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Null Instanton Model on Binding and Excitation 
Energies of Light and Magnetic Moments of All 
Nuclei 

Syurei IWAO 

Physics Institute, Sue 13-52-44, Kanazawa 920-1302 

The binding and excitation energies of light nuclei are 
investigated as the eigenvalue problem of a null-instanton 
induced potential. A study of alpha particle model is done in this 
approach in order to find an associated physical property from a 
different aspect. A correction to the intrinsic part of Schmidt 
magnetic moment has been estimated for odd-A and odd-odd 
nuclei. It arises through the quarks belonging to the nucleon 
which is free from a pure photon as well as an associated 
intranucleon exchange by the similar eigenvalue problem arising 
from intemudeon quark exchange. 

A quenching of the magnetic moment can automatically be 
explained through the compact theoretical formula. It is 
discussed in relation to the experimental information suitably 
manipulated, while an anti-quenching requires a delicate 
examination case by case. 

$.1 Introduction 
A null-instaton induced potential is assumed to be valid for 

both parallely and anti-parallely aligned pair of quarks even if 
the instanon number of the each of associated quark is not zero. 
The instanton number of an unpaired quark, e.g., the extra one in 
the nucleon should be zero independently in order to keep the 
nullity of it in the hadronic states. The simultaneous realization 
of totally null instanton number of quark pair in addition to 
unpaired one gives a special role on the quark pairs in the 
nucleonic state. 

We assume the existence of such an induced potential is an 
exchange type and it is admitted once the quarks and antiquarks 
are produced in nature,l) viz., it naturally assumes the existence of 
the sign inverse potential which induces its partner with the same 
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l'BRARY "quantum number for any state owing to the admittance of the 
sign inversion of the strength operator of the potential. This 
seems to be true for the hadronic world as exemplied by the 
existence of sign iriverted states of many known baryonic as well 
as mesonic ones. 

We assume that the same idea can be extended 
straightforwardly to the quark pair between nucleons by 
extending the same idea to intemucleon quark exchange. Such 
an extension is allowed by the well known Okubo-Zweig-Iizuka 
(OZI) rule. Only the difference is an energy scale in between 
hadronic and nucleic world. In what follows the binding, 
excitation energies of nuclei and a quenching of Schmidt magnetic 
moment and possibly its anti-quenching phenomena as an 
eigenvalue problem based on one and the same potential. 

Zinn-Justin1) has discussed the null-instanton effect 
extensively and pointed out that it has a strong spatial distance 
dependence and diminishes qWckly with an increase of it. 

In this paper the binding3
) as well as the excitation energies4

) 

of nuclei are studied upto mass number A=4. This mass number 
region contains spatially extended structure of deuteron and a p­
state excitation of a single nucleon so they provide a typical set of 
examples to start with. 

The spin and parity of 4 states among observed10 excited 
states of the alpha particle are determined experimentally and the 
remaining 6 states (in which one has two possibilities) less 
definitely, while the isospins T's are assigned in referring to the 
charge independent states with A=4. FOlf"definiteness we assume 
T=O for all unidentified states and the spin and parity 1 + to the 
excitaion energy Ez =25.s MeV in our analysis. The various 
devices to resolve the difficulties encountered in this restricted 
mass number choice will involve a typical feature to which we 
will encounter in future in order to proceed high mass number 
region. Apart from this problem we have also considered the 
binding energies of nuclei wi$ A up to 80 by confining them 
solely as composite states of alpha particles for the purpose to 
point out a geometrical problem associated with the null instanton 
model, by eliminating the Coulomb energy. Here the binding of 
alpha state and their paste part from inter-alpha q-q exchange 
potential can be separated reasonably from the eigenvalues. 

The quenching of magnetic moments from the Schmidt valueS) 
has a long history. Miyazawa6

) has pointed out that it is caused 
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from that of meson cloud of the bound nucleon in the nucleus. 
Arima and Horie7) have reduced it to the configuration mixing of 
the adjacent states having the same parity and spin 1 unit 
different one. However, the observed anti-quenching 
phenomenaI) has been left untouched. Our model replaces 
Miyazawa's pion cloud by quark exchange and Arima-Horie's as a 
fractional nucleon number dependence resulting from multi­
quark-pair exchange contribution in the outermost shells. The 
effect can occur only through the intrinsic part of the SChmidt 
magnetic moment. The Schmidt formulae for odd-A and odd­
odd nuclei admit us to separate the orbital and intrinsic part in 
them so one can perform a detailed comparison of the 
experimental and the theoretical results in a general form for 
individual nucleus without making any approximation. It 
admits us to explain an occurrence of an gradual increase of 
quenching in a given orbit with the increase of the outermost 
nucleon numbers by keeping the same orbit for odd N nuclei 
where an anomaly of quenching series is explained by the 
corresponding change of the associated sub-shell structure. This 
detailed normal quenching series based on the theoretical formula 
can only be realized vividly in odd N nuclei, but not be realized in 
odd Z nuclei. It seems that the Coulomb effect obstruct the effect 
and will not admit such a beautiful picture for the latter. 

Our model may be classified as the L-S coupling approach 
where the spin effect comes into playas an eigenvalue problem of 
the fermionic operator through the quark-field ~hange,  while 
the orbital part behaves as a bosonic parameter. For the 
magnetic moment of the nucleus the latter notion does not become 
important. 

$.2 is devoted to the binding and exdtation energies upto A=4. 
The alpha particle model is studied in $.3. We spend $.4 and 5 
for magnetic moments of odd-A and odd-odd nuclei, respectively. 
In $.6 we give the conclusion of this work and a future plan of our 
study. 

$.2 Binding and Excitation Energies in Light Nuclei 
The s-wave part of the quark exchange potential in 'the strong 

interaction is defined as an operator form: 

3 ° 1-0,00,] D
[ +0'0 , + lelJ ' (2.1)

C 4 4 

Where 0/ and oJ are the Pauli spin operator for the i-th and j-th 
quark, respectively, and p,J the exchange operator between them. 
The strength operator c is determined by the intemucleon quark 
pairs as operands in the system. It is allowed to take both signs, 
since we introduced Eq.(2.1) only when quarks and anti-quarks 
are present in a formation of hadrons. The reason why one can 
assume this potential as an internucleon one is based, first of all, 
on the well-known Okubo-Zweig-lizuka (OZI) rule, and secondly it 
automatically reproduces a hard core between nucleons, since 
only the same colored quark exchange is admitted between 
nucleons in order to keep the color singlet nature of an individual 
nucleon. 

The main subject of this section is to explain the binding and 
exdtation spectra of light nuclei in terms of this potential so as to 
show its utility through these examples. The total Hamiltonian 
is defined as a sum of the mass operator of total nucleons of the 
system with possible radial and orbital exdtation in assodation 
and the potential operator defined above should be summed over 
all the composite internucleon quark pairs. The wave function of 
the nucleus is defined as the Slater determinant made from quark 
composite wave function as a member of the SU1 doublet (if 
necessary as that of SU3 octet) baryons') with an appropriate spin 
as well as a color assignment on composites so as to keep color 
singlet property of the nucleon. This formulation corresponds to 
L-S coupling scheme. Notice that the wave function of the 
nucleon takes one and the same form in two flavor groups of 
interest. Only the relative weight of the~quark  composite states 
of nucleons becomes important so one could choose the most 
convenient form of wave functions in a practical study in a 
consistent manner to SU4 (a semi-direct product on flavor and 
spin group) in a sense that such a choice does not break the 
internal symmetry of quark flavor combination in the estimate of 
the matrix elements of interest. One may find that the effective 
choice consists of t\\Q uud (ddu) and udu (dud) combination for 
pen) with cyclic spin assignment in mind and an appropriate 
weight factors for p(n) component wave function arising from 
flavor group which reduces the labor in the evaluation of matrix 
elements, since there does not occur the overlapping of the 
components of wave functions including the color specification. 
In the problem under study the relative phase 1C between proton 
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and neutron is not important. It becomes important only when 
one treats the transient matrix element, such as, a beta decay. 

In the study of the binding and excitation energy there appear 
totally 9 ",cz expectation values of operator Eq.(2.1), where 9 is the 
possible number of quark pair states between two nucleons and 
",cz the binomial coefficient. This number corresponds to the 
interaction between quarks belonging the nucleus as internucleon 
pairs. Why this maximum possibility is allowed in spite of the 
color whiteness requirement of the bound nucleon stated already? 
Notice that the color exchange between quarks in the nucleon 
(intranucleon exchange) occurs more frequently than that 
between nucleons (internucleon exchange) so that no restriction 
arises to 
keep the color whiteness in the total number of pairs. This is 
certified by comparing the (absolute) magnitudes of the 
corresponding strengths found in the intra- and inter-nucleon 
exchange in our previous I) and present study, respectively. It 
becomes a few times an order of magnitude less in the light nuclei 
under study as will be shown in this section. The higher the 
mass number becomes, the more natural this statement does, due 
to the expected smallness of expectation values corresponding to 
the gradual decrease of the observed level spadng with the 
increase of mass number. In what follows we can explain the 
binding energies as well as the assumed level structures of light 
nuclei, together with the prediction of their sign inverted 
partners, by taking size variation into account..The propertyZ) of 
the null-instanton induced potential provides us a guiding role in 
the course of analysis performed in this paper. 

. Let us begin with the binding energy formulae for D, T and a 
particles which are derived as the expectation values of the 
potential Eq.(2.1) by neglecting the size effect. They become: 

B(D) = 4 aO +5 aI, (2.2) 

B(T) = 14 aO + 13 aI, (2.3) 

and 

B(a) = 2(14 aO + 13 a1). (2.4) 

Here aD and a1 are the s-state expectation values for anti-parallel 
and parallel quark pair state, respectively. Notice that we do not 
require any correction, in addition, such as, a volume term. In 
order to determine the parameters aD and a1 we solve the 
coupled equation by taking the size effect expected from the null­
instanton induced potential into account. For this purpose we 
choose a modified inputs B(T) x relative to B(D) on the left-hand­
side (l.h.s.) of Eq.(2.3), where x is an adjustable parameter. This 
induces the modification of parameters in Eq.(2.3) aD -+ cO and 
aI- c1, which will be reflected to the binding parameters of a 
particle by taking the factor 2 difference in the original equations 
Eqs.(2.3) and (2.4) into account. They are given explicitly by: 

B(a) and bi = xcI B(a) (2.5)bO = x CO 2B(D) 2B(D) • 

The s-state binding energies of the ground, first and second 
excited states of the a particle with isospin T=O, spin-parity 0+, 1+ 
and 2+ state with the excitation energies E. = 0,25.5 and 33.0 
MeV, respectively, are given in terms of the new parameters by 

B(a)o = 2(14 bO + 13 b1), (2.6) 

B(a), = 27(bO + b1), (2.7) 

and 

B(a)z = 6(4 bO + 5 b1), (2.9) 

respectively. 
Under these constraints we solved coupled equations Eqs.(2.2)­

(2.4) by varying x so as to reproduce the B(D), B(T) and B(a)o as 
well as its T=O, Y = 2+ excitation energy at E. =33.0 MeV. We 
find the following sets of solutions which reproduce the desired 
result: 

a dimension less parameter: x = -0.2095, 

and binding energy parameters in units of MeV: 
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aO = CO = -12.8528, a1 = c1 = 10.7272, bO = 4.49145, 

b1 = -3.74863. (2.10) 

These parameters predict the assumed fourth excited T=O, JP =1 + 
at E", = 25.5 MeV at 8.24 MeV which is far below the observed 
value. From here after we· shall omit energy units MeV unless 
stated otherwise. 

Before proceed further we should like to comment shortly on 
the D, T and 'He exdtation energies based on our parameters 
studied above. Our model predicts: (1) the t'iist excitation energy 
ofD atT=O, E.u",,(l +) = 2.22452 and T= 1,0+, E.. =19.5S without 
making any manipulation (see, later discussion), and (2) the 
T=l/Z,J P =1/2+ first and second excitation energies ofT and 'He 
are predicted at 8.48Z, 16.96 and 7.72, 15.43, respectively. 

For the sake of clarity it is convenient to tabulate our plans to 
explain the a -particle energy spectra in Table I, including sign 
inverted partners. 

Table I. Energy spectra of a particle 

s. i. p. 

state state comment 

ex. T JP E", ex. T JP E", 

g. s. 0 0+ O. v. 0 (0+) (56.6) si 0+ 20.1, 30.S 

1st 0 0+ 20.1 v. 0 0+ 36.5 basip 0+ 56.6 

2nd 0 0- 21.1 v. 0 0- 35.5 basipin T=O 

3rd 0 2- 22.1 v. 0 2- 34.S basip in T=O 

4th 0 1+ 25.5 v. 0 1+ 31.1 basip in T=O 

5th 1 2- 26.4 v. 1 2- 30.2 basip in T=l 

6th 1 1- 27.5 8th 1 1- 30.5 basip in T=l 
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7th 1 0- 29.5 v. 1 0- 30.7 basip in T=l 

9th 0 1- 31.0 v. 0 1- 33.7 basip in T=O 

10th 0 2+ 33.0 v. 0 2+ 37.6 basip in T=O 

In Table I we have used abbreviated symbols in order to make 
short the tabulation. They are s. i. p. = sign inverted partner, ex. 
= excited state, g. s. = ground state, v = virtual state, si = split into, 
basfv = both are splitted from virtual and basip = both are sign 
inverted partners. The first, second, third and fourth column 
represent numbering of exdted states, the corresponding isospin 
T, spin parity JP and the excitation energy E"" respectively. The 
similar applies to the fifth, sixth, seventh and eighth column. The 
last column gives a short coIiUnent on partner states in the same 
line. 

The sign inversion point is set at B= 0 when A B> 0 case when 
no candidate of the partner cannot be found experimentally 
within positive binding energy, while the partner's E.tt"" is set at 
E",+2 AB when AB <0 bydefinition. The last choice should be 
tested from independent data and leave it for future. In this 
tabulation the 6th and 8th excited states are observed mutual 
partners arising from the sign change of potential strength. 

The explanation of the excitation energies of the first excited 
states and its partner goes as follows. tet us specify their wave 
functions by the number corresponding to their exdtation energy, 
viz., 

1J' (20.1) = COS 8 1J',(O+) + sin81J"in.(0+) 

and (2.11) 

1J' (36.5) = sin8 1J.',(O+) - COS81J'"",,(0+). 

Here 8 is the mixing angle, 1J.',(O+) and 1J.'gin.(O+) are the wave 
functions for the ground and its partner state, respectively. The 
corresponding excitation energies are given by 
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E(20.1) = cos"8 E,(O+) + sin"O EgiIlY(O+) 

and (2.12) 

E(36.5) = sin1.0 E, (0+)+ cos" 0 E,jIlY(O+). 

The mixing angle becomes 8 = 36.5814°. In this mixing the 
ground state remains unchanged, while its partner's energy is 
projected into two states: one is at the first excited and the other 
at its partner's energy. 

The similar applies to the fourth excited state at 25.5 and its 
partner's one at 31.1 as the mixing of predicted 8.2399 and its 
partner at 48.35. One finds the mixing angle 8 = 40.993°. 

The energy sPectra of odd parity states appearing as 5th, 6th, 
7th and 9th excited states are suitable to study in comparison 
with those for 4H and 4[j nuclei. Let us begin with the 
theoretical expression for one neutron excitation in P3l" and Pll" 
excited energy belonging to T=1. From P3/" n one gets 2- ,1- as 
well as its sign inverted partner combining it with the up down 
spin in SII2 n while P1l" gives 1- and 0- partners. The former is 
absorbed in Eqs.(2.14a) and (2.14b) by a relative weight 2:1 by 
the Clebsch-Gordan coupling rule. A sign inverted partner in 0­
state will be observed as an energetically degenerated state, as 
will be shown numerically below, which is based on the inspection 
of the energy sPectra of the charge independent nuclear spectra. 
All these belong to T=1 state. One finds their energy eigenvalues 
as: 

E z (2-) =(14 bO+13 bl) + 3 r(p)-(13 bO(p)+14 bl(p»=26.4, 

(2.13a) 

Ez (I-) = (common as above) -(14 bO(p) + 13 b1(p» =27.5, 

(2.14a) 

E;cim(1-) = (common as above)+(14 bO(p)+13 b1(p» = 30.5, 

/ (2.14b) 
and 
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EJO-) = (common as above)-(14 bO'(p)+13 b1'(p»=29.5, 

(2.15a) 

E;cjm (0-)= (commonasabove)+(14 bO'(p)+13 ~1'(p»=29.5. 

(2.15b) 

Here r(p) represents the orbital excitation energy of n relative to 
3 s-state nucleons, the eigenvalues for two quark pairs in 
different spin states are specified with and without prime, and 
energy eigenvalues are shown for clarity. We have admitted the 
sign inversion of eigenvalues only for the p-state n relevant 
terms, because the common term requires relatively big excitation 
energy and the r(p) in it is the bosonic parameter. 

The excitation energy for the states belonging to T=O, PllZ n 
become: 

Ez(O-) = (common as above) -(14 bO'(p) +13 bl'(p»= 21.1, 

(2.16a) 

E;cj",,(O-)= (common as above) +(14 bO')p)+13 b1'(p»= 35.5, 

(2.16b) 
.,. 

Ez(I-) = (common as above) -(13 bo'(p)+ 14 bl'(p»= 31.0. 

(2.17) 

The numerical work reduces to solve a simple coupled equation 
by subtracting suitably the neighboring energy each other. The 
same expressions apply to the corresponding T= 1 4H and 4[j 

states. We Perform the numerical study for these two nuclei 
beforehand for convenience. One finds: 

bO(p) = -0.774 and b1(p) = 0.926 (2.18) 

from 4H spectra and 

bO(p) = -0.607 and b1(p) = 0.793 (2.19) 
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from 4[j spectra. This nucleus admits to estimate the combined 
parameters 14 bO'+ 13 b1' from 

14 cO + 13 c1 = 1.8- 14 bOt - 13 bl' (2.20) 

Here the number 1.8 is the energy difference between 3rd and 
2nd excited states in 4[j. One finds 

14 bOt + 13 bI' = -o~OOOOI1.  (2.20a) 

This result proves numerically that E.,(O-) and E.-;",,(O-) are 
degenerated energetically. We think that the main cause of the 
approximate energy-specification sign found experimentally for 
the 2nd excited 0- state of 4[j is counted as a reflection of the 
degeneracy of the two states predicted here. The mixing of T=1 
0- partners for excitation energies 3.2 and 3.1 for 4[j and 4He , 
respectively, have been done corresponding to the sets of 
theoretical excitation energies 2.1 and 4.3 as well as 1.65 and 
3.55. The former set gives the mixing angle 45°, while the latter 
set gives the same mixing angle but predicts E.,(O-) = 2.6 which is 
somewhat smaller than the observed 4.1. This, however, may 
not negate completely the possibility of the degeneracy of interest 
in that state in 4He • 

Finally, the r(p) is estimated from the T=l, 2- ground state 
energy in 4He, viz., 

14 bO + 13 bl +3 r(p)- 13 bO(p)-14 bl(p) = 26.4 

r(p) = 0.3346 (2.11) 

$. 3 a-particle Model in Null-Instanton Approach 
The purpose of this study is to look for the role of geometrical 

problem inherent in the null-instanton model from completely 
different objects. The interaction potential is the same operator 
given in Eq.(2.1). The mass range is confined from A = 4 to 80. 

lt is useful to classify the eigenvalues into a-particle formation 
and their paste parameters. They are specified by 
2 n (14 bO + 13 bl) and 36n(n-1)(pO + pI), where n is the number 
of a -particles bound in s-state. We can eliminate .the Coulomb 
effect by making use of the binding energy data for charge 

- 12 ­

independent triplet nuclei and its Z(Z-I) dependence. This is 
possible for nuclei of interest except for a where we adopted A=5 
nucleus data for the same purpose. The result becomes: B( a )= 
28.7996, B(IBe )= 59.5333, BCt)= 99.7414, BCtJ)= 140.283, 
BeONe)= 183.9714, BeYg)= 227.1721, B( 18Si)= 272.8139, BeZs)= 
322.3035, Be6Ar)= 369.4479 and B( 40Ca)= 411.2566 (MeV). One 
can estimate the paste energy part of each nucleus by taking the 
difference 

1 
paste= -- [B(::X)- n B(a)]= 36(pO + pI), (n= 2 - 10).

n(n-l) 

(3.1) 

Here the use is made of a shortened notation X for a nucleus. 
One may find: 

paste = 1.9341,4.44753,4.18078,3.99734,3.62497,3.39127, 
3.28238, 3.06254,2.73912, for n=2-10, respectively. 

(3.2) 

We have treated that all alpha particles are bound in s-state in 
this numerical work. 

The smallness of n=2 paste value is expected from the 
beginning, since l Be is unstable for 2a decay. The gradual 
degrease of bond strength of paste may be'reduced to three 
reasons: 
(1 ) a purely geometrical reason, (2) the shell structure effect, 
and (3) the alpha particle formation in the nucleus is more 
restricted with the increase of mass number. 

The third one is difficult to answer for the time being and left 
for future. The second one is an orbital excitation problem by 
assuming that the number of alphas are raised to their orbit 
specified by the assignment of shell structure. This is done by 
adding the orbit dependent parameters to the binding energy 
formula. The additional term becomes: 

-r(p), -2 r(p), -3 r(p), -3r(p)-r(d)-3 r(p,d), -3r(p)-2r(d)-6r(p,d), 
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-3r(p)-3r(d)-r(2s)-9r(p,d)-3r(p,2s)-3r(d,2s), -3r(p)-4r(d)-r(2s)­
12r(p,d)-3r(p,s)-4r(d,s), -3r(p)-Sr(dO=r(2s),-lSr(p,d)-3r(p,2s)­
Sr(d,2s), for n= 2-10, respectively. (3.3) 

Hereth~~.d~e  are SPeCified by one 
an~  '~,". .ua- mrlDiMr BaD' 'l8ibe1p8~  "leur 
to remove the discrepancy found in the paste term shown above. 

We think that the first one is an attractive problem to pursuit 
from the null-instanton model point of view, because the alpha 
particles can make a close contact up to n=4, while it is difficult to 
make it above n=4. We cannot yet solve this geometrical 
problem in the writing stage of the paper. It is preferable to get 
a help of a mathematician in order to clarify the spatial 
dePendence of the strength parameter. 

$. 4 Magnetic Moments of Odd A Nuclei 
A normal definition of u and d quark magnetic moments 

(abbreviated m.m. hereafter) are defined as 

IJ.. = 3
2 

IJ and IJd = - 3'
1 

1J., (4.1) 

by neglecting their mass difference. Here, 1J. is one-half of the 
gyromagnetic ratio for the quark. It is well known fact that 
these choices explain the observed ratio of the proton and neutron 
m.m. in certain degree in SU4 limit, where this group is introduced 
as a semidirect product of flavor SU:t and spin SU; group. The p 
and n are classified as members of flavor SU:t doublet. We shall 
at first show that the p and n m~m. in SU4 limit are modified 
under the presence of null-instanton induced potential Eq.(2.l), by 
taking its effect to the p and n under interaction with a photon 
through their composite quarks. The modification of the m.m. in 
pure SU4 limit occurs when this photon associated quark has 
additional interaction with that belonging to the same nucleon. 
We call this the intranucleon q-q exchange effect. The estimate 
of the effect can be done as the eigenvalue problem as we have 
already experienced through previous two sections. Only the 
difference is that the photon associated quark can have 'two-bonds 
with remaining two quarks free from the photon. The 
eigenvalues should be estimated under a cyclic permutation of the 
photon for essentially independent two components of wave 
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functions. In the final stage one·should do in addition to the 
multiplication by the square of relative weight of the component 
wave function and the summation over the number of same 
matrix element arising from the number of SU4 components with 
similar spin structure which were skipped at first stage for ease of 
estimate. After doing this procedure for each of initially 
classified essentially two independent-component wave functions, 
the net result should be normalized by the corresponding factor of 
the total wave function. We recommend novice to refer a 
precious work of Gibson and Pollard on this procedure9

) in the 
pure SU6 approach. Repeating one and the same procedure the 
correction term enters to the magnetic moments of proton and 
neutron as additional terms in the pure SU4 approach. The 
result is given by: 

2 3 1 
IJ p = (1- a1- a2) IJ and IJlI = - 3(1- 2' aO - 2' a1) IJ, (4.2) 

for p and n, respectively. They are considered as the observed 
magnetic moments of free p and n, resPeCtively, including the 
strong interaction effect explicitly. We shall use the same 
notations as those used in $.1 for the correction term. Here they 
are measured in units of 1J.. We hope that this convention will 
not induce confusion. The eigenvalues aD and al represent those 
for anti-parallel and Parallel spin q-q pair states in the nucleon, 
respectively. The physical meaning of the parametrization in 
our previous worklit has already been distussed1) in connection 
with the present result. 

When the nucleon is bound to the nucleus its m.m. is expressed 
by the so-called Schmidt value.5) The observed m.m. of many 
odd-A nuclei fall in between two Schmidt lines which is known as 
the quenching phenomenon. This phenomenon was taken 
seriously by Miyazawa as well as Arima and Horte in early days. 
The former author proposed that it is caused from the quenching 
of the pion cloud around the m.m. relevant nucleon in the nucleus. 
The latter authors have shown that the configuration mixing of 
neighboring nucleons with assumed quantum number explains the 
phenomena in right ways semi-quantitatively by a Perturbative 
approach. Some of the m.m. of odd-A nuclei show anti­
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qeunching, viz., their measured m.m. fall outside of the Schmit 
lines. This problem is left untouched for many years. 

The Schmidt formula admits us to separate the orbital and 
intrinsic m.m.. In that formula one substitues the observed free 
m.m., viz., it is totally called a Schmit value. We find that the 
null-instanton induced potential modifies solely affect the 
intrinsic part of the Schmidt formula. Let us call it the intrinsic 
m.m. after eliminating orbital part in order to discriminate it from 
the free one. The modification of the intrinsic m.m. occurs 
through the oPeration of the null-instanton induced potential 
between quarks belonging to different nucleons. Let us name 
this the intemucleon exchange. The calculation of the 
eigenvalues of the operator is classified into two tyPes, owing to 
the kind of quarks joining to the exchange process. They should 
be members of the intrinsic m.m. relevant nucleon, viz., these two 
tyPes are: (i) quarks free from the photon vertex and (ti) that free 
from the intranucleon exchange. The number of the former is 
two, while the latter is one. In the practical work there apPear 
a few set of eigenvalues for each sub-wave function. It should be 
rePeated for the cyclic permutation of a photon and intranucleon 
exchange vertices in vertex free manner. Usually the positive 
strength sign of the potential causes a quanching of m.m. under 
the oPeration of the Pauli exclusion principle. One can 
understand qualitatively that the machinery under study will give 
us a correct sign of quenching by noticing that the sign of the m.m. 
of p and n is realized in quark model, owing to the fact that total 
sign of them is due to· the dominance of charge oru and d 
involved in them. If the eigenvalues of the intemucleon 
potential strength take appropriate sign or the sign inverted 
partner's state contributes dominantly they cause the anti­
quenching of the m.m. This depends on the structure of the 
nuclear state under study. One may find that the anti-quenching 
of the m.m. of odd-odd nuclei may also occur by definition. 

It is not difficult to calculate the m.m. of odd A nuclei under 
the presence of the null-instanton induced potential, because all 
the nucleons are coupled to spin zero except for the one containing 
the photon vertex. Let us call the last one the host nucleon for 
convenience sake. 

In the course of study we find that the quenching behavior 
may be explained by taking the contribution from nucleons 
belonging to the outermost shells into account. We shall 
present first our result on this limited choice in order to compare 
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it with the experimental data. The result is easily generalized 
to include the contribution from full nucleons. The constraint on 
the choice of number of shells will be decided by the proPerty of 
the null-instanton induced potential. It may also depends upon 
the value of m.m. under study. 

The static problem under study will be extended to a 
dynamical problem where the eigenvalue problem under study 
contributes part of it. We shall postpone a discussion on such an 
example at the end section of this paper. 

Let us present the m.m. formulae for 3H and 3He and generalize 
them for odd Z and N nuclei in a form applicable to any odd A 
nuclei. One finds that intrinsic parts of them are given by 

~ eH) = [1 - aO -al -6(cO + cl) + 3(aO+al)(cO + cl)] ~  

(4.3) 

and 

3 2 3 1 3 
~(He)  = - -[1- - aO - - al-6(cO+cl) + -(3aO+al)(cO+cl)},u, 

3 2 2 2 

(4.4) 

reSPectively. Comparing these equations with those in Eq.(4.2) 
one sees that the eigenvalues cO and c1 ar.e those came from 
intemucleon q-q pair spin states. The application of twice the 
Pauli exclusion principle has resulted sign of the last term in the 
square bracket. Usually aO+al and 3aO+al is less than 2 and 4, 
respectively, so that the quenching and anti-quenching are 
controlled by the sign of (cO+c1) term, a pure photon correction 
term. These results can easily be generalized in the convenient 
forms compared to the experimental m.m. for odd Zand N nuclei, 
viz., 

_[ 1 _ 3(k + n)(cO+clX2 - aO- al)]
{lJ.p)intr - 2 ~p , (4.5) 

~p 

and 
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(Jl,,)iJatr =[1+ 3(k+n)(cO+c1X4-3aO-al) (4.6)
41l" ] Iln , 

where the subscript intr means the intrinsic part of the m.m. in 
the Schmidt formula. Here k and n are number of protons and 
neutrons belonging to the outermost shell except for the host 
nucleon, viz., k and n take even numbers 0, 2, 4,.... In these 
expressions we did not discriminate shell dependence of 
eigenvalues cO and c1. They may take different numerical 
values by the difference of shells to which host p and n belong., 
viz., it is more suitable to write: 

(k+n)(cO+c1) - (k i +n j )(co(i)+c1(j», (4.7) 

where i and j specify the relevant proton and neutron shell, 
respectively. The summation over all i and j admits us to include 
the full contribution from nucleons belonging to the given nucleus. 

The formula given above allow us to make a detailed 
comparison with the experimental data by eliminating the orbital 
part in SChmidt formula and by taking out the intrinsic m.m. with 
a suitable manner. In the following study the shell structure of 
the outer most nucleons becomes important, so we shall refer the 
known shell structureS) and the corresponding filled-shell nucleon 
numbers up to that shell for convenience. They are: 

S1l2 (2), P31l (6), PIll (8), d S/2 (14), S1l2 (16), d 3/2 (20), f 712 (28), P3/2 (32), 
f

Sf2 
(38), P1l2 (40), g9l2(50), g712 (58), d Sf2 (64), d 312 (68), S1l2 (70), 

h (82), h (92), f (100), f S/2 (106), P312 (110), PII2 (112), il~2  (126),
U12 912 712 

(4.8) 

We shall arrange the intrinsic m.m. extracted from the 
experimental data will be compared easily with the second terms 
in the squared bracket in Eqs.(4.5) and (4.6), respectively, for 
odd-Z and N nuclei. In the actual study one may find only a 
fraction of (k+n) has a meaning. Even such a proportionality 
should apply to odd Znucleus, while this does not seem to be 
realized apparently at high Z region as one sees from the data scan 
made in this work. The physical meaning will be discussed after 
studying them. The numerical results are presented in units of 
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II p and Il n for odd-Z and N, respectively, where we have multiplied 
inverse of orbit dependent factor when it comes in from Schmidt 
formula so as to give the desired (Ilp(,,»intr I IIp(n) • 

First of all, we shall tabulate in Table II the m.m. of charge 
symmetric nuclei for make it easy to compare. 

Table II. Ratio of intrinsic m.m. and its free one 

nucleus (Jlp)iJatr l II p (Iln)iJatr I Iln nucleus 

3H ** 1.0660 1.11213 3He 

11) 0.604630 0.5368 It' 

ISN 1.020 (1.127) 150 ** 
17F 0.97470 0.989894 170 

19F 0.9411016 0.9859 19Ne ** 

21Na ** -0.349786 -0.57653 21Ne 

29p ** (0.44217) 0.29024 29Si 

3tl 0.58374 0.543 3SAr ** 
T 

41Sc ** (0.870) 0.833562 4t'a ** 

In the first and the last column nucleus symbol for odd-Z and its 
charge symmetric one is listed. The corresponding ratios for 
intrinsic and free nucleon m.m. are given in the third and fourth 
column, respectively, for ease of comparison. The significant 
numbers are given based on their experimental accuracy. The 
nucleus symbol with double star superscript means that it is an 
artificial radioactive one. The round bracketed number means 
that its sign has not yet been determined experimentally, where 
we have chosen the sign so as to coincide with Schmidt value and 
to become closer to its charge symmetric partner's one. 

One can learn physics involved in each datum. The absolute 
value less than 1 indicates that its m.m. lies within Schmidt lines. 
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When it exceeds 1 means that it is an indication of anti­
quenching. We learn in general that the quenching and anti­
quenching occur commonly to the charge symmetric nuclei where 
the lowest Sl/2 and PII2 orbits appear as common for anti­
quenching ones. Turning our attention to individual pair. 

Let us start from A=3 pair where k=O, n=2 and k=2, n=O for 
odd Zand odd N, respectively. We have seen the rapid vaiation 
of the potential parameters occurs including their sign in A=2 to 4. 
Actually we found aO=-12.85, al = 10.73 and bO= 4.491 and bl= 
-3.749 (MeV) from A= 2 to 3 and 4 in $.1. The parameters cO and 
c1 in this section correspond to those numbers with the same 0 
and 1 indices. If the propotionality holds between energy and 
m.m. parameters the sign of cO+cl becomes negative (positive) for 
the fITst (second) set, respectively. It is a delicate problem 
which state of sign inverted partners contibutes mainly the state 
under investigation which also concerns the sign of (cO+c1). Let us 
assume that our formula satisfies the anti-quenching condition 
observed here both for Sl/2 and PII2 orbit and turn our attention to 
next pair. The closeness of the ratios 1 in A=17 pair where k=n=O 
means that inner shell effect is negligible. The core nucleons 
form the fully closed shell so they ditribute spherically symmetric 
manner on the core surface, where the only a very limited 
fraction of nucleons enters into the potential range so as to reduce 
the intrinsic m.m. In this connection a slight reduction of the 
ratios found for A=19 pair relative to A=17 admits us to estimate 
an additional phenomenological-reduction factor for each one 
which is multiplied to k=O, n=2 and k=2, n=O choice, respectively. 
One sees that k and n does not appear as the reduction factor 
themselves. 'They should be taken as the convenient indices for 
pointing a quenching direction(see, later discussion). We shall 
leave the determination of individual parameter with a new 
multiplicative reduction factor for each nucleus and turn our 
attention to the data survey of many other nuclei from the similar 
point of view. 

Let us consider next the m.m. of odd Z nuclei in general by 
classifying them by their host proton orbital states in arranging 
them with the increasing order of mass number and shell 
strllctuture. It is convenient to repeat this by taking ratio of 
intrinsic m.m. and free proton one corresponding to Eq.(4.5) as 
already done. In order to make clear the physical meaning of 
the correction term we shall list l-(~p)intr  I ~p' One may expect a 
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gradual increase with (k+n) dependence with some positive factor 
for the particular subshell to which the host proton belongs. 
More precisely (i) the nearby closed shell, closed sub-shell, the 
change of the associated sub-shell structure should appear if the 
full outermost sub-shell nucleon contribute effectively. This 
expectation should be found from the suitable manipulation 
suggested above. Let us look at the experimental information for 
odd Z nuclei listed in Table III. 

Table III. 1- (~p)inl/ II p for odd-Z nuclei 

P3/2 ;Li ~1J Pin ~N**  l;N 

0.192118 0.39537 -0.07188 -0.0202 

d S/2 ~F** ~;AL d 3/2 ~~a** ~:rva 

0.02530 (0.41228) 1.34979 1.24916 

d3/2 ;;CI :;Cl :~ :;K :~ 

0.41627 0.33407 0.15941 0.05413 0.0221 

f 7/2 ::sc ** :~** ;:sc ;;Sc ~r 

(0.130) 0.420 0.371132 0.162 0.2309 

f712 :~n :;Co :;Co fS12 :;Mn** ::Mn 
T(0.267) 0.3834 0.4239 (1.3639) 1.30632 

P312 269t:U ** 2
6
:CU 2

6
9tU ::Ga** :~Ga 

0.592 0.56095 0.50409 0.70 0.636167 

10) ** 1~Pm ;pa g912 ::Nb :7c** 4 n 4 n 
0.440804 0.22370 0.39800 0.449 0.45436 

8 8
P3/2 ;~ ;), 371' 3;Rb* * 

0.8234 0.60406 0.54540 0.624 

f S/2 :;nb* * :~ Pin 1:~**  ~o;Ag  1:~  

0.280 0.245947 (0.1752) 0.16190 0.14365 

Pin ~}Ag* * ~,:Ag*  * g9/2 ~)n** l::rn ** ~l)n 
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0.127 0.113 0.449 0.452 0.45436 

g912 ~)n** Pin l1:'/n ** l1:;In ** ll;';In 
0.45013 0.0578 0.02202 (0.0143) 

dS/2 1:;Sb 1:37** 1:31 12;;1 IS:p 
0.51365 (0.64) 0.7102 0.70 0.79 

-
** 

0.38220 0.3684 0.4702 (0.5158) 0.448 
g712 1;IJsb ~23'1 1;31 1;31 ** Sin 12):'S S 

13ts1l2 ~:Cs** g712 S S 13j::5 5** 1;]::5* * ~7'ta  

0.470 0.3970 0.46613 0.51640 0.48873 

1;:tU 17't l~;ra  16:rg712 7 U f 7n ~61Io  Pl/2 6 m 
0.236 0.239 0.292 0.638 0.03597 

193, 191411. **d SI2 l~;Re  1~;Re  d m 
I;jr 77~r  79'­

0.58061 0.56897 0.012889 0.020635 0.00758 

d 312 1;~** ~~** 1;;Au 1;;Au ** SII2 I:;n** 
(0.0088) (0.0136) 0.01288 0.08683 0.434 

S112 2~1l** 2~p 2~p h 912 2::&* * 2::&* * 2::& 
0.431 0.423058 0.417383 0.860 1.26 0.6367 

P311 2;~ 2;?a* 23",a ** 2;;Np**9 dS/2 
0.96 0.65 0.14 -0.43 

f m 29~IAm  2:~** 

0.36 0.36 

In this table m after A on left superscript attached to the 
nucleus symbol means a metastable, and single * and double ** 
on right superscript show the natural and artificial radioactive 
nucleus, respectively. 

The data are arranged from light to heavy nuclei by 
classifying them in their orbital dependence with an increasing 
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order of shell structure. There does not seem to exists strong 
(k+n) dependence in general except for the fIrst Pm nuclei. The 
expected (k+n) dependence seems to disappear all other orbital 

states. This is understood as follows: first of all, (i) the effective 
nucleon number contributing to the correction not necessarily be 
integer as we saw already, because the null-instanton effect is 
very sensitive to the relative distance between the correction­
term relevant nucleons, and secondly, (ii) the Coulomb effect 
obstruct the expected number dependence. This second effect 
forces to distribute protons on the surface of the core equally. 
As we shall see in comparison with the intrinsic m.m. of odd N 
nuclei the null-instanton effect and the Coulomb effect compete 
each other on the surface host proton binding as to arrange the 
outermost proton distribution on the core surface. Here the 
latter effect is somewhat over the former one. One may find a 
delicate dependence on the host-proton associated sub-shell 
change by examining the table. The new anti-quenching of m.m. 
will be found but it is restricted to a limited number of nuclei. 

The similar quantity is extracted from the available data for 
odd N nuclei and given in Table N. 

Table IV. 1 - (J.'n)intr I I-t n for odd-N nuclei 

Pm:Be ~t:  ** PII2 I:C ~b* * :~e  

0.38452 0.463159 -0.101466 (-0.1273) 0.8579 

dS/2 ~b :~g d 312 ;;Ne ~:~  ::lJ 
0.010106 0.55301 1.58124 0.43 (0.129) 

f 7/2 '}.~t;a  '}.~Ca  411·** 4~.'}. I 7. I f 51'}. ~li ::Cr** 
0.166438 0.31146 (0.9503) 0.42312 1.5768 (1.348) 

f SI2 6~,Ni  36:Zn ** :;0, P312 :4tr 5~~Fe  ;lli
1.5479 0.4374 0.35948 0.75204 0.91917 0.60864 

3 2't;e 3g9/2 7 861(r ::Kr* * :;Sr d SI2 ::Zr :7.Yo 
1.75226 0.49282 0.4752 0.42855 0.31883 0.5225 

d Sl1 :;Mo ::Ru ~ 1:6i'd ~td** 1::Cd** 
0.5125 0.674 0.64 0.6782 0.6778 0.5668 
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h l1:;Cd u:Cd IsloSSn1111 SII2 ~td  lil:d * ~td**  

0.43498 0.45438 0.6980 0.67461 0.6618 0.52019 

I 1;:xe
S1l2 ~1;Sn  11~S n S f 712 ~1::e*  * 16"'d ~'*)vd  

0.47731 0.54307 0.59390 0.494 0.4438 0.6585 

f 7 /1 ~71'HO  g711 1:;Er Pin ~6:er * * I;!rb f S'2 I;)'b 
1.32 1.3795 0.196 0.2277 1.4973 

18p 19;H. 18))Pin 7 S 1;~  19li.g ** 19li,8 g ** g P3/2 7 s8 8 

0.89915 0.049823 0.15638 0.17835 0.2118 1.34283 

10)1. 19:;,Hg* * 19":"ePg'** 10:Hg * * PII2 2~;PbPm 8 g i l l'2 f S' 2 8
0.70906 0.45171 0.46086 0.385 0.07571 

d S/1 1;~h 2:p** 19~1'u  ** f 712 2:p* 2::Pu ** 
1.18 0.72 0.64 0.82 1.105 

From this tabulation one finds in general an expected 
increase with the increase of (k+n) by taking a fraction of this 
integer, since only a fractional number of outermost sub-shell 
nucleons contribute to the correction of the m.m. of the host 
neutron as we have seen already. One may also learn from the 
tabulation that the intrinsic m.m. get increase in oppose to (k+n) 
where outermost shell approach to close the shell. The delicate 
orbit dependence and (k+n) dependence should be taken into 
account case by case. Our tabulation can be used for such a 
purpose if it becomes necessary. The nucleons try to distribute 
nuclear surface in a cooperative manner with the central force 
and compete with the null-instanton induced force. The latter 
will admit the local concentration of neutron distribution on core 
surface. If the nuclear deformation is induced by the 
interaction between outermost nucleons and inner nucleons its 
influence should be reflected to the m.m. under study. The big 
deformation seems to occur for odd N nucleus where outermost 
neutrons belong to an orbit far from the closed shell will play an 
essential role as far as our m.m. analysis tells. We do not wish 
to spend a more time on this problem in this paper. We shall 
leave an estimate of a fractional multiplicative number to (k+n) 
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term for individual data, which may be done first for odd N then 
for odd Znuclei by taking Coulomb effect in mind. 
In this manner one can find the role of the Coulomb effect in each 
nucleus from a null-instanton-induced-mode1 point of view. 

$.5 Magnetic Moments of Odd-Odd Nuclei 
We shall present first the Schmidt magnetic moment 

(abbreviated m.m. hereafter) formulae for odd"'Odd nuclei in order 
to extract the intrinsic m.m. from them. Owing to its simplicity of 
derivation we shall explain shortly in words and then give the 
result explicitly. Let us specify the spin operators j p and j" for 
unpaired single proton and neutron part, respectively. The total 
m.m. operator becomes the sum of Schmidt operators for p and n 
by replacing the total spin of the corresponding single particle 
operators by these spin operators for the proton and neutron part, 
respectively. Firstly one takes scaler products of this operator 

... -+ .... 1 _ ........ 2
 

with the dyads jpjpl jp and j"j,,1 jn fortheprotonandneutron 
part, respectively, and then take that operator with the dyad 
.........2 ...
 

J J / J made from the total spin J. The coeeficient of the total 
spin J thus calculated gives the desired m.m. Specifying the 

orbital angular momentum of unpaired proton and neutron by Tp 

and i '" respectively, the results are summarized as follows for the 
sake of reader. 

For simplicity let us define first the foUr quantities by 

. 1
IJp+Jp-­

x(lp-)= . 2 (J(J+1)+jp(jp+1)-jn(j" +1»), (5.1a)

}p 

X(I,,-) = ~n (](]+1)+j,,(jn+ 1) -j/jp+1»), (5.1b)

In
 

. 3
-IJp+Jp+­

X(lp+) = . 2 (J(J+1)+j/jp+1)-jn(j,,+I», (5.lc)

Jp+1 

X(I -) = ~(J(J+1)+j,,(j,,+I)- j/jp+l»), (5.1d)
" In +1 
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where f.l p and f.l" should be understood as the intrinsic m.m. of 
proton and neutron, respectively, although we avoided their 
explicit specification for simplicity, and Ip- = jp -1/2, I" - = j" 

-1/2, Ip + = jp +1/2 and I" + = j" +1/2. Making use of these 
notations one finds four possible m.m. of interest as 

f.l(lp-,1,,-) = 2(1 
1
+ 1) [X(lp-) + X~,,-)],  (s.2a) 

f.l(lp-,1,,+) = 2(J 
1
+1) [X(lp-) -X~,,+)],  (s.2b) 

f.l(lp+,I" -) = 2(J 
1
+1) [X(lp+) + X~,,-)],  (s.2c) 

1J(lp+.In +) = 2(1
1 
+1) [X(lp +) - X~n +)]. (s.2d) 

The proton and neutron part of these expressions coincide with 
the Schmidt formula by making an appropriate substitution as 
well be checked easily. 

The derivation of the intrinsic magnetic moment of odd-odd 
nucleus including the correction term is a little bit complicated, 
especially the internucleon effect between unpaired single proton 
and neutron. It is impossible to find out experirilentally the 
intrinsic m.m. of proton and neutron separately, while the theory 
does. It will be instructive to present them separately and 
combine them suitably in referring to the Schmidt formulae, 
Eqs.(s.2a)-(s.2d). They are given by 

=[1- 2[(19cO + 15cl) - (l5aO + 19a1)c1].u ]( ). (s.3a)f.l p Inlr 27 I-t p ,
f.lp 

). =[1 2[(2cO + 15cl) - (l5aO + 2a1)c1].u ] (5.3b)(IJ" ml, + IJ" • 
27IJ" 

We used the same notation as that for odd A nuclei. One sees a 
slight difference in a pure photon and intranucleon q-q pair term 
in these expressions for the last single proton and neutron, which 
is caused from the u and d charge effect in the combined states. 
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It may be convenient to give the full expression inclUding the
 
correction terms arising from the outernlost p and n associated
 
nucleons, as we experienced already, viz., an expected fractional
 
(k+n) effect. We shall again show them intrinsic p and n part,
 
separately, in spite of a lengthy equation. One finds
 

(f.lp)inlr =[1- --L {4( 19cO+ls(1)+162(k+n)(cO+cl)-4( lsaO+18al)c1 
54Jl p 

- 81(k+n)(cO+c1)(aO+a1)}] I-t p , (s.4a) 

(f.l,,)inlr =[1+ ---E..- {4(2cO+ls(1)+l08(k+n)(cO+cl)-4( IsaO+2al)cl 
54l-td 

-81(k+n)(CO+cl)(3aO+a1)}] IJ" • (s.4b) 

One may find three types of combination of intrinsic p and n 
m.m. from Schmidt formula which will directly be compared with 
the experimental information, viz., type (1) a pure p+n, (2) a pure 
p-n and (3) an isolated p intrinsic m.m. with some numerical 
coeffident depending upon to which orbit they belong. In the 
last example orbital effect cancels for intrinsic n m.m. We shall 
choose them from the available experimental information and 
give them in tabular form after multiplying inverse of the orbital 
coefficient by dividing it by the corresponding combined free 
m.m. The result is tabulated in Table V. ,. 

Table V. (Schmidt)inlr I (m.m.) free for odd-odd Nuclei 

nucleus shell assignment JP type (Schmidt)inlr / (m.m.) free 

~H  (SI/2' s1/2) 1+ (1) 0.974545 

I
s
oB (P3/21 Pm) 3+ (1) 0.91007 

17W (P1l2 , P1/2) 1+ (1) 0.89715 

~7c**  (~/2'  ~/2)  3+ (1) 1.3735 

:~Co*  * (17/2' Pm) s+ (1) 0.898 
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1+ :u ( P3/2' P3/2) (1) 1.66631 

:u** (P3/2' Pm) 2+ (1) 1.6820 

-
z:F** (ds/z, dS/2) 2+ (1) 3.745 

~~Na*  * ( dS/1 , dS/2.) 3+ (1) 1.03 

-
~~a** (ds12 , dS/2) 4+ (1) 0.12815 

~;P**  (S1l1' ~/Z)  1+ (2) 0.1072 

~1:1  ** (d3/2, d3/Z) 2+ (1) 0.24261 

~Sc  (/7/2, /712) 6+ (1) 1.74 

::sc ** (/712' /712) 4+ (1) 2.63 

~}'*  (/711., /712) 6+ (1) 1.028 

-
:;Mn* (/712' /712) 6+ (1) 0.6678 

-
:;Mn** (/712' Pm) 3+ (3) 0.305 

-
:;Mn** (/712' P3/Z) 3+ (3) 0.27949 

1+ ::Cu (P3/Z' /512) (1) 3.26 

In this tabulation the first, second and the third column specify 
the nucleus, the assumed configuration for the host p and n, and 
the observed spin and parity, the fourth column is the 
corresponding type of combined intrinsic m.m. and the last 
column is the ratio of the intrinsic m.m. divided by the 
corresponding combined free p and n as well as p m.m. The 
deviation from the Schmidt limit will be defined as the excess 
from 1 in term of the newly appeared ones. Such a big 
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correction is almost ubiquitous phenomena in the mass range
 
studies.
 

$.6 Conclusion and Discussion 
We have studied in this paper the binding and excitation 

energies of light nuclei, the alpha-particle model, the magnetic 
moments of odd-A and odd-odd nuclei as the eigenvalue problem 
of the null-instanton induced potential. The null-instanton 
model suggests the strong relative distance dependence between 
the quarks concerned in their exchange machinery and it 
diminishes quickly with increase of it. The binding as well as the 
excitation energies of light nuclei were explained by taking the 
nucleon distribution in their parent nucleus into account, where 
the existence of the sign inverted partner of any state is suggested 
based on the property of the assumed potential. An quick 
increase of the paste quark pairs in the alpha particle model 
suggests a necessity to solve the spatial distribution of alpha 
particles in A > 16 in order to explain the associated binding 
energy. 

The general formulae which include the corrections to the 
intrinsic part of the magnetic moments in Schmidt model have 
been derived for odd-A and odd-odd nuclei. These formulae 
explain naturally the well known quenching of magnetic moments 
of odd-A nuclei. A numerical detail depends on how much 
fraction of the outermost nucleons contribute effectively to the 
mechanism. The clear evidence is foundtrom odd N data with 
outermost sub-shell structure variation dependence in certain 
orbital state analyzed individually. The effect becomes obscured 
for odd Znucleus due to the more or less equal inner nuclear 
surface distribution of protons by the Coulomb effect. The 
numerical value can be compared with the theoretical parameters 
are tabulated for each nucleus but a detail is left untouched. 
The explanation of the anti-quenching is also reduced to 
the choice of the sign of the theoretical parameters, we hope that 
it may also be realized by the parameters introduced in the 
particular mass number region of interest. The correction to the 
intrinsic part of the Schmidt limit for the odd-odd nuclei is 
tabulated in units of the corresponding combination of free 
nucleons. An apparently big anti-quenching found in this table 
may not become important if it is done in units of the free proton 
magnetic moment Our presentation of magnetic moment data 
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will be related intimately to the nuclear structure and it should be 
pursued further in connection with an independent infonnation 
on the properties of individual nucleus. 

The null-instanton model presented in this paper can be 
applied wide range of problems. We have concerned so far on 
the static problem on nuclei in this paper. Our model can be 
extended to the dynamic problem, such as, a weak decay. There 
is a fundamental question on the universality of the Fermi 
coupling constant in any weak processes. The CVC hypothesis 
does not admit the weak vertex correction from strong 
interaction. 11) This does not admit any vertex correction for the 
leptonic decay of a meson. However the corrections becomes 
important for both semi-Ieptonic and hadronic decays through 
sPectator quarks: (i) quark exchange effect between the parent 
quark and the spectator quark, and (ii) final state interaction in 
between daughter quark and associated spectator quark(s) and 
initial spectator ones. They are exemplified at first by the semi­
leptonic decay of mesons and baryons. The former correction to 
nucleon beta decay is the same as the one obtained magnetic 
moment study for free as well as the bound nucleon, while the 
latter correction enters newly as a radiative correction for any 
semi-Ieptonic and hadronic decays as a similar eigenvalue 
problem. We hope that the universality of Fermi constant is 
certified for widely distributed ft value in nuclear beta decay 
having the same forbidness by an introduction of eXPected large 
correction arising from the quark exchange effect between the 
spectator quark as well as the nucleons involved in the parent 
nucleus and the daughter quark, spectator quarks in daughter 
nucleon as well as daughter nucleons in the nucleus. The large 
correction is eXPected with the increase of mass number as we 
experienced already through alpha particle model. Our 
formulation admits us to include all these corrections as an 
eigenvalue problem of one and the same potential in associated 
strong interaction without woITYing about the renormalization 
problem inherent in quantum field theory. We did not use any 
QeD language in our approach. For the time being our method 
will be considered as a substitute of the QeD field theory for 
many-body problem in a low energy region. We should like to 
concentrate on weak interactions which will affect to find a 
reliable answer for the determination of the famous Cabibbo­
Kobayashi-Maskawa (CKM) weak mixing angles. One learns that 
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the experimental values of them still distributed over some extent 
depending upon from which process they are derived. 
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Remark: Doubly printed line 5 in page 13 should be read: 

and two characters, respectively, in order to shown their origin. 
One finds easily that this additional modification cannot help to 


