
The TYPES Users Guide:

A Data Abstraction Package in FORTRAN

Version 1.0

Saul Youssef

Supercomputer Computations Research Institute

Florida State University

Tallahassee, FL 32306-4052

FSU-SCRI-90-03

ABSTRACT

Types is a collection of Fortran programs which allow the creation and manipula

tion of abstract "data objects" without the need for a preprocessor. Each data object is

assigned a "type" as it is created which implies participation in a set of characteristic op

erations. Available types include scalars, logicals, ordered sets, stacks, queues, sequences,

trees, arrays, character strings, block text, histograms, virtual and allocatable memories.

A data object may contain integers, reals, or other data objects in any combination. In

addition to the type specific operations, 'a set of universal utilities allows for copying, in

put/output to disk, naming, editing, displaying, user input, interactive creation, tests for

equality of contents or structure, machine to machine translation or source code creation

for any data object. This document is the users guide for the Types package.

-
TABLE OF CONTENTS -

1. INTRODUCTION 1

2. BASIC CONCEPTS . 3
3. APPLICATIONS AND EXAMPLES . 8

3.1. The Allocatable Memory Type .8
3.2. Manipulating a Simple Data Object . . . 9

3.3. Error Checking and Debugging . . 10
 -
3.4. Example: Removing Duplicates from a Set .. 11

3.5. Using Types Utilities for User Interfaces 13
3.6. Moving Data Objects from Computer to Computer 14
 ...
3.7. Machine Independent Help Systems . 15

3.8. The Virtual Memory Types 15 -3.9. Using Types for Storing Benchmarks 16

4. TUTORIAL 18

5. AVAILABLE TYPES AND UTILITIES 27

5.1. Primitive Types 27

5.1.1. pUndefnd 27

5.1.2. pScalar 27
5.1.3. pBScalar 27

5.1.4. pOrSet 27

5.1.5. pStack 28

5.1.6. pChaStr 28
 -
5.1.7. pMemory 28

5.1.8. pText 28

5.1.9. pVeArray . 28

5.1.10. pLogical 28
5.1.11. pSequenc 28

5.1.12. pHistGrm 29

5.1.13. pQueue . . 29

5.1.14. pVirMem 29

5.2. General Types . . 29

5.2.1. dOrSet 29

5.2.2. dStack 29

5.2.3. dTree . 29

5.2.4. dStArray 29

5.3. Display and Editing Utilities 30

5.3.1. dCreate 30

5.3.2. dInfo . 30

5.3.3. dSkeletn 30

5.3.4. dDisplay 30

5.3.5. dEdit . 30

5.4. Input/Output utilities . 30

5.4.1. dWrite 30

5.4.2. dWriteQ 30

5.4.3. dRead 30

5.4.4. dReadA 30

5.4.5. dReadQ 30

5.4.6. dAlocIO ••• 0. 31

5.4.7. dOpenNew 31

5.4.8. dOpenOld 31

5.4.9. dClose 31

5.4.10. dUWrite 31

5.4.11. dURead 31

5.4.12. dUReadA 31

5.4.13. dReadTry 31

5.4.14. dSource . . 31

5.4.15. dToExch 32

5.4.16. dFrExch 32

5.5. Utilities for Extracting Information about Data Objects 32

5.5.1. dSpace 32

5.5.2. dUSpace 32

5.5.3. dSpLeft 32

5.5.4. dHeadSz 32

5.5.5. dType 32

ii

5.5.6. dPrirn 32

5.5.7. dPrimTyp 32

5.5.8. dTyNrnGet 33
5.5.9. dDsNrnGet 33

5.5.10. dTypeNarn 33

5.6. Miscellaneous Utilities 33

5.6.1. dNarne 33
5.6.2. dCopy 33

5.6.3. dEqual 33
5.6.4. dCongru 33 -5.6.5. dUnion 33

5.6.6. dCheck 33

5.6.7. dCheckQ 33
5.6.8. dChecAll 33

5.6.9. dSetType 34

6. REFERENCES 35 -

-

iii

1. INTRODUCTION

In advanced programming languages, data structures can be created with an ab

stract data "type" which implies participation in a characteristic set of operations. For

example, a "stack" can participate in "push" or "pop" operations, an "ordered set" can

have things put into the set or taken out of the set. In the case of an ordered set, the

meaning of the set operations is independent of the contents of the set. This separation of

the abstract properties of an object from its contents ("data abstraction") is characteristic

of all types and is absolutely essential for solving difficult programming problems. Data

abstraction is also necessary even to specify difficult programming problems. The purpose

of the Types package is to provide a general mechanism for creating and manipulating

abstract data objects[l] which fits naturally into standard Fortran.

Although Types is not oriented towards any particular discipline or programming

situation, I will occasionally use examples from experimental High Energy Physics to be

specific. It is not difficult to construct analogous examples in many different fields. In

High Energy Physics, concepts like "event," "drift chamber track," "calorimeter cluster,"

"Z-candidate" etc. allow programming problems to be concisely specified. For example,

problems like "sort a set of drift chamber tracks in increasing energy," or "remove duplicate

calorimeter clusters" would be much more difficult to specify in terms of integers, reals

and logicals. In addition, these problems are easily solved at the level of abstract set

operations, but are more difficult at a lower level of abstraction. Types allows the solution

to these sorts of problems by providing a mechanism for creating data objects to represent

events, drift chamber tracks, etc. together with a collection of subroutines which perform

the appropriate abstract operations.

Although there are many languages which support data abstraction, programmers

are often constrained to write in simple languages like Fortran or C which are inadequate

for creating and manipulating data objects. Thus, programmers are often forced into the

tedious and error prone task of translating abstract programs into low level executable

code. The Types package can alleviate these problems by "simulating" advanced lan

guage features in Fortran. In addition, there are features of Types which are difficult

to find in other languages, for example, the universal utilities allowing copying, naming,

input/output to disk, editing, displaying, user interface, interactive creation, tests for

equality of contents or structure, machine to machine translation or source code creation

for any data object. Such utilities are extremely useful since they reduce much of the

tedious work associated with programming.

1

-

Types is a set of Fortran programs[2] and subprograms which implement a general

mechanism for data abstraction without the need for a preprocessor. Types is designed

so that pieces of the package can be used in otherwise normal style Fortran programs, or

in programs in other languages which can call Fortran programs. For example, it might
be desirable to use just one or two of the types or to use the allocatable memory or to

just use the virtual memory type to store large amounts of data. Types is not intended

to be a closed system in that we expect new types to appear for special application areas.

It is intended to be easy add new operations to existing types or to create new types.
Types is currently available on VAX/VMS, SUN/(BSD Unix), ETA-IO/(Unix Sys

tem V) and Silicon Graphics 4D/(Unix System V). We anticipate supporting Types on
other machines as needed including Cray/Unicos, VAX/illtrix and NeXT/Mach. If you

want a copy of this users guide or the types source code and help system or if you want to

be on the Types mailing list, send a message to S. Youssef, Supercomputer Computations

Research Institute, Florida State University, Tallahassee, Florida 32306-4052, internet:

youssef@scril.scri.fsu.edu, DECNET: 47291::youssef.
-
-
-
-

-

-
2

-

-

-

2. BASIC CONCEPTS

The data types available in Fortran are integers, reals, logicals and character strings

which can all be elements of arrays. In addition, Types. includes a set of "primitive" types

which have ordinary integers or reals as components. An ordered set of reals, a character

string, a stack of integers and a block text are all examples of primitive types. The integer

or real types are called "scalars." Each primitive type has a name which begins with "p."

For example, the names of the ordered set of scalars, the character string, the stack of

scalars and the block text are "pScalar," "pChaStr," "pStack," and "pText" respectively.

Information about each of the types and associated operations is available through the

help system (see the tutorial). In addition to primitive types, Types also includes a set

of "general" types which can have other data objects as components and which have

names beginning with "d." Examples of general types are the ordered set of data objects

(dOrSet), the stack of data objects (dStack), the tree of data objects (dTree) and the

array of data objects (dStArray).

Any contiguous set of memory locations, either in local variables or in COMMON

blocks, can be assigned a type with a subroutine call which has the same name as the

name of the type. For example, the following creates a dStack in an integer Fortran array

S.

INTEGER S(100)

CALL dStack (100,S)

S(l) ... S(100) is now a data object of the type 'dStack' which can be referred to simply

by fhe starting address'S.' By virtue of S's new type, S can participate in the stack

operations push (dStPush) and pop (dStPop). For example, the following code fragment

pushes data object A onto dStack S and then pops S, putting the result in data object B.

CALL dStPush (A, S)

CALL dStPop (S, B)

Notice that the operation of pushing A onto S is independent of the type or contents of

A. The fact that S is an integer array has no effect on S. S could equally well be declared

as "REAL S(100)." It is often convenient to create data objects which exist in allocatable

memory rather than in local variables. The allocatable -memory is describe in section 3.1.

Since there are a large number of type operations, a systematic naming convention is

used where the first character of the type operation indicates a primitive or general type,

and the next two or three characters indicate the type. For example, the available opera

tions on the ordered set of data objects are: dOrSet, dOrIni, dOrEmp, dOrAdd, dOrTran,

3

dOrApn, dOrNum, dOrGet, dOrGetA, dOrGetNm, dOrGetNA, dOrMem, dOrMemE,

dOrBreak, dOrUnion, dOrLet, dOrLtA, dOrAsn, dOrAsA and dOrSort. With such a

long list of available operations, it is often necessary to refer to the help system to give

the exact meaning of each operation.

There are some primitive types which are closely analogous one of the general types.

For example, in addition to the stack of data objects (dStack) above, a separate type called

"pStack" is a stack of integers or reals. For example, the following code fragment creates

a pStack and pushes a real number onto it.

INTEGER T (100)

CALL pStack (100,T,'REAL')

CALL pStPush (3.14159, T)

Primitive types like pStack and pOrSet (the ordered set of scalars) must include a spec

ification of their components at the time of creation. Here the 'REAL' argument causes

T to be created as a pStack of Fortran reals.

In addition to operations defined by the type of a data object, a set of universal

utilities operate on any data object. These utilities always start with "d." Universal utili

ties include interactive creation of data objects (dCreate), displaying a data object (dDis

play), copying one data object to another (dCopy), input/output to disk (dWrite/dRead),

naming a data object (dName), editing a data object (dEdit), testing two data objects

for equality of contents or structure (dEqual, dCongru), user interfaces (dInput, dEdit,

dReadTry), machine to machine translation (dToExch, dFrExch) and creating the source

code equivalent of a data object (dSource). For example, the following call to dName

assigns the character string "My Name" as the name of data object Q:

CALL dName (Q,'My Name')

The name of a data object is stored inside the data object and can be up to 32 characters

long. It is often useful to assign names to data objects so that utilities like dInput,

dDisplay and dEdit can function usefully. For example, a utility like dDisplay uses the

names, types and contents of a data object to make a non-graphics display of structure

and contents. A display of any data object Q is produced simply by

CALL dDisplay(Q)

Similarly, any data object can be created in an interactive session by

CALL dCreate(Q)

Utility subroutines like dDisplay and dCreate also exist as stand alone programs which

read data objects from a file for input. The command 'ddisplay', for example, causes a

4

-

-

-

-

-

.

-

-

display to be produced for a data object which has been stored in a file by, for example,

the utility dWrite. Figure 1 shows the result of dDisplay for a data object stored in a file.

In the standard display from dDisplay, each data object has a header of the form '/data

object name/type/type of components.' Components of the displayed data object "GEANT

Volume" are shown below the main header and indented. Thus, "GEANT Volume" is an

ordered set of data objects (dOrSet) with the four components "GEANT Volume Shape,"

"Shape Parameters," "Displacement x,y,z(em.)" and "Rotation Parameters." Note that

the "rotation matrix," pOrSet of reals has type "pUndefnd." pUndefnd is the "undefined"

data type which is useful in various situations. Here it is being used to suppress user input

for each component of a rotation matrix when using a user interface utility like dInput.

Later on, a Fortran program can calculate the rotation matrix from the rotation angles

and insert this in place of the pUndefnd data object.

The space available in a data object is defined at the time of creation. In Types

version 1.0, there is no mechanism for increasing the size of an existing data object other

than by copying it into a larger data object. This means that an upper bound on the size

of a data object must be known when it is created. To assist in this, Section 6 contains a

brief discription of each type along with information about how much space is needed. It

is often easy to get an uppe.r bound on the amount of space needed for a data object. For

example, if data object S is to hold components of an ordered set SET, then it is often

convenient just to create S with the same amount of space as SET. S can be created as an

allocated data object (see section 3.1) and then deallocated when it is no longer needed.

The contiguous memory of a data object contains a complete description of the

data object including its type, size, name, amount of free space and all of its components

whether they are integers and reals or other data objects. All data objects begin with

a "header" of at most 21 integer sized words which has the same format for all types.

Following the header, data objects have different, implementation dependent formats.

The format of the universal header is given in the appendix. It is never necessary to

know the internal structure of a data object to write and debug programs using Types.

It is highly recommended to only operate on data objects through the type operations or

utility routines.

The use of the types package implies a certain amount of overhead in memory and

processor time. Each type operation implies at least one subroutine call and a simple check

to insure that the argument is a legal data object of the proper type. The significance of

this extra computation depends on how much work is done inside the subroutine. In the

case of fetching the value of a scalar, the overhead is certainly substantial, but in a more

5

-�
Figure 1

$ ddisplay
= Enter filename:
box..gv
===

/GEANT Volume/dOrSet/COMPOSITE --
/GEANT Volume SHAPE/pChaStr/CHARACTER -------------------------------------

"BOI"

...

-
-

/SHAPE parameters/pOrSet/REAL -- -
Element # Value 3 Elements

1

2

3

O.10000000E+02

O.10000000E+02

O.10000000E+02 -
/Displacement x,y,z(cm.)/pOrSet/REAL --------------------------------------

Element # Value 3 Elements

1

2

3

O.OOOOOOOOE+OO

O.OOOOOOOOE+OO

O.OOOOOOOOE+OO

I
I
I

-

/Rotation parameters./dOrSet/COMPOSITE -----------------------------------
/thetal,phil, .. ,theta3,phi3(deg.)/pOrSet/REAL --------------------------

Element # Value 6 Elements

1

2

3

4

5

6

O.90000000E+02

O.OOOOOOOOE+OO

O.90000000E+02
O.90000000E+02

O.OOOOOOOOE+OO
O.OOOOOOOOE+OO

-

/rotation matrix/pUndefnd/UlDEFIIED -------------------------------------

- Undefined -

===

6

-
-

typical operation involving many words of data the fractional time spent in the subroutine

call can become negligible. Compilers with in-line subroutine expansion and computers

supporting fine grained parallel or pipelined operations can further decrease processor

overhead. A similar situation exists with respect to memory overhead. The fact that a

scalar may take up to twenty-one words of memory is not a serious limitation because

programs do not use much of their memory storing integer or real scalars. In addition,

the allocatable memory type (section 3.1) and the virtual memory types (section 3.7) are

powerful ways of reducing potential memory problems.

-�

7

-�
3. APPLICATIONS AND EXAMPLES�

There follows a collection of illustrative applications which would be difficult without

the ability to create and manipulate abstract data objects.
3.1. The Allocatable Memory Type

Almost all Fortran compilers allocate permanent space for local variables. This
makes it essential to have a system of allocatable memory when writing large applications.

The usual solution to this problem is to introduce a large vector (e.g. 'W') in a common
block and allocate space inside W. An allocation operation might return a starting point

(start) and a length (len) meaning that W(start), ... , W(start + len - 1) are available
for use. Although this is an annoying complication in syntax, a more serious problem is

that a mista~e, such as ~1tering W(start + len), is an error which can be very difficult

to track down, even assuming that you are lucky enough to find out about its existence.

The Types package includes a type called 'pMemory' which is a more robust solution for -allocatable data objects.

Just as with any other type, any contiguous memory can be made into a pMemory.

As a convention, however, a global common block /TypeMem/ is provided which contains

a large array '0' initialized as a pMemory. The net affect of using allocated data objects

is that rather than having data objects A, Band C existing in, for example local arrays
A(lOOO), B(lOOO) and C(lOOO), A, Band C could be ordinary integer variables and

represent allocated data objects referred to as 'o(A),' 'o(B)' and 'o(C)' respectively. In
general, 'o(something)' is the most complicated reference to the allocatable memory that

is necessary. It is never necessary to keep track of the length of o(A) or to make sure that
other parts of the allocatable memory are not corrupted as this is all automatically taken

care of by the Type operation routines. -
To illustrate a typical allocation, the following Fortran code allocates a 1000 word

data object called 'Track':

INTEGER Track

CALL pMemAloT(o, 1000,Track,'dOrSet')

The call to pMemAloT allocates 1000 words from pMemory 0 for data object Track and

initializes Track to be an empty ordered set. A similar call

CALL pMemAloc(0, 1000,Track)

would initialize Track to be an 'undefined' data object (type = 'pUndefnd'). In both
of these cases, the allocated data object is simply referred to as 'o(Track)' rather than

8 -

'Track'. o(Track) is deallocated by a call to pMemDalc(o, Track). Data objects must be

deallocated in reverse order - last allocated, first deallocated. Often, data objects are

allocated with an amount of space which depends on the size of other data objects. There

are pMemory routines to assist in this, for example, pMemSSiz(0, A,Q) allocates a data

object o(Q) with the same amount of space as data object A. For examples of the use of

pMemory, see section 3.3, the tutorial and the "pMemory" entry in the help system.

-

3.2. Manipulating a Simple Data Object

To give a concrete example of the ideas so far, consider the case of a drift chamber

track as might occur in a High Energy Physics application. A drift chamber track might

be an ordered set

Track = (Vertex, Momentum, PName, TrackOk)

where Vertex is the starting point of the track (a pOrSet of three reals), Momentum is

the three component momentum vector for the particle (another pOrSet of three reals),

PName is a character string giving the name of the particle type (a pChaStr) and TrackOk

is a logical value (a pLogical) indicating some "goodness" quality of the track. Supposing

that Track already exists, we also suppose that it is to be manipulated inside a subroutine

'TrackSub.' If TrackSub needs only the particle Momentum, then the following code

fragment might occur:

SUBROUTINE TrackSub(Track)

INTEGER Track(*)
INTEGER Momentum(50)

CALL pUndefnd(50,Momentum)�

CALL dOrGet(2,Track, Momentum)�

where the call to "dOrGet" gets the second element of Track and puts it in Momentum.

pUndefnd is called before dOrGet in order to turn the array Momentum into a data object.

As in many other situations, the output argument of dOrGet must be a data object but

it's type is irrelevant. The exact requirements of the arguments to dOrGet are available

from the help system. This code fragment has the disadvantage that an upper bound on

the size of Momentum needs to be known in order to know that 50 words is sufficient (of

course, if it is not sufficient, a sensible error message results). This problem can be avoided

if a variant on dOrGet (called dOrGetA) is used which creates an allocated data object

to store a particular element of the input dOrSet. In the following, the second component

of Track is put into a data object which could then be referred to as 'o(Momentum).'

SUBROUTINE TrackSub (Track)

INTEGER Track (*) -� 9�

-�
INTEGER Momentum�

INCLUDE'Types$:TypeMem.inc'�

CALL dOrGetA (0, 2,Track, Momentum)�

The include file in the code above contains the allocatable memory '0.' In this example,
o(Momentum) is automatically allocated with the right amount of space to hold the second

component of Track.

There is yet another way to get the second component of Track and that is to refer

to components of Track by name. As mentioned, any data object can be assigned a name
with the dName utility. If we suppose that the names of the components of Track are

"Vertex," "Momentum," "Particle Type Name" and "Track is OK" respectively, then, for
example, the following can be used to fetch the "Track is OK" component of track:

CALL dOrGetNm (Track,'Track is OK', TrackOK)
If it is necessary to fetch all of the components of Track, then dOrLet can be used as in

CALL dOrLet4(Track, Vertex,Momentum,PName,TrackOK)
where the "Let" in dOrLet is meant to suggest the mathematical statement: "Let Track =

(Vertex, Momentum; PName, TrackOK)," and where the "4" in the subroutine name in

dicates that there are four output arguments. As with dOrGet, there is an analogous

operation, called dOrLtA, which fetches all of the components of Track and stores the

components in allocated data objects. If allocated data objects are used, it is important to

remember to deallocate them before the end of the subroutine and in last allocated-first

deallocated order (see the next section). For example, if
. dOrLtA4(0, Vertex,Momentum,PName,TrackOk)

is used to create o(Vertex), o(Momentum), o(PName) and o(TrackOk), then -
dOrLtD4(Vertex,Momentum,PName,TrackOk)

must be called before the end of subroutine TrackSub to deallocate the new' allocated
data objects.

3.3.� Error Checking and Debugging

The Types package is implemented with extensive run time error checking. Each

operation on data objects in Types includes a check that data object inputs are "legal"

(Le. a special word is checked) and a check that input d'ata objects have the proper types

for the attempted operation. Each operation which adds data to a data object is preceded

by a check that there is enough space inside the data object to perform the operation.

These checks, combined with the integrity of the allocatable memory allow detection of

errors which would otherwise go undetected or occur as a more obscure system error.

10 -

In debugging programs which use data objects, one must avoid the situation where

the author is required to know and examine the internal structure of the data objects.

Fortunately, this is easy to avoid if some of the utility programs are included in the

program image (e.g. dInfo, dSkeletn, dDisplay, dEdit, dInput, dCreate, dCopy, dWriteQ,

dReadQ). With the utility routines available inside a symbolic debugger, it is easy to use

these routines rather than examining individual words inside of data objects. The utility

routines also make it easy to perform certain debugging checks which would be difficult

otherwise. For example, if a complicated data object Q is being incorrectly modified,

then one can copy Q to another data object Q2 with dCopy(Q,Q2) and then 'set a break - point' when dEqual(Q,Q2) is no longer true.

The most common error associated with the allocatable memory is neglecting to

deallocate an allocated data object. Since data objects must be deallocated in reverse

order (last allocated - first deallocated), an error will only occur the next time an already

existing data object is deallocated. The problem with this is that the error may not

occur near the actual cause of the problem (it often occurs in the calling routine). The

pMemory utility 'pMemInfo' is one way that errors of this kind can be quickly tracked

down, although the easiest thing to do is to be concientious about deallocating all allocated

data objects.

3.4.� Example: Removing Duplicates from a Set

In order to give a concrete idea of the character of programs using Types, consider

a program to remove duplicates from an ordered set (see figure 2). Subroutine dRemDupl

has a single input data object (the dOrSet 'InSet ') and a single data object as output (the

dOrSet 'OutSet'). Conventionally, output data objects like OutSet are allowed to be any

data object when the routine is called. When the routine is finished, however, OutSet

must be a dOrSet and, in this case, OutSet must be a dOrSet containing the elements of

InSet with duplicates removed.

Note the conventional declaration of InSet and OutSet as integer arrays with un

known lengths. This is the usual way to declare data objects which are passed as argu

ments. 'REAL InSet(*)' would work just as well since the declaration implies nothing

about the contents of InSet. The 'INCLUDE' statement contains the common block

/TypeMem/ with the large array '0' initialized as a pMemory.

dRemDupl demonstrates many of the attractive features of programs written with

Types. Removing duplicates from a set is a an easy operation since Types allows a direct

mapping of abstract set operations into Fortran code. Since InSet may be any ordered

set, InSet may contain integers, character strings, or other ordered sets in any mixture. In

11

-�
Figure 2

SUBROUTINE dRemDupl (InSet, OutSet) -C

C global constant: not modified by the program
C -INTEGER InSet(.)

C

C global virgin: initialized by the program
C

INTEGER OutSet(.)
C _

INCLUDE 'Types$:TypeMem.inc'

INTEGER dOrNum,j,TempSet
LOGICAL dOrMem

C

C Initialize the output (OutSet) to have the proper type. -
C

CALL dSetType(OutSet,'dOrSet')
C

C Allocate a temporary data object with enough space to
C hold any element of InSet. pMemSSiz allocates the
C same amount of space for TempSet as in InSet.
C

CALL pMemSSiz(o, InSet,TempSet)

C
C For each element of InSet, check if it is in OutSet. If not,

C add the element to OutSet.
C

DO 10 j=1,dOrNum(InSet)

C -C Fetch the j'th element of InSet and put it in the allocated
C data object o(TempSet)
C

CALL dOrGet(j,InSet, o(TempSet»
C

C If o(TempSet) is not already in OutSet, add it.
C

IF (.not.dOrMem(o(TempSet),OutSet» CALL dOrAdd(o(TempSet),OutSet)
10 COITINlJE
C

C Deallocate o(TempSet).
C

CALL pMemDalc (0, TempSet)�

EID�
12

-�

-�
-�
-�

-�

the normal Fortran style, each of the above situations would require a different, and more

difficult solution. Since the algorithm is so simple at the level of set operations and since

the Types routines are well established, there is almost nothing that can go wrong with

this program. Debugging dRemDupl is almost unnecessary. dRemDupl is also a robust

program. For example, if InSet is not a dOrSet, an error message will be produced by

the first dOrSet operation (dOrNum). If OutSet is not initially a data object, an error

message will be produced by the call to dSetType. If OutSet is a data object, but is not

large enough to hold InSet with duplicates removed, an error message will occur in one

of the dOrAdd operations. These built in safeguards are essential for using dRemDupl

with confidence and, in general, for building large applications out of similarly robust

programs.

Since almost all of the computations in a call to dRemDupl occur in the Types

routines rather than in the body of dRemDupl, the Types routines can be written to take

advantage of special hardware without complicating the use of the routines at a higher

level of abstraction. For example, Type operations can be optimized once and for all for

hardware pipelines or other architectures without making any more requirements on the

author of dRemDupl"or similar programs.

3.5. Using Types Utilities for User Interfaces

Rather than writing a new user interface for each new program, the Types package

provides automatic user interfaces for arbitrary data objects. Types utilities include

dCreate (interactive creation of a data object), dEdit (editing an existing data object),

dInput (user initialization of a data object), dDisplay (non-graphics display of a data

object) and others. For example, dInput(Q) uses ,the structure, types and names ofdata

object Q and its contents to hold an interactive conversation with the user and initialize

Q. By using these utilities, it is no longer necessary to write new user interfaces or display

programs.

As a concrete example, consider the situation of user input for a minimization

package. We assume that this minimization package is similar to other programs in that

there are a large number of parameters governing the minimization which only rarely need

to be changed. Usually, the package will be called specifYing a function to minimize, with

one or two other parameters. The usual solution to this sort of problem is to write the

main minimization subroutine accepting all parameters as subroutine arguments. Then

two envelope routines could be written; one routine with default parameters and one

routine with no defaults, hut with a user interface to initialize all parameters. This

solution is less than convenient because of the tedious job of writing the user interface

13

and because the easiest way to write the user interface results in the parameters having to

be all re-entered for each change. Extra work is required to be able to save new parameter

sets for future runs of the program.

There are several easy alternatives to this procedure using the Types utilities. One of
the simplest is to write a main minimization routine assuming a data object (say 'Params ')

as an in:put argument containing all of the parameters. A default Params data object can
be created with the interactive program dCreate. Then, Params can be translated into the

corresponding Fortran subroutine (say iParams) with the utility dSource. The envelope
would then contain

CALL iParams (Params)
to get the default parameters, followed by

CALL dEdit (Params)

to optionally change the parameters. A more sophisticated variation of this scheme is to

use the utility 'dReadTry' instead of creating the default parameters directly. A call to
dReadTry (Params,'Params.d', iParams)

causes Params to be initialized by the subroutine iParams if the file 'Params.d' cannot

be opened. If 'Params.d' is accessible, then Params is initialized with the contents of

'Params.d." Each time dReadTry is called, an option is offered to save Params in file

Params.d which will be read on future executions of the program. To change parameters,

simply use the dEdit command to change the Params.d file. This style of using the Types -
utilities allows consistent, machine independent user interfaces to be created with very

little effort. -3.6.� Moving Data Objects from Computer to Computer

Data objects in Types are stored in unformatted files. In order to transfer such a data object to another machine, dToExch should be used to translate the data object into

a formatted "exchange" file. The resulting file can then be copied to another machine

as a character file and translated back into the normal unformatted form with dFrExch.

The exchange format file is normally less than twice the size of the original.

One simple use of types is to transfer binary data from machine to machine. For
example, suppose that a. program contains a real array X(lOO,lOO) which needs to be

copied to a different computer. The following code fragment copies Xinto a real pOrSet

XSave and writes XSave to a disk file 'XSave.de' in exchange format.

14 -

-�

-�

-�
-�
-�

CALL pMemAloT (0, 10000+21, XSave,'pOrSet-REAL')�

CALL pOrVToOr (lOOOO,X, o(XSave))�

CALL dTQExch (o(XSave),'XSave.de')�

CALL pMemDalc (0, XSave)�

After transferring the file Xsave.de to another machine, Xsave can be restored with the

command dFrExch.

3.7.� Machine Independent Help Systems

A He!p system can be viewed as a tree or an ordered set of pairs of the form

(keyword, explanation). Here 'keyword' could be character string (pChaStr) and 'expla

nation' could be a block of text (pText). A help system would then consist of a data

object of the above form and a program to match keywords and display the correspond

ing explanation. The advantage of using Types here is that it is easy to implement and

is automatically machine indepen~ent. The program invoked by the 'typehelp' command

is a simple example of such a help system.

3.8.� The Virtual Memory Types

What is one to do if an application exceeds real memory on a computer without

virtual memory (like a Cray), or if the maximum virtual memory is exceeded? In such

situations, one is likely to receive advice like 'write your own paging system.' This advice

is correct, but is not something that should be redone for each new situation. To solve this

sort of problem, Types includes a virtual memory type "pVirMem." When a pVirMem is

created, it is automatically associated with a temporary file which holds pages just as in

other virtual memory systems. The memory associated with a pVirMem can be accessed

as one large one dimensional array through the type operations pVirPut and pVirGet.

Note that any number of independent virtual memories can be used.

Data objects in Types are referred to by a starting address with the body of the

data object starting at that address and continuing in contiguous memory. Inside of the

type operation routines, contiguous memory is mapped into a dummy one dimensional

vector in the usual way. It is sometimes convenient to implement data object on other

linear 'substrates'. An example of this is dTree (tree of data objects) which is not directly

implemented as operations on a dummy vector, but is instead implemented on a pSequenc

(sequence of scalars) substrate. Similarly, if a type is implemented in a pVirMem virtual

memory rather than in an ordinary array, it can take up much less physical memory space

than would otherwise be necessary. Types includes virtual memory implementations of

some of the types which are most likely to need large amounts of memory. In particular

15

-�
virtual memory implementations exist for the ordered set of data objects (dOrSetV) and

for the stack of data objects (dStackV). In both of these cases a virtual memory dOrSet

supports the same set of operations with exactly the same syntax as an ordinary dOrSet.

Thus, for example, if an ordered set is using too much .memory, changing the initial call
to 'dOrSet' to a call to 'dOrSetV' is the only change needed to cause most of the dOrSet

to be stored in virtual pages.
3.9. Using Types for Storing Benchmarks

Working programs often need to be accompanied by a set of benchmarks so that a
program can be tested in standard situations. This is helpful in the development stage

when benchmarks can be re-run to verify that some change has not caused a problem.
As an example, consider benchmarks for the detector simulation program 'MC4' [3]. A

benchmark for MC4 consists of: -
• A Text file describing the benchmark

• A set of "Lattice files" containing input primitive volumes
• A "Materials file" containing information about the materials used in the detector

• A command file (in VMS) to create a "Geometry file" from the Lattice files
• A set of initial particles to start the simulation

• A command file to run the simulation
• The first ten events of the simulation run

• A set of reference histograms.
• A command file to run the whole benchmark -On Unix systems, the "command files" above must be replaced with the analogous "shell

script." This solution, although reasonable on the surface, should be criticized on several

points: a) the command files or shell scripts are machine dependent, b) There is no
mechanism for guaranteeing that a benchmark is complete - there may be files missing

c) there is no mechanism for guaranteeing that there is no ambiguity - there may be

two different version of some of the files, d) there is no mechanism for guaranteeing that

different benchmarks have the same set of components and that the command files do the
same thing. All of these criticisms can be met by using data objects instead of data files

and command files. Let a 'benchmark' be an ordered set

Benchmark = (Descript, Lattices, Materials, GeoCreat, MC4input, FirstTen, RefHistos)

where the components of Benchmark are data objects. For example, 'Descript' is a text
description (pText), 'Lattices' is an ordered set of lattice data objects, 'MC4input' is a

16 -

data object used as input to the simulation, 'Reffiistos' are a set of reference histograms

(a dOrSet of pHistgrms) etc. Benchmark can be defined so that to initialize a benchmark,

you must supply all of the components. Since a Benchmark is self contained, it is natural

that it be stored as a single data object in a single file .. Since Benchmark is a data object,

all of the types utilities are available including, for example, dDisplay can be used to

examine the contents of Benchmark. Using the type operations, it is easy to write a

single program which takes a benchmark as an input, extracts the components, calls the

program for creating the 'Geometry file' (now a data object), calls the simulation, creates

a new set of histograms, compares the new histograms with the old histograms and reports

whether the program has passed the benchmark. If Benchmark is larger than convenient

for virtual memory, one can simply use the dOrSetV virtual memory implementation

instead of dOrSet so that Benchmark exists in a virtual pages rather than in memory (see.

section 3.7).

One can go even further with this idea and include the program that runs the

benchmark and include machine independent compile and load data objects as pText

- components of Benchmark (it is easy to make a machine independent compile and load

system). Then a single command file could execute any benchmark for any program

by running a program which extracts the benchmark source, compiles, loads and runs

the benchmark. Going to the next level of generality is only prevented because of the

difficulty in calling the Fortran compiler from a Fortran program. Of course, this has to

- stop somewhere, but the point is that many of the functions performed by command files

or shell scripts are more usefully done with Type operations.

-

17�

4. TUTORIAL�

The following examples can be followed to give an introduction to the use of Types

operations and utilities. User input is indicated by bold type and comments are given in
double quotes.

In order to get started, you have to execute a command file or shell script which
defines a standard set of symboIs needed by the Types system. This is done in various ways

on various systems (see the installation instructions). When the symbols are successfully -
defined, you will get a message:

Enter [typehelp] for information about TYPES.
The help system Types is invoked by

$ typehelp -
which will result in a message analogous to the following.

===== TYPES version 0.2 ALPHA RELEASE, Dec. 26, 1989.
===== Information about TYPES and TYPE utilities.

- Enter the name of a Type or a Utility:
From this point, you might want to experiment with the help system. The command

"intro" gives an introduction, "commands" gives a list of the commands available at the
level of the operating system and "types" gives a list of the available types and utilities.

Information about specific utilities and specific types can be found by entering the name
of the type etc. For example, entering "pScalar" results in a list of the available operations

on real or integer pScalars. Since there are a large number of subroutine calls available -in the Types, the help system needs to be used constantly.

While you are still in the help system, try entering 'dcreate' to see the following: ..
==~==============================

/dCreate/pText/COMPOSITE --

SUBROUTINE dCreate(Q)
==

dCreate(Q) creates and arbitrary data object Q by having a�
conversation with Fortran unit 6.�

Input:

Q Any primitive or composite data object. dCreate keeps -
the name and type of Q as given on input.

18

-�

Output

Q Structure and contents of Q have been initialized with
a conversation with Fortran unit 6.

===

dCreate is an example of a Fortran callable program which has an analogue at the level

of the operating system. This display is the standard output of dDisplay which has a

header of the form' / data object name/ type/ type of components.' The display consists of

a pText which is simply the first line and comments from the dCreate subroutine. If you

are working at a terminal, you may want to print out the entire help system since so that

you can refer to it as you proceed. Since the help system is a data object, you can make a

text file version of it with the dPrint utility. To invoke the dcreate utility, enter 'dcreate'

and try the following session.

• dcreate�

= Creation of a data object.�

Enter the NAME of the new data object:�

Test�

Enter a DATA TYPE for new data object:�

dOrSet "Input is case insensitive"�

Enter a sequence of components for [Test/dOrSetJ:� -
Add another data object to [TestJ?�

yes "You are first asked for the elements of the dOrSet which�

can have primitive types or general types including dOrSet"�

Enter the NAME of the new data object:�

- Welcome String: a first notification�

String must be at most 32 characters; try again.�

Enter the NAME of the new data object:�

The Welcome String�

Enter a DATA TYPE for new data object:�

pChaStr "A character string"�

Enter character string to initialize [First element of Test]:�

hello�

===
/The Welcome String/pChaStr/CHARACTER --

"hello"

19

--

===

Add another data object to [Test]?�

yes�

Enter the NAME of the new data object:
x,y,z position in cm.�

Enter a DATA TYPE for new data object:
porset "an ordered set of REALs"�

No such type. Try again.�

Enter a DATA TYPE for new data object:�

porset-REAL "When necessary, the type of a primitive data object�

is specified by -REAL or -INTEGER"� -
Enter a sequence of REALs to initialize [second element];�

Enter a sequence ending with" I":�
1.,2.,3./

===
/x,y,z position in cm./pOrSet/REAL -

Element # Value 3 Elements

1 O.10000000E+01

2 O.20000000E+Ol

3 O.30000000E+01
===

Add another data object to [Test]?�

yes� -Enter the NAME of the new data object:

A scalar integer

Enter a DATA TYPE for new data object:
pscalar-integer

Enter INTEGER scalar value to initialize [An integer]:

12345

Add another data object to [Test]?

yes -
Enter the NAME of the new data object:

A logical flag

Enter a DATA TYPE for new data object:
pLogical

Enter LOGICAL value to initialize [A logical flag]: ..
•true.

20

===

/A logical flag/pLogical/INTEGER�

Value = .true.�

===

Add another data object to [Test]?

no

===

/Test/dOrSet/COMPOSITE --
/The Welcome String/pChaStr/CHARACTER -------------------------------------

"hello"

/x,y,z position in" cm./pOrSet/REAL --

Element # Value 3 Elements

1 O.10000000E+01

2 O.20000000E+01

3 O.30000000E+01

/An integer/pScalar/INTEGER�

Value = 12345�

/A logical flag/pLogical/INTEGER�

Value = .true.�

=== -
Enter file name to hold data object [Test]:�

test.d�

Data object [Test/dOrSet] written to file [test.d].�

The data object in 'test.d' could have also been created in Fortran program with a call to

dCreate or it could have been done "by hand" by creating each of the components and

adding them to a dOrSet and using dWrite to write the data object to a disk file.

Now that the data object 'Test' is in a file, all of the types commands can be used.

For example,

• dinfo�

= Enter filename:�

21

test.d

======================= Data Object Information ===============================
Name: Test
Type: dOrSet -

Components: COMPOSITE
Size in INTEGER words: 116

Total space in INTEGER words: 116
======================== End of Data Object Info ==============================

gives basic information about the data object,
• dskeletn�

= Enter filename:� -
test.d

=== -/Test/dOrSet/COMPOSITE ---
/The Welcome String/pChaStr/CHARACTER --------------------------------------

/x,y,z position in cm./pOrSet/REAL --- /An integer/pScalar/INTEGER --

/A logical flag/pLogical/INTEGER ---
=== -

gives the internal structure of the data object and

• ddisplay -
= Enter filename:�

test.d�

===

/Test/dOrSet/COMPOSITE --
/The Welcome String/pChaStr/CHARACTER -------------------------------------- -

IIhello ll -
/x,y,z position in cm./pOrSet/REAL

Element # Value 3 Elements

1 O.10000000E+01 -2 O.20000000E+01�
3 O.30000000E+01�

/An integer/pScalar/IITEGER

Value = 12346

22

-�

IA logical flag/pLogical/INTEGER --

Value = . true.

===

gives a complete display of the data object and its contents.

You can also edit 'Test' with dEdit. The following session changes the third element

of 'x,y,z position in cm.' to 999.0.

• dedit�

= Enter filename:�

test.d

= Edit session for data object [Test].

/Test/dOrSet/COMPOSITE ---

The Welcome String/pChaStr/CHARACTER --------------------------------

"hello"�

Change these value(s)?�

no�

/x,y,z position iIi cm./pOrSet/REAL�

Element # Value 3 Elements

1 O.10000000E+01�

2 O.20000000E+01�

3 O.30000000E+01�

Change these value(s)?

yes

Enter 3 REALs to initialize [x,y,z position in em.]:

1.,2.,999.

An integer/pScalar/INTEGER --

Value = 12345

Change these value(s)?

no

A logical fiag/pLogical/INTEGER

Value =.true.

Change these value(s)?

no

= Enter output file «cr> for same as input):

23

<return>�

Data object [Test/dOrSet] written to file [test.d].�

Although this example does not show it, components of a data object can be skipped in dEdit so that you don't have to answer 'no' for all data objects.

A data object like 'Test' can be read from its file in a Fortran program into a data

object Q by "CALL dRead(Q,'test.d')". The alternative call "dReadA(0, Q,'test.d ')"

allocates a data object o(Q) and does not require knowing the size of 'Test'. It is sometimes

more convenient to "hard wire" a data object into the equivalent subroutine so that
applications do not accumulate too many input files. To create the equivalent source

code for 'Test', use the dSource command: -
• dsource

== Source file to create a particular data object.
Enter the name of a file containing a data object:

test.d

Enter the name of the new subroutine:
iTest

Source for data object [Test data object] written to file: [iTest.for].
The file 'iTestJor' now contains a Fortran subroutine 'SUBROUTINE iTest(Q)'. Calling

iTest with a "data object Q causes Q to be initialized to the data object 'Test.'
The following program is an example of how data objects and their components are

manipulated inside Fortran programs. Program Tester (figure 3) reads the data object -
'Test', displays it '5 contents and extracts its contents into normal Fortran variables. Fol�

low the comments in Tester and use typehelp to verify the function of each of the type�

operations. The first three characters of the type operations identify what type they op�

erate on. For example, dOrLtA4 operates on dOrSets. The meaning of a call to dOrLtA4�

can be found in typehelp under "dOrSet." To run Tester, you must compile it with the
Types library. For the (machine dependent) way of doing this, see the installation notes.�

-�
-�
-

24 -

Figure 3

PROGRAM Tester
C

C program to read 'Test' and extract the contents

C

INCLUDE 'Types$:TypeMem.inc'
LOGICAL pLogValu

C

C data objects

C

INTEGER Q,string,vector,int,flag
C

C ordinary Fortran variables
C

REAL xVector(3)
CHARACTER*80 xstring
INTEGER xint,nxstring,len
LOGICAL xflag

C

C Read the data object 'Test' from file 'test.d'.
C 'Test' is read directly into the allocated data object Q.

C

CALL dReadA(o, Q,'test.d')
C

C ~rite a display of the contents of o(Q) to Fortran unit 6.
C

CALL dDisplay(o(Q»
C

C Let o(Q) = < string, vector, int, flag >. Once again,
C string, vector, int and flag are created as allocated
C data objects.
C

CALL dOrLtA4 (0, o(Q), string,vector,int,flag)
C

C fetch the character string in o(string)
C

CALL pChaGet(o(string), nxstring,xstring)
C

C copy o(vector) into an ordinary Fortran array.
C pOrOrToV is meant to suggest Ordered-Set-to-Vector.
C

CALL pOrOrToV(o(vector), 3,xvector,len)
C

C c3' is the amount of space available in xvector and 'len'

25

-�
C is the number of elements actually written to. len is
C supposed to be 3, so ...
C

IF (len.ne.3) CALL Abort(' Error in Tester.')
C -
C fetch the scalar
C

CALL pScaGet(o(int), xint)
C

C say "hello" if o(flag) is true and then copy it into an

C ordinary Fortran logical.
C

If (pLogValu(o(flag») WRITE(S,1)

1 FORMAT (, hello')
xflag =pLogValu(o(flag»

c -C Don't forget to deallocate!

C

CALL dOrLtD4(0, string,vector,int,flag)
CALL pMemDalc(o, Q)

END

-�
-�
-�

-

-
26 -

-

5. AVAILABLE TYPES AND UTILITIES

A brief description of each of the types and utility routines available in the current

release of the Types follows. Calling instructions for the following operations can be found

in the help system (typehelp). For each type, we give information on how much space is

used by the current implementations. In this context, a 'word' means a Fortran integer

sized word. Note that usually one only needs an upper bound on the amount of space

needed by a data object since, in practice, most data objects are allocated and thus any

wasted space is regained when they are deallocated. Note also that the following numbers

are implementation dependent and may change with future versions of types (they are

not likely to increase).

5.1. Primitive Types

A primitive type is a data object with fixed components often Fortran real or inte

gers.

5.1.1. pUndefnd

pUndefnd is the simplest data type. No operations are available for pUndefnd

objects. pUndefnd is useful for situations where one needs a data object, but it's type in

unimportant. An example is supplying an argument to a Type operation which is going

to be initialized by a subroutine. Another use of the pUndefnd type is in situations where

part of a data object is initialized through a user interface and another part is initialized

by a program. If a data object is prepared with pUndefnd components, no inputs will be

requested in a user interface utility such as dInput. The pUndefnd components can then

be replaced in a Fortran program. pUndefnd needs only enough space for a header, i.e.

at most 20 words.

5.1.2. pScalar

pScalar is a type for storing a single Fortran real or integer scalar value. pScalars

need at most 21 words.

5.1.3. pBScalar

pBScalar is a bounded real. or integer scalar which must be created with upper

and lower bounds. A similar set of operations are available as with pScalar. The chief

advantage of pBScalar is that the bounds are automatically reflected in the user interface

utilities. pBScalar needs at most 23 words.

27

5.1.4.� pOrSet

pOrSet is an ordered set of reals or integers with an extensive set of natural oper

ations including copying to and from normal Fortran arrays. A pOrSet needs 21 words

plus the maximum number of words to be stored in the pOrSet.
5.1.5.� pStack -

pStack is a push/pop stack of real or integer scalar values. pStack needs 21 plus the

maximum number of words stored in the pStack. -5.1.6.� pChaStr

pChaStr is a character string with operations including copying to and from ordinary Fortran character strings. pChaStr needs 21 words plus one word per character in the

largest character string to be stored. -5.1.7.� pMemory

pMemory is an extremely commonly used type which allows allocation and deallo

cation of other data objects. Types comes with a common block 'TypeMem' containing

array 'o(pMEMLEN)' with parameter pMEMLEN set to a large value. This is the global

pMemory which the Type routines expect for type operations. The array '0' is auto

matically initialized at the time of the first allocation request. Data objects must be

deallocated from a pMemory in reverse order to their allocation (last allocated, first deal
located). A pMemory operation called pMemlnfo is available to give a message each time

memory is allocated and deallocated. pMemory needs at least 50 words and, to be useful,
usually has millions. The space used by the standard pMemory '0' is determined at the

time of installation. You can adjust this size by changing the pMEMLEN parameter in

all programs and recompiling the entire package.
5.1.8.� pText -

pText is a multi-lined block of text. pText is currently implemented as an ordered

set of pChaStr. If m is the maximum number of characters per line and n is the maximum

number of lines in the block text, then 21 + (21 + m) * n words will suffice.

5.1.9. pVeArray -
pVeArray is a vector of three dimensional arrays of integer or real numbers. If

MaxVec is the maximum number of 3d arrays of scalars to store in pVeArray, then (21 +
2 + 5 * MaxVec + s) suffices where s is the number of elements in the stored 3d arrays.
5.1.10. pLogical -

pLogical is a single logical value. 21 words suffices for a pLogical.

28

-�

5.1.11. pSequenc

pSequenc is a sequence of integer or real scalars supporting operations like insertion
"-� and deletion. For a pSequenc to store a sequence of n reals or integers, 23 + 2 * n words

suffices.

5.1.12. pHistGrm

pHistGrm is a histogram. If there are n bins in the histogram, 7 * 23 + 2 * n words

suffices.

5.1.13. pQueue

pQueue is a last-in-first-out queue of integer or real scalars. If n scalars need to be

stored in a pQueue, 25 + n words suffices.

5.1.14.� pVirMem

pVirMem is a virtual memory which is accessed as if it were a single large one

dimensional array. The optimum size of a pVirMem and the optimum page size are

difficult to determine for all cases. However, giving more memory to a pVirMem allows

it to store more virtual pages in real memory and improves efficiency.

5.2. General� Types

A general type can either have primitive types or other general types as components.

5.2.1.� dOrSet

dOrSet is the ordered set of data objects and is used to build complex data object

from other data objects as components. dOrSet is one of the most often used types

and supports many operations. An alternative implementation of dOrSet called dOrSetV

performs the analogous dOrSet operations partially in private virtual pages. Since dOrSets

are usually the largest data objects in an application, dOrSetV is a convenient way to

save virtual or real memory at the expense of a temporary disk file. For a dOrSet to hold

n data-objects with a total used space of N words, 21 + n + N words suffices.

5.2.2.� dStack

dStack is a push/pop stack of data objects. If a dStack is to store n data objects

with a total used space of N words, then 21 + n + N words suffices.

5.2.3. dTree

dTree is one of the several types of Tree data structures. A dTree is an ordered set

of pairs where each pair is a data object and a dTree. If a dTree contains n nodes and

contains data objects with a total of N words in used space, then 2 * 21 + 2 * (21 *n +N)
is sufficient space to store it.

29

5.2.4.� dStArray

dStArray is a two dimensional array where the array elements are data objects. If

a dStArray is a max! x max2 element array of data objects, with a total of N used words -
in the data objects stored as elements, then 2! +3+max! x max2 +N words is sufficient.

5.3.� Display and Editing Utilities -
5.3.1.� dCreate

dCreate is a program which creates an arbitrary data object in an interactive session.

dCreate is available both as a subroutine and as a stand along program which can be
invoked by the 'dCreate' symbol defined by the Types package. -5.3.2. dlnfo

dlnfo gives basic information about a data object stored in a file. dlnfo is availabe

as a command at the level of the operating system.
5.3.3. dSkeletn

dSkeletn gives a skeleton display of the structure of a data object without showing
the contents. dSkeletn is available as a command at the level of the operations system. ...
5.3.4. dDisplay

dDisplay is the often used general display of any data object showing structure and

contents. dDisplay is available as a stand alone program.
5.3.5.� dEdit

dEdit is a program used for interactive editing of data objects either in a program

(as subroutine dEdit) or in a file (as the dEdit command).

5.4.� Input/Output utilities -
5.4.1.� dWrite

dWrite writes a data object to a given file.
5.4.2.� dWriteQ

dWriteQ also writes a data object to a file. The difference is that dWriteQ queries

the user for the name of the file rather than requiring the file name as an argument. This

is convenient for calling in a symbolic debugger.

5.4.3.� dRead

dRead read a data object from a file.
5.4.4.� dReadA

dReadA reads a data object from a file into an allocated data object in case that
the size of the data object in the file in not known.

30

-�

5.4.5.� dReadQ

dReadQ read a data object from a file with the file name taken from user input.

5.4.6. dAlocIO

dAlocIO(Unit) allocates a Fortran unit number for i/o operations. The correspond

ing deallocation call is dDalocIO(Unit). Types allocates Fortran unit numbers in the

range 50, ... ,99. If Fortran unit numbers Unit(I), ... , Unit(nUnit) are used by other pro

grams, these numbers should be reserved by calling dAlocUsd(nUnit,Unit) at the start of

the main program.

5.4.7. dOpenNew

dOpenNew opens a new unformatted nle for writing data objects. The correspond

ing dClose should be used to close the file.

5.4.8.� dOpenOld

dOpenOld opens an existing unformatted file containing a data object or a sequence

of data objects in successive records. dClose should be used to close the file.

5.4.9. dClose

dClose closes a specified file open by dOpenNew or dOpenOld. dClose also deallo

cated the Fortran unit number attached to the file.

5.4.10. dUWrite

dUWrite writes a data object to a file specified by a unit number. This is useful if

you are writing multiple data objects to a sequential file.

5.4.11. dURead

dURead reads data object from a file specified by a unit number. dURead is useful

for reading files containing more than one data object in successive records.

5.4.12. dUReadA

dUReadA is similar to dURead except that the read data objects are read directly

into an allocated data object.

5.4.13. dReadTry

dReadTry reads a data object from a specified file, if the file can be opened. Oth

erwise, dReadTry initializes the data object by calling a specified subroutine. dReadTry

is useful for user interfaces. See section 4.4.

31

--_.-----~~---~

5.4.14. dSource

dSource(Q,'SubName') with data object Q as an argument produces the source

code for a Fortran subroutine called 'SubName' which, when called, initializes its output -argument to Q. dSource is available both as a subroutine and as a stand alone program

available as a command in the operating system. dSource is useful for "hard wiring" a

data object into a Fortran subroutine so that applications do not have to accumulate
many input files. Note that the source code produced by dSource is not, in general,

transportable from machine to machine. However, you can transport the original data
object with dToExch and dFrExch and then re-run dSource on the new machine.

5.4.15. dToExch -
dToExch takes a data object as an argument and writes a file containing that data

object in "exchange" format. The exchange format file can be transferred from machine

to machine as a formatted character file and then restored on the target machine with

to dFrExch. The exchange format typically uses less than twice the space of the original -data object. dToExch is available both as as subroutine and as a stand along program

which can be invoked by the symbol 'dtoexch'. -5.4.16. dFrExch

dFrExch takes a data object stored in exchange format and creates the corresponding

data object in standard form.

5.5.� Utilities for Extracting Information about Data Objects

5.5.1. dSpace

dSpace returns the number of words contained in a data object.

5.5.2.� dUSpace

dUSpace returns the number of words currently used by a data object. -
5.5.3. dSpLeft

dSpLeft returns the number of free words left in a data object as room for expansion. -
5.5.4. dHeadSz

dHeadSz returns the size (in words) of the "header" of a data object.

5.5.5.� dType

dType returns an integer which is unique for each of the data types.
5.5.6.� dPrim

dPrim returns .true. if and only if its data object argument is a primitive data
object.

32

5.5.7. dPrimTyp

dPrimTyp returns an integer indicating the type of component of a data object.

5.5.8.� dTyNmGet

dTyNmGet fetches that name of the type of a data object.

5.5.9.� dDsNmGet

dDsNmGet fetches the name of a given data object.

5.5.10. dTypeNam

dTypeNam returns .true. if and only if its argument is the name of an existing data

type.

5.6.� Miscellaneous Utilities

5.6.1.� dNarne

dNarne assigns a name to a data object. The name may be any character string of

up to 32 characters

5.6.2.� dCopy

dCopy copies one data object into another.

5.6.3.� dEqual

dEqual returns .true. if and only if its two data object arguments are 'equal'. Two

data objects are equal if they have the same type and equal components (this is not word

by word equality because two data objects may have the same content but one may have

more free space).

5.6.4.� dCongru

dCongru returns .true. if and only if its two data object arguments are 'congruent.'

Two data objects are congruent if they have the same 'structure.' Formally, two data

objects are congruent if they have the same types and each corresponding component has

the same type.

5.6.5.� dUnion

dUnion is available as a stand alone program and is- similar to the dOrUnion type

operation on dOrSets. dUnion forms the dOrSet union of several data objects stored in

files.

5.6.6.� dCheck

dCheck aborts unless its argument is a legal data object.�

33�

5.6.7. dCheckQ

dCheckQ returns .true. if and only if its argument is a legal data object.

5.6.8. dChecAll
dChecAll is available as a subroutine or as a stand alone program. dChecAll makes

extensive checks of the integrity of a data object supplied as an argument or a file.

5.6.9. dSetType

dSetType sets or changes the type of a data object. When changing the type of a
data object, all information is lost except for its size.

-�
-�
-�

-

-

34

-�
6. REFERENCES

[1]� We use the term "data object" only to emphasize that the data structures created in

the Types package are self describing. We claim no connection to "Object Oriented

Programming."

[2]� Types is written in FORTRAN 77 allowing the extension of 8 character variable

names which can be in mixed upper and lower case. In referring to symbolic names

in Fortran programs, we use- mixed upper case and lower case to improve readability.

Input to the Types package is, however, case insensitive. Some examples in this

manual also use an 'INCLUDE' statement for including text from a disk file.

-� [3] S.Youssef, W.Martin, T.C.Wan and S.Wilderman, A Vectorized Monte Carlo De

tector Simulation Program for Electromagnetic Interactions, FSU-SCRI-89-61, to

appear in the proceedings of the conference on Computing in High Energy Physics,

Oxford, 1989.

35

Appendix: HEADER FORMAT FOR DATA OBJECTS

-�
Data Object Universal Format

============================ S.Youssef. May 1989

All primitive or compound data structures (abbreviated 'dO I) are stored in standard FORTRAI one dimensional arrays.

Each data structure o~ the form S(1).S(2) •...• has two main sections: a header containing general information

and having the same format for each data structure and the data section containing data structure dependent

information. The following de~ines the detailed ~ormat of the header. The terminology 'word' means a word vith

the SUle size as the FORTRAI data type 'IITEGER'.

-

Word lame COllllllents

5(1)

S(2)

5(3)

S(4)

S(S)

5(6)

5(7)

S(7+1)

S(7+2)

Rob inacc: i

DataStart

DataEnd

Spac:eEnd

PrimType

dsType

nTylame

Tylame(1)

Tylame(2)

== 1123681321

Data section starting address

dO end including data section

End of the available space

Primitive type

IITEGER dO type

Length of the data type name

First character of the type nUle

Second character o~ the type nUle

identifies the array as a dO.

S(DataStart) is the first data vord.

S(DataEnd) is the last word inclUding the data

section.

S(SpaceEnd) is the last word that can be used.

For a primitive dO. PrimType =1 ~or

an IITEGER. =2 for REAL. =3 for COMPOSITE

=4 for UIDEFIIED. =6 ~or a single CHARACTER.

=6 for VIRTUAL

A unique integer identifying the data type.

nTyl..e<=mTylame

Packed character data.

Packed character data.

-

-
S(7+nTylame)

S(7+nTylame+1)

S(7+nTylame+1 + 1)

S(7+nTyl...+1 + 2)

Tylame(nTyIUle)

nDslame

Ds.... (1)

Dslame(2)

nTylUle'th character of type name

Length of the optional dO name

First character of the dO name

Second character 0"1 the dO nUle

Packed character data.

nDsl..e<=mDsl~e.

Packed character data.

Packed character data.

-

S(7+nTyl...+1+nDalame)

S(DataStart)

Dal... (nDalame)

data(1)

nDslameJth character of dO

Firat Data word

name Packed character data.

DataStart •• 8+nTyIUle+1+nDslame+1

S(DataEnd)

S(DataEnd.+1)

5 (DataEnd.+2)

Lut data word

up&D.d.(1)

exp&D.d.(2)

Lut clata word

Expansion space

Expansion apace

DataLen>=O

Free space to expand if d.esired.

Free space to expand i"1 desired.

36 -

S(EndSpace) Last e%pension word. E%pllIlsion space Free space: TotalLen>=DataStart+DataLen-l

-�

37�

..�
-�
-�
-�
-�
-�

-�

-�
-�
-�
-�

-�
DISCLAIMER�

Thi. report ... prepared .. aD account of work .pon80red iii part b)' aD as.ncy of the United Stat.. Go".nam.nt.�
N.ither tbe UDit.d Stat.. Go".rlUll.Dt DOl' an)' as.ney th.NOt DO. 1m)' of th.l••mpl07"" malt.. aD)' warraDtJ'•
• xp.... o. iJDpUed, o....UID.. aD)' I.Sal nabiU,J' o. 1'••poulbUlt)' for tb••ccur.cy, compl.t.n.... o. u.ef\dn... of�
aay info.m.tloa. .pparatu.. product. or proc... dbo)o••d, or rep....at. that h. u-. would Dot iDA-iDse p.ivat.ly�
OWD.d rlsbt.. Ret.renee h._in to aD)' .pecUlo oomm.roial product, proo..., or1_ ~ trada Dama, tr.d....k,�
manuf.ctur••, or olh......, do•• Dot nec.....Uy ooutituta or Impl)' it. a.donam.nt, reoolDlDa..da'ion. 01' 'averiac ..�
by tb. Uallad. St.,.. Gov.PIUIl.at o. aD)' aSanoy theNOt. The vi aDd oplalon. of autb.n .sp...... b.relD do .ot�
D.c.uaril" .,.,. o. _ileet th... of the UnU.d Sta'.. Gover t 01' aD)'C)' th.reof'.�

-�

