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Abstract 

Hermiticity of the full Hamiltonian constrains the various structural properties (like f ~ ! os­

cillations) of the complex formed by a neutral. flavoured meson f .and its antiparticle t. These 

"unitarity" constraints a.re written, following Kahil and Pilaftsis. Evaluation of the structural a.mp­

titudes at small values of the proper time brings out the inadequacy of the UBUal phenomenology 

based on th~ Weisskopf-Wigner approximation. Asymmetries which could experimentally check this 

are proposed. 
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We first define the "structmal amplitudes" of an (f,l) complex where f is a. neutral flavoured 

meson (e.g., f = KO, Do, B~, B:, ... ) and f is its antiparticle. Starting from the sta.tes If > and If > 
initially (i.e. at proper time t = 0), let the time··developnlent be given by 

If >~. a(t)l! > +b(t)lf > +:Ei C1(t)lpi > 

If >~ b(t)l! > +a(t)I! > +Ei Ci(t)lpi >, (1) 

where the IPi > (for i = 1,2, ...) are other states (orthogonal to If > and If » produced with 

coefficients c. and Ct. By definition, 

a(0) = ii(0) = 1 ; 

b(0) = b(0) = 0 ; 

Cj(O) = Cj(O) = 0, for all i . (2) 

We call the amplitudes a, ii, b and bas "structural". While a and a respectively denote the diagonal 

transitions II >--+ If > and If >-+ 11 >, the amplitudes b and b respectively denote the 'mixing' or 

nondiagonaJ. transitions 1/>--+ If> and 11 >-+ If >. In general, all the four structural. amplitues are 

independent. Taking If >= CPlj >, structural CP-violation means (a - a) # 0 or/and (b - b):/; O. 

Let us state the meaning of "structure" in the language of the We~kopf-Wigner approximation 

(called WWA henceforth) which is commonly used for a phenomenological description of the (f, f) 
complex: The constant parameters describing the structure of the two independently propagating 

states (in te:rms of If > and If », along with their propagation parameters, fully determine the four 

"strnctUIal amplitudes" a, a, b and be The WWA is used in this paper only {or a comparison with 

the general unitary description. 

The puxpose of tms paper is to write some constraints on a, a, b and b arising from unitanty (viz. 
hermiticity of the full Hamiltonian), on the lines of ref [11, and to use these constraints to deduce, at 

a purely phenomenological level, some general aspects of the t-dependence of these amplitudes. The 

small-t behaviour of various suitable combinations of these amplitudes is then explicitly derived, and 

contrasted with the corresponding behaviour obtained in the WWA. Future data on the experimental 

t-dependence of some CP-violaiing asymmetries (called A1,2p3pf} below)can test this inadequacy of 

the WWA. 

For deducing [1] the unitarity conditions, one utilizes the hermiticity of the full H,milltonian H. 

The transition operator O(t) = exp(-iHt) is unitary: 

2 



n+(t) = [n(t)]-l =n(-t) . 

Taking the lm-th element, we get the unitarity condition [1] . 

A~(-t) = A1m(t) =< lIO(t)lm > , (3) 

for transition amplitudes. Restrictions on the even!odd nature (as a. function of time) of the real and 

imaginary parts of the probability amplitudes Aim follow from Eq.(3). For nondiagonaJ transitions, 

the unitarity condition [1] 

t/J-(-t)t/J(t) = 1 (4) 

{or the ratio 

(5) 

can be satisfied. by the form 

1/J(t) = e:cp{g + ih) (6) 

where the unspecified real functions g and h are respectively odd and even functions of time. 

Following the same [1] lines, we want to exploit Eq. (3) fully with the identifications 

~JI == a, Ajj == a, A ji = b, Akj =b . (7) 

Defining the nondiagonal amplitudes 

N:r- =(b 1= b) , 

Eq.(3) gives 

(8) 

which contain Eq. (4) for the present case. For the diagonal amplitudes, the corresponding relations 

are 

(9) 
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a*(-t) = a(t) ; (10) 

[a*( -t) ± a*(-t)] = [a{t) ± a{t)] . (11) 

One may note the comparison (contrast) of the unitarity relation (8) for N+(N_) with the corre­

sponding relations (9-11). Similarly, one gets 

"7*( -t) == '1(t), '7 = ala; (12) 

1J(t) = ezp(F + iG) , (13) 

where the unspecified real. functions F and G are respectively even and odd functions of time; the 

general form (13) would hold for 1'], a, a, N+. The functions fJ and t/J ate complementa.ry in nature; 

Eqs. (6, 13). The constraint F(O) =0 follo'" from 1J(O) =1 implied by the first of Eqs. (2). IT the 

ratio r of the two diagonal probabilities is constant, the first of Eqs. (2) shows r to.be unity; see 

ref[l] for an analogous theorem :Cor nondiagonal. probabilities. 

While data would be the final guide in deciding how the present phenomenology based on the 

WWA would be improved by using the above unitarity relations, we now concentrate on the be­

haviour of the structural amplitudes at small times. This is an important step in the diIedion of 

obtaining a. unita:cy phenomenological scheme because -the WWA is decidedly inadequa.-te in that re­

gion oft, as the fonowing paragraphs would show. The sma.ll-t behaviour of the various CP-violating 

( x) and CP-conserving (.J) combinations of the strudmal amplitudes, as following from the above 

nnitarity relatioDB, is given in table 1 which lists the real or imaginary na.ture of -the coefficients of the 

constant (to) term, the even- power (t~) terms, and the odd-power (todd) terms in -the i- expansion 

of the amplitude c~mbination8. The relation 1'1/1(0)1 =1 following [1] from Eq. (4) is implied by the 

purely imaginary nature of [(b - bJ/(b +b)] a.t t = 0, as seen in table 1. 

The asymmetries 

1612 -161' (14)
Al = Ibt2 + Ibl2 ' 

can be seen to have -the small-t beha.viour 

(15) 

by using the results in .table 1. A possible wa.y to measure Al and A2 , for f = KO , would be to look 

for (K-orA) production arising from the final-state neutral kaon, at time t, if the prima.ry reactions 
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-PP -+ ".-K+[(0 , (16) 

fip -+ 1["+K-KO (17) 

are taken to occur at t = o. This would measure lal and IbJ from the reactions (16) and (17) respec­

tively; similarly, the production of K+ from the final-state neutral lcaonJ at time t, would measure 

Ihl and lal respectively from the reactions (16) and (17). For I =Ed, one may use decays of the T(4S) 

(18) 

by tagging beans at production and at decay, to get the diagonal (laJ2, (aI2 ) and nondiagonal (lbl:Z , 16/2
) 

probabilities. Similarly, double-tagging of kaons could be used. with the ~meson 

(19) 

{or 1= KO. 

Another interesting asymmetry is 

- NIJ -NIlA3- (20)
NJJ + Nff 

between the numbers of Iff> and If1> events produced by an initial C = -tie state . 

1- >= II!- II> (21) 

like T(4S) and I~ >. One gets, on dropping uninterestin~overall constants, 

Nff =lell2 
, el =[a(t1)b(t:z) + fb(t1)a(t2)] ; (22) 

Nlf = le:z12 
, e:z = [b(t1)a(t:z) + fd(t1 )b(t2») ; (23) 

where f is the C-eigenvalue of the initial state; here, f = -1. If both the times (tl and t2) of the 

production of the like-mesons (II or 11) are small as measured from the creation of the 1- > state, 

results of table 1 imply, for C = -ve, 

(24) 

On the other hand, if the initial state has C = +ve: 

1+ >= If1+! I >, (25) 
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the corresponding time-dependence fOI the asymmetry A3 would follow from Eqs. (22,23) with 

£ =+1, and table 1, as 

(26) 

Another interesting asymmetry 

- Nil-NIt'A4- (27)
NJ/+NJJ 

arises between Nil, the number of III > events with 1 appearing later than 1, and NjJ wherein 

f is later then I, starling with the states (21) and (25). One gets, in analogy to Eqs.(22,23) t with 

f = ±1 for the states I± > respectively, using t l > t2 , 

Nlj = le31~, e3 =a(tl)a(t~) + fO(t1 )b(t2 ) , (28) 

NIl = le,12 
, e, =b(t})b(t2 ) + ea(t})a(t2 ) • (29) 

Then, for small t l and t 2, the table gives, for both £ = ±1, 

.A-t ~ (t~ - t~) _ (30) 

How do the predictions (15), (24), (26) and (30) of the unitary theory compare with the corre­

sponding results of the WWA? Two independently propagating states Ifl > and 1/2 > characterise 

the WWA: 

111 >= PIli> +qllf >, (31) 

1/2 >= hi! > -tI211 >; (32) 

If1 >.!. 811/1 >, . (33) 

1/2 >.!. 821/2 >, (34) 

91,2 =ezp[-i t m1,2 - i rl.~] = ezp(-iUl,~) (35)j 

(}1,2 (or, equivalently, Al,2) ma.y be called the "propagation parameters" of the states 1/1,2 >; here, 

ml,2 and r 1,2 are the usual masses and widths for If1,2 >; the complex constants P1,2 and Ql,2 are 

used to express 1/1,2 > in terms of If > and If >. There are only two definitive time-dependences 

now: 91 and 92 - The general constraints of Eqs. (2) imply that (a - a), b and 5 must have the 

time-dependence (81 - 82). Indeed, one finds (see ref [2] for a convenient review) 

(36) 
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(a - ti) = [(Pl/ql) - ~/q2)] b, (37) 

b= [PIP:l/(qllh)] b, (38) 

b = qlq2(91 - f)2)/(Q1P2 +thPl) . (39) 

The contrast between the WWA a.nd the general. theory now comes out. Eqs. (36-39) show that) 

unlike the results in table 1, one gets, in the WWA, the last 3 amplitude-combinations of the table 

{(b - b)/(b +b), (b - b)/(o. - a), (a - a)/(b +b)} to have constant values determined by Pl,~ and Ql;J' 

For the remaining 8 amplitude-combinations, in the WWA, coefficients of the various powers of t are 

in general complex and determined by integral. powers of the complex messes ~1,2' That contrasts 

with the general. theory wherein the coefficients of the successive powers are relatively imaginary 

for all the 11 amplitude-combina.tions of the ta.ble. In fad, in the WWA, the time - dependence of 

(a +a) is (81 + O~) and it is (01 - ( 2 ) for (a - a), (b - b) and (b + b), leading to the time-dependence 

[(9) -1J.,;,)/(91 + 9~}) {or the three amplitude-combina,1iOnB numbered 6,7 and 8 in table 1. 

For the asymmetries considered above, the WWA gives 

Al =constant, for all times , (40) 

and 

A2 I'J t , for small times . (41) 

Also, for the C = -tie case (see, for example, ref. [3]), one gets, in the WWA, 

A3 =constant ; (42) 

here, the relation el =-[PIP2/(QlQ2)] e2, f =-1 holds between the amplitudes defined in Eqs.(22-23). 

For the a = +ve case, one gets, for small t 1 and t 2 , 

A3 =constant (43) 

here, el = f1:>IP2/(Qlq2)]e2, with € = +1 holds, apart from terms which are rela.tively negligible for 

small t 1 and t 2 • Coming to A.., the WWA gives, by using Eqs. (M-35), for both E =±1, viz. a = +ve 
'H-3' 

and -ve, 

(44) 

{or small t 1 and t~. 
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One may note tha.t the behaviour of A] and A3 at small times depends crucially on Re[(b-b)j(b+ 
b»), and that of A2 a.nd A~ on Re[(a - a)/(a + a)]. For all the four asymmetries, the WWA gives 

a variation slower by one power of a suitable time-variable, as seen by comparing the WWA results 

(40-44) with respectively, (15,24,26,30) of the general theory. 

As pointed out already [1J, the WWA cannot exactly satisfy unitary. Future experiments should 

prove the general results (15,24,26,30) in contrast to the corresponding results (40-44) of the WWA. 
Unfortunately, the tests are difficult. Also, there is no unique way of defining "small times"; one 

can try our tests at smaller &lld smaller times {or eventually discovering departures from the WWA. 

There are, at present, no measurements of the time - dependences of A1,2,3,4' though some data on 

A1,2 for f = [(0 [4] and A3 for f = Bj [5J do exist. 

In summary, we have deduced the small-time behaviollI of the structural. amplitudes of the (/, /) 

complex by utiImng the hermiticiiy of the full Hamiltonian. This behaviour·is not satisfied. by the 

commonly used Weisskopf-Wigner approximation. We have propaJed. test for this. 

My thanks to P.K. Kabir for many useful remarks. 
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Serial Amplitude OP-property Coefficient Coefficient CoefficientNo. Combination of to of t eClen of toll 

1 a or iI Not Applicable 1 Real Imaginary 

2 a+iI V 2 Real Imaginary 

3 a-a x 0 Real Imaginary 

4 6+b 0V Real Imaginary 

. 
5 b-b X 0 Imaginary Real.� 

6 (a -a)/(a+ 0) x� 0 Real Imaginary� 

7 (b +b)/(a +0) V 0 Real Imaginary� 

8 (6 - b)/(a +a) X 0 Imaginary Real� 

9 (b - b)/(b + ti) x Imagina.ry Ima.gi.nary Real� 

10 (6 - b)/(a - a) V Imaginary Imaginary Real� 

11 (a - a)/(6 + b) x Real Real Imaginary� 

Table: 1. Real or Imaginary nature of the coefficients of the constant (to) term, the even-power (teueft
) 

terms, and the odd-power (toU) terms in the t-expansion of the various amplitude combinations (listed 

in second column), due to the unitarity constraint of Eq. (3), using the identifications of Eq.(7). The 

symbols (.j) and (x) in the third column mean, respectively, CP-conserving &Ild CP-violating. 
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