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It was bel ieved that, for Riemannian geometry, the satisfaction of Einstein's equivalence principle is eq
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jiiiiiiiiiiii c uivalent to a proper metric signature, which mathematically implies the existence of local Minkowski spaces. 
~==c===..JI_M-M However, a proper metric signature is only a necessary condition. As Einstein pointed out, the equivalence ==0 

- principle requires further that a "free falling" of an observer must result in a local Minkowski space whose 

spatial coordinates are statically attached to the observer. Thi/.:, 11.> cdoo -tequiJl,ed l>.y the I,act that the 

,toea,,( opaee-uJ'Tte, 01, a opaoo-Mtip unde-i the infrluenee 01, oYllly g-tav«y f 11.> a weed MinkoW6ki 

opaee. Explicit examples together with detailed calculations are given to show that, for some Lorentz mani

folds, a "free fall ingll may not result in a statically attached local Minkowski space. In particular, based on 

physics and/or direct calculations, three independent proofs are provided to show that the Galilean trans

formation is unequivocally incompatible with the equivalence principle. Moreover, there are Lorentz mani

folds, any of which cannot be diffeomorphic to a physical space, where the physical principles are satisfied. 

Another result from this analysis is that, due to the equivalence principle, the urne-coolf&nate muM; l>.e 

o-ithogoned to the opaee-eoolf4in~ if a particle can rest relative to the frame of reference. 



-----------------

II As far as the prepositions of mathematics refer to real ity, they are not certain; and as far as they are 

certain, they do not refer to reality." -- A. Einstein (in 'Geometry and Experience', 1921). 

1. Introduction. 

A major problem in general relativity is that any Riemannian geometry with the proper metric signature 

would be accepted as a valid solution of Einstein's equation of 1915. Cons~quently, many unphysical solutions 

were accepted as valid [1]. This is, in part, due to the fact that the nature of the source term has been 

obscure since the beginning [2,3]. When a source term is given, the adequacy of this term for a physical 

situation is often not clear. For instance, although the electromagnetic energy-stress tensor provides an 

adequate source term for the Reissner-Nordstrom metric (4,5], its adequacy for gravity involved an 

electromagnetic wave, is questionable [6,7]. Thus, to determine whether a solution is valid and whether a 

given source term is adequate, it is necessary to consider general physical requirements. 

In general relativity, the most crucial physical requirement is the satisfaction of Einstein's equivalence 

principle in a physical space (2,3]. Mathematically, however, the equivalence principle can be incompatible 

with a solution of Einstein's equation, even if it is a Lorentz manifold whose space-time metric has the same 

signature as that of the Minkowski space [7,8]. Unfortunately, some relativists [4,9,10] seem to be un

aware of this. Thus, to many theorists, a proper metric signature has become almost a synonym to the satis

faction of the equivalence principle, and they believe incorrectly that this had been proven in mathematics. 

To clarify this confusion, let us first review the situation. Physically, the equivalence principle requires 

that a "free falling" results in a local Minkowski space (3]. Mathematically, although there always exists a 

local Minkowski space for any point in a Lorentz manifold (which has the proper metric signature), it should 

be noted that a "f/I,ee .(,.aUing" may not aAway{) 'f.,~tdt in a wcl1ll Minkow{}/d ~pace [8,11]. In other 

words, while the proper signature of the metric is a mathematical necessity, a "free falling" results in a 

statically attached local Minkowski space is a physical requirement. 

The misconception that, in a Riemannian space with the proper signature, a "free falling" would automa

tically result in a local Minkowski space (12,13], has deep-rooted mathematical errors and misunderstand

ings from believing in the general mathematical covariance in physics (§§ 2-4 & [11]). Thus, it is necess
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ary to demonstrate this misconception through examples with detailed calculations (see §§ 4-6) in this paper. 

Moreover, there are Lorentz manifolds any of which is not diffeomorphic to a physical space (see § 6 

and also (11)). Thus, to accept a Lorentz manifold as valid in physics, it is necessary to verify the validity 

of the equivalence principle in a space-time coordinate system on which physical interpretation can be based. 

Then, any diffeomorphism [4) can be used to obtain new coordinates for the purpose of calculation although, 

due to the equivalence principle, the diffeomorphism may not be adequate for physics (see §§ 4-6). 

Note that Einstein's requirement of a mathematical general covariance among all concievable coordinate 

systems [2], is actually an over-extended demand since the equivalence of all frames of reference does not 

require the equivalence of all mathematical coordinate systems (see also § 4). (Note that the gauge related to 

general mathematical covariance, was not accepted by Eddington (14).) Analysis shows that covariance must 

be restricted by requiring the satisfaction of the equivalence principle. However, geneJl,(J;l IL01ativity ao a 

phy6iccd the-OILy M unalrf,e-de.d because the equaivalence principle is satisfied in a physical space (11]. 

2. Two Mathematical Theorems in Reimannian Space and Einsteinls Equivalence Principle 

Now let us discuss first two mathematical theorems of Reimannian space (15] because they are often 

confused with Einstein's equivalence principle by mathematicians and II relativists ". They are: 

Theorem 1. Given any point P in any Lorentz manifold (whose metric signature is the same as a Minkowski 

space) there always exist coordinate systems (xj) in which ogilJ8xj = 0 at P. 

Theorem 2. Given any time-like curve r there always exist a coordinate system (so-called Fermi 

coordinates) (xn in which ogik/8xj = 0 along r. 

From theorem 1, it is clear that a local Minkowski metric exists at any given point. From theorem 2, it is 

claimed (15) that the existence of Fermi coordinate implies the existence of freely falling i.e. inertial 

observers in any Lorenz manifold. It should be noted, however, that here the existence of inertial observers 

means only local constant metric but not local Minkowski spaces. Thus, these theorems do not constitute a 
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physical principle since there are insufficient specifics in physics to exclude unphysical situations. 

Einstein (16] pointed out, II As far as the prepositions of mathematics refers to real ity, they are not 

certain; and as far as they are certain, they do not refer to reality.1I Although it is possible to transform a 

local constant metric to a local Minkowski space, such a local Minkowski coordinate system may not neces

sarily be related to the free falling (see §§ 3 & 4). But phY1iC!.> Iteq~ that a /itee f,.a;Uing mU1t 

lte1uU in a -local Minkow,-:>ki 1pace)) -6.ecalJ/.}e the WCM 1pace-ume ob a 1pace-ohip und0i the 

in/rluence 01, on-ly gltavity, i1 a Minkow11d 1pace. Thus, the equivalence principle is necessary to 

ensure that (2) II special theory of relativity applies to the case of the absence of a gravitational field. II 

Einstein proposed that the equivalence principle is satisfied in a physical space-time. ThlJ/.}, a Rie

mannian 1pace, wh0ie the equiva-lence pltincip-le i1 not 1att1frie,d, i1 not phy1icaUy lteaA4zalYle; 

and in a phy1icaUy UMea«zaJde, 111pace-umell, the equiva-lence pltincip-le cannot -6.e 1~e.d. 

Thus, although defining a coordinate system for the purpose of calculation is only a mathematical step, choos

ing a space-time coordinate system, which must be physically realizable, requires physical considerations. 

Although the equivalence principle does not determine the space-time coordinates, it does reject physical 

unrealizable coordinate systems. Whereas in special relativity the Minkowski metric limits the coordinate 

transformations to the Lorentz transformations; in general relativity the equivalence principle limits the 

coordinate transformations to be among space-time physical coordinate systems. Thus, the role played by the 

Minkowski metric in special relativity, is extended by the equivalence principle (see also § 6). 

3. The Restriction of Covariance and the Equivalence Principle 

The foundation of general relativity consists of the equivalence principle and covariance. The principle of 

covariance (2] states that liThe general laws of nature are to be expressed by equations which hold good for 

all systems of coordinates, that is, are covariant with respect to any substitutions whatever (generally covar

iant).11 The covariance principle can be considered as consisting of two features: 1) the mathematical formul

ation in terms of Riemannian geometry and 2) the general validity of any Gaussian coordinate system as a 

space-time coordinate system in physics. While feature 1) was eloquently established by Einstein, feature 2) 

is actually over-extended. The equivalence of all frames of reference simply does not require the equivalence 
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of all coordinate systems (11]. Eddington [14 J pointed out that IIspace is not a lot of points close together; 

it is a lot of distances interlocked. II Moreover, because of the equivalence principle, it is found that the 

general mathematical covariance must be restricted [7,8,11]. 

Kretschmann [17) pointed out that the postulate of general covariance does not make any assertions 

about the physical content of the physical laws, but only about their mathematical formulation, and Einstein 

enti rely concurred with his view. Pauli (10] pointed out further that liThe generally covariant formulation of 

the physical laws acquires a physical content only through the principle of equivalence, .... " Thus, one has to 

modify the mathematical general covariance to accommodate the equivalence principle if incompatibility can 

occur. Einstein [2J argued that II ... there is no immediate reason for preferring certain systems of coordin

ates to others, that is to say, we arrive at the requirement of general co-variance. 1I This is, of course, 

incorrect since the equivalence principle is a reason to If,eject some coordinate systems (see also § § 5 & 6). 

Moreover, a mathematical general covariance requires the indistinguishability between the time-coordi

nate and a space-coodinate. On the other hand, the eqUivalence principle is related to the Minkowski space 

which requires a distinction between the time-coordinate and a space-coordinate. Thus, a general covariance 

is inherently inconsistent with the equivalence principle. In addition, as Hawking (18] pointed out, physics 

requires that time has a direction. Thus, the mathematical general covariance must be restricted in physics. 

If, at the earlier stage, Einstein's arguments are not so perfect, he seldom allowed such defects be used 

in his calculations. This is evident in his book, 'The Meaning of Relativity' which he edited in 1954. 

According to his book and related papers, Einstein's viewpoints on space-time coordinates are: 

1) A physical (space-time) coordinate system must be physically realizable (see also 2) & 3) below). 

Einstein [19] made clear in 'What is the Theory of Relativity? (1919) I that IIln physics, the body to 

which events are spatially referred is called the coordinate system. 1I Furthermore, Einstein wrote "If it is 

necessary for the purpose of describing nature, to make use of a coordinate system arbitrari Iy introduced 

by us, then the choice of its state of motion ought to be subject to no restriction; the laws ought to be 

entirely independent of this choice (general principle of relativity)". Thus, Einstein's coordinate system 

has a state of motion and is usually referred to a physical body. Since the time coordinate is acoo'td

ing,{y fri;xe4, choosing a space-time system is not only a mathematical but also a physical step. 
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2) A physical coordinate system is a Gaussian system such that the equivalence principle is satisfied. 

One might attempt to justify the viewpoint of accepting any Gaussian system as a space-time 

coordinate system by pointing out that Einstein [3 J also wrote in his book that "In an analogous way (to 

Gaussian curvilinear coordinates) we shall introduce in the general theory of relativity arbitrary co

ordinates, x1 , x2 ' x3 , x4 ' which shall number uniquely the space-time points, so that neighbouring 

events are associated with neighbouring values of the coordinates; otherwise, the choice of co-ordinate 

is arbitrary." But, Einstein [3] qualified this with a physical statement that "In the immediate neighbour 

of an observer, falling freely in a gravitational field, there exists no gravitational field." This statement 

will be clarified later with a demonstration of the equivalence principle (see eqs. (7] & (8]). 

3) The equivalence principle requi res not only, at each point, the existence of a local Minkowski space1) 

( 1 ) 

but a free falling rntt.ot result in a local Minkowskian space (see also [5,9, 10J ). 

4. Free Falling and the Equivalence Principle 

To clarify the 1916 paper (2], Einstein wrote in his book (3], "According to the principle of equi

valence, the metrical relation of the Euclidean geometry are valid relative to a Cartesian system of reference 

of infinitely small dimensions, and in a suitable state of motion (free falling, and without rotation)." Thus, at 

each point (x,y,z,t) of a physical space, a "free falling ll observer P must be in a local Minkow6ki ~pace 

( 1 ), whose spatial coordinates are ~tatica,.Uy attached to P, whose motion is governed by the geodesic, 

d2 J.1 dx Q dxt3 __x_ + rJ.1 ---- - a (2 )ds 2 Q f3 ds ds - , 
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(3 ) 

Thus, there is a clear physical distinction between a space-coordinate and the time-coordinate. This free 

falling is equivalent to the existence [9] of "orthogonal tetrad of arbitrarily accelerated observer." In away, 

the "free falling" of an observer locally extends the Minkowski space to general relativity. Thus, according to 

Einstein, in a space-ship under the influence of gravity only, the local space-time is automatica-Uy Min

kowski, because for a free falling observer, the local Minkowski space is statically attached to the observer. 

However, some theorists mistook Einstein1s [3] other statements as the equivalence principle. The 

quotation is "In the immediate neighbourhood of an observer, fall ing freely in a gravitational field, there 

exists no gravitational field. We can therefore always regard an infinitesimally small region of the space-time 

continuum as Galilean. For such an infinitely small region there will be an inertial system (with the space 

coordinates, X1 , X2 , X3 , and the time coordinate X4 ) relatively to which we are to regard the laws of the 

special theory of relativity as valid." These statements are essentially the mathematical theorems in § 2, alth

ough the language is in physics. From these statements, the free falling observer, though in the neighbourhood 

of a local Minkowski space, may not move with the lIinertial system". 

However, a possible mathematical choice of coordinates is inadequate in physics, since its If,ealization 

must be specific. Einstein (2] proposed that the acceleration of the system of reference must be in a free 

falling with the observer. This observation is echoed by Pauli (10). He wrote that "For every infinitely small 

world region, there always exists a coordinate system Ko (X'I' X2 , X3r X4 ) in which gravitation has no 

influence either on the motion of particles or any other physical processes." and that "We can think of the 

physical realization of the local coordinate system Ko in terms of a freely floating, sufficiently small, box 

which is not subjected to any external forces apart from gravity, and which is freely falling under the action 

of the latteL" and that lilt is evidently natural to assume that the special theory of relativity should be valid in 

Ko." Weinberg (5) wrote also some equivalent statements in his book. 

The existence of a Local Minkowski space alone implies only that it is always possible to construct 

mathematically a Cartesian coordinate system covering an infinitesimal neighberhood of a freely falling obs

erver, i.e., the local space-time of a space-ship under gravity may not be Minkowski. In contrast to 
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mathematical coordinates, a space-time coordinate system cannot be just any Gaussian system. Apparently, a 

discussion on the possibility that the equivalence principle may not be satisfied even if the metric signature is 

(+,-,-,-), was over-looked by Einstein and others. 

To see the need of considering beyond the metric signature, we consider a constant metric, 

(4a) 

where Q (2: 2c) is a constant. The unit of t is second, the unit of x, y, or z is centimeter and the 

unit of Q is em/sec. Metric (4a) is a solution of the Einstein equation GJ..IV = O. Then, ds 2 = 0 would 

imply that the velocity of light is Q. One might argue that metrice (4a) can be transformed to 

ds2 = c2dt'2 - dx'2 - dy'2 - dz'2, (4b) 

by the following diffeomorphism, 

Xl = X, y' y, z' z, and t' talc. (4c) 

Eq. (4c) implies, however, that the units of t and t' are distinct and the light speed remains Q but not c. 

Eq. (4c) is not a rescaling since all the physical units remain the same. In a rescaling only the physical 

units, but not the physics, are changed. For example, the light speed can be expressed as 1 lightyear per year 

or 3 x 1010 em/sec. However, if a = 2c, metric (4a) implies that the light speed would be 2c, i.e., 6 x 

1010 em/sec; and metric (4a) implies that the light speed is 3 x 1010 em/half-sec. Thus, if metric (4b) 

were considered as Minkowski, the diffeomorphism (4c) would amount to redefining the space. 

Einstein [3) illustrated his equivalence principle in his calculation of the light bending. First, using his 

field equation of 1915, he justified the linear equation, 

8 2Yuv 
X ') (Sa) 
a ra
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where Y jJV (= gjJv- lljJv) is the deviation from the flat metric lljJv , TjJV is the energy-stress tensor for 

massive matter, and K is the coupling constant. Then, from eq. (5a), he obtained the metric 

ds 2 
(5b) 

by using the asymptotically flat of the metric. (Note that eq. (Sa) can be justified with physical considerations 

(20) , which are independent of the Einstein equation.) 

Now, although d2 xjJ/ds2 =1= 0, consider an observer P at (xo,Yo,zo,to ) in a IIfree falling ll state of 

dx/ds = dy/ds = dz/ds O. (6 ) 

According to the equivalent principle, state (6) of P implies at (xo,Yo,zo,to) 

( 7) 

since the local coordinate system is attached to the observer P (i .e., dX dY dZ 0). Because the space 

coordinates are orthogonal to dt, at (xo,yo,zo,t o) one has [3J 

(8 ) 

In general relativity, the law of the propagation of light is characterized by the Iight-cone condition, 

ds 2 O. ( 9) 

Then, the velocity of light is expressed in our selected coordinates by 

[dx 2 + dy2 + dz 2 J1/2 
(10)dt 
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Einstein wrote [3] "We can therefore draw the conclusion from this, that a ray of light passing near a large 

mass is deflected. II Thus, Einstein has demonstated that the e.quivaAence p!lincipte /t.eq~ that a 

opace-time coo'utinate/.) oyotem mtrot have a phY6icat meaning. There is a definite physical difference 

between a space coordinate and a time coordinate. Thus, a space-time coordinate system cannot be just an 

arbitrary Gaussian coordinate system in mathematics. 

Although Einstein emphasized the importance of satisfying the equivalence principle, he did not emphasis 

that this satisfaction is automatically only in a physical space. However, there are many ways to go wrong. 

For instance, if the requirement of asympotically flat were not used, one could obtain a solution which does 

not satisfy the equivalence principle. This illustrates also that to see whether the equivalence principle is 

satisfied, one must consider beyond the Einstein equation (see § 5). 

Moreover, if the metric did not satisfy the equivalence principle, ds 2 = 0 would lead to an incorrect 

light velocity because the manifold is not a physical space. In addition, Einstein's calculational approach would 

lead to contradictory results. To illustrate these, it will be shown in next section that an arbitrary Gaussian 

system as a space-time coordinate would lead to theoretical inconsistency and errors in physics. 

5.� Validity of a Metric in Physics and the Equivalence Principle 

A given metric defines a physical space only if the space-time coordinate system is physically realizable, 

i.e.� the equivalence principle is satisfied. This will be illustated by a few examples of metric spaces. For 

clarity� and simplicity, we discuss cases without gravitational forces. 

Example 1, consider the metric (4) again. If the equivalence principle were valid, one would obtain 

( 11 a) 

Eq.� (11a) and ds 2 0 imply that at any point (x,y,z,t) the light speed is 

[dX 2 + dy2 + dZ2) 1/2 [dx 2 + dy 2 + dz2) 1/2 
1� (11 b) cdT� adt 
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Eq. (11 b) implies, however, that the light speed is c in the local Minkowski coordinate, but is a (2: 2c) in 

the (x,y,z,t) space. But, since there is no gravitational force for this case, we may have also 

x = X, y = Y, and z = Z ( 12) 

Eqs. (11) and (12) absurdly mean that for the same frame of reference, we have different light speeds. This 

certainly disagrees with Einstein's statement (19] that IIln physics, the body to which events are spatially 

referred is called the coordinate system ll In summary, metric (4) is not physically realizable. • 

Example 2, consider the transformation, which is a diffeomorphism, 

t :: C { exp (TIC) - exp ( - TIC) }12. (1 3a) 

Then 

ds2 = : {exp(T/C) + exp(-T/C)}2dT2 - dx 2 - dy2 - dz2 (13b) 

repesents the Minkowski metric after the transformation. If metric (1 3b) is realizable, according to ds 2 0, 

the measured light speed would be {exp(T/C) + exp( - TIC)} 12. 

From (13b), the Christoffel symbols r v,a/3 (= C8agv/3+8/3gva-8vga/3] /2), are zeros except 

(14 ) 

Then, according to the geodesic equation, the equation of motion for a particle is 

(15) 

where 

d r l = dT (In{exp(T/C) + exp(-T/C)})u 

It follows eq. (15) that one obtains, for some constant k 
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i!l dxP 
ds = k { exp (Tj C) + exp ( - Tj C) } -1 and constant

ds (16 ) 

Now, consider the case dxjdT = dyjdT = dz/dT = 0; and therefore dx/ds = dy/ds = dz/ds = o. Thus, in such 

a IIfree falling", there is no change in the spatial position nor acceleration. Physically, this means that such an 

observer would have the same frame of reference, whether IIfree falling" or not. Since metric (13) is not 

Minkowski, according to Einstein, the equivalence principle is not satisfied. Otherwise. we would absurdly 

have two different light speeds from the same frame of reference. Thus, metric (13) is not realizable. 

Now, to see further that the equivalence principle is needed for the theoretical consistency of general 

relativity, let us consider Example 3, a frame of reference K' with a constant metric, 

[ dz I + (c - v) de ) [-dz I + (c + v) dt I ] - dx I 2 _ dy' 2 , ( 17) 

since any constant metric satisfies the Einstein equation C)...lv = o. Then, for light rays in the z'-direction, ds 2 

= 0 would imply at any point the light speeds were 

c + v, or -c + v. (18 ) 

Clearly, eq. (18) also does not give a correct light speed since (18) also violates cooJi4inate'L01atiVMtic 

cau/.)l1tUty, i.e. no cause event can propagate faster than t.he velocity of Iight in a vacuum. (Not.e also those 

in (18) cannot I>e 'LegaJtded cz,~ coo'Ldinate v01ocitie/.}, since metric (17) is not physically realizable.) 

Moreover, according to the geodesic equation (2), metric (17) implies d2 x'P/ds 2 = 0, and thus 

dx').l 
constant. where xll-l (= Xl, y', Zl, or t') ( 19)ds 

at any point. Now, according to metric (17), consider the case of IIfree falling ll at (x'o,y'o,z'o,t'o) 

dx'jds dy'/ds = dz'jds 0, and dt'jds = (c2 _ v2 ) -'/2. (20) 
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Note that there is no acceleration nor any change in the spatial position. In other words, such a Ilfree falling" 

observer carries with him the frame of reference K'. But, the K1 metric (17) is not a Minkowski space. 

Nevertheless, mathematic!'> ensures the existence of a local Minkowski space, which can be obtained by 

choosing first the path of a particle to be the time coordinate and then the other three space coordinates by 

orthogonality. Let us investigate this scenario. According to condition (20), the time coordinate would remain 

the same de. But, the coordinate dz' is not orthogonal to dt'. tn order to have three orthongonal space 

coordinates to form a local Minkowski space, it is necessary to transform dz' by 

dT = dt', dX dx l
, dY = dy', and dZ dz' - vde. (21 ) 

But, since the observer at (x'o,y'o,Z'o,t'o) is in a state of dz ' = 0 (i.e., dZ '* 0), this local system is not 

otailiiccdly attached to the observer, and hence is unrelated to the "free falling". Thus, the equivalence prin

ciple is not appl icable to Riemannian space (17) although, at any space-time point, it is always possible to 

have a local Minkowski coordinate system which is related to a certain free falling. This illustrates that not 

oniy the ~noo 0(,. a weed Minkow~ki ~paee, M aiJ.>o how ouch a weat ~paoo iI.i lt0lated to 

the geodeoic, rio c1tuciaA, .(,0,"- a phy~icaA, ~paee. 

It has been shown in three different approaches that metric (17) is incompatible with the equivalence 

principle and therefore physically unrealizable. Also, (21) is clearly a Galilean transformation. Thus, it has 

been shown that the Galilean transformation is also not valid in general relativity. The failure of satisfying the 

equivalence principle should be expected since the Galilean transformation is experimentally not realizable. 

6. The Equivalence Principle and Covariance 

The foundation of general relativity consists of the equivalence principle and covariance. However, the 

principle of general relativity requires only the equivalence of all frames of reference, but not all mathemati

cal coordinate systems as claimed (21). The equivalence principle is a physical requirement for a valid phy

sical space-time coordinate system. Also, a distinction between time and space is inherent, as Hawking [18] 

pointed out that "something that distinguished the past from the future, giving a direction to time." 
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In terms of mathematics, the satisfaction of the equivalence principle is the feasibility of a coordinate 

transformation which is subjected to the geodesic. The trajectory of a particle may relate to the metric in a 

manner depending the coordinate system. Also, a local coordinate system is restricted by the non-covariant 

requirement of being a Minkowski metric with spatial orthogonal coordinates statically attached to the 

geodesic. These would put a severe restriction on the possible Gaussian coordinate systems. 

Thus, the equivalence principle is related to the physical meaning of the coordinates in a space-time 

coordinate system. For instance, as shown by metric (10), the metric element gu cannot be arbitrary. More

over, the trajectory of a particle, being also the local time, is orthogonal to the local spatial coordinates. This 

means, however, when the II t ime ll coordinate is not orthogonal to the "spacell coordinates, the equivalence 

principle is not satisfied if a particle is allowed to rest relative to the frame of reference. 

Let us illustrate this by revisiting metric (17). Consider the Gal ilean transformation 

t = e, x = Xl, Y = y', and z = z' - vt'. ( 22a) 

Then 

(22b) 

is obtained from metric (17). Now, at (x,y,z,t) the state (20) now becomes 

dx/ds dyjds 0, dz/ds -vdtfds, and dt/ds = (c 2 - V 2 )_lh • (23 ) 

The trajectory of the particle has the direction (O,O,dz,dt), and its orthogonal vector is (0,O,dt,dzc-2 ). Thus, 

the local Minkowski space can be obtained by a Lorentz transformation, which preserves orthogonality. 

On the other hand, from metric (17) the direction of the particle is (O,O,O,dt') and its orthogonal 

vectors are (1,0,0,0), (0,1,0,0) and bi. = (0,0,0,f3) where 0 2 = 1 - V2/c 2 , and f3 = -v/c 2a. However, 

since the state of (O,O,O,dt') requires dz' = 0, but dt' * 0, the vector bi. is not statically attached to the 

particle. This is due to the fact that the local space (dx' ,dyl ,dz') which is fixed to the particle is not ortho

gonal to the the vector (O,O,O,dt'). This means that metric (17) is not physically realizable. 
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In the above analysis, it has been illustrated that the Galilean transformation is incompatible with the 

equivalence principle in the absence of gravity. In fact, the incompatibi lity is also true even when gravity is 

present. To illustrates this, let us consider metric (5b) and the physical situation that a particle at (O,O,zo,to ) 

moving with velicity v at the z-direction. The Galilean transformation (22a) transforms metric (4b) to 

K a" K a '2 '[ ]c2 (1 - 4Tf SdVo7)dt 2 - (1 + 411 SdV o7)(dx + dy 2 + dz' - vdt' 2). (24) 

If metric (24) had a physical realizable coordinate system 5', the particle would be at (O,O,z'o,t'o) in the 

state (O,O,O,dt') and the local spatial coordinates dx', dy', and dz' would be statically attached to the particle 

at the instance t' o. However, according to metric (24), the coordinate dz' is not orthogonal to dt'. 

But, in a local Minkowski space, dt' would be orthogonal to a statically attached three dimensional linear 

subspace. This is not possible because dx', dy', and dz' can form a basis of a three dimensional subspace. 

Thus, the equivalence principle cannot be satisfied and metric (24) is not a physically realizable space. An 

interesting result from this analysis is that, due to the equivalence principle, the time-coolUUnate YTUJI.)t I>e 

oltthogoncd to the opace-coolUUnate/.) if a particle is allowed to rest relative to the frame of reference. 

Moreover, a Lorentz manifold may not be diffeomorphic to a physical space. In particular, many solutions 

of Einstein's equation are intrinsically unphysical since they fail physical requirements. For instance, consider 

ds 2 = du dv + hjj(u)xixi du2 - dxi dxj (25) 

where u = t - z, v = t + z, hidu) ~ 0, and hij = hW Its physical cause can be an electromagnetic plane 

wave [22]. This metric is incompatible with Einstein's notion of weak gravity and the correspondence prin

zciple since hij(u)xixi can be arbitrarily large. Moreover, the gravitational force (related to r = Vz8(h ij x
i 

u 

xi )/8t has arbitrary parameters (the coordinate origin). This arbitrariness in the metric violates the principle 

of causality (Le., the causes of phenomena are identifiable) (8]. 

A reason that metric (25) cannot be diffeomorphic to a physical space is that a diffeomorphism cannot 

eliminate any parameter. Metric (25) also does not satisfy coordinate relativistic causality and therefore the 
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equivalence principle because the requirement 1 ~ (1 + H)j(1 - H) (where H = hijxixi) may not be 

satisfied. One can also show that metric (25) does not satisfy the equivalence principle by direct calulations 

as shown in the previous cases. 

7. Conclusions and Discussions 

Special relativity was proposed ten years ahead of general relativity, and the Minkowski metric is a 

special case of the metric in general relativity. However, it was not clear that all the principles which lead to 

general relativity are compatible with each other and special relativity as a special case. For instance, the 

equivalence principle can be considered as a generalization of the Minkowski metric, but this principle may 

not be compatible with the covariance principle. In fact, there is no physical need to extend the space-time 

physical coordinate system to an ~y Gaussian system (11). 

Although the creation of general relativity is due to the desire to have a theory of gravity which is 

consistent with special relativity, the consistency between special relativity and general relativity has not been 

thoroughly checked. Note that, to establish special relativity, the Calilean transformation is proven to be 

physically UYlILecdiza1Yle, by experiments. Thus, a Calilean transformation cannot be compatible with the equi

valence principle which is applicable to only a physical space. This means that the equivalence of all frames 

of reference is not the same as the physical equivalence of all mathematical coordinate systems. In particular, 

due to the equivalence principle, the Minkowski metric is the omy physical constant space-time metric. 

A Gali lean transformation clearly leads to a violation of the equivalence principle and that ds 2 = 0 

impl ies a light "velocityll larger than c [11 ) . However, instead of leading to further investigations, this pro

blem was not recognized by some theorists due to their misconceptions. Their denial in terms of false 

arguments was supported with misunderstandings in physics and erroneous statements in mathematics. Thus, it 

is necessary to calculate examples which directly demonstrate a violation of the equivalence principle. 

Moreover, some II Theorists II even prefer to distort Einstein's equivalence principle to fit the mathematical 

theorems (see §§ 3 & 4) because they are unable to tell the difference between mathematics and physics. 

However, unlike mathematics, physics is restricted by the physical reality. The fact that the we<U opace

ti~ ot- a opace.l.Jtip uru:leJr- the inM-uence ot- omy g-tavity. M a MinJwwold ~pace lLeq~ that a 
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{lr,u {,.a1A;ing muot Jt..eJ.:,tUt in a local Minkowoki opace. As stated by Einstein, the equivalence principle 

is necessary to ensure that [2] "special theory of relativity applies to the case of the absence of a gravita

tional field. II Thus, nature unequivocally defeats any attempt to misinterprete the equivalence principle. 

Einstein proposed the equivalence principle for physics (2,3]. It was misunderstood that the equivalence 

principle is always applicable to a Lorentz manifold [9,13,23]. However, for some of such metric spaces, a 

local Minkowski space may not be obtained in a "free falling ll Thus, the quotation of Einstein at the beginn• 

ing of this paper is valid not only for Euclidean geometry but also for Riemannian geometry. 

Mathematically, a local Minkowski space for an hypothetical observer is obtained as follows: 

1) Choose the path of a IIfree falling ll hypotheical observer to be the local time coordinate. 

2) Choose the other three space coordinates by orthogonal ity. 

Thus, a local Minkowski space can always be constructed for any hypothetical observer. But, the so chosen 

spatial coordinates may not be statically attached to the hypothetical observer. In other words, the mathemat

ically constructed local Minkowski space may be urvr,01ated to the IIfree falling ll 
(§ 5). Thus, in contrast to 

the suggestion of Misner et al. (9), an existence of the tetrad in a Reimannian space, is not always possible. 

The fact that there is a distinction between the equivalence principle and the proper metric signature 

would imply also that the covariance principle must be restricted. However, general relativity as a physical 

theory is unaffected by the restriction due to the equivalence principle. An impcYttant {,unction o~ the 

equivalence plVinoiple t<Mt .f/.) to eAimin,a;te, int'llinoicOlUy unphYMcatl Lolttentz manibo-ld.6 any o~t 

which cannot k d-if,.{,eomoltphic to a phYMcatl opace (see § 6 and also (11]). 

Since the proper metric signature of a Riemannian space is insufficient to ensure the satisfaction of the 

equivalence principle, further considerations must be made for its valid applicability. For instance, since the 

principle of equivalence implies relativistic causality, a physical space must satisfy relativistic causality. When 

gravity is present, the light speed is smaller than maximum speed c due to the gravitational effects of space 

constraction and time dilation. Therefore, cooJtd.inate wativiMic cauoa-Uty (i .e., the light speed c is the 

maximum velocity of propagation for any event) can be used as a convenient criterion. For example, co

ordinate relativistic causality is satisfied by the exterior Schwarzschild solution (11]. The principle of 

causality (i.e., the causes of phenomena are identifiable) necessitates the asymptotic flatness of a metric due 
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to an isolated source. However, these necessary conditions cannot assure the theoretical validity of the 

equivalence principle in a metric space. 

Perhaps, due to sensing some confusions related to understanding the equivalence principle, theorists such 

as Synge (24] advocated explicitly that the basis of general relativity should be the Einstein field equation 

alone rather than the equivalence principle. However, as pointed out by Klein [25], theoretically there is no 

satisfactory proof of rigorous validity of Einstein's field equation; and experimentally, as pointed out by 

Weisskopf [26], the val idity of Einstein's equation has not yet been established beyond doubt. In fact, the 

invalidity of Einstein's equation for two-body problems was conjectured by Hogarth (27] in 1953; and 

Einstein himself had pointed out that his equation may not be valid for matter of very high density [3 J. 

Moreover, it has been proven experimentally that Einstein1s equation must be modified (13). But, the 

equivalence principle remains indispensible because of its solid experimental foundation [-13,28]. 
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ENDNOTES 

1) A local Minkowskian space is a short hand to express that special relatvity is locally valid. 
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