similar interpretation is also possible for higher order approximations. 

This means, an adequate phenomenological description of the interaction between the protons in 

elastic proton-proton scattering can be achieved (step by step), provided that the five coupling 

functions ca(a = S, V, T, A, P) are known. 

Hence, having this physical picture - together with the notion of effective potentials and the 

method of successive iteration - in mind, we can now proceed to write down the matrix element 

between the following two states: The initial state i, represented by the product of two single

particle positive energy solutions t/J(xli)t/J(xli) of the free Dirac equation where the corresponding 
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momenta and helicities are (pi, AD and (p;, A;); and the final state f, represented by the product 

17J(xI1f}~(xI2f) with the quantum numbers (pi, A{) and (pL A~). In terms of the wave functions 

W(xI1) and W(xI2), which for X o --+ -00 reduce to 1/J(xll) and 1/J(xI2) respectively, and the functions 

1(xI2) and l(xll) defined in Eqs.(3.3) and (3.4), the scattering matrix element (fIRli) which we 

mentioned in connection with Tfi in Eq. (2.2) can be expressed as follows: 22 

(fIRli) = if d:l:4 [;],(:l:11/ )1(:l:12i )w(:l:11i
) + ;],(:l:12/ )1(:l:12i )w(:l:11i )+ 

(3.11) 
~(xI2f)1(xI1i)W(xI2i)+ 17J(Xllf )1(xI1i )W(xI2i )] 

As can be readily seen - from the definitions of 1(xI2i ) and l(xlli ) given in Eqs. (3.3) and (3.4) 

- that, in the integrand of Eq. (3.11), the first term is identical with the third, the second with 

the fourth. This is why a factor 1/2 has been introduced on the right-hand-side to avoid double-

counting. It means, in the Born approximation, the scattering matrix element (fIRli)Born can be 

23written as

(fIRli)Born = iJ.r:l: [;],(:l:11/ )1(:l:12i )"'(:l:11i
) + ;]'(zI2/ )I(:l:12i )"'(:l:11i )+ 

1/J(xI2f )1(x\li )1/J(xI2i ) + ~(xllf)1(xlli)1/J(xI2i)] = 
(3.12) 

= i l:J.r:l: [;],(zI1/)Oa UOa (:I:I 21 , 2i )"'(:l:11i
) - ;],(zI2/)OaUOa (:I:I11,2i )"'(:l:11;)+ 

a 

17J(xI2f )OaUoa(xll f , l i )1/J(xI2i) -17J(xllf )OaUoa(xI2f , l i )1/J(xI2i )]. 

As usual, we write the positive energy solution of the free Dirac equation for protons with given 

four-momentum pi == (C ,pi) and given helicity Ai in the form 

(3.13) 

Here, 1/J(xli) stand for 1/J(xI1i ) or 1/J(xI2i ), and Ui is the corresponding positive-energy spinor with 

normalization UiUi = 1. The final-state protons is correspondingly: 

",7, ( If) - V m ipf % - ( f) (3.14)'Yf x - (21r)3Ef e uf p . 
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where ~(xlf) can be either ~(xI1/) or ~(xI2/). We also introduce the Fourier transform, 9a(Q), of 

the coupling functions ca{x) for a = S, V, T, A and P: 

(3.15) 

We now compare (fIRli)Born given in Eq.(3.12) with the general expression for (fIRli) which 

leads to T/i given in Eqs. (2.2) and (2.16). We identify the four-momenta pi and p/ in Eqs. (3.13) 

and (3.14) respectively with pLp~ and p{,p{ which appear in the bilinear covariants in Eqs. (2.11)

(2.15). We express the functions ,p(x'lk) and 1jJ{x'li) in Eqs. (3.10a) - (3.10e) in terms of the above-

mentioned plane wave solutions of the Dirac equations with given four-momenta pi, p~ and p{ ,p{ 

and the corresponding spinors respectively. Here, we recall that the interchange of p{ and p{ and 

the corresponding helicities causes the interchange of the invariant variables t and u as well as the 

interchange of the two sets of covariants (S,V,T,A,P) and (S,V,T,A,P). We insert Eqs. (3.10a) 

- (3.10e), (3.13), (3.14), (3.15) and the corresponding expressions for ,p(xI1i ), ,p(xI2i), 1jJ(xll/) and 

1jJ(xI2/) into Eq. (3.12); and carry out the integration. From this we obtain: (fIRli)Born = 

{21r)484(pi + p~ - p{ - p~)NT/forn, where N = (21r)-6 m2 E- 2 , E = (p2 + m 2)l/2 and 

T/~orn = [98(S, t)S + 9v(S, t)V + 9T(S, t)T + 9A(S, t)A + 9P(S, t)p]
(3.16) 

[98(S, u)S +9V(S, u)V +9T(S, u)T + 9A{S, u)A + 9P(S, u)p] , 

That is, on identifing this result with the general expression for T/i given in Eq.{2.16), we see that, 

in Born approximation, the invariant amplitudes fa (a = S, V, T, A, P), are simply: 

fa{s, t, u) = 9a{s, t), (3.17) 

fa{s,u,t) = 9a{S,U), (3.18) 

where t = {p{ - pD2 and u = (p~ - pl)2 . We recall that the ga is the 4-dimensional Fourier 

transform of the scalar function Ca of the space-time variable x - x', and thus it is in general 

function of the invariant momentum transfer t or u as well as of the invariant total energy squared 
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s. We also recall that s, t and u can be expressed in terms of the c.m.s. momentum p and the 

c.m.s. scattering angle 0 : s = 4(p2 + m 2), t = -2p2(1 - cosO), u = -2p2(1 + cosO). 

Hence, the general conclusion we can now draw is the following: In the Born approximation, 

all the measurable quantities in elastic proton-proton scattering can be readily obtained, provided 

that the quantum numbers of the initial- and final state of the colliding protons are given and that 

the five coupling functions ca(a = S,V, T, A, P) are known. 

It should be mentioned that the special case: 

a = S,T, V,A,P (3.19) 

in a given reference frame is of particular interest in practice, because (having the well-known 

Fermi-coupling as the limiting case of weak interaction in mind) instantaneous propagation of 

interaction is expected to be a good approximation when the impact parameter is very small 

(compared to the average size of the colliding hadrons) and thus the corresponding momentum 

transfer is relatively large. In this connection it is also useful to introduce 9a, the 3-dimensional 

Fourier transform of ca 

(3.20) 

for a = S, T, V, A and P. Here, q == (qO, q) is the four-momentum transfer. 

In order to show what kind of a role coupling functions play in practice, a few illustrative 

examples may be helpful: In Example 1 we consider: 

cs(r) = cv{r) = cT(r) = cA(r) = 0, 
(3.21) 

cp(r) = -Ite-I.l
r /r, 

where r stands for lx' - xl, It and J.L are positive real constants. The invariant amplitudes fa in the 
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Born approximation can be readily evaluated. They are: 

!o:(s,t,u) = !o:(s,u,t) = 0, for a = S, V,T,A, 

(3.22)
411'"1<: 411'"1<: 

!p(s,t,u) = --2' !p(s,u,t) = 2. 
t - P. U-J.L 

This is obviously the one-pion-exchange contribution24 to elastic proton-proton scattering, where 

J.L is the pion mass, and I<: is equal to the pion-proton coupling constant. In Example 2, we consider 

the case in which 

e (3.23) 
ever) = -,

r 

where e is the electric charge. Here, the corresponding effective potentials in Born approximation 

are: 

Uos(xli, k) = ut; (xli, k) = utA(xli, k) = Uop (xli, k) = 0, 
(3.24) 

utv(xlj,j) = -utv(xIJ·,k =f:. j) = A~(x), 

where j,k = 1,2; and A~(x) is the electromagnetic potentia1.25 That is, Eq.(3.10b) for j = k 

is nothing else but the usual21 relation between the four-potential A~(x) and the four-current 

density 1P(x'li)")'~,p(x'lj). It shows in particular why and how the effective potentials depend on 

the initial and the final spin-states of the particle. In fact, on inserting Eqs. (3.23) (3.24) (3.19) into 

Eq. (3.10b) and on taking the non-relativistic limit, we obtain the usual spin-orbit and spin-spin 

interaction terms which appear in the Hamilton operator of such a scattering problem. Another 

well-known result which we explicitly see in this example is the following: In the ultra-relativistic 

limit, that is, in the high-energy limit where the mass of the colliding particles can be neglected, 

the helicity of each of the colliding objects is conserved. 

As a further example, we consider the general case (in which all Co: 's are different from zero) 

and compare the corresponding nonrelativistic limit with the (non-covariant) formulism discussed 

by Durand and Halzen.15 In their formalism, the components of the various spin parameters are 
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A 

referred to a set of axes specified by the unit vectors l, qand fr: 

~ 1 
£= -,

£ £ = Ill, (3.25) 

~ qq=pl - pi, q= -, q= Iql, (3.26) 
q 

-. A ii 
ii = £ x q, ii =-, (3.27)

n 

where pi the initial, and pI final momentum in the centre-of-mass system (thus lpil = Ip/l). 

Denoting the "large component" of the four-spinor ¢(xlj) (j = 1,2) by p(j), the non-relativistic 

limit of the scattering amplitude Tfi can be written in the following form 

T/iR =Mo (I1){I2) + Ml [(h){U2) + (I2){Ul)] . ii+ 
(3.28) 

+ M2 (Ul) . ii (U2) . fi + M3 (Ul)· go (U2) . q- + +M4 (<71)·Z (<72) .Z 

(Ii) = p} (j) Pi(j) , (3.29) 

(Ui) = P }(j)UPi(j) (3.30) 

1 £2 1 q2 
Mo = 95 + (1 + 2' m2)9Y + 2' m29T (3.31) 

i£q_ i£q_ 
(3.32)Ml = 4m29V + 2'm29T 

-1 £2 1 £2 
M2 = 4 m29Y + (2 + 2' m 2 )9T + (-1)9A (3.33) 

-1 £2 _ 1 £2 _ 1 q2 _ -1 q2 
M3 = 4 m29Y + (2 + 2" m2 )9T + (-1 + 4m2 )UA + 4 m 2 UP (3.34) 

£2 
.M 4 = (2 + -2 )9T + (-1)9A (3.35) 

m 

a=S,V,T,A,P (3.36) 

That is, Eqs.(3.31)-(3.35) show whether/how the nonrelativistic limit of the S,V,T,A,P-couplings 

contribute to the Durand-Halzen amplitudes.1s The relative importance of the different couplings 
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to the various polarization parameters is summarized in Table 1. 

type of interaction S V T A P S V T A p 

(h) (12) v' v' v' v' 

[(11) (il2) + (12)(ill)] . it v' v' 

(ill) .l (il2) .z v' v' v' 
(ill) . q- (il2) . q- v' v' v' v' v' v' 

(ill) . ii (il2) • ii v' v' v' v' 
order of magnitude 0(1) 0(~2) 

Table 1 

Last but not least, it should be mention that, also in the ultra-relativistic limit, different types 

of couplings behave, in general, differently. One of the most interesting properties is the question 

whether/which coupling may cause helicity-flip. This question can be readily answered; the result 

is summarized in Table 2. 

type of interaction s V T A p 

change in helicity yes no yes no yes 

Table 2 

From these examples we see why it is useful to study the non-relativistic and the ultrarela

tivistic limits: They explicitly show which type of coupling leads to spin-dependent forces. They 

also show which type of coupling is associated with helicity-conservation. Needless to say that 

such information are essential in understanding the polarization phenomena in general, and its 

relationship to color-magnetic effects in particular. 
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IV Parametrization of effective potentials for large anlge elastic pp scattering. 

Having discussed the general formalism (of our approach to pp in Section III) we now focus our 

attention on the polarization phenomena (mentioned in Section I). We present, in this framework, 

simple models which describe the large pi-data. The need for studying such examples is not difficult 

to see: The observed relationship between the conceptually simplest polarization phenomenon3,4,5,9 

(namely the data on analyzing power in high-energy proton-proton elastic scattering) and the 

proposed picture12 (in which rotating color charges in polarized hadrons manifest themselves in 

form of non-negligible color magnetic effects when the impact parameter between the colliding 

hadrons become very small compared with the average hadron size) should be put to further 

tests. In this connection, we asked ourselves the following question: "Is it possible to quantify 

this physical picture in such a way that not only the data on analyzing power, but also those 

on other characteristic features of this scattering process, can be described quantitativly? » The 

method we proposed for the description of such effects is similar to those used in Electrodynamics 

of macroscopic media and those in Nuclear Physics: We describe the effects due to the interactions 

between the constituents of different colliding hadrons macroscopically - at the hadronic level 

in terms of effective potentials. Hence, the answer to this question is in the affirmative, provided 

that models can be explicitly constructed which lead to adequate descriptions of the data. 

In constucting such models, it is important to keep the following points in mind: 

(a) The relativistic kinematics for high-energy elastic proton-proton scattering allows in gen

eral the existence of five different types - namely the scalar-, the vector-, the tensor-, the axial 

vector- and the pseudoscalar-type of effective potentials. The question as to whether/how a given 

type contributes to the scattering process, depends not only on the interactions between the con

stituents (of the colliding protons) but also on the proton-structure. That is to say, a derivation of 

such effective potentials would be possible only if we could specify the above-mentioned intrinsic 

interactions and the proton structure explicitly. 

(b) As we have seen in our analysis presented in Section III - especially through the illus

trative examples - the characteristic features of the effective potentials depend very much on 
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their properties under Lorentz-transformation. While the coupling function ca(r) of the effective 

potentials Ua(xli,j) (a = S, T, V, A, P) determines the strength and the range of Ua(xli,j), it is 

the corresponding bilinear covariants which dictates the spin-dependence of the effective potential 

Ua(xli,j). 

(c) In order to take color-magnetic effects into account it is useful to consider the similarties 

and the differences between the color-magnetic and the electromagnetic forces. The latter suggests 

in particular that the vector-type coupling should playa dominant role. Furthermore, it can be 

readily shown (cf Section III) that the vector-type coupling yields in its non-relativistic limit the 

usual spin-orbit and the spin-spin interactions. 

(d) As can be explicitly seen in the coupled integrodifferent equations (3.1) and (3.2), the 

effective potential obtained from a scalar-type coupling has the same kind of behaviour as the 

mass-term. This implies the existence of an intimate relationship between scalar-type coupling 

and helicity-nonconservation. 

(e) As the non-relativistic limit explicitly shows, the tensor-type coupling implies the existence 

of a significant spin-spin interaction. Hence, the spin-spin correlation parameter Ann is expected 

to depend considerably on the strength of the tensor-type effective potentials. 

(f) High-energy elastic scattering can be, and has been described in terms of optical 

potentials.26 They are complex potentials, the imaginary part of which guarantees the "absorption" 

of inelastic contributions. 

(g) In those cases in which the coupling functions ca(r)(a = S, V, T, A, P) has the functional 

form exp( -J.Lar)/r where J.La is a constant, the corresponding Fourier transform 9a (as a function of 

invariant momentum transfer t or u) can be interpreated as the "propagator function" of an a-type 

meson of mass J.La. This means, meson-exchange models which are suitable for high-energy elastic 

scattering processes and which incorporates such color effects can be taken as special examples of 

the proposed picture. Now, since a coupling function is nothing more than a possible phenomeno

logical description of the strength and the range of the color-electric and color-magnetic forces, 
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there is apriori no reason why the coupling functions should have the form of Yukawa potentials 

where the masses of the known mesons are considered as fixed parameters. 

(h) A simple and practical way to see whether, and (if yes) how much, the obtained result 

depends on the explicit form of the coupling functions is to follow the example of low-energy 

Nuclear Physics and study this question empirically. That is, comparison between results obtained 

from different kinds of Ansatze for the coupling function should be helpful. 

In view of the foregoing considerations, we now discuss two possible models in which the 

coupling functions ca(r) are parametrized in the Gaussian form 

ca(r) = C~(r) + iC~(r), a = S,T,V,A,P. (4.1) 

(4.2) 

2/ / ( r) (4.3)Ca(r) = co(s)aa exp - ~ . 
4A/a 

Here, ARa, A/a, a:; and a~ are real constants (in unit of GeV- 1 and GeV respectively), while co(s) 

is a (real) dimensionless function of s. In terms of this ansatz, the invariant amplitudes la(s, t, u) 

and la(s, u, t) can be readily obtained from Eqs. (3.17) - (3.20). The result is: 

(4.4) 

(4.5) 

Here IC(s) == 81r3/2V2co (s), and E = R or I indicates the real and the imaginary part of I a 

respectively. We note that, in terms of the parametrization of the coupling functions shown in 

Eqs. (4.1)-(4.3), the s-dependent coefficient co(s) and thus K(S) cancels in the expressions for the 

quantities A and Ann. The only place where it appears is in du / dt. 
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According to the analyses and the arguments presented at the end of Section III and in those 

given this section, the simplest model that has a chance to describe the striking features of the 

existing data is the following ansatz. We call it hereafter the SV-model. In this model: ca(r) == 0 

for Q = T, A, P. The parameters of es(r) and cy(r) in Eqs. (4.1) - (4.3) are in general different 

from zero. A set of parameter which approximately reproduce the dO' / dt, A and Ann data are 

given in Table 3: 

Q S V 

€ R I R I 

a~[GeV] 10 -7 -9 4 

A~a [GeV- 1
] 0.7 0.9 0.8 0.7 

Table 3 

In the second example, which will be called hereafter the SVT-model, we set ea(r) == 0 for 

Q = A, P. The parameters for the coupling functions cs(r), ey(r) and cT(r) are given in Table 4 

Q 

€ 

a~[GeV] 

R 

10 

S 

I 

-10 

R 

-7 

V 

I 

2 

R 

1 

T 

I 

0 

A;a [GeV- 1] 0.7 1 0.8 0.7 0.7 0 

Table 4 

The result of this model is shown, together with the data in Figs. 1, 2, and 3. The similarities and 

the differences between the SV- and the SVT-model are shown in Figs. 5 and 6. 

Other ways of parametrizing the coupling functions - in particular in Yukawa form - has 

also been considered in our numerical study. It turns out that the result depends very little on the 

particular form of the coupling functions; but in order to obtain nonvanishing polarization neither 

the scalar- nor the vector-effective potential should be identically zero. 
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It is interesting to see that the obtained numerical result confirms the expectations of our qual

itative analysis: In order to understand the observed polarization phenomena at large momentum

transfer in terms of the proposed phenomenological approach of a QeD based picture, it is neces

sary to have scalar- and vector-effective potentials . (The inclusion of a tensor-effective potential 

improved the description of Ann). 

As next step, we wish to see whether/how the proposed picture can be used to describe the 

existing data in the medium- and the low- pi region. Furthermore, we also wish to see whether/how 

the proposed picture can be extended to other scattering processes. Of special interest are of course 

the striking phenomena observed in inclusive production of hyperons21 and those of pions28 • Studies 

along this line are now in progress. 
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Figure Captions 

1 Analyzing power A as function of p~, wehre P.l is the c.m.s. transverse momentum of the 

scattered proton. Data are taken from Refs. 4, 5 and 9. The curve is the result of the 

SVT-model. 

2 Spin-correlation parameter Ann as function of p~. Data are taken from Refs. 6, 8 and 9. The 

curve is the result of the SVT model. 

3 Differential cross-section du / dt as function of p~. Data are taken from Ref. 11. The curves 

are the results of the SVT model. The s-dependent parameter tt(s) is 0.4 and 0.2 for PZab = 12 

and 24 GeV/ c respectively. 

4 Diagrams for elastic proton-proton scattering. The quantum number (pi, .AD, (p~, A~), (piAi), 

(p~ .A~) indicate the plane-wave solutions in the initial and the final states respectively. 

5 Analyzing power A as function of pi. Comparison between the SV and SVT-model. 

6 Spin correlation parameter Ann as function of p~. Comparison between the SV- and the SVT

model. 
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